xref: /openbmc/linux/net/sctp/auth.c (revision 79f08d9e)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, write to
20  * the Free Software Foundation, 59 Temple Place - Suite 330,
21  * Boston, MA 02111-1307, USA.
22  *
23  * Please send any bug reports or fixes you make to the
24  * email address(es):
25  *    lksctp developers <linux-sctp@vger.kernel.org>
26  *
27  * Written or modified by:
28  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
29  */
30 
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <net/sctp/sctp.h>
36 #include <net/sctp/auth.h>
37 
38 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
39 	{
40 		/* id 0 is reserved.  as all 0 */
41 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
42 	},
43 	{
44 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
45 		.hmac_name="hmac(sha1)",
46 		.hmac_len = SCTP_SHA1_SIG_SIZE,
47 	},
48 	{
49 		/* id 2 is reserved as well */
50 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
51 	},
52 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
53 	{
54 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
55 		.hmac_name="hmac(sha256)",
56 		.hmac_len = SCTP_SHA256_SIG_SIZE,
57 	}
58 #endif
59 };
60 
61 
62 void sctp_auth_key_put(struct sctp_auth_bytes *key)
63 {
64 	if (!key)
65 		return;
66 
67 	if (atomic_dec_and_test(&key->refcnt)) {
68 		kzfree(key);
69 		SCTP_DBG_OBJCNT_DEC(keys);
70 	}
71 }
72 
73 /* Create a new key structure of a given length */
74 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
75 {
76 	struct sctp_auth_bytes *key;
77 
78 	/* Verify that we are not going to overflow INT_MAX */
79 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
80 		return NULL;
81 
82 	/* Allocate the shared key */
83 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
84 	if (!key)
85 		return NULL;
86 
87 	key->len = key_len;
88 	atomic_set(&key->refcnt, 1);
89 	SCTP_DBG_OBJCNT_INC(keys);
90 
91 	return key;
92 }
93 
94 /* Create a new shared key container with a give key id */
95 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
96 {
97 	struct sctp_shared_key *new;
98 
99 	/* Allocate the shared key container */
100 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
101 	if (!new)
102 		return NULL;
103 
104 	INIT_LIST_HEAD(&new->key_list);
105 	new->key_id = key_id;
106 
107 	return new;
108 }
109 
110 /* Free the shared key structure */
111 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
112 {
113 	BUG_ON(!list_empty(&sh_key->key_list));
114 	sctp_auth_key_put(sh_key->key);
115 	sh_key->key = NULL;
116 	kfree(sh_key);
117 }
118 
119 /* Destroy the entire key list.  This is done during the
120  * associon and endpoint free process.
121  */
122 void sctp_auth_destroy_keys(struct list_head *keys)
123 {
124 	struct sctp_shared_key *ep_key;
125 	struct sctp_shared_key *tmp;
126 
127 	if (list_empty(keys))
128 		return;
129 
130 	key_for_each_safe(ep_key, tmp, keys) {
131 		list_del_init(&ep_key->key_list);
132 		sctp_auth_shkey_free(ep_key);
133 	}
134 }
135 
136 /* Compare two byte vectors as numbers.  Return values
137  * are:
138  * 	  0 - vectors are equal
139  * 	< 0 - vector 1 is smaller than vector2
140  * 	> 0 - vector 1 is greater than vector2
141  *
142  * Algorithm is:
143  * 	This is performed by selecting the numerically smaller key vector...
144  *	If the key vectors are equal as numbers but differ in length ...
145  *	the shorter vector is considered smaller
146  *
147  * Examples (with small values):
148  * 	000123456789 > 123456789 (first number is longer)
149  * 	000123456789 < 234567891 (second number is larger numerically)
150  * 	123456789 > 2345678 	 (first number is both larger & longer)
151  */
152 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
153 			      struct sctp_auth_bytes *vector2)
154 {
155 	int diff;
156 	int i;
157 	const __u8 *longer;
158 
159 	diff = vector1->len - vector2->len;
160 	if (diff) {
161 		longer = (diff > 0) ? vector1->data : vector2->data;
162 
163 		/* Check to see if the longer number is
164 		 * lead-zero padded.  If it is not, it
165 		 * is automatically larger numerically.
166 		 */
167 		for (i = 0; i < abs(diff); i++ ) {
168 			if (longer[i] != 0)
169 				return diff;
170 		}
171 	}
172 
173 	/* lengths are the same, compare numbers */
174 	return memcmp(vector1->data, vector2->data, vector1->len);
175 }
176 
177 /*
178  * Create a key vector as described in SCTP-AUTH, Section 6.1
179  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
180  *    parameter sent by each endpoint are concatenated as byte vectors.
181  *    These parameters include the parameter type, parameter length, and
182  *    the parameter value, but padding is omitted; all padding MUST be
183  *    removed from this concatenation before proceeding with further
184  *    computation of keys.  Parameters which were not sent are simply
185  *    omitted from the concatenation process.  The resulting two vectors
186  *    are called the two key vectors.
187  */
188 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
189 			sctp_random_param_t *random,
190 			sctp_chunks_param_t *chunks,
191 			sctp_hmac_algo_param_t *hmacs,
192 			gfp_t gfp)
193 {
194 	struct sctp_auth_bytes *new;
195 	__u32	len;
196 	__u32	offset = 0;
197 	__u16	random_len, hmacs_len, chunks_len = 0;
198 
199 	random_len = ntohs(random->param_hdr.length);
200 	hmacs_len = ntohs(hmacs->param_hdr.length);
201 	if (chunks)
202 		chunks_len = ntohs(chunks->param_hdr.length);
203 
204 	len = random_len + hmacs_len + chunks_len;
205 
206 	new = sctp_auth_create_key(len, gfp);
207 	if (!new)
208 		return NULL;
209 
210 	memcpy(new->data, random, random_len);
211 	offset += random_len;
212 
213 	if (chunks) {
214 		memcpy(new->data + offset, chunks, chunks_len);
215 		offset += chunks_len;
216 	}
217 
218 	memcpy(new->data + offset, hmacs, hmacs_len);
219 
220 	return new;
221 }
222 
223 
224 /* Make a key vector based on our local parameters */
225 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
226 				    const struct sctp_association *asoc,
227 				    gfp_t gfp)
228 {
229 	return sctp_auth_make_key_vector(
230 				    (sctp_random_param_t*)asoc->c.auth_random,
231 				    (sctp_chunks_param_t*)asoc->c.auth_chunks,
232 				    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
233 				    gfp);
234 }
235 
236 /* Make a key vector based on peer's parameters */
237 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
238 				    const struct sctp_association *asoc,
239 				    gfp_t gfp)
240 {
241 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
242 					 asoc->peer.peer_chunks,
243 					 asoc->peer.peer_hmacs,
244 					 gfp);
245 }
246 
247 
248 /* Set the value of the association shared key base on the parameters
249  * given.  The algorithm is:
250  *    From the endpoint pair shared keys and the key vectors the
251  *    association shared keys are computed.  This is performed by selecting
252  *    the numerically smaller key vector and concatenating it to the
253  *    endpoint pair shared key, and then concatenating the numerically
254  *    larger key vector to that.  The result of the concatenation is the
255  *    association shared key.
256  */
257 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
258 			struct sctp_shared_key *ep_key,
259 			struct sctp_auth_bytes *first_vector,
260 			struct sctp_auth_bytes *last_vector,
261 			gfp_t gfp)
262 {
263 	struct sctp_auth_bytes *secret;
264 	__u32 offset = 0;
265 	__u32 auth_len;
266 
267 	auth_len = first_vector->len + last_vector->len;
268 	if (ep_key->key)
269 		auth_len += ep_key->key->len;
270 
271 	secret = sctp_auth_create_key(auth_len, gfp);
272 	if (!secret)
273 		return NULL;
274 
275 	if (ep_key->key) {
276 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
277 		offset += ep_key->key->len;
278 	}
279 
280 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
281 	offset += first_vector->len;
282 
283 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
284 
285 	return secret;
286 }
287 
288 /* Create an association shared key.  Follow the algorithm
289  * described in SCTP-AUTH, Section 6.1
290  */
291 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
292 				 const struct sctp_association *asoc,
293 				 struct sctp_shared_key *ep_key,
294 				 gfp_t gfp)
295 {
296 	struct sctp_auth_bytes *local_key_vector;
297 	struct sctp_auth_bytes *peer_key_vector;
298 	struct sctp_auth_bytes	*first_vector,
299 				*last_vector;
300 	struct sctp_auth_bytes	*secret = NULL;
301 	int	cmp;
302 
303 
304 	/* Now we need to build the key vectors
305 	 * SCTP-AUTH , Section 6.1
306 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
307 	 *    parameter sent by each endpoint are concatenated as byte vectors.
308 	 *    These parameters include the parameter type, parameter length, and
309 	 *    the parameter value, but padding is omitted; all padding MUST be
310 	 *    removed from this concatenation before proceeding with further
311 	 *    computation of keys.  Parameters which were not sent are simply
312 	 *    omitted from the concatenation process.  The resulting two vectors
313 	 *    are called the two key vectors.
314 	 */
315 
316 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
317 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
318 
319 	if (!peer_key_vector || !local_key_vector)
320 		goto out;
321 
322 	/* Figure out the order in which the key_vectors will be
323 	 * added to the endpoint shared key.
324 	 * SCTP-AUTH, Section 6.1:
325 	 *   This is performed by selecting the numerically smaller key
326 	 *   vector and concatenating it to the endpoint pair shared
327 	 *   key, and then concatenating the numerically larger key
328 	 *   vector to that.  If the key vectors are equal as numbers
329 	 *   but differ in length, then the concatenation order is the
330 	 *   endpoint shared key, followed by the shorter key vector,
331 	 *   followed by the longer key vector.  Otherwise, the key
332 	 *   vectors are identical, and may be concatenated to the
333 	 *   endpoint pair key in any order.
334 	 */
335 	cmp = sctp_auth_compare_vectors(local_key_vector,
336 					peer_key_vector);
337 	if (cmp < 0) {
338 		first_vector = local_key_vector;
339 		last_vector = peer_key_vector;
340 	} else {
341 		first_vector = peer_key_vector;
342 		last_vector = local_key_vector;
343 	}
344 
345 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
346 					    gfp);
347 out:
348 	sctp_auth_key_put(local_key_vector);
349 	sctp_auth_key_put(peer_key_vector);
350 
351 	return secret;
352 }
353 
354 /*
355  * Populate the association overlay list with the list
356  * from the endpoint.
357  */
358 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
359 				struct sctp_association *asoc,
360 				gfp_t gfp)
361 {
362 	struct sctp_shared_key *sh_key;
363 	struct sctp_shared_key *new;
364 
365 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
366 
367 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
368 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
369 		if (!new)
370 			goto nomem;
371 
372 		new->key = sh_key->key;
373 		sctp_auth_key_hold(new->key);
374 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
375 	}
376 
377 	return 0;
378 
379 nomem:
380 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
381 	return -ENOMEM;
382 }
383 
384 
385 /* Public interface to creat the association shared key.
386  * See code above for the algorithm.
387  */
388 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
389 {
390 	struct net *net = sock_net(asoc->base.sk);
391 	struct sctp_auth_bytes	*secret;
392 	struct sctp_shared_key *ep_key;
393 
394 	/* If we don't support AUTH, or peer is not capable
395 	 * we don't need to do anything.
396 	 */
397 	if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
398 		return 0;
399 
400 	/* If the key_id is non-zero and we couldn't find an
401 	 * endpoint pair shared key, we can't compute the
402 	 * secret.
403 	 * For key_id 0, endpoint pair shared key is a NULL key.
404 	 */
405 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
406 	BUG_ON(!ep_key);
407 
408 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
409 	if (!secret)
410 		return -ENOMEM;
411 
412 	sctp_auth_key_put(asoc->asoc_shared_key);
413 	asoc->asoc_shared_key = secret;
414 
415 	return 0;
416 }
417 
418 
419 /* Find the endpoint pair shared key based on the key_id */
420 struct sctp_shared_key *sctp_auth_get_shkey(
421 				const struct sctp_association *asoc,
422 				__u16 key_id)
423 {
424 	struct sctp_shared_key *key;
425 
426 	/* First search associations set of endpoint pair shared keys */
427 	key_for_each(key, &asoc->endpoint_shared_keys) {
428 		if (key->key_id == key_id)
429 			return key;
430 	}
431 
432 	return NULL;
433 }
434 
435 /*
436  * Initialize all the possible digest transforms that we can use.  Right now
437  * now, the supported digests are SHA1 and SHA256.  We do this here once
438  * because of the restrictiong that transforms may only be allocated in
439  * user context.  This forces us to pre-allocated all possible transforms
440  * at the endpoint init time.
441  */
442 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
443 {
444 	struct net *net = sock_net(ep->base.sk);
445 	struct crypto_hash *tfm = NULL;
446 	__u16   id;
447 
448 	/* if the transforms are already allocted, we are done */
449 	if (!net->sctp.auth_enable) {
450 		ep->auth_hmacs = NULL;
451 		return 0;
452 	}
453 
454 	if (ep->auth_hmacs)
455 		return 0;
456 
457 	/* Allocated the array of pointers to transorms */
458 	ep->auth_hmacs = kzalloc(
459 			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
460 			    gfp);
461 	if (!ep->auth_hmacs)
462 		return -ENOMEM;
463 
464 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
465 
466 		/* See is we support the id.  Supported IDs have name and
467 		 * length fields set, so that we can allocated and use
468 		 * them.  We can safely just check for name, for without the
469 		 * name, we can't allocate the TFM.
470 		 */
471 		if (!sctp_hmac_list[id].hmac_name)
472 			continue;
473 
474 		/* If this TFM has been allocated, we are all set */
475 		if (ep->auth_hmacs[id])
476 			continue;
477 
478 		/* Allocate the ID */
479 		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
480 					CRYPTO_ALG_ASYNC);
481 		if (IS_ERR(tfm))
482 			goto out_err;
483 
484 		ep->auth_hmacs[id] = tfm;
485 	}
486 
487 	return 0;
488 
489 out_err:
490 	/* Clean up any successful allocations */
491 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
492 	return -ENOMEM;
493 }
494 
495 /* Destroy the hmac tfm array */
496 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
497 {
498 	int i;
499 
500 	if (!auth_hmacs)
501 		return;
502 
503 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
504 	{
505 		if (auth_hmacs[i])
506 			crypto_free_hash(auth_hmacs[i]);
507 	}
508 	kfree(auth_hmacs);
509 }
510 
511 
512 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
513 {
514 	return &sctp_hmac_list[hmac_id];
515 }
516 
517 /* Get an hmac description information that we can use to build
518  * the AUTH chunk
519  */
520 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
521 {
522 	struct sctp_hmac_algo_param *hmacs;
523 	__u16 n_elt;
524 	__u16 id = 0;
525 	int i;
526 
527 	/* If we have a default entry, use it */
528 	if (asoc->default_hmac_id)
529 		return &sctp_hmac_list[asoc->default_hmac_id];
530 
531 	/* Since we do not have a default entry, find the first entry
532 	 * we support and return that.  Do not cache that id.
533 	 */
534 	hmacs = asoc->peer.peer_hmacs;
535 	if (!hmacs)
536 		return NULL;
537 
538 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
539 	for (i = 0; i < n_elt; i++) {
540 		id = ntohs(hmacs->hmac_ids[i]);
541 
542 		/* Check the id is in the supported range. And
543 		 * see if we support the id.  Supported IDs have name and
544 		 * length fields set, so that we can allocate and use
545 		 * them.  We can safely just check for name, for without the
546 		 * name, we can't allocate the TFM.
547 		 */
548 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
549 		    !sctp_hmac_list[id].hmac_name) {
550 			id = 0;
551 			continue;
552 		}
553 
554 		break;
555 	}
556 
557 	if (id == 0)
558 		return NULL;
559 
560 	return &sctp_hmac_list[id];
561 }
562 
563 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
564 {
565 	int  found = 0;
566 	int  i;
567 
568 	for (i = 0; i < n_elts; i++) {
569 		if (hmac_id == hmacs[i]) {
570 			found = 1;
571 			break;
572 		}
573 	}
574 
575 	return found;
576 }
577 
578 /* See if the HMAC_ID is one that we claim as supported */
579 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
580 				    __be16 hmac_id)
581 {
582 	struct sctp_hmac_algo_param *hmacs;
583 	__u16 n_elt;
584 
585 	if (!asoc)
586 		return 0;
587 
588 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
589 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
590 
591 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
592 }
593 
594 
595 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
596  * Section 6.1:
597  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
598  *   algorithm it supports.
599  */
600 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
601 				     struct sctp_hmac_algo_param *hmacs)
602 {
603 	struct sctp_endpoint *ep;
604 	__u16   id;
605 	int	i;
606 	int	n_params;
607 
608 	/* if the default id is already set, use it */
609 	if (asoc->default_hmac_id)
610 		return;
611 
612 	n_params = (ntohs(hmacs->param_hdr.length)
613 				- sizeof(sctp_paramhdr_t)) >> 1;
614 	ep = asoc->ep;
615 	for (i = 0; i < n_params; i++) {
616 		id = ntohs(hmacs->hmac_ids[i]);
617 
618 		/* Check the id is in the supported range */
619 		if (id > SCTP_AUTH_HMAC_ID_MAX)
620 			continue;
621 
622 		/* If this TFM has been allocated, use this id */
623 		if (ep->auth_hmacs[id]) {
624 			asoc->default_hmac_id = id;
625 			break;
626 		}
627 	}
628 }
629 
630 
631 /* Check to see if the given chunk is supposed to be authenticated */
632 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
633 {
634 	unsigned short len;
635 	int found = 0;
636 	int i;
637 
638 	if (!param || param->param_hdr.length == 0)
639 		return 0;
640 
641 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
642 
643 	/* SCTP-AUTH, Section 3.2
644 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
645 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
646 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
647 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
648 	 */
649 	for (i = 0; !found && i < len; i++) {
650 		switch (param->chunks[i]) {
651 		    case SCTP_CID_INIT:
652 		    case SCTP_CID_INIT_ACK:
653 		    case SCTP_CID_SHUTDOWN_COMPLETE:
654 		    case SCTP_CID_AUTH:
655 			break;
656 
657 		    default:
658 			if (param->chunks[i] == chunk)
659 			    found = 1;
660 			break;
661 		}
662 	}
663 
664 	return found;
665 }
666 
667 /* Check if peer requested that this chunk is authenticated */
668 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
669 {
670 	struct net  *net;
671 	if (!asoc)
672 		return 0;
673 
674 	net = sock_net(asoc->base.sk);
675 	if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
676 		return 0;
677 
678 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
679 }
680 
681 /* Check if we requested that peer authenticate this chunk. */
682 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
683 {
684 	struct net *net;
685 	if (!asoc)
686 		return 0;
687 
688 	net = sock_net(asoc->base.sk);
689 	if (!net->sctp.auth_enable)
690 		return 0;
691 
692 	return __sctp_auth_cid(chunk,
693 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
694 }
695 
696 /* SCTP-AUTH: Section 6.2:
697  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
698  *    the hash function H as described by the MAC Identifier and the shared
699  *    association key K based on the endpoint pair shared key described by
700  *    the shared key identifier.  The 'data' used for the computation of
701  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
702  *    zero (as shown in Figure 6) followed by all chunks that are placed
703  *    after the AUTH chunk in the SCTP packet.
704  */
705 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
706 			      struct sk_buff *skb,
707 			      struct sctp_auth_chunk *auth,
708 			      gfp_t gfp)
709 {
710 	struct scatterlist sg;
711 	struct hash_desc desc;
712 	struct sctp_auth_bytes *asoc_key;
713 	__u16 key_id, hmac_id;
714 	__u8 *digest;
715 	unsigned char *end;
716 	int free_key = 0;
717 
718 	/* Extract the info we need:
719 	 * - hmac id
720 	 * - key id
721 	 */
722 	key_id = ntohs(auth->auth_hdr.shkey_id);
723 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
724 
725 	if (key_id == asoc->active_key_id)
726 		asoc_key = asoc->asoc_shared_key;
727 	else {
728 		struct sctp_shared_key *ep_key;
729 
730 		ep_key = sctp_auth_get_shkey(asoc, key_id);
731 		if (!ep_key)
732 			return;
733 
734 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
735 		if (!asoc_key)
736 			return;
737 
738 		free_key = 1;
739 	}
740 
741 	/* set up scatter list */
742 	end = skb_tail_pointer(skb);
743 	sg_init_one(&sg, auth, end - (unsigned char *)auth);
744 
745 	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
746 	desc.flags = 0;
747 
748 	digest = auth->auth_hdr.hmac;
749 	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
750 		goto free;
751 
752 	crypto_hash_digest(&desc, &sg, sg.length, digest);
753 
754 free:
755 	if (free_key)
756 		sctp_auth_key_put(asoc_key);
757 }
758 
759 /* API Helpers */
760 
761 /* Add a chunk to the endpoint authenticated chunk list */
762 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
763 {
764 	struct sctp_chunks_param *p = ep->auth_chunk_list;
765 	__u16 nchunks;
766 	__u16 param_len;
767 
768 	/* If this chunk is already specified, we are done */
769 	if (__sctp_auth_cid(chunk_id, p))
770 		return 0;
771 
772 	/* Check if we can add this chunk to the array */
773 	param_len = ntohs(p->param_hdr.length);
774 	nchunks = param_len - sizeof(sctp_paramhdr_t);
775 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
776 		return -EINVAL;
777 
778 	p->chunks[nchunks] = chunk_id;
779 	p->param_hdr.length = htons(param_len + 1);
780 	return 0;
781 }
782 
783 /* Add hmac identifires to the endpoint list of supported hmac ids */
784 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
785 			   struct sctp_hmacalgo *hmacs)
786 {
787 	int has_sha1 = 0;
788 	__u16 id;
789 	int i;
790 
791 	/* Scan the list looking for unsupported id.  Also make sure that
792 	 * SHA1 is specified.
793 	 */
794 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
795 		id = hmacs->shmac_idents[i];
796 
797 		if (id > SCTP_AUTH_HMAC_ID_MAX)
798 			return -EOPNOTSUPP;
799 
800 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
801 			has_sha1 = 1;
802 
803 		if (!sctp_hmac_list[id].hmac_name)
804 			return -EOPNOTSUPP;
805 	}
806 
807 	if (!has_sha1)
808 		return -EINVAL;
809 
810 	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
811 		hmacs->shmac_num_idents * sizeof(__u16));
812 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
813 				hmacs->shmac_num_idents * sizeof(__u16));
814 	return 0;
815 }
816 
817 /* Set a new shared key on either endpoint or association.  If the
818  * the key with a same ID already exists, replace the key (remove the
819  * old key and add a new one).
820  */
821 int sctp_auth_set_key(struct sctp_endpoint *ep,
822 		      struct sctp_association *asoc,
823 		      struct sctp_authkey *auth_key)
824 {
825 	struct sctp_shared_key *cur_key = NULL;
826 	struct sctp_auth_bytes *key;
827 	struct list_head *sh_keys;
828 	int replace = 0;
829 
830 	/* Try to find the given key id to see if
831 	 * we are doing a replace, or adding a new key
832 	 */
833 	if (asoc)
834 		sh_keys = &asoc->endpoint_shared_keys;
835 	else
836 		sh_keys = &ep->endpoint_shared_keys;
837 
838 	key_for_each(cur_key, sh_keys) {
839 		if (cur_key->key_id == auth_key->sca_keynumber) {
840 			replace = 1;
841 			break;
842 		}
843 	}
844 
845 	/* If we are not replacing a key id, we need to allocate
846 	 * a shared key.
847 	 */
848 	if (!replace) {
849 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
850 						 GFP_KERNEL);
851 		if (!cur_key)
852 			return -ENOMEM;
853 	}
854 
855 	/* Create a new key data based on the info passed in */
856 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
857 	if (!key)
858 		goto nomem;
859 
860 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
861 
862 	/* If we are replacing, remove the old keys data from the
863 	 * key id.  If we are adding new key id, add it to the
864 	 * list.
865 	 */
866 	if (replace)
867 		sctp_auth_key_put(cur_key->key);
868 	else
869 		list_add(&cur_key->key_list, sh_keys);
870 
871 	cur_key->key = key;
872 	sctp_auth_key_hold(key);
873 
874 	return 0;
875 nomem:
876 	if (!replace)
877 		sctp_auth_shkey_free(cur_key);
878 
879 	return -ENOMEM;
880 }
881 
882 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
883 			     struct sctp_association *asoc,
884 			     __u16  key_id)
885 {
886 	struct sctp_shared_key *key;
887 	struct list_head *sh_keys;
888 	int found = 0;
889 
890 	/* The key identifier MUST correst to an existing key */
891 	if (asoc)
892 		sh_keys = &asoc->endpoint_shared_keys;
893 	else
894 		sh_keys = &ep->endpoint_shared_keys;
895 
896 	key_for_each(key, sh_keys) {
897 		if (key->key_id == key_id) {
898 			found = 1;
899 			break;
900 		}
901 	}
902 
903 	if (!found)
904 		return -EINVAL;
905 
906 	if (asoc) {
907 		asoc->active_key_id = key_id;
908 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
909 	} else
910 		ep->active_key_id = key_id;
911 
912 	return 0;
913 }
914 
915 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
916 			 struct sctp_association *asoc,
917 			 __u16  key_id)
918 {
919 	struct sctp_shared_key *key;
920 	struct list_head *sh_keys;
921 	int found = 0;
922 
923 	/* The key identifier MUST NOT be the current active key
924 	 * The key identifier MUST correst to an existing key
925 	 */
926 	if (asoc) {
927 		if (asoc->active_key_id == key_id)
928 			return -EINVAL;
929 
930 		sh_keys = &asoc->endpoint_shared_keys;
931 	} else {
932 		if (ep->active_key_id == key_id)
933 			return -EINVAL;
934 
935 		sh_keys = &ep->endpoint_shared_keys;
936 	}
937 
938 	key_for_each(key, sh_keys) {
939 		if (key->key_id == key_id) {
940 			found = 1;
941 			break;
942 		}
943 	}
944 
945 	if (!found)
946 		return -EINVAL;
947 
948 	/* Delete the shared key */
949 	list_del_init(&key->key_list);
950 	sctp_auth_shkey_free(key);
951 
952 	return 0;
953 }
954