1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, see 20 * <http://www.gnu.org/licenses/>. 21 * 22 * Please send any bug reports or fixes you make to the 23 * email address(es): 24 * lksctp developers <linux-sctp@vger.kernel.org> 25 * 26 * Written or modified by: 27 * Vlad Yasevich <vladislav.yasevich@hp.com> 28 */ 29 30 #include <crypto/hash.h> 31 #include <linux/slab.h> 32 #include <linux/types.h> 33 #include <linux/scatterlist.h> 34 #include <net/sctp/sctp.h> 35 #include <net/sctp/auth.h> 36 37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 38 { 39 /* id 0 is reserved. as all 0 */ 40 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 41 }, 42 { 43 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 44 .hmac_name = "hmac(sha1)", 45 .hmac_len = SCTP_SHA1_SIG_SIZE, 46 }, 47 { 48 /* id 2 is reserved as well */ 49 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 50 }, 51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256) 52 { 53 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 54 .hmac_name = "hmac(sha256)", 55 .hmac_len = SCTP_SHA256_SIG_SIZE, 56 } 57 #endif 58 }; 59 60 61 void sctp_auth_key_put(struct sctp_auth_bytes *key) 62 { 63 if (!key) 64 return; 65 66 if (atomic_dec_and_test(&key->refcnt)) { 67 kzfree(key); 68 SCTP_DBG_OBJCNT_DEC(keys); 69 } 70 } 71 72 /* Create a new key structure of a given length */ 73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 74 { 75 struct sctp_auth_bytes *key; 76 77 /* Verify that we are not going to overflow INT_MAX */ 78 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) 79 return NULL; 80 81 /* Allocate the shared key */ 82 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 83 if (!key) 84 return NULL; 85 86 key->len = key_len; 87 atomic_set(&key->refcnt, 1); 88 SCTP_DBG_OBJCNT_INC(keys); 89 90 return key; 91 } 92 93 /* Create a new shared key container with a give key id */ 94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 95 { 96 struct sctp_shared_key *new; 97 98 /* Allocate the shared key container */ 99 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 100 if (!new) 101 return NULL; 102 103 INIT_LIST_HEAD(&new->key_list); 104 new->key_id = key_id; 105 106 return new; 107 } 108 109 /* Free the shared key structure */ 110 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) 111 { 112 BUG_ON(!list_empty(&sh_key->key_list)); 113 sctp_auth_key_put(sh_key->key); 114 sh_key->key = NULL; 115 kfree(sh_key); 116 } 117 118 /* Destroy the entire key list. This is done during the 119 * associon and endpoint free process. 120 */ 121 void sctp_auth_destroy_keys(struct list_head *keys) 122 { 123 struct sctp_shared_key *ep_key; 124 struct sctp_shared_key *tmp; 125 126 if (list_empty(keys)) 127 return; 128 129 key_for_each_safe(ep_key, tmp, keys) { 130 list_del_init(&ep_key->key_list); 131 sctp_auth_shkey_free(ep_key); 132 } 133 } 134 135 /* Compare two byte vectors as numbers. Return values 136 * are: 137 * 0 - vectors are equal 138 * < 0 - vector 1 is smaller than vector2 139 * > 0 - vector 1 is greater than vector2 140 * 141 * Algorithm is: 142 * This is performed by selecting the numerically smaller key vector... 143 * If the key vectors are equal as numbers but differ in length ... 144 * the shorter vector is considered smaller 145 * 146 * Examples (with small values): 147 * 000123456789 > 123456789 (first number is longer) 148 * 000123456789 < 234567891 (second number is larger numerically) 149 * 123456789 > 2345678 (first number is both larger & longer) 150 */ 151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 152 struct sctp_auth_bytes *vector2) 153 { 154 int diff; 155 int i; 156 const __u8 *longer; 157 158 diff = vector1->len - vector2->len; 159 if (diff) { 160 longer = (diff > 0) ? vector1->data : vector2->data; 161 162 /* Check to see if the longer number is 163 * lead-zero padded. If it is not, it 164 * is automatically larger numerically. 165 */ 166 for (i = 0; i < abs(diff); i++) { 167 if (longer[i] != 0) 168 return diff; 169 } 170 } 171 172 /* lengths are the same, compare numbers */ 173 return memcmp(vector1->data, vector2->data, vector1->len); 174 } 175 176 /* 177 * Create a key vector as described in SCTP-AUTH, Section 6.1 178 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 179 * parameter sent by each endpoint are concatenated as byte vectors. 180 * These parameters include the parameter type, parameter length, and 181 * the parameter value, but padding is omitted; all padding MUST be 182 * removed from this concatenation before proceeding with further 183 * computation of keys. Parameters which were not sent are simply 184 * omitted from the concatenation process. The resulting two vectors 185 * are called the two key vectors. 186 */ 187 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 188 sctp_random_param_t *random, 189 sctp_chunks_param_t *chunks, 190 sctp_hmac_algo_param_t *hmacs, 191 gfp_t gfp) 192 { 193 struct sctp_auth_bytes *new; 194 __u32 len; 195 __u32 offset = 0; 196 __u16 random_len, hmacs_len, chunks_len = 0; 197 198 random_len = ntohs(random->param_hdr.length); 199 hmacs_len = ntohs(hmacs->param_hdr.length); 200 if (chunks) 201 chunks_len = ntohs(chunks->param_hdr.length); 202 203 len = random_len + hmacs_len + chunks_len; 204 205 new = sctp_auth_create_key(len, gfp); 206 if (!new) 207 return NULL; 208 209 memcpy(new->data, random, random_len); 210 offset += random_len; 211 212 if (chunks) { 213 memcpy(new->data + offset, chunks, chunks_len); 214 offset += chunks_len; 215 } 216 217 memcpy(new->data + offset, hmacs, hmacs_len); 218 219 return new; 220 } 221 222 223 /* Make a key vector based on our local parameters */ 224 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 225 const struct sctp_association *asoc, 226 gfp_t gfp) 227 { 228 return sctp_auth_make_key_vector( 229 (sctp_random_param_t *)asoc->c.auth_random, 230 (sctp_chunks_param_t *)asoc->c.auth_chunks, 231 (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs, 232 gfp); 233 } 234 235 /* Make a key vector based on peer's parameters */ 236 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 237 const struct sctp_association *asoc, 238 gfp_t gfp) 239 { 240 return sctp_auth_make_key_vector(asoc->peer.peer_random, 241 asoc->peer.peer_chunks, 242 asoc->peer.peer_hmacs, 243 gfp); 244 } 245 246 247 /* Set the value of the association shared key base on the parameters 248 * given. The algorithm is: 249 * From the endpoint pair shared keys and the key vectors the 250 * association shared keys are computed. This is performed by selecting 251 * the numerically smaller key vector and concatenating it to the 252 * endpoint pair shared key, and then concatenating the numerically 253 * larger key vector to that. The result of the concatenation is the 254 * association shared key. 255 */ 256 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 257 struct sctp_shared_key *ep_key, 258 struct sctp_auth_bytes *first_vector, 259 struct sctp_auth_bytes *last_vector, 260 gfp_t gfp) 261 { 262 struct sctp_auth_bytes *secret; 263 __u32 offset = 0; 264 __u32 auth_len; 265 266 auth_len = first_vector->len + last_vector->len; 267 if (ep_key->key) 268 auth_len += ep_key->key->len; 269 270 secret = sctp_auth_create_key(auth_len, gfp); 271 if (!secret) 272 return NULL; 273 274 if (ep_key->key) { 275 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 276 offset += ep_key->key->len; 277 } 278 279 memcpy(secret->data + offset, first_vector->data, first_vector->len); 280 offset += first_vector->len; 281 282 memcpy(secret->data + offset, last_vector->data, last_vector->len); 283 284 return secret; 285 } 286 287 /* Create an association shared key. Follow the algorithm 288 * described in SCTP-AUTH, Section 6.1 289 */ 290 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 291 const struct sctp_association *asoc, 292 struct sctp_shared_key *ep_key, 293 gfp_t gfp) 294 { 295 struct sctp_auth_bytes *local_key_vector; 296 struct sctp_auth_bytes *peer_key_vector; 297 struct sctp_auth_bytes *first_vector, 298 *last_vector; 299 struct sctp_auth_bytes *secret = NULL; 300 int cmp; 301 302 303 /* Now we need to build the key vectors 304 * SCTP-AUTH , Section 6.1 305 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 306 * parameter sent by each endpoint are concatenated as byte vectors. 307 * These parameters include the parameter type, parameter length, and 308 * the parameter value, but padding is omitted; all padding MUST be 309 * removed from this concatenation before proceeding with further 310 * computation of keys. Parameters which were not sent are simply 311 * omitted from the concatenation process. The resulting two vectors 312 * are called the two key vectors. 313 */ 314 315 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 316 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 317 318 if (!peer_key_vector || !local_key_vector) 319 goto out; 320 321 /* Figure out the order in which the key_vectors will be 322 * added to the endpoint shared key. 323 * SCTP-AUTH, Section 6.1: 324 * This is performed by selecting the numerically smaller key 325 * vector and concatenating it to the endpoint pair shared 326 * key, and then concatenating the numerically larger key 327 * vector to that. If the key vectors are equal as numbers 328 * but differ in length, then the concatenation order is the 329 * endpoint shared key, followed by the shorter key vector, 330 * followed by the longer key vector. Otherwise, the key 331 * vectors are identical, and may be concatenated to the 332 * endpoint pair key in any order. 333 */ 334 cmp = sctp_auth_compare_vectors(local_key_vector, 335 peer_key_vector); 336 if (cmp < 0) { 337 first_vector = local_key_vector; 338 last_vector = peer_key_vector; 339 } else { 340 first_vector = peer_key_vector; 341 last_vector = local_key_vector; 342 } 343 344 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 345 gfp); 346 out: 347 sctp_auth_key_put(local_key_vector); 348 sctp_auth_key_put(peer_key_vector); 349 350 return secret; 351 } 352 353 /* 354 * Populate the association overlay list with the list 355 * from the endpoint. 356 */ 357 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 358 struct sctp_association *asoc, 359 gfp_t gfp) 360 { 361 struct sctp_shared_key *sh_key; 362 struct sctp_shared_key *new; 363 364 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 365 366 key_for_each(sh_key, &ep->endpoint_shared_keys) { 367 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 368 if (!new) 369 goto nomem; 370 371 new->key = sh_key->key; 372 sctp_auth_key_hold(new->key); 373 list_add(&new->key_list, &asoc->endpoint_shared_keys); 374 } 375 376 return 0; 377 378 nomem: 379 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 380 return -ENOMEM; 381 } 382 383 384 /* Public interface to create the association shared key. 385 * See code above for the algorithm. 386 */ 387 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 388 { 389 struct sctp_auth_bytes *secret; 390 struct sctp_shared_key *ep_key; 391 struct sctp_chunk *chunk; 392 393 /* If we don't support AUTH, or peer is not capable 394 * we don't need to do anything. 395 */ 396 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) 397 return 0; 398 399 /* If the key_id is non-zero and we couldn't find an 400 * endpoint pair shared key, we can't compute the 401 * secret. 402 * For key_id 0, endpoint pair shared key is a NULL key. 403 */ 404 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 405 BUG_ON(!ep_key); 406 407 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 408 if (!secret) 409 return -ENOMEM; 410 411 sctp_auth_key_put(asoc->asoc_shared_key); 412 asoc->asoc_shared_key = secret; 413 414 /* Update send queue in case any chunk already in there now 415 * needs authenticating 416 */ 417 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) { 418 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) 419 chunk->auth = 1; 420 } 421 422 return 0; 423 } 424 425 426 /* Find the endpoint pair shared key based on the key_id */ 427 struct sctp_shared_key *sctp_auth_get_shkey( 428 const struct sctp_association *asoc, 429 __u16 key_id) 430 { 431 struct sctp_shared_key *key; 432 433 /* First search associations set of endpoint pair shared keys */ 434 key_for_each(key, &asoc->endpoint_shared_keys) { 435 if (key->key_id == key_id) 436 return key; 437 } 438 439 return NULL; 440 } 441 442 /* 443 * Initialize all the possible digest transforms that we can use. Right now 444 * now, the supported digests are SHA1 and SHA256. We do this here once 445 * because of the restrictiong that transforms may only be allocated in 446 * user context. This forces us to pre-allocated all possible transforms 447 * at the endpoint init time. 448 */ 449 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 450 { 451 struct crypto_shash *tfm = NULL; 452 __u16 id; 453 454 /* If AUTH extension is disabled, we are done */ 455 if (!ep->auth_enable) { 456 ep->auth_hmacs = NULL; 457 return 0; 458 } 459 460 /* If the transforms are already allocated, we are done */ 461 if (ep->auth_hmacs) 462 return 0; 463 464 /* Allocated the array of pointers to transorms */ 465 ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) * 466 SCTP_AUTH_NUM_HMACS, gfp); 467 if (!ep->auth_hmacs) 468 return -ENOMEM; 469 470 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 471 472 /* See is we support the id. Supported IDs have name and 473 * length fields set, so that we can allocated and use 474 * them. We can safely just check for name, for without the 475 * name, we can't allocate the TFM. 476 */ 477 if (!sctp_hmac_list[id].hmac_name) 478 continue; 479 480 /* If this TFM has been allocated, we are all set */ 481 if (ep->auth_hmacs[id]) 482 continue; 483 484 /* Allocate the ID */ 485 tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0); 486 if (IS_ERR(tfm)) 487 goto out_err; 488 489 ep->auth_hmacs[id] = tfm; 490 } 491 492 return 0; 493 494 out_err: 495 /* Clean up any successful allocations */ 496 sctp_auth_destroy_hmacs(ep->auth_hmacs); 497 return -ENOMEM; 498 } 499 500 /* Destroy the hmac tfm array */ 501 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[]) 502 { 503 int i; 504 505 if (!auth_hmacs) 506 return; 507 508 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) { 509 crypto_free_shash(auth_hmacs[i]); 510 } 511 kfree(auth_hmacs); 512 } 513 514 515 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 516 { 517 return &sctp_hmac_list[hmac_id]; 518 } 519 520 /* Get an hmac description information that we can use to build 521 * the AUTH chunk 522 */ 523 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 524 { 525 struct sctp_hmac_algo_param *hmacs; 526 __u16 n_elt; 527 __u16 id = 0; 528 int i; 529 530 /* If we have a default entry, use it */ 531 if (asoc->default_hmac_id) 532 return &sctp_hmac_list[asoc->default_hmac_id]; 533 534 /* Since we do not have a default entry, find the first entry 535 * we support and return that. Do not cache that id. 536 */ 537 hmacs = asoc->peer.peer_hmacs; 538 if (!hmacs) 539 return NULL; 540 541 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 542 for (i = 0; i < n_elt; i++) { 543 id = ntohs(hmacs->hmac_ids[i]); 544 545 /* Check the id is in the supported range. And 546 * see if we support the id. Supported IDs have name and 547 * length fields set, so that we can allocate and use 548 * them. We can safely just check for name, for without the 549 * name, we can't allocate the TFM. 550 */ 551 if (id > SCTP_AUTH_HMAC_ID_MAX || 552 !sctp_hmac_list[id].hmac_name) { 553 id = 0; 554 continue; 555 } 556 557 break; 558 } 559 560 if (id == 0) 561 return NULL; 562 563 return &sctp_hmac_list[id]; 564 } 565 566 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 567 { 568 int found = 0; 569 int i; 570 571 for (i = 0; i < n_elts; i++) { 572 if (hmac_id == hmacs[i]) { 573 found = 1; 574 break; 575 } 576 } 577 578 return found; 579 } 580 581 /* See if the HMAC_ID is one that we claim as supported */ 582 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 583 __be16 hmac_id) 584 { 585 struct sctp_hmac_algo_param *hmacs; 586 __u16 n_elt; 587 588 if (!asoc) 589 return 0; 590 591 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 592 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 593 594 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 595 } 596 597 598 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 599 * Section 6.1: 600 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 601 * algorithm it supports. 602 */ 603 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 604 struct sctp_hmac_algo_param *hmacs) 605 { 606 struct sctp_endpoint *ep; 607 __u16 id; 608 int i; 609 int n_params; 610 611 /* if the default id is already set, use it */ 612 if (asoc->default_hmac_id) 613 return; 614 615 n_params = (ntohs(hmacs->param_hdr.length) 616 - sizeof(sctp_paramhdr_t)) >> 1; 617 ep = asoc->ep; 618 for (i = 0; i < n_params; i++) { 619 id = ntohs(hmacs->hmac_ids[i]); 620 621 /* Check the id is in the supported range */ 622 if (id > SCTP_AUTH_HMAC_ID_MAX) 623 continue; 624 625 /* If this TFM has been allocated, use this id */ 626 if (ep->auth_hmacs[id]) { 627 asoc->default_hmac_id = id; 628 break; 629 } 630 } 631 } 632 633 634 /* Check to see if the given chunk is supposed to be authenticated */ 635 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) 636 { 637 unsigned short len; 638 int found = 0; 639 int i; 640 641 if (!param || param->param_hdr.length == 0) 642 return 0; 643 644 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); 645 646 /* SCTP-AUTH, Section 3.2 647 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 648 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 649 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 650 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 651 */ 652 for (i = 0; !found && i < len; i++) { 653 switch (param->chunks[i]) { 654 case SCTP_CID_INIT: 655 case SCTP_CID_INIT_ACK: 656 case SCTP_CID_SHUTDOWN_COMPLETE: 657 case SCTP_CID_AUTH: 658 break; 659 660 default: 661 if (param->chunks[i] == chunk) 662 found = 1; 663 break; 664 } 665 } 666 667 return found; 668 } 669 670 /* Check if peer requested that this chunk is authenticated */ 671 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 672 { 673 if (!asoc) 674 return 0; 675 676 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) 677 return 0; 678 679 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 680 } 681 682 /* Check if we requested that peer authenticate this chunk. */ 683 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 684 { 685 if (!asoc) 686 return 0; 687 688 if (!asoc->ep->auth_enable) 689 return 0; 690 691 return __sctp_auth_cid(chunk, 692 (struct sctp_chunks_param *)asoc->c.auth_chunks); 693 } 694 695 /* SCTP-AUTH: Section 6.2: 696 * The sender MUST calculate the MAC as described in RFC2104 [2] using 697 * the hash function H as described by the MAC Identifier and the shared 698 * association key K based on the endpoint pair shared key described by 699 * the shared key identifier. The 'data' used for the computation of 700 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 701 * zero (as shown in Figure 6) followed by all chunks that are placed 702 * after the AUTH chunk in the SCTP packet. 703 */ 704 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 705 struct sk_buff *skb, 706 struct sctp_auth_chunk *auth, 707 gfp_t gfp) 708 { 709 struct crypto_shash *tfm; 710 struct sctp_auth_bytes *asoc_key; 711 __u16 key_id, hmac_id; 712 __u8 *digest; 713 unsigned char *end; 714 int free_key = 0; 715 716 /* Extract the info we need: 717 * - hmac id 718 * - key id 719 */ 720 key_id = ntohs(auth->auth_hdr.shkey_id); 721 hmac_id = ntohs(auth->auth_hdr.hmac_id); 722 723 if (key_id == asoc->active_key_id) 724 asoc_key = asoc->asoc_shared_key; 725 else { 726 struct sctp_shared_key *ep_key; 727 728 ep_key = sctp_auth_get_shkey(asoc, key_id); 729 if (!ep_key) 730 return; 731 732 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 733 if (!asoc_key) 734 return; 735 736 free_key = 1; 737 } 738 739 /* set up scatter list */ 740 end = skb_tail_pointer(skb); 741 742 tfm = asoc->ep->auth_hmacs[hmac_id]; 743 744 digest = auth->auth_hdr.hmac; 745 if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len)) 746 goto free; 747 748 { 749 SHASH_DESC_ON_STACK(desc, tfm); 750 751 desc->tfm = tfm; 752 desc->flags = 0; 753 crypto_shash_digest(desc, (u8 *)auth, 754 end - (unsigned char *)auth, digest); 755 shash_desc_zero(desc); 756 } 757 758 free: 759 if (free_key) 760 sctp_auth_key_put(asoc_key); 761 } 762 763 /* API Helpers */ 764 765 /* Add a chunk to the endpoint authenticated chunk list */ 766 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 767 { 768 struct sctp_chunks_param *p = ep->auth_chunk_list; 769 __u16 nchunks; 770 __u16 param_len; 771 772 /* If this chunk is already specified, we are done */ 773 if (__sctp_auth_cid(chunk_id, p)) 774 return 0; 775 776 /* Check if we can add this chunk to the array */ 777 param_len = ntohs(p->param_hdr.length); 778 nchunks = param_len - sizeof(sctp_paramhdr_t); 779 if (nchunks == SCTP_NUM_CHUNK_TYPES) 780 return -EINVAL; 781 782 p->chunks[nchunks] = chunk_id; 783 p->param_hdr.length = htons(param_len + 1); 784 return 0; 785 } 786 787 /* Add hmac identifires to the endpoint list of supported hmac ids */ 788 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 789 struct sctp_hmacalgo *hmacs) 790 { 791 int has_sha1 = 0; 792 __u16 id; 793 int i; 794 795 /* Scan the list looking for unsupported id. Also make sure that 796 * SHA1 is specified. 797 */ 798 for (i = 0; i < hmacs->shmac_num_idents; i++) { 799 id = hmacs->shmac_idents[i]; 800 801 if (id > SCTP_AUTH_HMAC_ID_MAX) 802 return -EOPNOTSUPP; 803 804 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 805 has_sha1 = 1; 806 807 if (!sctp_hmac_list[id].hmac_name) 808 return -EOPNOTSUPP; 809 } 810 811 if (!has_sha1) 812 return -EINVAL; 813 814 for (i = 0; i < hmacs->shmac_num_idents; i++) 815 ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]); 816 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + 817 hmacs->shmac_num_idents * sizeof(__u16)); 818 return 0; 819 } 820 821 /* Set a new shared key on either endpoint or association. If the 822 * the key with a same ID already exists, replace the key (remove the 823 * old key and add a new one). 824 */ 825 int sctp_auth_set_key(struct sctp_endpoint *ep, 826 struct sctp_association *asoc, 827 struct sctp_authkey *auth_key) 828 { 829 struct sctp_shared_key *cur_key = NULL; 830 struct sctp_auth_bytes *key; 831 struct list_head *sh_keys; 832 int replace = 0; 833 834 /* Try to find the given key id to see if 835 * we are doing a replace, or adding a new key 836 */ 837 if (asoc) 838 sh_keys = &asoc->endpoint_shared_keys; 839 else 840 sh_keys = &ep->endpoint_shared_keys; 841 842 key_for_each(cur_key, sh_keys) { 843 if (cur_key->key_id == auth_key->sca_keynumber) { 844 replace = 1; 845 break; 846 } 847 } 848 849 /* If we are not replacing a key id, we need to allocate 850 * a shared key. 851 */ 852 if (!replace) { 853 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, 854 GFP_KERNEL); 855 if (!cur_key) 856 return -ENOMEM; 857 } 858 859 /* Create a new key data based on the info passed in */ 860 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 861 if (!key) 862 goto nomem; 863 864 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 865 866 /* If we are replacing, remove the old keys data from the 867 * key id. If we are adding new key id, add it to the 868 * list. 869 */ 870 if (replace) 871 sctp_auth_key_put(cur_key->key); 872 else 873 list_add(&cur_key->key_list, sh_keys); 874 875 cur_key->key = key; 876 return 0; 877 nomem: 878 if (!replace) 879 sctp_auth_shkey_free(cur_key); 880 881 return -ENOMEM; 882 } 883 884 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 885 struct sctp_association *asoc, 886 __u16 key_id) 887 { 888 struct sctp_shared_key *key; 889 struct list_head *sh_keys; 890 int found = 0; 891 892 /* The key identifier MUST correst to an existing key */ 893 if (asoc) 894 sh_keys = &asoc->endpoint_shared_keys; 895 else 896 sh_keys = &ep->endpoint_shared_keys; 897 898 key_for_each(key, sh_keys) { 899 if (key->key_id == key_id) { 900 found = 1; 901 break; 902 } 903 } 904 905 if (!found) 906 return -EINVAL; 907 908 if (asoc) { 909 asoc->active_key_id = key_id; 910 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 911 } else 912 ep->active_key_id = key_id; 913 914 return 0; 915 } 916 917 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 918 struct sctp_association *asoc, 919 __u16 key_id) 920 { 921 struct sctp_shared_key *key; 922 struct list_head *sh_keys; 923 int found = 0; 924 925 /* The key identifier MUST NOT be the current active key 926 * The key identifier MUST correst to an existing key 927 */ 928 if (asoc) { 929 if (asoc->active_key_id == key_id) 930 return -EINVAL; 931 932 sh_keys = &asoc->endpoint_shared_keys; 933 } else { 934 if (ep->active_key_id == key_id) 935 return -EINVAL; 936 937 sh_keys = &ep->endpoint_shared_keys; 938 } 939 940 key_for_each(key, sh_keys) { 941 if (key->key_id == key_id) { 942 found = 1; 943 break; 944 } 945 } 946 947 if (!found) 948 return -EINVAL; 949 950 /* Delete the shared key */ 951 list_del_init(&key->key_list); 952 sctp_auth_shkey_free(key); 953 954 return 0; 955 } 956