1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, write to 20 * the Free Software Foundation, 59 Temple Place - Suite 330, 21 * Boston, MA 02111-1307, USA. 22 * 23 * Please send any bug reports or fixes you make to the 24 * email address(es): 25 * lksctp developers <lksctp-developers@lists.sourceforge.net> 26 * 27 * Or submit a bug report through the following website: 28 * http://www.sf.net/projects/lksctp 29 * 30 * Written or modified by: 31 * Vlad Yasevich <vladislav.yasevich@hp.com> 32 * 33 * Any bugs reported given to us we will try to fix... any fixes shared will 34 * be incorporated into the next SCTP release. 35 */ 36 37 #include <linux/types.h> 38 #include <linux/crypto.h> 39 #include <linux/scatterlist.h> 40 #include <net/sctp/sctp.h> 41 #include <net/sctp/auth.h> 42 43 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 44 { 45 /* id 0 is reserved. as all 0 */ 46 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 47 }, 48 { 49 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 50 .hmac_name="hmac(sha1)", 51 .hmac_len = SCTP_SHA1_SIG_SIZE, 52 }, 53 { 54 /* id 2 is reserved as well */ 55 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 56 }, 57 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE) 58 { 59 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 60 .hmac_name="hmac(sha256)", 61 .hmac_len = SCTP_SHA256_SIG_SIZE, 62 } 63 #endif 64 }; 65 66 67 void sctp_auth_key_put(struct sctp_auth_bytes *key) 68 { 69 if (!key) 70 return; 71 72 if (atomic_dec_and_test(&key->refcnt)) { 73 kfree(key); 74 SCTP_DBG_OBJCNT_DEC(keys); 75 } 76 } 77 78 /* Create a new key structure of a given length */ 79 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 80 { 81 struct sctp_auth_bytes *key; 82 83 /* Verify that we are not going to overflow INT_MAX */ 84 if ((INT_MAX - key_len) < sizeof(struct sctp_auth_bytes)) 85 return NULL; 86 87 /* Allocate the shared key */ 88 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 89 if (!key) 90 return NULL; 91 92 key->len = key_len; 93 atomic_set(&key->refcnt, 1); 94 SCTP_DBG_OBJCNT_INC(keys); 95 96 return key; 97 } 98 99 /* Create a new shared key container with a give key id */ 100 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 101 { 102 struct sctp_shared_key *new; 103 104 /* Allocate the shared key container */ 105 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 106 if (!new) 107 return NULL; 108 109 INIT_LIST_HEAD(&new->key_list); 110 new->key_id = key_id; 111 112 return new; 113 } 114 115 /* Free the shared key stucture */ 116 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) 117 { 118 BUG_ON(!list_empty(&sh_key->key_list)); 119 sctp_auth_key_put(sh_key->key); 120 sh_key->key = NULL; 121 kfree(sh_key); 122 } 123 124 /* Destory the entire key list. This is done during the 125 * associon and endpoint free process. 126 */ 127 void sctp_auth_destroy_keys(struct list_head *keys) 128 { 129 struct sctp_shared_key *ep_key; 130 struct sctp_shared_key *tmp; 131 132 if (list_empty(keys)) 133 return; 134 135 key_for_each_safe(ep_key, tmp, keys) { 136 list_del_init(&ep_key->key_list); 137 sctp_auth_shkey_free(ep_key); 138 } 139 } 140 141 /* Compare two byte vectors as numbers. Return values 142 * are: 143 * 0 - vectors are equal 144 * < 0 - vector 1 is smaller then vector2 145 * > 0 - vector 1 is greater then vector2 146 * 147 * Algorithm is: 148 * This is performed by selecting the numerically smaller key vector... 149 * If the key vectors are equal as numbers but differ in length ... 150 * the shorter vector is considered smaller 151 * 152 * Examples (with small values): 153 * 000123456789 > 123456789 (first number is longer) 154 * 000123456789 < 234567891 (second number is larger numerically) 155 * 123456789 > 2345678 (first number is both larger & longer) 156 */ 157 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 158 struct sctp_auth_bytes *vector2) 159 { 160 int diff; 161 int i; 162 const __u8 *longer; 163 164 diff = vector1->len - vector2->len; 165 if (diff) { 166 longer = (diff > 0) ? vector1->data : vector2->data; 167 168 /* Check to see if the longer number is 169 * lead-zero padded. If it is not, it 170 * is automatically larger numerically. 171 */ 172 for (i = 0; i < abs(diff); i++ ) { 173 if (longer[i] != 0) 174 return diff; 175 } 176 } 177 178 /* lengths are the same, compare numbers */ 179 return memcmp(vector1->data, vector2->data, vector1->len); 180 } 181 182 /* 183 * Create a key vector as described in SCTP-AUTH, Section 6.1 184 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 185 * parameter sent by each endpoint are concatenated as byte vectors. 186 * These parameters include the parameter type, parameter length, and 187 * the parameter value, but padding is omitted; all padding MUST be 188 * removed from this concatenation before proceeding with further 189 * computation of keys. Parameters which were not sent are simply 190 * omitted from the concatenation process. The resulting two vectors 191 * are called the two key vectors. 192 */ 193 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 194 sctp_random_param_t *random, 195 sctp_chunks_param_t *chunks, 196 sctp_hmac_algo_param_t *hmacs, 197 gfp_t gfp) 198 { 199 struct sctp_auth_bytes *new; 200 __u32 len; 201 __u32 offset = 0; 202 203 len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length); 204 if (chunks) 205 len += ntohs(chunks->param_hdr.length); 206 207 new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp); 208 if (!new) 209 return NULL; 210 211 new->len = len; 212 213 memcpy(new->data, random, ntohs(random->param_hdr.length)); 214 offset += ntohs(random->param_hdr.length); 215 216 if (chunks) { 217 memcpy(new->data + offset, chunks, 218 ntohs(chunks->param_hdr.length)); 219 offset += ntohs(chunks->param_hdr.length); 220 } 221 222 memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length)); 223 224 return new; 225 } 226 227 228 /* Make a key vector based on our local parameters */ 229 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 230 const struct sctp_association *asoc, 231 gfp_t gfp) 232 { 233 return sctp_auth_make_key_vector( 234 (sctp_random_param_t*)asoc->c.auth_random, 235 (sctp_chunks_param_t*)asoc->c.auth_chunks, 236 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs, 237 gfp); 238 } 239 240 /* Make a key vector based on peer's parameters */ 241 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 242 const struct sctp_association *asoc, 243 gfp_t gfp) 244 { 245 return sctp_auth_make_key_vector(asoc->peer.peer_random, 246 asoc->peer.peer_chunks, 247 asoc->peer.peer_hmacs, 248 gfp); 249 } 250 251 252 /* Set the value of the association shared key base on the parameters 253 * given. The algorithm is: 254 * From the endpoint pair shared keys and the key vectors the 255 * association shared keys are computed. This is performed by selecting 256 * the numerically smaller key vector and concatenating it to the 257 * endpoint pair shared key, and then concatenating the numerically 258 * larger key vector to that. The result of the concatenation is the 259 * association shared key. 260 */ 261 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 262 struct sctp_shared_key *ep_key, 263 struct sctp_auth_bytes *first_vector, 264 struct sctp_auth_bytes *last_vector, 265 gfp_t gfp) 266 { 267 struct sctp_auth_bytes *secret; 268 __u32 offset = 0; 269 __u32 auth_len; 270 271 auth_len = first_vector->len + last_vector->len; 272 if (ep_key->key) 273 auth_len += ep_key->key->len; 274 275 secret = sctp_auth_create_key(auth_len, gfp); 276 if (!secret) 277 return NULL; 278 279 if (ep_key->key) { 280 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 281 offset += ep_key->key->len; 282 } 283 284 memcpy(secret->data + offset, first_vector->data, first_vector->len); 285 offset += first_vector->len; 286 287 memcpy(secret->data + offset, last_vector->data, last_vector->len); 288 289 return secret; 290 } 291 292 /* Create an association shared key. Follow the algorithm 293 * described in SCTP-AUTH, Section 6.1 294 */ 295 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 296 const struct sctp_association *asoc, 297 struct sctp_shared_key *ep_key, 298 gfp_t gfp) 299 { 300 struct sctp_auth_bytes *local_key_vector; 301 struct sctp_auth_bytes *peer_key_vector; 302 struct sctp_auth_bytes *first_vector, 303 *last_vector; 304 struct sctp_auth_bytes *secret = NULL; 305 int cmp; 306 307 308 /* Now we need to build the key vectors 309 * SCTP-AUTH , Section 6.1 310 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 311 * parameter sent by each endpoint are concatenated as byte vectors. 312 * These parameters include the parameter type, parameter length, and 313 * the parameter value, but padding is omitted; all padding MUST be 314 * removed from this concatenation before proceeding with further 315 * computation of keys. Parameters which were not sent are simply 316 * omitted from the concatenation process. The resulting two vectors 317 * are called the two key vectors. 318 */ 319 320 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 321 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 322 323 if (!peer_key_vector || !local_key_vector) 324 goto out; 325 326 /* Figure out the order in wich the key_vectors will be 327 * added to the endpoint shared key. 328 * SCTP-AUTH, Section 6.1: 329 * This is performed by selecting the numerically smaller key 330 * vector and concatenating it to the endpoint pair shared 331 * key, and then concatenating the numerically larger key 332 * vector to that. If the key vectors are equal as numbers 333 * but differ in length, then the concatenation order is the 334 * endpoint shared key, followed by the shorter key vector, 335 * followed by the longer key vector. Otherwise, the key 336 * vectors are identical, and may be concatenated to the 337 * endpoint pair key in any order. 338 */ 339 cmp = sctp_auth_compare_vectors(local_key_vector, 340 peer_key_vector); 341 if (cmp < 0) { 342 first_vector = local_key_vector; 343 last_vector = peer_key_vector; 344 } else { 345 first_vector = peer_key_vector; 346 last_vector = local_key_vector; 347 } 348 349 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 350 gfp); 351 out: 352 kfree(local_key_vector); 353 kfree(peer_key_vector); 354 355 return secret; 356 } 357 358 /* 359 * Populate the association overlay list with the list 360 * from the endpoint. 361 */ 362 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 363 struct sctp_association *asoc, 364 gfp_t gfp) 365 { 366 struct sctp_shared_key *sh_key; 367 struct sctp_shared_key *new; 368 369 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 370 371 key_for_each(sh_key, &ep->endpoint_shared_keys) { 372 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 373 if (!new) 374 goto nomem; 375 376 new->key = sh_key->key; 377 sctp_auth_key_hold(new->key); 378 list_add(&new->key_list, &asoc->endpoint_shared_keys); 379 } 380 381 return 0; 382 383 nomem: 384 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 385 return -ENOMEM; 386 } 387 388 389 /* Public interface to creat the association shared key. 390 * See code above for the algorithm. 391 */ 392 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 393 { 394 struct sctp_auth_bytes *secret; 395 struct sctp_shared_key *ep_key; 396 397 /* If we don't support AUTH, or peer is not capable 398 * we don't need to do anything. 399 */ 400 if (!sctp_auth_enable || !asoc->peer.auth_capable) 401 return 0; 402 403 /* If the key_id is non-zero and we couldn't find an 404 * endpoint pair shared key, we can't compute the 405 * secret. 406 * For key_id 0, endpoint pair shared key is a NULL key. 407 */ 408 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 409 BUG_ON(!ep_key); 410 411 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 412 if (!secret) 413 return -ENOMEM; 414 415 sctp_auth_key_put(asoc->asoc_shared_key); 416 asoc->asoc_shared_key = secret; 417 418 return 0; 419 } 420 421 422 /* Find the endpoint pair shared key based on the key_id */ 423 struct sctp_shared_key *sctp_auth_get_shkey( 424 const struct sctp_association *asoc, 425 __u16 key_id) 426 { 427 struct sctp_shared_key *key; 428 429 /* First search associations set of endpoint pair shared keys */ 430 key_for_each(key, &asoc->endpoint_shared_keys) { 431 if (key->key_id == key_id) 432 return key; 433 } 434 435 return NULL; 436 } 437 438 /* 439 * Initialize all the possible digest transforms that we can use. Right now 440 * now, the supported digests are SHA1 and SHA256. We do this here once 441 * because of the restrictiong that transforms may only be allocated in 442 * user context. This forces us to pre-allocated all possible transforms 443 * at the endpoint init time. 444 */ 445 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 446 { 447 struct crypto_hash *tfm = NULL; 448 __u16 id; 449 450 /* if the transforms are already allocted, we are done */ 451 if (!sctp_auth_enable) { 452 ep->auth_hmacs = NULL; 453 return 0; 454 } 455 456 if (ep->auth_hmacs) 457 return 0; 458 459 /* Allocated the array of pointers to transorms */ 460 ep->auth_hmacs = kzalloc( 461 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS, 462 gfp); 463 if (!ep->auth_hmacs) 464 return -ENOMEM; 465 466 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 467 468 /* See is we support the id. Supported IDs have name and 469 * length fields set, so that we can allocated and use 470 * them. We can safely just check for name, for without the 471 * name, we can't allocate the TFM. 472 */ 473 if (!sctp_hmac_list[id].hmac_name) 474 continue; 475 476 /* If this TFM has been allocated, we are all set */ 477 if (ep->auth_hmacs[id]) 478 continue; 479 480 /* Allocate the ID */ 481 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0, 482 CRYPTO_ALG_ASYNC); 483 if (IS_ERR(tfm)) 484 goto out_err; 485 486 ep->auth_hmacs[id] = tfm; 487 } 488 489 return 0; 490 491 out_err: 492 /* Clean up any successfull allocations */ 493 sctp_auth_destroy_hmacs(ep->auth_hmacs); 494 return -ENOMEM; 495 } 496 497 /* Destroy the hmac tfm array */ 498 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[]) 499 { 500 int i; 501 502 if (!auth_hmacs) 503 return; 504 505 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) 506 { 507 if (auth_hmacs[i]) 508 crypto_free_hash(auth_hmacs[i]); 509 } 510 kfree(auth_hmacs); 511 } 512 513 514 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 515 { 516 return &sctp_hmac_list[hmac_id]; 517 } 518 519 /* Get an hmac description information that we can use to build 520 * the AUTH chunk 521 */ 522 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 523 { 524 struct sctp_hmac_algo_param *hmacs; 525 __u16 n_elt; 526 __u16 id = 0; 527 int i; 528 529 /* If we have a default entry, use it */ 530 if (asoc->default_hmac_id) 531 return &sctp_hmac_list[asoc->default_hmac_id]; 532 533 /* Since we do not have a default entry, find the first entry 534 * we support and return that. Do not cache that id. 535 */ 536 hmacs = asoc->peer.peer_hmacs; 537 if (!hmacs) 538 return NULL; 539 540 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 541 for (i = 0; i < n_elt; i++) { 542 id = ntohs(hmacs->hmac_ids[i]); 543 544 /* Check the id is in the supported range */ 545 if (id > SCTP_AUTH_HMAC_ID_MAX) 546 continue; 547 548 /* See is we support the id. Supported IDs have name and 549 * length fields set, so that we can allocated and use 550 * them. We can safely just check for name, for without the 551 * name, we can't allocate the TFM. 552 */ 553 if (!sctp_hmac_list[id].hmac_name) 554 continue; 555 556 break; 557 } 558 559 if (id == 0) 560 return NULL; 561 562 return &sctp_hmac_list[id]; 563 } 564 565 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 566 { 567 int found = 0; 568 int i; 569 570 for (i = 0; i < n_elts; i++) { 571 if (hmac_id == hmacs[i]) { 572 found = 1; 573 break; 574 } 575 } 576 577 return found; 578 } 579 580 /* See if the HMAC_ID is one that we claim as supported */ 581 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 582 __be16 hmac_id) 583 { 584 struct sctp_hmac_algo_param *hmacs; 585 __u16 n_elt; 586 587 if (!asoc) 588 return 0; 589 590 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 591 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 592 593 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 594 } 595 596 597 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 598 * Section 6.1: 599 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 600 * algorithm it supports. 601 */ 602 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 603 struct sctp_hmac_algo_param *hmacs) 604 { 605 struct sctp_endpoint *ep; 606 __u16 id; 607 int i; 608 int n_params; 609 610 /* if the default id is already set, use it */ 611 if (asoc->default_hmac_id) 612 return; 613 614 n_params = (ntohs(hmacs->param_hdr.length) 615 - sizeof(sctp_paramhdr_t)) >> 1; 616 ep = asoc->ep; 617 for (i = 0; i < n_params; i++) { 618 id = ntohs(hmacs->hmac_ids[i]); 619 620 /* Check the id is in the supported range */ 621 if (id > SCTP_AUTH_HMAC_ID_MAX) 622 continue; 623 624 /* If this TFM has been allocated, use this id */ 625 if (ep->auth_hmacs[id]) { 626 asoc->default_hmac_id = id; 627 break; 628 } 629 } 630 } 631 632 633 /* Check to see if the given chunk is supposed to be authenticated */ 634 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) 635 { 636 unsigned short len; 637 int found = 0; 638 int i; 639 640 if (!param || param->param_hdr.length == 0) 641 return 0; 642 643 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); 644 645 /* SCTP-AUTH, Section 3.2 646 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 647 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 648 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 649 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 650 */ 651 for (i = 0; !found && i < len; i++) { 652 switch (param->chunks[i]) { 653 case SCTP_CID_INIT: 654 case SCTP_CID_INIT_ACK: 655 case SCTP_CID_SHUTDOWN_COMPLETE: 656 case SCTP_CID_AUTH: 657 break; 658 659 default: 660 if (param->chunks[i] == chunk) 661 found = 1; 662 break; 663 } 664 } 665 666 return found; 667 } 668 669 /* Check if peer requested that this chunk is authenticated */ 670 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 671 { 672 if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable) 673 return 0; 674 675 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 676 } 677 678 /* Check if we requested that peer authenticate this chunk. */ 679 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 680 { 681 if (!sctp_auth_enable || !asoc) 682 return 0; 683 684 return __sctp_auth_cid(chunk, 685 (struct sctp_chunks_param *)asoc->c.auth_chunks); 686 } 687 688 /* SCTP-AUTH: Section 6.2: 689 * The sender MUST calculate the MAC as described in RFC2104 [2] using 690 * the hash function H as described by the MAC Identifier and the shared 691 * association key K based on the endpoint pair shared key described by 692 * the shared key identifier. The 'data' used for the computation of 693 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 694 * zero (as shown in Figure 6) followed by all chunks that are placed 695 * after the AUTH chunk in the SCTP packet. 696 */ 697 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 698 struct sk_buff *skb, 699 struct sctp_auth_chunk *auth, 700 gfp_t gfp) 701 { 702 struct scatterlist sg; 703 struct hash_desc desc; 704 struct sctp_auth_bytes *asoc_key; 705 __u16 key_id, hmac_id; 706 __u8 *digest; 707 unsigned char *end; 708 int free_key = 0; 709 710 /* Extract the info we need: 711 * - hmac id 712 * - key id 713 */ 714 key_id = ntohs(auth->auth_hdr.shkey_id); 715 hmac_id = ntohs(auth->auth_hdr.hmac_id); 716 717 if (key_id == asoc->active_key_id) 718 asoc_key = asoc->asoc_shared_key; 719 else { 720 struct sctp_shared_key *ep_key; 721 722 ep_key = sctp_auth_get_shkey(asoc, key_id); 723 if (!ep_key) 724 return; 725 726 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 727 if (!asoc_key) 728 return; 729 730 free_key = 1; 731 } 732 733 /* set up scatter list */ 734 end = skb_tail_pointer(skb); 735 sg_init_one(&sg, auth, end - (unsigned char *)auth); 736 737 desc.tfm = asoc->ep->auth_hmacs[hmac_id]; 738 desc.flags = 0; 739 740 digest = auth->auth_hdr.hmac; 741 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len)) 742 goto free; 743 744 crypto_hash_digest(&desc, &sg, sg.length, digest); 745 746 free: 747 if (free_key) 748 sctp_auth_key_put(asoc_key); 749 } 750 751 /* API Helpers */ 752 753 /* Add a chunk to the endpoint authenticated chunk list */ 754 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 755 { 756 struct sctp_chunks_param *p = ep->auth_chunk_list; 757 __u16 nchunks; 758 __u16 param_len; 759 760 /* If this chunk is already specified, we are done */ 761 if (__sctp_auth_cid(chunk_id, p)) 762 return 0; 763 764 /* Check if we can add this chunk to the array */ 765 param_len = ntohs(p->param_hdr.length); 766 nchunks = param_len - sizeof(sctp_paramhdr_t); 767 if (nchunks == SCTP_NUM_CHUNK_TYPES) 768 return -EINVAL; 769 770 p->chunks[nchunks] = chunk_id; 771 p->param_hdr.length = htons(param_len + 1); 772 return 0; 773 } 774 775 /* Add hmac identifires to the endpoint list of supported hmac ids */ 776 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 777 struct sctp_hmacalgo *hmacs) 778 { 779 int has_sha1 = 0; 780 __u16 id; 781 int i; 782 783 /* Scan the list looking for unsupported id. Also make sure that 784 * SHA1 is specified. 785 */ 786 for (i = 0; i < hmacs->shmac_num_idents; i++) { 787 id = hmacs->shmac_idents[i]; 788 789 if (id > SCTP_AUTH_HMAC_ID_MAX) 790 return -EOPNOTSUPP; 791 792 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 793 has_sha1 = 1; 794 795 if (!sctp_hmac_list[id].hmac_name) 796 return -EOPNOTSUPP; 797 } 798 799 if (!has_sha1) 800 return -EINVAL; 801 802 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0], 803 hmacs->shmac_num_idents * sizeof(__u16)); 804 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + 805 hmacs->shmac_num_idents * sizeof(__u16)); 806 return 0; 807 } 808 809 /* Set a new shared key on either endpoint or association. If the 810 * the key with a same ID already exists, replace the key (remove the 811 * old key and add a new one). 812 */ 813 int sctp_auth_set_key(struct sctp_endpoint *ep, 814 struct sctp_association *asoc, 815 struct sctp_authkey *auth_key) 816 { 817 struct sctp_shared_key *cur_key = NULL; 818 struct sctp_auth_bytes *key; 819 struct list_head *sh_keys; 820 int replace = 0; 821 822 /* Try to find the given key id to see if 823 * we are doing a replace, or adding a new key 824 */ 825 if (asoc) 826 sh_keys = &asoc->endpoint_shared_keys; 827 else 828 sh_keys = &ep->endpoint_shared_keys; 829 830 key_for_each(cur_key, sh_keys) { 831 if (cur_key->key_id == auth_key->sca_keynumber) { 832 replace = 1; 833 break; 834 } 835 } 836 837 /* If we are not replacing a key id, we need to allocate 838 * a shared key. 839 */ 840 if (!replace) { 841 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, 842 GFP_KERNEL); 843 if (!cur_key) 844 return -ENOMEM; 845 } 846 847 /* Create a new key data based on the info passed in */ 848 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 849 if (!key) 850 goto nomem; 851 852 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 853 854 /* If we are replacing, remove the old keys data from the 855 * key id. If we are adding new key id, add it to the 856 * list. 857 */ 858 if (replace) 859 sctp_auth_key_put(cur_key->key); 860 else 861 list_add(&cur_key->key_list, sh_keys); 862 863 cur_key->key = key; 864 sctp_auth_key_hold(key); 865 866 return 0; 867 nomem: 868 if (!replace) 869 sctp_auth_shkey_free(cur_key); 870 871 return -ENOMEM; 872 } 873 874 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 875 struct sctp_association *asoc, 876 __u16 key_id) 877 { 878 struct sctp_shared_key *key; 879 struct list_head *sh_keys; 880 int found = 0; 881 882 /* The key identifier MUST correst to an existing key */ 883 if (asoc) 884 sh_keys = &asoc->endpoint_shared_keys; 885 else 886 sh_keys = &ep->endpoint_shared_keys; 887 888 key_for_each(key, sh_keys) { 889 if (key->key_id == key_id) { 890 found = 1; 891 break; 892 } 893 } 894 895 if (!found) 896 return -EINVAL; 897 898 if (asoc) { 899 asoc->active_key_id = key_id; 900 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 901 } else 902 ep->active_key_id = key_id; 903 904 return 0; 905 } 906 907 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 908 struct sctp_association *asoc, 909 __u16 key_id) 910 { 911 struct sctp_shared_key *key; 912 struct list_head *sh_keys; 913 int found = 0; 914 915 /* The key identifier MUST NOT be the current active key 916 * The key identifier MUST correst to an existing key 917 */ 918 if (asoc) { 919 if (asoc->active_key_id == key_id) 920 return -EINVAL; 921 922 sh_keys = &asoc->endpoint_shared_keys; 923 } else { 924 if (ep->active_key_id == key_id) 925 return -EINVAL; 926 927 sh_keys = &ep->endpoint_shared_keys; 928 } 929 930 key_for_each(key, sh_keys) { 931 if (key->key_id == key_id) { 932 found = 1; 933 break; 934 } 935 } 936 937 if (!found) 938 return -EINVAL; 939 940 /* Delete the shared key */ 941 list_del_init(&key->key_list); 942 sctp_auth_shkey_free(key); 943 944 return 0; 945 } 946