xref: /openbmc/linux/net/sctp/auth.c (revision 384740dc)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, write to
20  * the Free Software Foundation, 59 Temple Place - Suite 330,
21  * Boston, MA 02111-1307, USA.
22  *
23  * Please send any bug reports or fixes you make to the
24  * email address(es):
25  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
26  *
27  * Or submit a bug report through the following website:
28  *    http://www.sf.net/projects/lksctp
29  *
30  * Written or modified by:
31  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
32  *
33  * Any bugs reported given to us we will try to fix... any fixes shared will
34  * be incorporated into the next SCTP release.
35  */
36 
37 #include <linux/types.h>
38 #include <linux/crypto.h>
39 #include <linux/scatterlist.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/auth.h>
42 
43 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
44 	{
45 		/* id 0 is reserved.  as all 0 */
46 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
47 	},
48 	{
49 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
50 		.hmac_name="hmac(sha1)",
51 		.hmac_len = SCTP_SHA1_SIG_SIZE,
52 	},
53 	{
54 		/* id 2 is reserved as well */
55 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
56 	},
57 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
58 	{
59 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
60 		.hmac_name="hmac(sha256)",
61 		.hmac_len = SCTP_SHA256_SIG_SIZE,
62 	}
63 #endif
64 };
65 
66 
67 void sctp_auth_key_put(struct sctp_auth_bytes *key)
68 {
69 	if (!key)
70 		return;
71 
72 	if (atomic_dec_and_test(&key->refcnt)) {
73 		kfree(key);
74 		SCTP_DBG_OBJCNT_DEC(keys);
75 	}
76 }
77 
78 /* Create a new key structure of a given length */
79 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
80 {
81 	struct sctp_auth_bytes *key;
82 
83 	/* Verify that we are not going to overflow INT_MAX */
84 	if ((INT_MAX - key_len) < sizeof(struct sctp_auth_bytes))
85 		return NULL;
86 
87 	/* Allocate the shared key */
88 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
89 	if (!key)
90 		return NULL;
91 
92 	key->len = key_len;
93 	atomic_set(&key->refcnt, 1);
94 	SCTP_DBG_OBJCNT_INC(keys);
95 
96 	return key;
97 }
98 
99 /* Create a new shared key container with a give key id */
100 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
101 {
102 	struct sctp_shared_key *new;
103 
104 	/* Allocate the shared key container */
105 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
106 	if (!new)
107 		return NULL;
108 
109 	INIT_LIST_HEAD(&new->key_list);
110 	new->key_id = key_id;
111 
112 	return new;
113 }
114 
115 /* Free the shared key stucture */
116 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
117 {
118 	BUG_ON(!list_empty(&sh_key->key_list));
119 	sctp_auth_key_put(sh_key->key);
120 	sh_key->key = NULL;
121 	kfree(sh_key);
122 }
123 
124 /* Destory the entire key list.  This is done during the
125  * associon and endpoint free process.
126  */
127 void sctp_auth_destroy_keys(struct list_head *keys)
128 {
129 	struct sctp_shared_key *ep_key;
130 	struct sctp_shared_key *tmp;
131 
132 	if (list_empty(keys))
133 		return;
134 
135 	key_for_each_safe(ep_key, tmp, keys) {
136 		list_del_init(&ep_key->key_list);
137 		sctp_auth_shkey_free(ep_key);
138 	}
139 }
140 
141 /* Compare two byte vectors as numbers.  Return values
142  * are:
143  * 	  0 - vectors are equal
144  * 	< 0 - vector 1 is smaller then vector2
145  * 	> 0 - vector 1 is greater then vector2
146  *
147  * Algorithm is:
148  * 	This is performed by selecting the numerically smaller key vector...
149  *	If the key vectors are equal as numbers but differ in length ...
150  *	the shorter vector is considered smaller
151  *
152  * Examples (with small values):
153  * 	000123456789 > 123456789 (first number is longer)
154  * 	000123456789 < 234567891 (second number is larger numerically)
155  * 	123456789 > 2345678 	 (first number is both larger & longer)
156  */
157 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
158 			      struct sctp_auth_bytes *vector2)
159 {
160 	int diff;
161 	int i;
162 	const __u8 *longer;
163 
164 	diff = vector1->len - vector2->len;
165 	if (diff) {
166 		longer = (diff > 0) ? vector1->data : vector2->data;
167 
168 		/* Check to see if the longer number is
169 		 * lead-zero padded.  If it is not, it
170 		 * is automatically larger numerically.
171 		 */
172 		for (i = 0; i < abs(diff); i++ ) {
173 			if (longer[i] != 0)
174 				return diff;
175 		}
176 	}
177 
178 	/* lengths are the same, compare numbers */
179 	return memcmp(vector1->data, vector2->data, vector1->len);
180 }
181 
182 /*
183  * Create a key vector as described in SCTP-AUTH, Section 6.1
184  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
185  *    parameter sent by each endpoint are concatenated as byte vectors.
186  *    These parameters include the parameter type, parameter length, and
187  *    the parameter value, but padding is omitted; all padding MUST be
188  *    removed from this concatenation before proceeding with further
189  *    computation of keys.  Parameters which were not sent are simply
190  *    omitted from the concatenation process.  The resulting two vectors
191  *    are called the two key vectors.
192  */
193 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
194 			sctp_random_param_t *random,
195 			sctp_chunks_param_t *chunks,
196 			sctp_hmac_algo_param_t *hmacs,
197 			gfp_t gfp)
198 {
199 	struct sctp_auth_bytes *new;
200 	__u32	len;
201 	__u32	offset = 0;
202 
203 	len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
204         if (chunks)
205 		len += ntohs(chunks->param_hdr.length);
206 
207 	new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
208 	if (!new)
209 		return NULL;
210 
211 	new->len = len;
212 
213 	memcpy(new->data, random, ntohs(random->param_hdr.length));
214 	offset += ntohs(random->param_hdr.length);
215 
216 	if (chunks) {
217 		memcpy(new->data + offset, chunks,
218 			ntohs(chunks->param_hdr.length));
219 		offset += ntohs(chunks->param_hdr.length);
220 	}
221 
222 	memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
223 
224 	return new;
225 }
226 
227 
228 /* Make a key vector based on our local parameters */
229 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
230 				    const struct sctp_association *asoc,
231 				    gfp_t gfp)
232 {
233 	return sctp_auth_make_key_vector(
234 				    (sctp_random_param_t*)asoc->c.auth_random,
235 				    (sctp_chunks_param_t*)asoc->c.auth_chunks,
236 				    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
237 				    gfp);
238 }
239 
240 /* Make a key vector based on peer's parameters */
241 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
242 				    const struct sctp_association *asoc,
243 				    gfp_t gfp)
244 {
245 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
246 					 asoc->peer.peer_chunks,
247 					 asoc->peer.peer_hmacs,
248 					 gfp);
249 }
250 
251 
252 /* Set the value of the association shared key base on the parameters
253  * given.  The algorithm is:
254  *    From the endpoint pair shared keys and the key vectors the
255  *    association shared keys are computed.  This is performed by selecting
256  *    the numerically smaller key vector and concatenating it to the
257  *    endpoint pair shared key, and then concatenating the numerically
258  *    larger key vector to that.  The result of the concatenation is the
259  *    association shared key.
260  */
261 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
262 			struct sctp_shared_key *ep_key,
263 			struct sctp_auth_bytes *first_vector,
264 			struct sctp_auth_bytes *last_vector,
265 			gfp_t gfp)
266 {
267 	struct sctp_auth_bytes *secret;
268 	__u32 offset = 0;
269 	__u32 auth_len;
270 
271 	auth_len = first_vector->len + last_vector->len;
272 	if (ep_key->key)
273 		auth_len += ep_key->key->len;
274 
275 	secret = sctp_auth_create_key(auth_len, gfp);
276 	if (!secret)
277 		return NULL;
278 
279 	if (ep_key->key) {
280 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
281 		offset += ep_key->key->len;
282 	}
283 
284 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
285 	offset += first_vector->len;
286 
287 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
288 
289 	return secret;
290 }
291 
292 /* Create an association shared key.  Follow the algorithm
293  * described in SCTP-AUTH, Section 6.1
294  */
295 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
296 				 const struct sctp_association *asoc,
297 				 struct sctp_shared_key *ep_key,
298 				 gfp_t gfp)
299 {
300 	struct sctp_auth_bytes *local_key_vector;
301 	struct sctp_auth_bytes *peer_key_vector;
302 	struct sctp_auth_bytes	*first_vector,
303 				*last_vector;
304 	struct sctp_auth_bytes	*secret = NULL;
305 	int	cmp;
306 
307 
308 	/* Now we need to build the key vectors
309 	 * SCTP-AUTH , Section 6.1
310 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
311 	 *    parameter sent by each endpoint are concatenated as byte vectors.
312 	 *    These parameters include the parameter type, parameter length, and
313 	 *    the parameter value, but padding is omitted; all padding MUST be
314 	 *    removed from this concatenation before proceeding with further
315 	 *    computation of keys.  Parameters which were not sent are simply
316 	 *    omitted from the concatenation process.  The resulting two vectors
317 	 *    are called the two key vectors.
318 	 */
319 
320 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
321 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
322 
323 	if (!peer_key_vector || !local_key_vector)
324 		goto out;
325 
326 	/* Figure out the order in wich the key_vectors will be
327 	 * added to the endpoint shared key.
328 	 * SCTP-AUTH, Section 6.1:
329 	 *   This is performed by selecting the numerically smaller key
330 	 *   vector and concatenating it to the endpoint pair shared
331 	 *   key, and then concatenating the numerically larger key
332 	 *   vector to that.  If the key vectors are equal as numbers
333 	 *   but differ in length, then the concatenation order is the
334 	 *   endpoint shared key, followed by the shorter key vector,
335 	 *   followed by the longer key vector.  Otherwise, the key
336 	 *   vectors are identical, and may be concatenated to the
337 	 *   endpoint pair key in any order.
338 	 */
339 	cmp = sctp_auth_compare_vectors(local_key_vector,
340 					peer_key_vector);
341 	if (cmp < 0) {
342 		first_vector = local_key_vector;
343 		last_vector = peer_key_vector;
344 	} else {
345 		first_vector = peer_key_vector;
346 		last_vector = local_key_vector;
347 	}
348 
349 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
350 					    gfp);
351 out:
352 	kfree(local_key_vector);
353 	kfree(peer_key_vector);
354 
355 	return secret;
356 }
357 
358 /*
359  * Populate the association overlay list with the list
360  * from the endpoint.
361  */
362 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
363 				struct sctp_association *asoc,
364 				gfp_t gfp)
365 {
366 	struct sctp_shared_key *sh_key;
367 	struct sctp_shared_key *new;
368 
369 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
370 
371 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
372 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
373 		if (!new)
374 			goto nomem;
375 
376 		new->key = sh_key->key;
377 		sctp_auth_key_hold(new->key);
378 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
379 	}
380 
381 	return 0;
382 
383 nomem:
384 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
385 	return -ENOMEM;
386 }
387 
388 
389 /* Public interface to creat the association shared key.
390  * See code above for the algorithm.
391  */
392 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
393 {
394 	struct sctp_auth_bytes	*secret;
395 	struct sctp_shared_key *ep_key;
396 
397 	/* If we don't support AUTH, or peer is not capable
398 	 * we don't need to do anything.
399 	 */
400 	if (!sctp_auth_enable || !asoc->peer.auth_capable)
401 		return 0;
402 
403 	/* If the key_id is non-zero and we couldn't find an
404 	 * endpoint pair shared key, we can't compute the
405 	 * secret.
406 	 * For key_id 0, endpoint pair shared key is a NULL key.
407 	 */
408 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
409 	BUG_ON(!ep_key);
410 
411 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
412 	if (!secret)
413 		return -ENOMEM;
414 
415 	sctp_auth_key_put(asoc->asoc_shared_key);
416 	asoc->asoc_shared_key = secret;
417 
418 	return 0;
419 }
420 
421 
422 /* Find the endpoint pair shared key based on the key_id */
423 struct sctp_shared_key *sctp_auth_get_shkey(
424 				const struct sctp_association *asoc,
425 				__u16 key_id)
426 {
427 	struct sctp_shared_key *key;
428 
429 	/* First search associations set of endpoint pair shared keys */
430 	key_for_each(key, &asoc->endpoint_shared_keys) {
431 		if (key->key_id == key_id)
432 			return key;
433 	}
434 
435 	return NULL;
436 }
437 
438 /*
439  * Initialize all the possible digest transforms that we can use.  Right now
440  * now, the supported digests are SHA1 and SHA256.  We do this here once
441  * because of the restrictiong that transforms may only be allocated in
442  * user context.  This forces us to pre-allocated all possible transforms
443  * at the endpoint init time.
444  */
445 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
446 {
447 	struct crypto_hash *tfm = NULL;
448 	__u16   id;
449 
450 	/* if the transforms are already allocted, we are done */
451 	if (!sctp_auth_enable) {
452 		ep->auth_hmacs = NULL;
453 		return 0;
454 	}
455 
456 	if (ep->auth_hmacs)
457 		return 0;
458 
459 	/* Allocated the array of pointers to transorms */
460 	ep->auth_hmacs = kzalloc(
461 			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
462 			    gfp);
463 	if (!ep->auth_hmacs)
464 		return -ENOMEM;
465 
466 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
467 
468 		/* See is we support the id.  Supported IDs have name and
469 		 * length fields set, so that we can allocated and use
470 		 * them.  We can safely just check for name, for without the
471 		 * name, we can't allocate the TFM.
472 		 */
473 		if (!sctp_hmac_list[id].hmac_name)
474 			continue;
475 
476 		/* If this TFM has been allocated, we are all set */
477 		if (ep->auth_hmacs[id])
478 			continue;
479 
480 		/* Allocate the ID */
481 		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
482 					CRYPTO_ALG_ASYNC);
483 		if (IS_ERR(tfm))
484 			goto out_err;
485 
486 		ep->auth_hmacs[id] = tfm;
487 	}
488 
489 	return 0;
490 
491 out_err:
492 	/* Clean up any successfull allocations */
493 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
494 	return -ENOMEM;
495 }
496 
497 /* Destroy the hmac tfm array */
498 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
499 {
500 	int i;
501 
502 	if (!auth_hmacs)
503 		return;
504 
505 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
506 	{
507 		if (auth_hmacs[i])
508 			crypto_free_hash(auth_hmacs[i]);
509 	}
510 	kfree(auth_hmacs);
511 }
512 
513 
514 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
515 {
516 	return &sctp_hmac_list[hmac_id];
517 }
518 
519 /* Get an hmac description information that we can use to build
520  * the AUTH chunk
521  */
522 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
523 {
524 	struct sctp_hmac_algo_param *hmacs;
525 	__u16 n_elt;
526 	__u16 id = 0;
527 	int i;
528 
529 	/* If we have a default entry, use it */
530 	if (asoc->default_hmac_id)
531 		return &sctp_hmac_list[asoc->default_hmac_id];
532 
533 	/* Since we do not have a default entry, find the first entry
534 	 * we support and return that.  Do not cache that id.
535 	 */
536 	hmacs = asoc->peer.peer_hmacs;
537 	if (!hmacs)
538 		return NULL;
539 
540 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
541 	for (i = 0; i < n_elt; i++) {
542 		id = ntohs(hmacs->hmac_ids[i]);
543 
544 		/* Check the id is in the supported range */
545 		if (id > SCTP_AUTH_HMAC_ID_MAX)
546 			continue;
547 
548 		/* See is we support the id.  Supported IDs have name and
549 		 * length fields set, so that we can allocated and use
550 		 * them.  We can safely just check for name, for without the
551 		 * name, we can't allocate the TFM.
552 		 */
553 		if (!sctp_hmac_list[id].hmac_name)
554 			continue;
555 
556 		break;
557 	}
558 
559 	if (id == 0)
560 		return NULL;
561 
562 	return &sctp_hmac_list[id];
563 }
564 
565 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
566 {
567 	int  found = 0;
568 	int  i;
569 
570 	for (i = 0; i < n_elts; i++) {
571 		if (hmac_id == hmacs[i]) {
572 			found = 1;
573 			break;
574 		}
575 	}
576 
577 	return found;
578 }
579 
580 /* See if the HMAC_ID is one that we claim as supported */
581 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
582 				    __be16 hmac_id)
583 {
584 	struct sctp_hmac_algo_param *hmacs;
585 	__u16 n_elt;
586 
587 	if (!asoc)
588 		return 0;
589 
590 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
591 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
592 
593 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
594 }
595 
596 
597 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
598  * Section 6.1:
599  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
600  *   algorithm it supports.
601  */
602 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
603 				     struct sctp_hmac_algo_param *hmacs)
604 {
605 	struct sctp_endpoint *ep;
606 	__u16   id;
607 	int	i;
608 	int	n_params;
609 
610 	/* if the default id is already set, use it */
611 	if (asoc->default_hmac_id)
612 		return;
613 
614 	n_params = (ntohs(hmacs->param_hdr.length)
615 				- sizeof(sctp_paramhdr_t)) >> 1;
616 	ep = asoc->ep;
617 	for (i = 0; i < n_params; i++) {
618 		id = ntohs(hmacs->hmac_ids[i]);
619 
620 		/* Check the id is in the supported range */
621 		if (id > SCTP_AUTH_HMAC_ID_MAX)
622 			continue;
623 
624 		/* If this TFM has been allocated, use this id */
625 		if (ep->auth_hmacs[id]) {
626 			asoc->default_hmac_id = id;
627 			break;
628 		}
629 	}
630 }
631 
632 
633 /* Check to see if the given chunk is supposed to be authenticated */
634 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
635 {
636 	unsigned short len;
637 	int found = 0;
638 	int i;
639 
640 	if (!param || param->param_hdr.length == 0)
641 		return 0;
642 
643 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
644 
645 	/* SCTP-AUTH, Section 3.2
646 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
647 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
648 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
649 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
650 	 */
651 	for (i = 0; !found && i < len; i++) {
652 		switch (param->chunks[i]) {
653 		    case SCTP_CID_INIT:
654 		    case SCTP_CID_INIT_ACK:
655 		    case SCTP_CID_SHUTDOWN_COMPLETE:
656 		    case SCTP_CID_AUTH:
657 			break;
658 
659 		    default:
660 			if (param->chunks[i] == chunk)
661 			    found = 1;
662 			break;
663 		}
664 	}
665 
666 	return found;
667 }
668 
669 /* Check if peer requested that this chunk is authenticated */
670 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
671 {
672 	if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
673 		return 0;
674 
675 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
676 }
677 
678 /* Check if we requested that peer authenticate this chunk. */
679 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
680 {
681 	if (!sctp_auth_enable || !asoc)
682 		return 0;
683 
684 	return __sctp_auth_cid(chunk,
685 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
686 }
687 
688 /* SCTP-AUTH: Section 6.2:
689  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
690  *    the hash function H as described by the MAC Identifier and the shared
691  *    association key K based on the endpoint pair shared key described by
692  *    the shared key identifier.  The 'data' used for the computation of
693  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
694  *    zero (as shown in Figure 6) followed by all chunks that are placed
695  *    after the AUTH chunk in the SCTP packet.
696  */
697 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
698 			      struct sk_buff *skb,
699 			      struct sctp_auth_chunk *auth,
700 			      gfp_t gfp)
701 {
702 	struct scatterlist sg;
703 	struct hash_desc desc;
704 	struct sctp_auth_bytes *asoc_key;
705 	__u16 key_id, hmac_id;
706 	__u8 *digest;
707 	unsigned char *end;
708 	int free_key = 0;
709 
710 	/* Extract the info we need:
711 	 * - hmac id
712 	 * - key id
713 	 */
714 	key_id = ntohs(auth->auth_hdr.shkey_id);
715 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
716 
717 	if (key_id == asoc->active_key_id)
718 		asoc_key = asoc->asoc_shared_key;
719 	else {
720 		struct sctp_shared_key *ep_key;
721 
722 		ep_key = sctp_auth_get_shkey(asoc, key_id);
723 		if (!ep_key)
724 			return;
725 
726 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
727 		if (!asoc_key)
728 			return;
729 
730 		free_key = 1;
731 	}
732 
733 	/* set up scatter list */
734 	end = skb_tail_pointer(skb);
735 	sg_init_one(&sg, auth, end - (unsigned char *)auth);
736 
737 	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
738 	desc.flags = 0;
739 
740 	digest = auth->auth_hdr.hmac;
741 	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
742 		goto free;
743 
744 	crypto_hash_digest(&desc, &sg, sg.length, digest);
745 
746 free:
747 	if (free_key)
748 		sctp_auth_key_put(asoc_key);
749 }
750 
751 /* API Helpers */
752 
753 /* Add a chunk to the endpoint authenticated chunk list */
754 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
755 {
756 	struct sctp_chunks_param *p = ep->auth_chunk_list;
757 	__u16 nchunks;
758 	__u16 param_len;
759 
760 	/* If this chunk is already specified, we are done */
761 	if (__sctp_auth_cid(chunk_id, p))
762 		return 0;
763 
764 	/* Check if we can add this chunk to the array */
765 	param_len = ntohs(p->param_hdr.length);
766 	nchunks = param_len - sizeof(sctp_paramhdr_t);
767 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
768 		return -EINVAL;
769 
770 	p->chunks[nchunks] = chunk_id;
771 	p->param_hdr.length = htons(param_len + 1);
772 	return 0;
773 }
774 
775 /* Add hmac identifires to the endpoint list of supported hmac ids */
776 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
777 			   struct sctp_hmacalgo *hmacs)
778 {
779 	int has_sha1 = 0;
780 	__u16 id;
781 	int i;
782 
783 	/* Scan the list looking for unsupported id.  Also make sure that
784 	 * SHA1 is specified.
785 	 */
786 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
787 		id = hmacs->shmac_idents[i];
788 
789 		if (id > SCTP_AUTH_HMAC_ID_MAX)
790 			return -EOPNOTSUPP;
791 
792 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
793 			has_sha1 = 1;
794 
795 		if (!sctp_hmac_list[id].hmac_name)
796 			return -EOPNOTSUPP;
797 	}
798 
799 	if (!has_sha1)
800 		return -EINVAL;
801 
802 	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
803 		hmacs->shmac_num_idents * sizeof(__u16));
804 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
805 				hmacs->shmac_num_idents * sizeof(__u16));
806 	return 0;
807 }
808 
809 /* Set a new shared key on either endpoint or association.  If the
810  * the key with a same ID already exists, replace the key (remove the
811  * old key and add a new one).
812  */
813 int sctp_auth_set_key(struct sctp_endpoint *ep,
814 		      struct sctp_association *asoc,
815 		      struct sctp_authkey *auth_key)
816 {
817 	struct sctp_shared_key *cur_key = NULL;
818 	struct sctp_auth_bytes *key;
819 	struct list_head *sh_keys;
820 	int replace = 0;
821 
822 	/* Try to find the given key id to see if
823 	 * we are doing a replace, or adding a new key
824 	 */
825 	if (asoc)
826 		sh_keys = &asoc->endpoint_shared_keys;
827 	else
828 		sh_keys = &ep->endpoint_shared_keys;
829 
830 	key_for_each(cur_key, sh_keys) {
831 		if (cur_key->key_id == auth_key->sca_keynumber) {
832 			replace = 1;
833 			break;
834 		}
835 	}
836 
837 	/* If we are not replacing a key id, we need to allocate
838 	 * a shared key.
839 	 */
840 	if (!replace) {
841 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
842 						 GFP_KERNEL);
843 		if (!cur_key)
844 			return -ENOMEM;
845 	}
846 
847 	/* Create a new key data based on the info passed in */
848 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
849 	if (!key)
850 		goto nomem;
851 
852 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
853 
854 	/* If we are replacing, remove the old keys data from the
855 	 * key id.  If we are adding new key id, add it to the
856 	 * list.
857 	 */
858 	if (replace)
859 		sctp_auth_key_put(cur_key->key);
860 	else
861 		list_add(&cur_key->key_list, sh_keys);
862 
863 	cur_key->key = key;
864 	sctp_auth_key_hold(key);
865 
866 	return 0;
867 nomem:
868 	if (!replace)
869 		sctp_auth_shkey_free(cur_key);
870 
871 	return -ENOMEM;
872 }
873 
874 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
875 			     struct sctp_association *asoc,
876 			     __u16  key_id)
877 {
878 	struct sctp_shared_key *key;
879 	struct list_head *sh_keys;
880 	int found = 0;
881 
882 	/* The key identifier MUST correst to an existing key */
883 	if (asoc)
884 		sh_keys = &asoc->endpoint_shared_keys;
885 	else
886 		sh_keys = &ep->endpoint_shared_keys;
887 
888 	key_for_each(key, sh_keys) {
889 		if (key->key_id == key_id) {
890 			found = 1;
891 			break;
892 		}
893 	}
894 
895 	if (!found)
896 		return -EINVAL;
897 
898 	if (asoc) {
899 		asoc->active_key_id = key_id;
900 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
901 	} else
902 		ep->active_key_id = key_id;
903 
904 	return 0;
905 }
906 
907 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
908 			 struct sctp_association *asoc,
909 			 __u16  key_id)
910 {
911 	struct sctp_shared_key *key;
912 	struct list_head *sh_keys;
913 	int found = 0;
914 
915 	/* The key identifier MUST NOT be the current active key
916 	 * The key identifier MUST correst to an existing key
917 	 */
918 	if (asoc) {
919 		if (asoc->active_key_id == key_id)
920 			return -EINVAL;
921 
922 		sh_keys = &asoc->endpoint_shared_keys;
923 	} else {
924 		if (ep->active_key_id == key_id)
925 			return -EINVAL;
926 
927 		sh_keys = &ep->endpoint_shared_keys;
928 	}
929 
930 	key_for_each(key, sh_keys) {
931 		if (key->key_id == key_id) {
932 			found = 1;
933 			break;
934 		}
935 	}
936 
937 	if (!found)
938 		return -EINVAL;
939 
940 	/* Delete the shared key */
941 	list_del_init(&key->key_list);
942 	sctp_auth_shkey_free(key);
943 
944 	return 0;
945 }
946