1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, see 20 * <http://www.gnu.org/licenses/>. 21 * 22 * Please send any bug reports or fixes you make to the 23 * email address(es): 24 * lksctp developers <linux-sctp@vger.kernel.org> 25 * 26 * Written or modified by: 27 * Vlad Yasevich <vladislav.yasevich@hp.com> 28 */ 29 30 #include <crypto/hash.h> 31 #include <linux/slab.h> 32 #include <linux/types.h> 33 #include <linux/scatterlist.h> 34 #include <net/sctp/sctp.h> 35 #include <net/sctp/auth.h> 36 37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 38 { 39 /* id 0 is reserved. as all 0 */ 40 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 41 }, 42 { 43 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 44 .hmac_name = "hmac(sha1)", 45 .hmac_len = SCTP_SHA1_SIG_SIZE, 46 }, 47 { 48 /* id 2 is reserved as well */ 49 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 50 }, 51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256) 52 { 53 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 54 .hmac_name = "hmac(sha256)", 55 .hmac_len = SCTP_SHA256_SIG_SIZE, 56 } 57 #endif 58 }; 59 60 61 void sctp_auth_key_put(struct sctp_auth_bytes *key) 62 { 63 if (!key) 64 return; 65 66 if (refcount_dec_and_test(&key->refcnt)) { 67 kzfree(key); 68 SCTP_DBG_OBJCNT_DEC(keys); 69 } 70 } 71 72 /* Create a new key structure of a given length */ 73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 74 { 75 struct sctp_auth_bytes *key; 76 77 /* Verify that we are not going to overflow INT_MAX */ 78 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) 79 return NULL; 80 81 /* Allocate the shared key */ 82 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 83 if (!key) 84 return NULL; 85 86 key->len = key_len; 87 refcount_set(&key->refcnt, 1); 88 SCTP_DBG_OBJCNT_INC(keys); 89 90 return key; 91 } 92 93 /* Create a new shared key container with a give key id */ 94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 95 { 96 struct sctp_shared_key *new; 97 98 /* Allocate the shared key container */ 99 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 100 if (!new) 101 return NULL; 102 103 INIT_LIST_HEAD(&new->key_list); 104 refcount_set(&new->refcnt, 1); 105 new->key_id = key_id; 106 107 return new; 108 } 109 110 /* Free the shared key structure */ 111 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key) 112 { 113 BUG_ON(!list_empty(&sh_key->key_list)); 114 sctp_auth_key_put(sh_key->key); 115 sh_key->key = NULL; 116 kfree(sh_key); 117 } 118 119 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key) 120 { 121 if (refcount_dec_and_test(&sh_key->refcnt)) 122 sctp_auth_shkey_destroy(sh_key); 123 } 124 125 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key) 126 { 127 refcount_inc(&sh_key->refcnt); 128 } 129 130 /* Destroy the entire key list. This is done during the 131 * associon and endpoint free process. 132 */ 133 void sctp_auth_destroy_keys(struct list_head *keys) 134 { 135 struct sctp_shared_key *ep_key; 136 struct sctp_shared_key *tmp; 137 138 if (list_empty(keys)) 139 return; 140 141 key_for_each_safe(ep_key, tmp, keys) { 142 list_del_init(&ep_key->key_list); 143 sctp_auth_shkey_release(ep_key); 144 } 145 } 146 147 /* Compare two byte vectors as numbers. Return values 148 * are: 149 * 0 - vectors are equal 150 * < 0 - vector 1 is smaller than vector2 151 * > 0 - vector 1 is greater than vector2 152 * 153 * Algorithm is: 154 * This is performed by selecting the numerically smaller key vector... 155 * If the key vectors are equal as numbers but differ in length ... 156 * the shorter vector is considered smaller 157 * 158 * Examples (with small values): 159 * 000123456789 > 123456789 (first number is longer) 160 * 000123456789 < 234567891 (second number is larger numerically) 161 * 123456789 > 2345678 (first number is both larger & longer) 162 */ 163 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 164 struct sctp_auth_bytes *vector2) 165 { 166 int diff; 167 int i; 168 const __u8 *longer; 169 170 diff = vector1->len - vector2->len; 171 if (diff) { 172 longer = (diff > 0) ? vector1->data : vector2->data; 173 174 /* Check to see if the longer number is 175 * lead-zero padded. If it is not, it 176 * is automatically larger numerically. 177 */ 178 for (i = 0; i < abs(diff); i++) { 179 if (longer[i] != 0) 180 return diff; 181 } 182 } 183 184 /* lengths are the same, compare numbers */ 185 return memcmp(vector1->data, vector2->data, vector1->len); 186 } 187 188 /* 189 * Create a key vector as described in SCTP-AUTH, Section 6.1 190 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 191 * parameter sent by each endpoint are concatenated as byte vectors. 192 * These parameters include the parameter type, parameter length, and 193 * the parameter value, but padding is omitted; all padding MUST be 194 * removed from this concatenation before proceeding with further 195 * computation of keys. Parameters which were not sent are simply 196 * omitted from the concatenation process. The resulting two vectors 197 * are called the two key vectors. 198 */ 199 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 200 struct sctp_random_param *random, 201 struct sctp_chunks_param *chunks, 202 struct sctp_hmac_algo_param *hmacs, 203 gfp_t gfp) 204 { 205 struct sctp_auth_bytes *new; 206 __u32 len; 207 __u32 offset = 0; 208 __u16 random_len, hmacs_len, chunks_len = 0; 209 210 random_len = ntohs(random->param_hdr.length); 211 hmacs_len = ntohs(hmacs->param_hdr.length); 212 if (chunks) 213 chunks_len = ntohs(chunks->param_hdr.length); 214 215 len = random_len + hmacs_len + chunks_len; 216 217 new = sctp_auth_create_key(len, gfp); 218 if (!new) 219 return NULL; 220 221 memcpy(new->data, random, random_len); 222 offset += random_len; 223 224 if (chunks) { 225 memcpy(new->data + offset, chunks, chunks_len); 226 offset += chunks_len; 227 } 228 229 memcpy(new->data + offset, hmacs, hmacs_len); 230 231 return new; 232 } 233 234 235 /* Make a key vector based on our local parameters */ 236 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 237 const struct sctp_association *asoc, 238 gfp_t gfp) 239 { 240 return sctp_auth_make_key_vector( 241 (struct sctp_random_param *)asoc->c.auth_random, 242 (struct sctp_chunks_param *)asoc->c.auth_chunks, 243 (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp); 244 } 245 246 /* Make a key vector based on peer's parameters */ 247 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 248 const struct sctp_association *asoc, 249 gfp_t gfp) 250 { 251 return sctp_auth_make_key_vector(asoc->peer.peer_random, 252 asoc->peer.peer_chunks, 253 asoc->peer.peer_hmacs, 254 gfp); 255 } 256 257 258 /* Set the value of the association shared key base on the parameters 259 * given. The algorithm is: 260 * From the endpoint pair shared keys and the key vectors the 261 * association shared keys are computed. This is performed by selecting 262 * the numerically smaller key vector and concatenating it to the 263 * endpoint pair shared key, and then concatenating the numerically 264 * larger key vector to that. The result of the concatenation is the 265 * association shared key. 266 */ 267 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 268 struct sctp_shared_key *ep_key, 269 struct sctp_auth_bytes *first_vector, 270 struct sctp_auth_bytes *last_vector, 271 gfp_t gfp) 272 { 273 struct sctp_auth_bytes *secret; 274 __u32 offset = 0; 275 __u32 auth_len; 276 277 auth_len = first_vector->len + last_vector->len; 278 if (ep_key->key) 279 auth_len += ep_key->key->len; 280 281 secret = sctp_auth_create_key(auth_len, gfp); 282 if (!secret) 283 return NULL; 284 285 if (ep_key->key) { 286 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 287 offset += ep_key->key->len; 288 } 289 290 memcpy(secret->data + offset, first_vector->data, first_vector->len); 291 offset += first_vector->len; 292 293 memcpy(secret->data + offset, last_vector->data, last_vector->len); 294 295 return secret; 296 } 297 298 /* Create an association shared key. Follow the algorithm 299 * described in SCTP-AUTH, Section 6.1 300 */ 301 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 302 const struct sctp_association *asoc, 303 struct sctp_shared_key *ep_key, 304 gfp_t gfp) 305 { 306 struct sctp_auth_bytes *local_key_vector; 307 struct sctp_auth_bytes *peer_key_vector; 308 struct sctp_auth_bytes *first_vector, 309 *last_vector; 310 struct sctp_auth_bytes *secret = NULL; 311 int cmp; 312 313 314 /* Now we need to build the key vectors 315 * SCTP-AUTH , Section 6.1 316 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 317 * parameter sent by each endpoint are concatenated as byte vectors. 318 * These parameters include the parameter type, parameter length, and 319 * the parameter value, but padding is omitted; all padding MUST be 320 * removed from this concatenation before proceeding with further 321 * computation of keys. Parameters which were not sent are simply 322 * omitted from the concatenation process. The resulting two vectors 323 * are called the two key vectors. 324 */ 325 326 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 327 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 328 329 if (!peer_key_vector || !local_key_vector) 330 goto out; 331 332 /* Figure out the order in which the key_vectors will be 333 * added to the endpoint shared key. 334 * SCTP-AUTH, Section 6.1: 335 * This is performed by selecting the numerically smaller key 336 * vector and concatenating it to the endpoint pair shared 337 * key, and then concatenating the numerically larger key 338 * vector to that. If the key vectors are equal as numbers 339 * but differ in length, then the concatenation order is the 340 * endpoint shared key, followed by the shorter key vector, 341 * followed by the longer key vector. Otherwise, the key 342 * vectors are identical, and may be concatenated to the 343 * endpoint pair key in any order. 344 */ 345 cmp = sctp_auth_compare_vectors(local_key_vector, 346 peer_key_vector); 347 if (cmp < 0) { 348 first_vector = local_key_vector; 349 last_vector = peer_key_vector; 350 } else { 351 first_vector = peer_key_vector; 352 last_vector = local_key_vector; 353 } 354 355 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 356 gfp); 357 out: 358 sctp_auth_key_put(local_key_vector); 359 sctp_auth_key_put(peer_key_vector); 360 361 return secret; 362 } 363 364 /* 365 * Populate the association overlay list with the list 366 * from the endpoint. 367 */ 368 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 369 struct sctp_association *asoc, 370 gfp_t gfp) 371 { 372 struct sctp_shared_key *sh_key; 373 struct sctp_shared_key *new; 374 375 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 376 377 key_for_each(sh_key, &ep->endpoint_shared_keys) { 378 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 379 if (!new) 380 goto nomem; 381 382 new->key = sh_key->key; 383 sctp_auth_key_hold(new->key); 384 list_add(&new->key_list, &asoc->endpoint_shared_keys); 385 } 386 387 return 0; 388 389 nomem: 390 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 391 return -ENOMEM; 392 } 393 394 395 /* Public interface to create the association shared key. 396 * See code above for the algorithm. 397 */ 398 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 399 { 400 struct sctp_auth_bytes *secret; 401 struct sctp_shared_key *ep_key; 402 struct sctp_chunk *chunk; 403 404 /* If we don't support AUTH, or peer is not capable 405 * we don't need to do anything. 406 */ 407 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) 408 return 0; 409 410 /* If the key_id is non-zero and we couldn't find an 411 * endpoint pair shared key, we can't compute the 412 * secret. 413 * For key_id 0, endpoint pair shared key is a NULL key. 414 */ 415 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 416 BUG_ON(!ep_key); 417 418 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 419 if (!secret) 420 return -ENOMEM; 421 422 sctp_auth_key_put(asoc->asoc_shared_key); 423 asoc->asoc_shared_key = secret; 424 asoc->shkey = ep_key; 425 426 /* Update send queue in case any chunk already in there now 427 * needs authenticating 428 */ 429 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) { 430 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) { 431 chunk->auth = 1; 432 if (!chunk->shkey) { 433 chunk->shkey = asoc->shkey; 434 sctp_auth_shkey_hold(chunk->shkey); 435 } 436 } 437 } 438 439 return 0; 440 } 441 442 443 /* Find the endpoint pair shared key based on the key_id */ 444 struct sctp_shared_key *sctp_auth_get_shkey( 445 const struct sctp_association *asoc, 446 __u16 key_id) 447 { 448 struct sctp_shared_key *key; 449 450 /* First search associations set of endpoint pair shared keys */ 451 key_for_each(key, &asoc->endpoint_shared_keys) { 452 if (key->key_id == key_id) { 453 if (!key->deactivated) 454 return key; 455 break; 456 } 457 } 458 459 return NULL; 460 } 461 462 /* 463 * Initialize all the possible digest transforms that we can use. Right now 464 * now, the supported digests are SHA1 and SHA256. We do this here once 465 * because of the restrictiong that transforms may only be allocated in 466 * user context. This forces us to pre-allocated all possible transforms 467 * at the endpoint init time. 468 */ 469 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 470 { 471 struct crypto_shash *tfm = NULL; 472 __u16 id; 473 474 /* If the transforms are already allocated, we are done */ 475 if (ep->auth_hmacs) 476 return 0; 477 478 /* Allocated the array of pointers to transorms */ 479 ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS, 480 sizeof(struct crypto_shash *), 481 gfp); 482 if (!ep->auth_hmacs) 483 return -ENOMEM; 484 485 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 486 487 /* See is we support the id. Supported IDs have name and 488 * length fields set, so that we can allocated and use 489 * them. We can safely just check for name, for without the 490 * name, we can't allocate the TFM. 491 */ 492 if (!sctp_hmac_list[id].hmac_name) 493 continue; 494 495 /* If this TFM has been allocated, we are all set */ 496 if (ep->auth_hmacs[id]) 497 continue; 498 499 /* Allocate the ID */ 500 tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0); 501 if (IS_ERR(tfm)) 502 goto out_err; 503 504 ep->auth_hmacs[id] = tfm; 505 } 506 507 return 0; 508 509 out_err: 510 /* Clean up any successful allocations */ 511 sctp_auth_destroy_hmacs(ep->auth_hmacs); 512 return -ENOMEM; 513 } 514 515 /* Destroy the hmac tfm array */ 516 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[]) 517 { 518 int i; 519 520 if (!auth_hmacs) 521 return; 522 523 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) { 524 crypto_free_shash(auth_hmacs[i]); 525 } 526 kfree(auth_hmacs); 527 } 528 529 530 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 531 { 532 return &sctp_hmac_list[hmac_id]; 533 } 534 535 /* Get an hmac description information that we can use to build 536 * the AUTH chunk 537 */ 538 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 539 { 540 struct sctp_hmac_algo_param *hmacs; 541 __u16 n_elt; 542 __u16 id = 0; 543 int i; 544 545 /* If we have a default entry, use it */ 546 if (asoc->default_hmac_id) 547 return &sctp_hmac_list[asoc->default_hmac_id]; 548 549 /* Since we do not have a default entry, find the first entry 550 * we support and return that. Do not cache that id. 551 */ 552 hmacs = asoc->peer.peer_hmacs; 553 if (!hmacs) 554 return NULL; 555 556 n_elt = (ntohs(hmacs->param_hdr.length) - 557 sizeof(struct sctp_paramhdr)) >> 1; 558 for (i = 0; i < n_elt; i++) { 559 id = ntohs(hmacs->hmac_ids[i]); 560 561 /* Check the id is in the supported range. And 562 * see if we support the id. Supported IDs have name and 563 * length fields set, so that we can allocate and use 564 * them. We can safely just check for name, for without the 565 * name, we can't allocate the TFM. 566 */ 567 if (id > SCTP_AUTH_HMAC_ID_MAX || 568 !sctp_hmac_list[id].hmac_name) { 569 id = 0; 570 continue; 571 } 572 573 break; 574 } 575 576 if (id == 0) 577 return NULL; 578 579 return &sctp_hmac_list[id]; 580 } 581 582 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 583 { 584 int found = 0; 585 int i; 586 587 for (i = 0; i < n_elts; i++) { 588 if (hmac_id == hmacs[i]) { 589 found = 1; 590 break; 591 } 592 } 593 594 return found; 595 } 596 597 /* See if the HMAC_ID is one that we claim as supported */ 598 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 599 __be16 hmac_id) 600 { 601 struct sctp_hmac_algo_param *hmacs; 602 __u16 n_elt; 603 604 if (!asoc) 605 return 0; 606 607 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 608 n_elt = (ntohs(hmacs->param_hdr.length) - 609 sizeof(struct sctp_paramhdr)) >> 1; 610 611 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 612 } 613 614 615 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 616 * Section 6.1: 617 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 618 * algorithm it supports. 619 */ 620 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 621 struct sctp_hmac_algo_param *hmacs) 622 { 623 struct sctp_endpoint *ep; 624 __u16 id; 625 int i; 626 int n_params; 627 628 /* if the default id is already set, use it */ 629 if (asoc->default_hmac_id) 630 return; 631 632 n_params = (ntohs(hmacs->param_hdr.length) - 633 sizeof(struct sctp_paramhdr)) >> 1; 634 ep = asoc->ep; 635 for (i = 0; i < n_params; i++) { 636 id = ntohs(hmacs->hmac_ids[i]); 637 638 /* Check the id is in the supported range */ 639 if (id > SCTP_AUTH_HMAC_ID_MAX) 640 continue; 641 642 /* If this TFM has been allocated, use this id */ 643 if (ep->auth_hmacs[id]) { 644 asoc->default_hmac_id = id; 645 break; 646 } 647 } 648 } 649 650 651 /* Check to see if the given chunk is supposed to be authenticated */ 652 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param) 653 { 654 unsigned short len; 655 int found = 0; 656 int i; 657 658 if (!param || param->param_hdr.length == 0) 659 return 0; 660 661 len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr); 662 663 /* SCTP-AUTH, Section 3.2 664 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 665 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 666 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 667 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 668 */ 669 for (i = 0; !found && i < len; i++) { 670 switch (param->chunks[i]) { 671 case SCTP_CID_INIT: 672 case SCTP_CID_INIT_ACK: 673 case SCTP_CID_SHUTDOWN_COMPLETE: 674 case SCTP_CID_AUTH: 675 break; 676 677 default: 678 if (param->chunks[i] == chunk) 679 found = 1; 680 break; 681 } 682 } 683 684 return found; 685 } 686 687 /* Check if peer requested that this chunk is authenticated */ 688 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc) 689 { 690 if (!asoc) 691 return 0; 692 693 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) 694 return 0; 695 696 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 697 } 698 699 /* Check if we requested that peer authenticate this chunk. */ 700 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc) 701 { 702 if (!asoc) 703 return 0; 704 705 if (!asoc->ep->auth_enable) 706 return 0; 707 708 return __sctp_auth_cid(chunk, 709 (struct sctp_chunks_param *)asoc->c.auth_chunks); 710 } 711 712 /* SCTP-AUTH: Section 6.2: 713 * The sender MUST calculate the MAC as described in RFC2104 [2] using 714 * the hash function H as described by the MAC Identifier and the shared 715 * association key K based on the endpoint pair shared key described by 716 * the shared key identifier. The 'data' used for the computation of 717 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 718 * zero (as shown in Figure 6) followed by all chunks that are placed 719 * after the AUTH chunk in the SCTP packet. 720 */ 721 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 722 struct sk_buff *skb, struct sctp_auth_chunk *auth, 723 struct sctp_shared_key *ep_key, gfp_t gfp) 724 { 725 struct sctp_auth_bytes *asoc_key; 726 struct crypto_shash *tfm; 727 __u16 key_id, hmac_id; 728 unsigned char *end; 729 int free_key = 0; 730 __u8 *digest; 731 732 /* Extract the info we need: 733 * - hmac id 734 * - key id 735 */ 736 key_id = ntohs(auth->auth_hdr.shkey_id); 737 hmac_id = ntohs(auth->auth_hdr.hmac_id); 738 739 if (key_id == asoc->active_key_id) 740 asoc_key = asoc->asoc_shared_key; 741 else { 742 /* ep_key can't be NULL here */ 743 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 744 if (!asoc_key) 745 return; 746 747 free_key = 1; 748 } 749 750 /* set up scatter list */ 751 end = skb_tail_pointer(skb); 752 753 tfm = asoc->ep->auth_hmacs[hmac_id]; 754 755 digest = auth->auth_hdr.hmac; 756 if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len)) 757 goto free; 758 759 { 760 SHASH_DESC_ON_STACK(desc, tfm); 761 762 desc->tfm = tfm; 763 desc->flags = 0; 764 crypto_shash_digest(desc, (u8 *)auth, 765 end - (unsigned char *)auth, digest); 766 shash_desc_zero(desc); 767 } 768 769 free: 770 if (free_key) 771 sctp_auth_key_put(asoc_key); 772 } 773 774 /* API Helpers */ 775 776 /* Add a chunk to the endpoint authenticated chunk list */ 777 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 778 { 779 struct sctp_chunks_param *p = ep->auth_chunk_list; 780 __u16 nchunks; 781 __u16 param_len; 782 783 /* If this chunk is already specified, we are done */ 784 if (__sctp_auth_cid(chunk_id, p)) 785 return 0; 786 787 /* Check if we can add this chunk to the array */ 788 param_len = ntohs(p->param_hdr.length); 789 nchunks = param_len - sizeof(struct sctp_paramhdr); 790 if (nchunks == SCTP_NUM_CHUNK_TYPES) 791 return -EINVAL; 792 793 p->chunks[nchunks] = chunk_id; 794 p->param_hdr.length = htons(param_len + 1); 795 return 0; 796 } 797 798 /* Add hmac identifires to the endpoint list of supported hmac ids */ 799 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 800 struct sctp_hmacalgo *hmacs) 801 { 802 int has_sha1 = 0; 803 __u16 id; 804 int i; 805 806 /* Scan the list looking for unsupported id. Also make sure that 807 * SHA1 is specified. 808 */ 809 for (i = 0; i < hmacs->shmac_num_idents; i++) { 810 id = hmacs->shmac_idents[i]; 811 812 if (id > SCTP_AUTH_HMAC_ID_MAX) 813 return -EOPNOTSUPP; 814 815 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 816 has_sha1 = 1; 817 818 if (!sctp_hmac_list[id].hmac_name) 819 return -EOPNOTSUPP; 820 } 821 822 if (!has_sha1) 823 return -EINVAL; 824 825 for (i = 0; i < hmacs->shmac_num_idents; i++) 826 ep->auth_hmacs_list->hmac_ids[i] = 827 htons(hmacs->shmac_idents[i]); 828 ep->auth_hmacs_list->param_hdr.length = 829 htons(sizeof(struct sctp_paramhdr) + 830 hmacs->shmac_num_idents * sizeof(__u16)); 831 return 0; 832 } 833 834 /* Set a new shared key on either endpoint or association. If the 835 * the key with a same ID already exists, replace the key (remove the 836 * old key and add a new one). 837 */ 838 int sctp_auth_set_key(struct sctp_endpoint *ep, 839 struct sctp_association *asoc, 840 struct sctp_authkey *auth_key) 841 { 842 struct sctp_shared_key *cur_key, *shkey; 843 struct sctp_auth_bytes *key; 844 struct list_head *sh_keys; 845 int replace = 0; 846 847 /* Try to find the given key id to see if 848 * we are doing a replace, or adding a new key 849 */ 850 if (asoc) 851 sh_keys = &asoc->endpoint_shared_keys; 852 else 853 sh_keys = &ep->endpoint_shared_keys; 854 855 key_for_each(shkey, sh_keys) { 856 if (shkey->key_id == auth_key->sca_keynumber) { 857 replace = 1; 858 break; 859 } 860 } 861 862 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL); 863 if (!cur_key) 864 return -ENOMEM; 865 866 /* Create a new key data based on the info passed in */ 867 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 868 if (!key) { 869 kfree(cur_key); 870 return -ENOMEM; 871 } 872 873 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 874 cur_key->key = key; 875 876 if (replace) { 877 list_del_init(&shkey->key_list); 878 sctp_auth_shkey_release(shkey); 879 } 880 list_add(&cur_key->key_list, sh_keys); 881 882 return 0; 883 } 884 885 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 886 struct sctp_association *asoc, 887 __u16 key_id) 888 { 889 struct sctp_shared_key *key; 890 struct list_head *sh_keys; 891 int found = 0; 892 893 /* The key identifier MUST correst to an existing key */ 894 if (asoc) 895 sh_keys = &asoc->endpoint_shared_keys; 896 else 897 sh_keys = &ep->endpoint_shared_keys; 898 899 key_for_each(key, sh_keys) { 900 if (key->key_id == key_id) { 901 found = 1; 902 break; 903 } 904 } 905 906 if (!found || key->deactivated) 907 return -EINVAL; 908 909 if (asoc) { 910 asoc->active_key_id = key_id; 911 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 912 } else 913 ep->active_key_id = key_id; 914 915 return 0; 916 } 917 918 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 919 struct sctp_association *asoc, 920 __u16 key_id) 921 { 922 struct sctp_shared_key *key; 923 struct list_head *sh_keys; 924 int found = 0; 925 926 /* The key identifier MUST NOT be the current active key 927 * The key identifier MUST correst to an existing key 928 */ 929 if (asoc) { 930 if (asoc->active_key_id == key_id) 931 return -EINVAL; 932 933 sh_keys = &asoc->endpoint_shared_keys; 934 } else { 935 if (ep->active_key_id == key_id) 936 return -EINVAL; 937 938 sh_keys = &ep->endpoint_shared_keys; 939 } 940 941 key_for_each(key, sh_keys) { 942 if (key->key_id == key_id) { 943 found = 1; 944 break; 945 } 946 } 947 948 if (!found) 949 return -EINVAL; 950 951 /* Delete the shared key */ 952 list_del_init(&key->key_list); 953 sctp_auth_shkey_release(key); 954 955 return 0; 956 } 957 958 int sctp_auth_deact_key_id(struct sctp_endpoint *ep, 959 struct sctp_association *asoc, __u16 key_id) 960 { 961 struct sctp_shared_key *key; 962 struct list_head *sh_keys; 963 int found = 0; 964 965 /* The key identifier MUST NOT be the current active key 966 * The key identifier MUST correst to an existing key 967 */ 968 if (asoc) { 969 if (asoc->active_key_id == key_id) 970 return -EINVAL; 971 972 sh_keys = &asoc->endpoint_shared_keys; 973 } else { 974 if (ep->active_key_id == key_id) 975 return -EINVAL; 976 977 sh_keys = &ep->endpoint_shared_keys; 978 } 979 980 key_for_each(key, sh_keys) { 981 if (key->key_id == key_id) { 982 found = 1; 983 break; 984 } 985 } 986 987 if (!found) 988 return -EINVAL; 989 990 /* refcnt == 1 and !list_empty mean it's not being used anywhere 991 * and deactivated will be set, so it's time to notify userland 992 * that this shkey can be freed. 993 */ 994 if (asoc && !list_empty(&key->key_list) && 995 refcount_read(&key->refcnt) == 1) { 996 struct sctp_ulpevent *ev; 997 998 ev = sctp_ulpevent_make_authkey(asoc, key->key_id, 999 SCTP_AUTH_FREE_KEY, GFP_KERNEL); 1000 if (ev) 1001 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 1002 } 1003 1004 key->deactivated = 1; 1005 1006 return 0; 1007 } 1008