xref: /openbmc/linux/net/sctp/associola.c (revision f7777dcc)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson          <karl@athena.chicago.il.us>
36  *    Jon Grimm             <jgrimm@us.ibm.com>
37  *    Xingang Guo           <xingang.guo@intel.com>
38  *    Hui Huang             <hui.huang@nokia.com>
39  *    Sridhar Samudrala	    <sri@us.ibm.com>
40  *    Daisy Chang	    <daisyc@us.ibm.com>
41  *    Ryan Layer	    <rmlayer@us.ibm.com>
42  *    Kevin Gao             <kevin.gao@intel.com>
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/types.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 
52 #include <linux/slab.h>
53 #include <linux/in.h>
54 #include <net/ipv6.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 
58 /* Forward declarations for internal functions. */
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 					  const struct sctp_endpoint *ep,
68 					  const struct sock *sk,
69 					  sctp_scope_t scope,
70 					  gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	int i;
75 	sctp_paramhdr_t *p;
76 	int err;
77 
78 	/* Retrieve the SCTP per socket area.  */
79 	sp = sctp_sk((struct sock *)sk);
80 
81 	/* Discarding const is appropriate here.  */
82 	asoc->ep = (struct sctp_endpoint *)ep;
83 	asoc->base.sk = (struct sock *)sk;
84 
85 	sctp_endpoint_hold(asoc->ep);
86 	sock_hold(asoc->base.sk);
87 
88 	/* Initialize the common base substructure.  */
89 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90 
91 	/* Initialize the object handling fields.  */
92 	atomic_set(&asoc->base.refcnt, 1);
93 	asoc->base.dead = false;
94 
95 	/* Initialize the bind addr area.  */
96 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
97 
98 	asoc->state = SCTP_STATE_CLOSED;
99 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
100 	asoc->frag_point = 0;
101 	asoc->user_frag = sp->user_frag;
102 
103 	/* Set the association max_retrans and RTO values from the
104 	 * socket values.
105 	 */
106 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
107 	asoc->pf_retrans  = net->sctp.pf_retrans;
108 
109 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
110 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
111 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
112 
113 	asoc->overall_error_count = 0;
114 
115 	/* Initialize the association's heartbeat interval based on the
116 	 * sock configured value.
117 	 */
118 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
119 
120 	/* Initialize path max retrans value. */
121 	asoc->pathmaxrxt = sp->pathmaxrxt;
122 
123 	/* Initialize default path MTU. */
124 	asoc->pathmtu = sp->pathmtu;
125 
126 	/* Set association default SACK delay */
127 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
128 	asoc->sackfreq = sp->sackfreq;
129 
130 	/* Set the association default flags controlling
131 	 * Heartbeat, SACK delay, and Path MTU Discovery.
132 	 */
133 	asoc->param_flags = sp->param_flags;
134 
135 	/* Initialize the maximum mumber of new data packets that can be sent
136 	 * in a burst.
137 	 */
138 	asoc->max_burst = sp->max_burst;
139 
140 	/* initialize association timers */
141 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
142 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
143 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
144 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
145 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
146 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
147 
148 	/* sctpimpguide Section 2.12.2
149 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
150 	 * recommended value of 5 times 'RTO.Max'.
151 	 */
152 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
153 		= 5 * asoc->rto_max;
154 
155 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
156 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
157 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
158 		min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
159 
160 	/* Initializes the timers */
161 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
162 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
163 				(unsigned long)asoc);
164 
165 	/* Pull default initialization values from the sock options.
166 	 * Note: This assumes that the values have already been
167 	 * validated in the sock.
168 	 */
169 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
170 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
171 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
172 
173 	asoc->max_init_timeo =
174 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
175 
176 	/* Allocate storage for the ssnmap after the inbound and outbound
177 	 * streams have been negotiated during Init.
178 	 */
179 	asoc->ssnmap = NULL;
180 
181 	/* Set the local window size for receive.
182 	 * This is also the rcvbuf space per association.
183 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
184 	 * 1500 bytes in one SCTP packet.
185 	 */
186 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
187 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
188 	else
189 		asoc->rwnd = sk->sk_rcvbuf/2;
190 
191 	asoc->a_rwnd = asoc->rwnd;
192 
193 	asoc->rwnd_over = 0;
194 	asoc->rwnd_press = 0;
195 
196 	/* Use my own max window until I learn something better.  */
197 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
198 
199 	/* Set the sndbuf size for transmit.  */
200 	asoc->sndbuf_used = 0;
201 
202 	/* Initialize the receive memory counter */
203 	atomic_set(&asoc->rmem_alloc, 0);
204 
205 	init_waitqueue_head(&asoc->wait);
206 
207 	asoc->c.my_vtag = sctp_generate_tag(ep);
208 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
209 	asoc->c.peer_vtag = 0;
210 	asoc->c.my_ttag   = 0;
211 	asoc->c.peer_ttag = 0;
212 	asoc->c.my_port = ep->base.bind_addr.port;
213 
214 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
215 
216 	asoc->next_tsn = asoc->c.initial_tsn;
217 
218 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
219 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
220 	asoc->highest_sacked = asoc->ctsn_ack_point;
221 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
222 	asoc->unack_data = 0;
223 
224 	/* ADDIP Section 4.1 Asconf Chunk Procedures
225 	 *
226 	 * When an endpoint has an ASCONF signaled change to be sent to the
227 	 * remote endpoint it should do the following:
228 	 * ...
229 	 * A2) a serial number should be assigned to the chunk. The serial
230 	 * number SHOULD be a monotonically increasing number. The serial
231 	 * numbers SHOULD be initialized at the start of the
232 	 * association to the same value as the initial TSN.
233 	 */
234 	asoc->addip_serial = asoc->c.initial_tsn;
235 
236 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
237 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
238 
239 	/* Make an empty list of remote transport addresses.  */
240 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
241 	asoc->peer.transport_count = 0;
242 
243 	/* RFC 2960 5.1 Normal Establishment of an Association
244 	 *
245 	 * After the reception of the first data chunk in an
246 	 * association the endpoint must immediately respond with a
247 	 * sack to acknowledge the data chunk.  Subsequent
248 	 * acknowledgements should be done as described in Section
249 	 * 6.2.
250 	 *
251 	 * [We implement this by telling a new association that it
252 	 * already received one packet.]
253 	 */
254 	asoc->peer.sack_needed = 1;
255 	asoc->peer.sack_cnt = 0;
256 	asoc->peer.sack_generation = 1;
257 
258 	/* Assume that the peer will tell us if he recognizes ASCONF
259 	 * as part of INIT exchange.
260 	 * The sctp_addip_noauth option is there for backward compatibilty
261 	 * and will revert old behavior.
262 	 */
263 	asoc->peer.asconf_capable = 0;
264 	if (net->sctp.addip_noauth)
265 		asoc->peer.asconf_capable = 1;
266 	asoc->asconf_addr_del_pending = NULL;
267 	asoc->src_out_of_asoc_ok = 0;
268 	asoc->new_transport = NULL;
269 
270 	/* Create an input queue.  */
271 	sctp_inq_init(&asoc->base.inqueue);
272 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
273 
274 	/* Create an output queue.  */
275 	sctp_outq_init(asoc, &asoc->outqueue);
276 
277 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
278 		goto fail_init;
279 
280 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
281 
282 	asoc->need_ecne = 0;
283 
284 	asoc->assoc_id = 0;
285 
286 	/* Assume that peer would support both address types unless we are
287 	 * told otherwise.
288 	 */
289 	asoc->peer.ipv4_address = 1;
290 	if (asoc->base.sk->sk_family == PF_INET6)
291 		asoc->peer.ipv6_address = 1;
292 	INIT_LIST_HEAD(&asoc->asocs);
293 
294 	asoc->autoclose = sp->autoclose;
295 
296 	asoc->default_stream = sp->default_stream;
297 	asoc->default_ppid = sp->default_ppid;
298 	asoc->default_flags = sp->default_flags;
299 	asoc->default_context = sp->default_context;
300 	asoc->default_timetolive = sp->default_timetolive;
301 	asoc->default_rcv_context = sp->default_rcv_context;
302 
303 	/* SCTP_GET_ASSOC_STATS COUNTERS */
304 	memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats));
305 
306 	/* AUTH related initializations */
307 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
308 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
309 	if (err)
310 		goto fail_init;
311 
312 	asoc->active_key_id = ep->active_key_id;
313 	asoc->asoc_shared_key = NULL;
314 
315 	asoc->default_hmac_id = 0;
316 	/* Save the hmacs and chunks list into this association */
317 	if (ep->auth_hmacs_list)
318 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
319 			ntohs(ep->auth_hmacs_list->param_hdr.length));
320 	if (ep->auth_chunk_list)
321 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
322 			ntohs(ep->auth_chunk_list->param_hdr.length));
323 
324 	/* Get the AUTH random number for this association */
325 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
326 	p->type = SCTP_PARAM_RANDOM;
327 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
328 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
329 
330 	return asoc;
331 
332 fail_init:
333 	sock_put(asoc->base.sk);
334 	sctp_endpoint_put(asoc->ep);
335 	return NULL;
336 }
337 
338 /* Allocate and initialize a new association */
339 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
340 					 const struct sock *sk,
341 					 sctp_scope_t scope,
342 					 gfp_t gfp)
343 {
344 	struct sctp_association *asoc;
345 
346 	asoc = kzalloc(sizeof(*asoc), gfp);
347 	if (!asoc)
348 		goto fail;
349 
350 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
351 		goto fail_init;
352 
353 	SCTP_DBG_OBJCNT_INC(assoc);
354 
355 	pr_debug("Created asoc %p\n", asoc);
356 
357 	return asoc;
358 
359 fail_init:
360 	kfree(asoc);
361 fail:
362 	return NULL;
363 }
364 
365 /* Free this association if possible.  There may still be users, so
366  * the actual deallocation may be delayed.
367  */
368 void sctp_association_free(struct sctp_association *asoc)
369 {
370 	struct sock *sk = asoc->base.sk;
371 	struct sctp_transport *transport;
372 	struct list_head *pos, *temp;
373 	int i;
374 
375 	/* Only real associations count against the endpoint, so
376 	 * don't bother for if this is a temporary association.
377 	 */
378 	if (!asoc->temp) {
379 		list_del(&asoc->asocs);
380 
381 		/* Decrement the backlog value for a TCP-style listening
382 		 * socket.
383 		 */
384 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
385 			sk->sk_ack_backlog--;
386 	}
387 
388 	/* Mark as dead, so other users can know this structure is
389 	 * going away.
390 	 */
391 	asoc->base.dead = true;
392 
393 	/* Dispose of any data lying around in the outqueue. */
394 	sctp_outq_free(&asoc->outqueue);
395 
396 	/* Dispose of any pending messages for the upper layer. */
397 	sctp_ulpq_free(&asoc->ulpq);
398 
399 	/* Dispose of any pending chunks on the inqueue. */
400 	sctp_inq_free(&asoc->base.inqueue);
401 
402 	sctp_tsnmap_free(&asoc->peer.tsn_map);
403 
404 	/* Free ssnmap storage. */
405 	sctp_ssnmap_free(asoc->ssnmap);
406 
407 	/* Clean up the bound address list. */
408 	sctp_bind_addr_free(&asoc->base.bind_addr);
409 
410 	/* Do we need to go through all of our timers and
411 	 * delete them?   To be safe we will try to delete all, but we
412 	 * should be able to go through and make a guess based
413 	 * on our state.
414 	 */
415 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
416 		if (del_timer(&asoc->timers[i]))
417 			sctp_association_put(asoc);
418 	}
419 
420 	/* Free peer's cached cookie. */
421 	kfree(asoc->peer.cookie);
422 	kfree(asoc->peer.peer_random);
423 	kfree(asoc->peer.peer_chunks);
424 	kfree(asoc->peer.peer_hmacs);
425 
426 	/* Release the transport structures. */
427 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
428 		transport = list_entry(pos, struct sctp_transport, transports);
429 		list_del_rcu(pos);
430 		sctp_transport_free(transport);
431 	}
432 
433 	asoc->peer.transport_count = 0;
434 
435 	sctp_asconf_queue_teardown(asoc);
436 
437 	/* Free pending address space being deleted */
438 	if (asoc->asconf_addr_del_pending != NULL)
439 		kfree(asoc->asconf_addr_del_pending);
440 
441 	/* AUTH - Free the endpoint shared keys */
442 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
443 
444 	/* AUTH - Free the association shared key */
445 	sctp_auth_key_put(asoc->asoc_shared_key);
446 
447 	sctp_association_put(asoc);
448 }
449 
450 /* Cleanup and free up an association. */
451 static void sctp_association_destroy(struct sctp_association *asoc)
452 {
453 	if (unlikely(!asoc->base.dead)) {
454 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
455 		return;
456 	}
457 
458 	sctp_endpoint_put(asoc->ep);
459 	sock_put(asoc->base.sk);
460 
461 	if (asoc->assoc_id != 0) {
462 		spin_lock_bh(&sctp_assocs_id_lock);
463 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
464 		spin_unlock_bh(&sctp_assocs_id_lock);
465 	}
466 
467 	WARN_ON(atomic_read(&asoc->rmem_alloc));
468 
469 	kfree(asoc);
470 	SCTP_DBG_OBJCNT_DEC(assoc);
471 }
472 
473 /* Change the primary destination address for the peer. */
474 void sctp_assoc_set_primary(struct sctp_association *asoc,
475 			    struct sctp_transport *transport)
476 {
477 	int changeover = 0;
478 
479 	/* it's a changeover only if we already have a primary path
480 	 * that we are changing
481 	 */
482 	if (asoc->peer.primary_path != NULL &&
483 	    asoc->peer.primary_path != transport)
484 		changeover = 1 ;
485 
486 	asoc->peer.primary_path = transport;
487 
488 	/* Set a default msg_name for events. */
489 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
490 	       sizeof(union sctp_addr));
491 
492 	/* If the primary path is changing, assume that the
493 	 * user wants to use this new path.
494 	 */
495 	if ((transport->state == SCTP_ACTIVE) ||
496 	    (transport->state == SCTP_UNKNOWN))
497 		asoc->peer.active_path = transport;
498 
499 	/*
500 	 * SFR-CACC algorithm:
501 	 * Upon the receipt of a request to change the primary
502 	 * destination address, on the data structure for the new
503 	 * primary destination, the sender MUST do the following:
504 	 *
505 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
506 	 * to this destination address earlier. The sender MUST set
507 	 * CYCLING_CHANGEOVER to indicate that this switch is a
508 	 * double switch to the same destination address.
509 	 *
510 	 * Really, only bother is we have data queued or outstanding on
511 	 * the association.
512 	 */
513 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
514 		return;
515 
516 	if (transport->cacc.changeover_active)
517 		transport->cacc.cycling_changeover = changeover;
518 
519 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
520 	 * a changeover has occurred.
521 	 */
522 	transport->cacc.changeover_active = changeover;
523 
524 	/* 3) The sender MUST store the next TSN to be sent in
525 	 * next_tsn_at_change.
526 	 */
527 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
528 }
529 
530 /* Remove a transport from an association.  */
531 void sctp_assoc_rm_peer(struct sctp_association *asoc,
532 			struct sctp_transport *peer)
533 {
534 	struct list_head	*pos;
535 	struct sctp_transport	*transport;
536 
537 	pr_debug("%s: association:%p addr:%pISpc\n",
538 		 __func__, asoc, &peer->ipaddr.sa);
539 
540 	/* If we are to remove the current retran_path, update it
541 	 * to the next peer before removing this peer from the list.
542 	 */
543 	if (asoc->peer.retran_path == peer)
544 		sctp_assoc_update_retran_path(asoc);
545 
546 	/* Remove this peer from the list. */
547 	list_del_rcu(&peer->transports);
548 
549 	/* Get the first transport of asoc. */
550 	pos = asoc->peer.transport_addr_list.next;
551 	transport = list_entry(pos, struct sctp_transport, transports);
552 
553 	/* Update any entries that match the peer to be deleted. */
554 	if (asoc->peer.primary_path == peer)
555 		sctp_assoc_set_primary(asoc, transport);
556 	if (asoc->peer.active_path == peer)
557 		asoc->peer.active_path = transport;
558 	if (asoc->peer.retran_path == peer)
559 		asoc->peer.retran_path = transport;
560 	if (asoc->peer.last_data_from == peer)
561 		asoc->peer.last_data_from = transport;
562 
563 	/* If we remove the transport an INIT was last sent to, set it to
564 	 * NULL. Combined with the update of the retran path above, this
565 	 * will cause the next INIT to be sent to the next available
566 	 * transport, maintaining the cycle.
567 	 */
568 	if (asoc->init_last_sent_to == peer)
569 		asoc->init_last_sent_to = NULL;
570 
571 	/* If we remove the transport an SHUTDOWN was last sent to, set it
572 	 * to NULL. Combined with the update of the retran path above, this
573 	 * will cause the next SHUTDOWN to be sent to the next available
574 	 * transport, maintaining the cycle.
575 	 */
576 	if (asoc->shutdown_last_sent_to == peer)
577 		asoc->shutdown_last_sent_to = NULL;
578 
579 	/* If we remove the transport an ASCONF was last sent to, set it to
580 	 * NULL.
581 	 */
582 	if (asoc->addip_last_asconf &&
583 	    asoc->addip_last_asconf->transport == peer)
584 		asoc->addip_last_asconf->transport = NULL;
585 
586 	/* If we have something on the transmitted list, we have to
587 	 * save it off.  The best place is the active path.
588 	 */
589 	if (!list_empty(&peer->transmitted)) {
590 		struct sctp_transport *active = asoc->peer.active_path;
591 		struct sctp_chunk *ch;
592 
593 		/* Reset the transport of each chunk on this list */
594 		list_for_each_entry(ch, &peer->transmitted,
595 					transmitted_list) {
596 			ch->transport = NULL;
597 			ch->rtt_in_progress = 0;
598 		}
599 
600 		list_splice_tail_init(&peer->transmitted,
601 					&active->transmitted);
602 
603 		/* Start a T3 timer here in case it wasn't running so
604 		 * that these migrated packets have a chance to get
605 		 * retrnasmitted.
606 		 */
607 		if (!timer_pending(&active->T3_rtx_timer))
608 			if (!mod_timer(&active->T3_rtx_timer,
609 					jiffies + active->rto))
610 				sctp_transport_hold(active);
611 	}
612 
613 	asoc->peer.transport_count--;
614 
615 	sctp_transport_free(peer);
616 }
617 
618 /* Add a transport address to an association.  */
619 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
620 					   const union sctp_addr *addr,
621 					   const gfp_t gfp,
622 					   const int peer_state)
623 {
624 	struct net *net = sock_net(asoc->base.sk);
625 	struct sctp_transport *peer;
626 	struct sctp_sock *sp;
627 	unsigned short port;
628 
629 	sp = sctp_sk(asoc->base.sk);
630 
631 	/* AF_INET and AF_INET6 share common port field. */
632 	port = ntohs(addr->v4.sin_port);
633 
634 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
635 		 asoc, &addr->sa, peer_state);
636 
637 	/* Set the port if it has not been set yet.  */
638 	if (0 == asoc->peer.port)
639 		asoc->peer.port = port;
640 
641 	/* Check to see if this is a duplicate. */
642 	peer = sctp_assoc_lookup_paddr(asoc, addr);
643 	if (peer) {
644 		/* An UNKNOWN state is only set on transports added by
645 		 * user in sctp_connectx() call.  Such transports should be
646 		 * considered CONFIRMED per RFC 4960, Section 5.4.
647 		 */
648 		if (peer->state == SCTP_UNKNOWN) {
649 			peer->state = SCTP_ACTIVE;
650 		}
651 		return peer;
652 	}
653 
654 	peer = sctp_transport_new(net, addr, gfp);
655 	if (!peer)
656 		return NULL;
657 
658 	sctp_transport_set_owner(peer, asoc);
659 
660 	/* Initialize the peer's heartbeat interval based on the
661 	 * association configured value.
662 	 */
663 	peer->hbinterval = asoc->hbinterval;
664 
665 	/* Set the path max_retrans.  */
666 	peer->pathmaxrxt = asoc->pathmaxrxt;
667 
668 	/* And the partial failure retrnas threshold */
669 	peer->pf_retrans = asoc->pf_retrans;
670 
671 	/* Initialize the peer's SACK delay timeout based on the
672 	 * association configured value.
673 	 */
674 	peer->sackdelay = asoc->sackdelay;
675 	peer->sackfreq = asoc->sackfreq;
676 
677 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
678 	 * based on association setting.
679 	 */
680 	peer->param_flags = asoc->param_flags;
681 
682 	sctp_transport_route(peer, NULL, sp);
683 
684 	/* Initialize the pmtu of the transport. */
685 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
686 		if (asoc->pathmtu)
687 			peer->pathmtu = asoc->pathmtu;
688 		else
689 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
690 	}
691 
692 	/* If this is the first transport addr on this association,
693 	 * initialize the association PMTU to the peer's PMTU.
694 	 * If not and the current association PMTU is higher than the new
695 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
696 	 */
697 	if (asoc->pathmtu)
698 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
699 	else
700 		asoc->pathmtu = peer->pathmtu;
701 
702 	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
703 		 asoc->pathmtu);
704 
705 	peer->pmtu_pending = 0;
706 
707 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
708 
709 	/* The asoc->peer.port might not be meaningful yet, but
710 	 * initialize the packet structure anyway.
711 	 */
712 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
713 			 asoc->peer.port);
714 
715 	/* 7.2.1 Slow-Start
716 	 *
717 	 * o The initial cwnd before DATA transmission or after a sufficiently
718 	 *   long idle period MUST be set to
719 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
720 	 *
721 	 * o The initial value of ssthresh MAY be arbitrarily high
722 	 *   (for example, implementations MAY use the size of the
723 	 *   receiver advertised window).
724 	 */
725 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
726 
727 	/* At this point, we may not have the receiver's advertised window,
728 	 * so initialize ssthresh to the default value and it will be set
729 	 * later when we process the INIT.
730 	 */
731 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
732 
733 	peer->partial_bytes_acked = 0;
734 	peer->flight_size = 0;
735 	peer->burst_limited = 0;
736 
737 	/* Set the transport's RTO.initial value */
738 	peer->rto = asoc->rto_initial;
739 	sctp_max_rto(asoc, peer);
740 
741 	/* Set the peer's active state. */
742 	peer->state = peer_state;
743 
744 	/* Attach the remote transport to our asoc.  */
745 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
746 	asoc->peer.transport_count++;
747 
748 	/* If we do not yet have a primary path, set one.  */
749 	if (!asoc->peer.primary_path) {
750 		sctp_assoc_set_primary(asoc, peer);
751 		asoc->peer.retran_path = peer;
752 	}
753 
754 	if (asoc->peer.active_path == asoc->peer.retran_path &&
755 	    peer->state != SCTP_UNCONFIRMED) {
756 		asoc->peer.retran_path = peer;
757 	}
758 
759 	return peer;
760 }
761 
762 /* Delete a transport address from an association.  */
763 void sctp_assoc_del_peer(struct sctp_association *asoc,
764 			 const union sctp_addr *addr)
765 {
766 	struct list_head	*pos;
767 	struct list_head	*temp;
768 	struct sctp_transport	*transport;
769 
770 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
771 		transport = list_entry(pos, struct sctp_transport, transports);
772 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
773 			/* Do book keeping for removing the peer and free it. */
774 			sctp_assoc_rm_peer(asoc, transport);
775 			break;
776 		}
777 	}
778 }
779 
780 /* Lookup a transport by address. */
781 struct sctp_transport *sctp_assoc_lookup_paddr(
782 					const struct sctp_association *asoc,
783 					const union sctp_addr *address)
784 {
785 	struct sctp_transport *t;
786 
787 	/* Cycle through all transports searching for a peer address. */
788 
789 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
790 			transports) {
791 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
792 			return t;
793 	}
794 
795 	return NULL;
796 }
797 
798 /* Remove all transports except a give one */
799 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
800 				     struct sctp_transport *primary)
801 {
802 	struct sctp_transport	*temp;
803 	struct sctp_transport	*t;
804 
805 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
806 				 transports) {
807 		/* if the current transport is not the primary one, delete it */
808 		if (t != primary)
809 			sctp_assoc_rm_peer(asoc, t);
810 	}
811 }
812 
813 /* Engage in transport control operations.
814  * Mark the transport up or down and send a notification to the user.
815  * Select and update the new active and retran paths.
816  */
817 void sctp_assoc_control_transport(struct sctp_association *asoc,
818 				  struct sctp_transport *transport,
819 				  sctp_transport_cmd_t command,
820 				  sctp_sn_error_t error)
821 {
822 	struct sctp_transport *t = NULL;
823 	struct sctp_transport *first;
824 	struct sctp_transport *second;
825 	struct sctp_ulpevent *event;
826 	struct sockaddr_storage addr;
827 	int spc_state = 0;
828 	bool ulp_notify = true;
829 
830 	/* Record the transition on the transport.  */
831 	switch (command) {
832 	case SCTP_TRANSPORT_UP:
833 		/* If we are moving from UNCONFIRMED state due
834 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
835 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
836 		 */
837 		if (SCTP_UNCONFIRMED == transport->state &&
838 		    SCTP_HEARTBEAT_SUCCESS == error)
839 			spc_state = SCTP_ADDR_CONFIRMED;
840 		else
841 			spc_state = SCTP_ADDR_AVAILABLE;
842 		/* Don't inform ULP about transition from PF to
843 		 * active state and set cwnd to 1 MTU, see SCTP
844 		 * Quick failover draft section 5.1, point 5
845 		 */
846 		if (transport->state == SCTP_PF) {
847 			ulp_notify = false;
848 			transport->cwnd = asoc->pathmtu;
849 		}
850 		transport->state = SCTP_ACTIVE;
851 		break;
852 
853 	case SCTP_TRANSPORT_DOWN:
854 		/* If the transport was never confirmed, do not transition it
855 		 * to inactive state.  Also, release the cached route since
856 		 * there may be a better route next time.
857 		 */
858 		if (transport->state != SCTP_UNCONFIRMED)
859 			transport->state = SCTP_INACTIVE;
860 		else {
861 			dst_release(transport->dst);
862 			transport->dst = NULL;
863 		}
864 
865 		spc_state = SCTP_ADDR_UNREACHABLE;
866 		break;
867 
868 	case SCTP_TRANSPORT_PF:
869 		transport->state = SCTP_PF;
870 		ulp_notify = false;
871 		break;
872 
873 	default:
874 		return;
875 	}
876 
877 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
878 	 * user.
879 	 */
880 	if (ulp_notify) {
881 		memset(&addr, 0, sizeof(struct sockaddr_storage));
882 		memcpy(&addr, &transport->ipaddr,
883 		       transport->af_specific->sockaddr_len);
884 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
885 					0, spc_state, error, GFP_ATOMIC);
886 		if (event)
887 			sctp_ulpq_tail_event(&asoc->ulpq, event);
888 	}
889 
890 	/* Select new active and retran paths. */
891 
892 	/* Look for the two most recently used active transports.
893 	 *
894 	 * This code produces the wrong ordering whenever jiffies
895 	 * rolls over, but we still get usable transports, so we don't
896 	 * worry about it.
897 	 */
898 	first = NULL; second = NULL;
899 
900 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
901 			transports) {
902 
903 		if ((t->state == SCTP_INACTIVE) ||
904 		    (t->state == SCTP_UNCONFIRMED) ||
905 		    (t->state == SCTP_PF))
906 			continue;
907 		if (!first || t->last_time_heard > first->last_time_heard) {
908 			second = first;
909 			first = t;
910 		}
911 		if (!second || t->last_time_heard > second->last_time_heard)
912 			second = t;
913 	}
914 
915 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
916 	 *
917 	 * By default, an endpoint should always transmit to the
918 	 * primary path, unless the SCTP user explicitly specifies the
919 	 * destination transport address (and possibly source
920 	 * transport address) to use.
921 	 *
922 	 * [If the primary is active but not most recent, bump the most
923 	 * recently used transport.]
924 	 */
925 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
926 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
927 	    first != asoc->peer.primary_path) {
928 		second = first;
929 		first = asoc->peer.primary_path;
930 	}
931 
932 	/* If we failed to find a usable transport, just camp on the
933 	 * primary, even if it is inactive.
934 	 */
935 	if (!first) {
936 		first = asoc->peer.primary_path;
937 		second = asoc->peer.primary_path;
938 	}
939 
940 	/* Set the active and retran transports.  */
941 	asoc->peer.active_path = first;
942 	asoc->peer.retran_path = second;
943 }
944 
945 /* Hold a reference to an association. */
946 void sctp_association_hold(struct sctp_association *asoc)
947 {
948 	atomic_inc(&asoc->base.refcnt);
949 }
950 
951 /* Release a reference to an association and cleanup
952  * if there are no more references.
953  */
954 void sctp_association_put(struct sctp_association *asoc)
955 {
956 	if (atomic_dec_and_test(&asoc->base.refcnt))
957 		sctp_association_destroy(asoc);
958 }
959 
960 /* Allocate the next TSN, Transmission Sequence Number, for the given
961  * association.
962  */
963 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
964 {
965 	/* From Section 1.6 Serial Number Arithmetic:
966 	 * Transmission Sequence Numbers wrap around when they reach
967 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
968 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
969 	 */
970 	__u32 retval = asoc->next_tsn;
971 	asoc->next_tsn++;
972 	asoc->unack_data++;
973 
974 	return retval;
975 }
976 
977 /* Compare two addresses to see if they match.  Wildcard addresses
978  * only match themselves.
979  */
980 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
981 			const union sctp_addr *ss2)
982 {
983 	struct sctp_af *af;
984 
985 	af = sctp_get_af_specific(ss1->sa.sa_family);
986 	if (unlikely(!af))
987 		return 0;
988 
989 	return af->cmp_addr(ss1, ss2);
990 }
991 
992 /* Return an ecne chunk to get prepended to a packet.
993  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
994  * No we don't, but we could/should.
995  */
996 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
997 {
998 	struct sctp_chunk *chunk;
999 
1000 	/* Send ECNE if needed.
1001 	 * Not being able to allocate a chunk here is not deadly.
1002 	 */
1003 	if (asoc->need_ecne)
1004 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1005 	else
1006 		chunk = NULL;
1007 
1008 	return chunk;
1009 }
1010 
1011 /*
1012  * Find which transport this TSN was sent on.
1013  */
1014 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1015 					     __u32 tsn)
1016 {
1017 	struct sctp_transport *active;
1018 	struct sctp_transport *match;
1019 	struct sctp_transport *transport;
1020 	struct sctp_chunk *chunk;
1021 	__be32 key = htonl(tsn);
1022 
1023 	match = NULL;
1024 
1025 	/*
1026 	 * FIXME: In general, find a more efficient data structure for
1027 	 * searching.
1028 	 */
1029 
1030 	/*
1031 	 * The general strategy is to search each transport's transmitted
1032 	 * list.   Return which transport this TSN lives on.
1033 	 *
1034 	 * Let's be hopeful and check the active_path first.
1035 	 * Another optimization would be to know if there is only one
1036 	 * outbound path and not have to look for the TSN at all.
1037 	 *
1038 	 */
1039 
1040 	active = asoc->peer.active_path;
1041 
1042 	list_for_each_entry(chunk, &active->transmitted,
1043 			transmitted_list) {
1044 
1045 		if (key == chunk->subh.data_hdr->tsn) {
1046 			match = active;
1047 			goto out;
1048 		}
1049 	}
1050 
1051 	/* If not found, go search all the other transports. */
1052 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1053 			transports) {
1054 
1055 		if (transport == active)
1056 			continue;
1057 		list_for_each_entry(chunk, &transport->transmitted,
1058 				transmitted_list) {
1059 			if (key == chunk->subh.data_hdr->tsn) {
1060 				match = transport;
1061 				goto out;
1062 			}
1063 		}
1064 	}
1065 out:
1066 	return match;
1067 }
1068 
1069 /* Is this the association we are looking for? */
1070 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1071 					   struct net *net,
1072 					   const union sctp_addr *laddr,
1073 					   const union sctp_addr *paddr)
1074 {
1075 	struct sctp_transport *transport;
1076 
1077 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1078 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1079 	    net_eq(sock_net(asoc->base.sk), net)) {
1080 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1081 		if (!transport)
1082 			goto out;
1083 
1084 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1085 					 sctp_sk(asoc->base.sk)))
1086 			goto out;
1087 	}
1088 	transport = NULL;
1089 
1090 out:
1091 	return transport;
1092 }
1093 
1094 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1095 static void sctp_assoc_bh_rcv(struct work_struct *work)
1096 {
1097 	struct sctp_association *asoc =
1098 		container_of(work, struct sctp_association,
1099 			     base.inqueue.immediate);
1100 	struct net *net = sock_net(asoc->base.sk);
1101 	struct sctp_endpoint *ep;
1102 	struct sctp_chunk *chunk;
1103 	struct sctp_inq *inqueue;
1104 	int state;
1105 	sctp_subtype_t subtype;
1106 	int error = 0;
1107 
1108 	/* The association should be held so we should be safe. */
1109 	ep = asoc->ep;
1110 
1111 	inqueue = &asoc->base.inqueue;
1112 	sctp_association_hold(asoc);
1113 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1114 		state = asoc->state;
1115 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1116 
1117 		/* SCTP-AUTH, Section 6.3:
1118 		 *    The receiver has a list of chunk types which it expects
1119 		 *    to be received only after an AUTH-chunk.  This list has
1120 		 *    been sent to the peer during the association setup.  It
1121 		 *    MUST silently discard these chunks if they are not placed
1122 		 *    after an AUTH chunk in the packet.
1123 		 */
1124 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1125 			continue;
1126 
1127 		/* Remember where the last DATA chunk came from so we
1128 		 * know where to send the SACK.
1129 		 */
1130 		if (sctp_chunk_is_data(chunk))
1131 			asoc->peer.last_data_from = chunk->transport;
1132 		else {
1133 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1134 			asoc->stats.ictrlchunks++;
1135 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1136 				asoc->stats.isacks++;
1137 		}
1138 
1139 		if (chunk->transport)
1140 			chunk->transport->last_time_heard = jiffies;
1141 
1142 		/* Run through the state machine. */
1143 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1144 				   state, ep, asoc, chunk, GFP_ATOMIC);
1145 
1146 		/* Check to see if the association is freed in response to
1147 		 * the incoming chunk.  If so, get out of the while loop.
1148 		 */
1149 		if (asoc->base.dead)
1150 			break;
1151 
1152 		/* If there is an error on chunk, discard this packet. */
1153 		if (error && chunk)
1154 			chunk->pdiscard = 1;
1155 	}
1156 	sctp_association_put(asoc);
1157 }
1158 
1159 /* This routine moves an association from its old sk to a new sk.  */
1160 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1161 {
1162 	struct sctp_sock *newsp = sctp_sk(newsk);
1163 	struct sock *oldsk = assoc->base.sk;
1164 
1165 	/* Delete the association from the old endpoint's list of
1166 	 * associations.
1167 	 */
1168 	list_del_init(&assoc->asocs);
1169 
1170 	/* Decrement the backlog value for a TCP-style socket. */
1171 	if (sctp_style(oldsk, TCP))
1172 		oldsk->sk_ack_backlog--;
1173 
1174 	/* Release references to the old endpoint and the sock.  */
1175 	sctp_endpoint_put(assoc->ep);
1176 	sock_put(assoc->base.sk);
1177 
1178 	/* Get a reference to the new endpoint.  */
1179 	assoc->ep = newsp->ep;
1180 	sctp_endpoint_hold(assoc->ep);
1181 
1182 	/* Get a reference to the new sock.  */
1183 	assoc->base.sk = newsk;
1184 	sock_hold(assoc->base.sk);
1185 
1186 	/* Add the association to the new endpoint's list of associations.  */
1187 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1188 }
1189 
1190 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1191 void sctp_assoc_update(struct sctp_association *asoc,
1192 		       struct sctp_association *new)
1193 {
1194 	struct sctp_transport *trans;
1195 	struct list_head *pos, *temp;
1196 
1197 	/* Copy in new parameters of peer. */
1198 	asoc->c = new->c;
1199 	asoc->peer.rwnd = new->peer.rwnd;
1200 	asoc->peer.sack_needed = new->peer.sack_needed;
1201 	asoc->peer.i = new->peer.i;
1202 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1203 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1204 
1205 	/* Remove any peer addresses not present in the new association. */
1206 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1207 		trans = list_entry(pos, struct sctp_transport, transports);
1208 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1209 			sctp_assoc_rm_peer(asoc, trans);
1210 			continue;
1211 		}
1212 
1213 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1214 			sctp_transport_reset(trans);
1215 	}
1216 
1217 	/* If the case is A (association restart), use
1218 	 * initial_tsn as next_tsn. If the case is B, use
1219 	 * current next_tsn in case data sent to peer
1220 	 * has been discarded and needs retransmission.
1221 	 */
1222 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1223 		asoc->next_tsn = new->next_tsn;
1224 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1225 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1226 
1227 		/* Reinitialize SSN for both local streams
1228 		 * and peer's streams.
1229 		 */
1230 		sctp_ssnmap_clear(asoc->ssnmap);
1231 
1232 		/* Flush the ULP reassembly and ordered queue.
1233 		 * Any data there will now be stale and will
1234 		 * cause problems.
1235 		 */
1236 		sctp_ulpq_flush(&asoc->ulpq);
1237 
1238 		/* reset the overall association error count so
1239 		 * that the restarted association doesn't get torn
1240 		 * down on the next retransmission timer.
1241 		 */
1242 		asoc->overall_error_count = 0;
1243 
1244 	} else {
1245 		/* Add any peer addresses from the new association. */
1246 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1247 				transports) {
1248 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1249 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1250 						    GFP_ATOMIC, trans->state);
1251 		}
1252 
1253 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1254 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1255 		if (!asoc->ssnmap) {
1256 			/* Move the ssnmap. */
1257 			asoc->ssnmap = new->ssnmap;
1258 			new->ssnmap = NULL;
1259 		}
1260 
1261 		if (!asoc->assoc_id) {
1262 			/* get a new association id since we don't have one
1263 			 * yet.
1264 			 */
1265 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1266 		}
1267 	}
1268 
1269 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1270 	 * and also move the association shared keys over
1271 	 */
1272 	kfree(asoc->peer.peer_random);
1273 	asoc->peer.peer_random = new->peer.peer_random;
1274 	new->peer.peer_random = NULL;
1275 
1276 	kfree(asoc->peer.peer_chunks);
1277 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1278 	new->peer.peer_chunks = NULL;
1279 
1280 	kfree(asoc->peer.peer_hmacs);
1281 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1282 	new->peer.peer_hmacs = NULL;
1283 
1284 	sctp_auth_key_put(asoc->asoc_shared_key);
1285 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1286 }
1287 
1288 /* Update the retran path for sending a retransmitted packet.
1289  * Round-robin through the active transports, else round-robin
1290  * through the inactive transports as this is the next best thing
1291  * we can try.
1292  */
1293 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1294 {
1295 	struct sctp_transport *t, *next;
1296 	struct list_head *head = &asoc->peer.transport_addr_list;
1297 	struct list_head *pos;
1298 
1299 	if (asoc->peer.transport_count == 1)
1300 		return;
1301 
1302 	/* Find the next transport in a round-robin fashion. */
1303 	t = asoc->peer.retran_path;
1304 	pos = &t->transports;
1305 	next = NULL;
1306 
1307 	while (1) {
1308 		/* Skip the head. */
1309 		if (pos->next == head)
1310 			pos = head->next;
1311 		else
1312 			pos = pos->next;
1313 
1314 		t = list_entry(pos, struct sctp_transport, transports);
1315 
1316 		/* We have exhausted the list, but didn't find any
1317 		 * other active transports.  If so, use the next
1318 		 * transport.
1319 		 */
1320 		if (t == asoc->peer.retran_path) {
1321 			t = next;
1322 			break;
1323 		}
1324 
1325 		/* Try to find an active transport. */
1326 
1327 		if ((t->state == SCTP_ACTIVE) ||
1328 		    (t->state == SCTP_UNKNOWN)) {
1329 			break;
1330 		} else {
1331 			/* Keep track of the next transport in case
1332 			 * we don't find any active transport.
1333 			 */
1334 			if (t->state != SCTP_UNCONFIRMED && !next)
1335 				next = t;
1336 		}
1337 	}
1338 
1339 	if (t)
1340 		asoc->peer.retran_path = t;
1341 	else
1342 		t = asoc->peer.retran_path;
1343 
1344 	pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc,
1345 		 &t->ipaddr.sa);
1346 }
1347 
1348 /* Choose the transport for sending retransmit packet.  */
1349 struct sctp_transport *sctp_assoc_choose_alter_transport(
1350 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1351 {
1352 	/* If this is the first time packet is sent, use the active path,
1353 	 * else use the retran path. If the last packet was sent over the
1354 	 * retran path, update the retran path and use it.
1355 	 */
1356 	if (!last_sent_to)
1357 		return asoc->peer.active_path;
1358 	else {
1359 		if (last_sent_to == asoc->peer.retran_path)
1360 			sctp_assoc_update_retran_path(asoc);
1361 		return asoc->peer.retran_path;
1362 	}
1363 }
1364 
1365 /* Update the association's pmtu and frag_point by going through all the
1366  * transports. This routine is called when a transport's PMTU has changed.
1367  */
1368 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1369 {
1370 	struct sctp_transport *t;
1371 	__u32 pmtu = 0;
1372 
1373 	if (!asoc)
1374 		return;
1375 
1376 	/* Get the lowest pmtu of all the transports. */
1377 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1378 				transports) {
1379 		if (t->pmtu_pending && t->dst) {
1380 			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1381 			t->pmtu_pending = 0;
1382 		}
1383 		if (!pmtu || (t->pathmtu < pmtu))
1384 			pmtu = t->pathmtu;
1385 	}
1386 
1387 	if (pmtu) {
1388 		asoc->pathmtu = pmtu;
1389 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1390 	}
1391 
1392 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1393 		 asoc->pathmtu, asoc->frag_point);
1394 }
1395 
1396 /* Should we send a SACK to update our peer? */
1397 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1398 {
1399 	struct net *net = sock_net(asoc->base.sk);
1400 	switch (asoc->state) {
1401 	case SCTP_STATE_ESTABLISHED:
1402 	case SCTP_STATE_SHUTDOWN_PENDING:
1403 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1404 	case SCTP_STATE_SHUTDOWN_SENT:
1405 		if ((asoc->rwnd > asoc->a_rwnd) &&
1406 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1407 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1408 			   asoc->pathmtu)))
1409 			return 1;
1410 		break;
1411 	default:
1412 		break;
1413 	}
1414 	return 0;
1415 }
1416 
1417 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1418 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1419 {
1420 	struct sctp_chunk *sack;
1421 	struct timer_list *timer;
1422 
1423 	if (asoc->rwnd_over) {
1424 		if (asoc->rwnd_over >= len) {
1425 			asoc->rwnd_over -= len;
1426 		} else {
1427 			asoc->rwnd += (len - asoc->rwnd_over);
1428 			asoc->rwnd_over = 0;
1429 		}
1430 	} else {
1431 		asoc->rwnd += len;
1432 	}
1433 
1434 	/* If we had window pressure, start recovering it
1435 	 * once our rwnd had reached the accumulated pressure
1436 	 * threshold.  The idea is to recover slowly, but up
1437 	 * to the initial advertised window.
1438 	 */
1439 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1440 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1441 		asoc->rwnd += change;
1442 		asoc->rwnd_press -= change;
1443 	}
1444 
1445 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1446 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1447 		 asoc->a_rwnd);
1448 
1449 	/* Send a window update SACK if the rwnd has increased by at least the
1450 	 * minimum of the association's PMTU and half of the receive buffer.
1451 	 * The algorithm used is similar to the one described in
1452 	 * Section 4.2.3.3 of RFC 1122.
1453 	 */
1454 	if (sctp_peer_needs_update(asoc)) {
1455 		asoc->a_rwnd = asoc->rwnd;
1456 
1457 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1458 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1459 			 asoc->a_rwnd);
1460 
1461 		sack = sctp_make_sack(asoc);
1462 		if (!sack)
1463 			return;
1464 
1465 		asoc->peer.sack_needed = 0;
1466 
1467 		sctp_outq_tail(&asoc->outqueue, sack);
1468 
1469 		/* Stop the SACK timer.  */
1470 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1471 		if (del_timer(timer))
1472 			sctp_association_put(asoc);
1473 	}
1474 }
1475 
1476 /* Decrease asoc's rwnd by len. */
1477 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1478 {
1479 	int rx_count;
1480 	int over = 0;
1481 
1482 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1483 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1484 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1485 			 asoc->rwnd, asoc->rwnd_over);
1486 
1487 	if (asoc->ep->rcvbuf_policy)
1488 		rx_count = atomic_read(&asoc->rmem_alloc);
1489 	else
1490 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1491 
1492 	/* If we've reached or overflowed our receive buffer, announce
1493 	 * a 0 rwnd if rwnd would still be positive.  Store the
1494 	 * the pottential pressure overflow so that the window can be restored
1495 	 * back to original value.
1496 	 */
1497 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1498 		over = 1;
1499 
1500 	if (asoc->rwnd >= len) {
1501 		asoc->rwnd -= len;
1502 		if (over) {
1503 			asoc->rwnd_press += asoc->rwnd;
1504 			asoc->rwnd = 0;
1505 		}
1506 	} else {
1507 		asoc->rwnd_over = len - asoc->rwnd;
1508 		asoc->rwnd = 0;
1509 	}
1510 
1511 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1512 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1513 		 asoc->rwnd_press);
1514 }
1515 
1516 /* Build the bind address list for the association based on info from the
1517  * local endpoint and the remote peer.
1518  */
1519 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1520 				     sctp_scope_t scope, gfp_t gfp)
1521 {
1522 	int flags;
1523 
1524 	/* Use scoping rules to determine the subset of addresses from
1525 	 * the endpoint.
1526 	 */
1527 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1528 	if (asoc->peer.ipv4_address)
1529 		flags |= SCTP_ADDR4_PEERSUPP;
1530 	if (asoc->peer.ipv6_address)
1531 		flags |= SCTP_ADDR6_PEERSUPP;
1532 
1533 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1534 				   &asoc->base.bind_addr,
1535 				   &asoc->ep->base.bind_addr,
1536 				   scope, gfp, flags);
1537 }
1538 
1539 /* Build the association's bind address list from the cookie.  */
1540 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1541 					 struct sctp_cookie *cookie,
1542 					 gfp_t gfp)
1543 {
1544 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1545 	int var_size3 = cookie->raw_addr_list_len;
1546 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1547 
1548 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1549 				      asoc->ep->base.bind_addr.port, gfp);
1550 }
1551 
1552 /* Lookup laddr in the bind address list of an association. */
1553 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1554 			    const union sctp_addr *laddr)
1555 {
1556 	int found = 0;
1557 
1558 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1559 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1560 				 sctp_sk(asoc->base.sk)))
1561 		found = 1;
1562 
1563 	return found;
1564 }
1565 
1566 /* Set an association id for a given association */
1567 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1568 {
1569 	bool preload = gfp & __GFP_WAIT;
1570 	int ret;
1571 
1572 	/* If the id is already assigned, keep it. */
1573 	if (asoc->assoc_id)
1574 		return 0;
1575 
1576 	if (preload)
1577 		idr_preload(gfp);
1578 	spin_lock_bh(&sctp_assocs_id_lock);
1579 	/* 0 is not a valid assoc_id, must be >= 1 */
1580 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1581 	spin_unlock_bh(&sctp_assocs_id_lock);
1582 	if (preload)
1583 		idr_preload_end();
1584 	if (ret < 0)
1585 		return ret;
1586 
1587 	asoc->assoc_id = (sctp_assoc_t)ret;
1588 	return 0;
1589 }
1590 
1591 /* Free the ASCONF queue */
1592 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1593 {
1594 	struct sctp_chunk *asconf;
1595 	struct sctp_chunk *tmp;
1596 
1597 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1598 		list_del_init(&asconf->list);
1599 		sctp_chunk_free(asconf);
1600 	}
1601 }
1602 
1603 /* Free asconf_ack cache */
1604 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1605 {
1606 	struct sctp_chunk *ack;
1607 	struct sctp_chunk *tmp;
1608 
1609 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1610 				transmitted_list) {
1611 		list_del_init(&ack->transmitted_list);
1612 		sctp_chunk_free(ack);
1613 	}
1614 }
1615 
1616 /* Clean up the ASCONF_ACK queue */
1617 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1618 {
1619 	struct sctp_chunk *ack;
1620 	struct sctp_chunk *tmp;
1621 
1622 	/* We can remove all the entries from the queue up to
1623 	 * the "Peer-Sequence-Number".
1624 	 */
1625 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1626 				transmitted_list) {
1627 		if (ack->subh.addip_hdr->serial ==
1628 				htonl(asoc->peer.addip_serial))
1629 			break;
1630 
1631 		list_del_init(&ack->transmitted_list);
1632 		sctp_chunk_free(ack);
1633 	}
1634 }
1635 
1636 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1637 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1638 					const struct sctp_association *asoc,
1639 					__be32 serial)
1640 {
1641 	struct sctp_chunk *ack;
1642 
1643 	/* Walk through the list of cached ASCONF-ACKs and find the
1644 	 * ack chunk whose serial number matches that of the request.
1645 	 */
1646 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1647 		if (ack->subh.addip_hdr->serial == serial) {
1648 			sctp_chunk_hold(ack);
1649 			return ack;
1650 		}
1651 	}
1652 
1653 	return NULL;
1654 }
1655 
1656 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1657 {
1658 	/* Free any cached ASCONF_ACK chunk. */
1659 	sctp_assoc_free_asconf_acks(asoc);
1660 
1661 	/* Free the ASCONF queue. */
1662 	sctp_assoc_free_asconf_queue(asoc);
1663 
1664 	/* Free any cached ASCONF chunk. */
1665 	if (asoc->addip_last_asconf)
1666 		sctp_chunk_free(asoc->addip_last_asconf);
1667 }
1668