1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * This module provides the abstraction for an SCTP association. 12 * 13 * Please send any bug reports or fixes you make to the 14 * email address(es): 15 * lksctp developers <linux-sctp@vger.kernel.org> 16 * 17 * Written or modified by: 18 * La Monte H.P. Yarroll <piggy@acm.org> 19 * Karl Knutson <karl@athena.chicago.il.us> 20 * Jon Grimm <jgrimm@us.ibm.com> 21 * Xingang Guo <xingang.guo@intel.com> 22 * Hui Huang <hui.huang@nokia.com> 23 * Sridhar Samudrala <sri@us.ibm.com> 24 * Daisy Chang <daisyc@us.ibm.com> 25 * Ryan Layer <rmlayer@us.ibm.com> 26 * Kevin Gao <kevin.gao@intel.com> 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/types.h> 32 #include <linux/fcntl.h> 33 #include <linux/poll.h> 34 #include <linux/init.h> 35 36 #include <linux/slab.h> 37 #include <linux/in.h> 38 #include <net/ipv6.h> 39 #include <net/sctp/sctp.h> 40 #include <net/sctp/sm.h> 41 42 /* Forward declarations for internal functions. */ 43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 44 static void sctp_assoc_bh_rcv(struct work_struct *work); 45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 47 48 /* 1st Level Abstractions. */ 49 50 /* Initialize a new association from provided memory. */ 51 static struct sctp_association *sctp_association_init( 52 struct sctp_association *asoc, 53 const struct sctp_endpoint *ep, 54 const struct sock *sk, 55 enum sctp_scope scope, gfp_t gfp) 56 { 57 struct sctp_sock *sp; 58 struct sctp_paramhdr *p; 59 int i; 60 61 /* Retrieve the SCTP per socket area. */ 62 sp = sctp_sk((struct sock *)sk); 63 64 /* Discarding const is appropriate here. */ 65 asoc->ep = (struct sctp_endpoint *)ep; 66 asoc->base.sk = (struct sock *)sk; 67 asoc->base.net = sock_net(sk); 68 69 sctp_endpoint_hold(asoc->ep); 70 sock_hold(asoc->base.sk); 71 72 /* Initialize the common base substructure. */ 73 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 74 75 /* Initialize the object handling fields. */ 76 refcount_set(&asoc->base.refcnt, 1); 77 78 /* Initialize the bind addr area. */ 79 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 80 81 asoc->state = SCTP_STATE_CLOSED; 82 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 83 asoc->user_frag = sp->user_frag; 84 85 /* Set the association max_retrans and RTO values from the 86 * socket values. 87 */ 88 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 89 asoc->pf_retrans = sp->pf_retrans; 90 asoc->ps_retrans = sp->ps_retrans; 91 asoc->pf_expose = sp->pf_expose; 92 93 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 94 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 95 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 96 97 /* Initialize the association's heartbeat interval based on the 98 * sock configured value. 99 */ 100 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 101 102 /* Initialize path max retrans value. */ 103 asoc->pathmaxrxt = sp->pathmaxrxt; 104 105 asoc->flowlabel = sp->flowlabel; 106 asoc->dscp = sp->dscp; 107 108 /* Set association default SACK delay */ 109 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 110 asoc->sackfreq = sp->sackfreq; 111 112 /* Set the association default flags controlling 113 * Heartbeat, SACK delay, and Path MTU Discovery. 114 */ 115 asoc->param_flags = sp->param_flags; 116 117 /* Initialize the maximum number of new data packets that can be sent 118 * in a burst. 119 */ 120 asoc->max_burst = sp->max_burst; 121 122 asoc->subscribe = sp->subscribe; 123 124 /* initialize association timers */ 125 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 126 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 127 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 128 129 /* sctpimpguide Section 2.12.2 130 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 131 * recommended value of 5 times 'RTO.Max'. 132 */ 133 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 134 = 5 * asoc->rto_max; 135 136 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 138 139 /* Initializes the timers */ 140 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 141 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0); 142 143 /* Pull default initialization values from the sock options. 144 * Note: This assumes that the values have already been 145 * validated in the sock. 146 */ 147 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 148 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 149 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 150 151 asoc->max_init_timeo = 152 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 153 154 /* Set the local window size for receive. 155 * This is also the rcvbuf space per association. 156 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 157 * 1500 bytes in one SCTP packet. 158 */ 159 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 160 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 161 else 162 asoc->rwnd = sk->sk_rcvbuf/2; 163 164 asoc->a_rwnd = asoc->rwnd; 165 166 /* Use my own max window until I learn something better. */ 167 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 168 169 /* Initialize the receive memory counter */ 170 atomic_set(&asoc->rmem_alloc, 0); 171 172 init_waitqueue_head(&asoc->wait); 173 174 asoc->c.my_vtag = sctp_generate_tag(ep); 175 asoc->c.my_port = ep->base.bind_addr.port; 176 177 asoc->c.initial_tsn = sctp_generate_tsn(ep); 178 179 asoc->next_tsn = asoc->c.initial_tsn; 180 181 asoc->ctsn_ack_point = asoc->next_tsn - 1; 182 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 183 asoc->highest_sacked = asoc->ctsn_ack_point; 184 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 185 186 /* ADDIP Section 4.1 Asconf Chunk Procedures 187 * 188 * When an endpoint has an ASCONF signaled change to be sent to the 189 * remote endpoint it should do the following: 190 * ... 191 * A2) a serial number should be assigned to the chunk. The serial 192 * number SHOULD be a monotonically increasing number. The serial 193 * numbers SHOULD be initialized at the start of the 194 * association to the same value as the initial TSN. 195 */ 196 asoc->addip_serial = asoc->c.initial_tsn; 197 asoc->strreset_outseq = asoc->c.initial_tsn; 198 199 INIT_LIST_HEAD(&asoc->addip_chunk_list); 200 INIT_LIST_HEAD(&asoc->asconf_ack_list); 201 202 /* Make an empty list of remote transport addresses. */ 203 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 204 205 /* RFC 2960 5.1 Normal Establishment of an Association 206 * 207 * After the reception of the first data chunk in an 208 * association the endpoint must immediately respond with a 209 * sack to acknowledge the data chunk. Subsequent 210 * acknowledgements should be done as described in Section 211 * 6.2. 212 * 213 * [We implement this by telling a new association that it 214 * already received one packet.] 215 */ 216 asoc->peer.sack_needed = 1; 217 asoc->peer.sack_generation = 1; 218 219 /* Create an input queue. */ 220 sctp_inq_init(&asoc->base.inqueue); 221 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 222 223 /* Create an output queue. */ 224 sctp_outq_init(asoc, &asoc->outqueue); 225 226 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 227 goto fail_init; 228 229 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 230 0, gfp)) 231 goto fail_init; 232 233 /* Initialize default path MTU. */ 234 asoc->pathmtu = sp->pathmtu; 235 sctp_assoc_update_frag_point(asoc); 236 237 /* Assume that peer would support both address types unless we are 238 * told otherwise. 239 */ 240 asoc->peer.ipv4_address = 1; 241 if (asoc->base.sk->sk_family == PF_INET6) 242 asoc->peer.ipv6_address = 1; 243 INIT_LIST_HEAD(&asoc->asocs); 244 245 asoc->default_stream = sp->default_stream; 246 asoc->default_ppid = sp->default_ppid; 247 asoc->default_flags = sp->default_flags; 248 asoc->default_context = sp->default_context; 249 asoc->default_timetolive = sp->default_timetolive; 250 asoc->default_rcv_context = sp->default_rcv_context; 251 252 /* AUTH related initializations */ 253 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 254 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) 255 goto stream_free; 256 257 asoc->active_key_id = ep->active_key_id; 258 asoc->strreset_enable = ep->strreset_enable; 259 260 /* Save the hmacs and chunks list into this association */ 261 if (ep->auth_hmacs_list) 262 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 263 ntohs(ep->auth_hmacs_list->param_hdr.length)); 264 if (ep->auth_chunk_list) 265 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 266 ntohs(ep->auth_chunk_list->param_hdr.length)); 267 268 /* Get the AUTH random number for this association */ 269 p = (struct sctp_paramhdr *)asoc->c.auth_random; 270 p->type = SCTP_PARAM_RANDOM; 271 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH); 272 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 273 274 return asoc; 275 276 stream_free: 277 sctp_stream_free(&asoc->stream); 278 fail_init: 279 sock_put(asoc->base.sk); 280 sctp_endpoint_put(asoc->ep); 281 return NULL; 282 } 283 284 /* Allocate and initialize a new association */ 285 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 286 const struct sock *sk, 287 enum sctp_scope scope, gfp_t gfp) 288 { 289 struct sctp_association *asoc; 290 291 asoc = kzalloc(sizeof(*asoc), gfp); 292 if (!asoc) 293 goto fail; 294 295 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 296 goto fail_init; 297 298 SCTP_DBG_OBJCNT_INC(assoc); 299 300 pr_debug("Created asoc %p\n", asoc); 301 302 return asoc; 303 304 fail_init: 305 kfree(asoc); 306 fail: 307 return NULL; 308 } 309 310 /* Free this association if possible. There may still be users, so 311 * the actual deallocation may be delayed. 312 */ 313 void sctp_association_free(struct sctp_association *asoc) 314 { 315 struct sock *sk = asoc->base.sk; 316 struct sctp_transport *transport; 317 struct list_head *pos, *temp; 318 int i; 319 320 /* Only real associations count against the endpoint, so 321 * don't bother for if this is a temporary association. 322 */ 323 if (!list_empty(&asoc->asocs)) { 324 list_del(&asoc->asocs); 325 326 /* Decrement the backlog value for a TCP-style listening 327 * socket. 328 */ 329 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 330 sk_acceptq_removed(sk); 331 } 332 333 /* Mark as dead, so other users can know this structure is 334 * going away. 335 */ 336 asoc->base.dead = true; 337 338 /* Dispose of any data lying around in the outqueue. */ 339 sctp_outq_free(&asoc->outqueue); 340 341 /* Dispose of any pending messages for the upper layer. */ 342 sctp_ulpq_free(&asoc->ulpq); 343 344 /* Dispose of any pending chunks on the inqueue. */ 345 sctp_inq_free(&asoc->base.inqueue); 346 347 sctp_tsnmap_free(&asoc->peer.tsn_map); 348 349 /* Free stream information. */ 350 sctp_stream_free(&asoc->stream); 351 352 if (asoc->strreset_chunk) 353 sctp_chunk_free(asoc->strreset_chunk); 354 355 /* Clean up the bound address list. */ 356 sctp_bind_addr_free(&asoc->base.bind_addr); 357 358 /* Do we need to go through all of our timers and 359 * delete them? To be safe we will try to delete all, but we 360 * should be able to go through and make a guess based 361 * on our state. 362 */ 363 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 364 if (del_timer(&asoc->timers[i])) 365 sctp_association_put(asoc); 366 } 367 368 /* Free peer's cached cookie. */ 369 kfree(asoc->peer.cookie); 370 kfree(asoc->peer.peer_random); 371 kfree(asoc->peer.peer_chunks); 372 kfree(asoc->peer.peer_hmacs); 373 374 /* Release the transport structures. */ 375 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 376 transport = list_entry(pos, struct sctp_transport, transports); 377 list_del_rcu(pos); 378 sctp_unhash_transport(transport); 379 sctp_transport_free(transport); 380 } 381 382 asoc->peer.transport_count = 0; 383 384 sctp_asconf_queue_teardown(asoc); 385 386 /* Free pending address space being deleted */ 387 kfree(asoc->asconf_addr_del_pending); 388 389 /* AUTH - Free the endpoint shared keys */ 390 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 391 392 /* AUTH - Free the association shared key */ 393 sctp_auth_key_put(asoc->asoc_shared_key); 394 395 sctp_association_put(asoc); 396 } 397 398 /* Cleanup and free up an association. */ 399 static void sctp_association_destroy(struct sctp_association *asoc) 400 { 401 if (unlikely(!asoc->base.dead)) { 402 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 403 return; 404 } 405 406 sctp_endpoint_put(asoc->ep); 407 sock_put(asoc->base.sk); 408 409 if (asoc->assoc_id != 0) { 410 spin_lock_bh(&sctp_assocs_id_lock); 411 idr_remove(&sctp_assocs_id, asoc->assoc_id); 412 spin_unlock_bh(&sctp_assocs_id_lock); 413 } 414 415 WARN_ON(atomic_read(&asoc->rmem_alloc)); 416 417 kfree_rcu(asoc, rcu); 418 SCTP_DBG_OBJCNT_DEC(assoc); 419 } 420 421 /* Change the primary destination address for the peer. */ 422 void sctp_assoc_set_primary(struct sctp_association *asoc, 423 struct sctp_transport *transport) 424 { 425 int changeover = 0; 426 427 /* it's a changeover only if we already have a primary path 428 * that we are changing 429 */ 430 if (asoc->peer.primary_path != NULL && 431 asoc->peer.primary_path != transport) 432 changeover = 1 ; 433 434 asoc->peer.primary_path = transport; 435 sctp_ulpevent_nofity_peer_addr_change(transport, 436 SCTP_ADDR_MADE_PRIM, 0); 437 438 /* Set a default msg_name for events. */ 439 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 440 sizeof(union sctp_addr)); 441 442 /* If the primary path is changing, assume that the 443 * user wants to use this new path. 444 */ 445 if ((transport->state == SCTP_ACTIVE) || 446 (transport->state == SCTP_UNKNOWN)) 447 asoc->peer.active_path = transport; 448 449 /* 450 * SFR-CACC algorithm: 451 * Upon the receipt of a request to change the primary 452 * destination address, on the data structure for the new 453 * primary destination, the sender MUST do the following: 454 * 455 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 456 * to this destination address earlier. The sender MUST set 457 * CYCLING_CHANGEOVER to indicate that this switch is a 458 * double switch to the same destination address. 459 * 460 * Really, only bother is we have data queued or outstanding on 461 * the association. 462 */ 463 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 464 return; 465 466 if (transport->cacc.changeover_active) 467 transport->cacc.cycling_changeover = changeover; 468 469 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 470 * a changeover has occurred. 471 */ 472 transport->cacc.changeover_active = changeover; 473 474 /* 3) The sender MUST store the next TSN to be sent in 475 * next_tsn_at_change. 476 */ 477 transport->cacc.next_tsn_at_change = asoc->next_tsn; 478 } 479 480 /* Remove a transport from an association. */ 481 void sctp_assoc_rm_peer(struct sctp_association *asoc, 482 struct sctp_transport *peer) 483 { 484 struct sctp_transport *transport; 485 struct list_head *pos; 486 struct sctp_chunk *ch; 487 488 pr_debug("%s: association:%p addr:%pISpc\n", 489 __func__, asoc, &peer->ipaddr.sa); 490 491 /* If we are to remove the current retran_path, update it 492 * to the next peer before removing this peer from the list. 493 */ 494 if (asoc->peer.retran_path == peer) 495 sctp_assoc_update_retran_path(asoc); 496 497 /* Remove this peer from the list. */ 498 list_del_rcu(&peer->transports); 499 /* Remove this peer from the transport hashtable */ 500 sctp_unhash_transport(peer); 501 502 /* Get the first transport of asoc. */ 503 pos = asoc->peer.transport_addr_list.next; 504 transport = list_entry(pos, struct sctp_transport, transports); 505 506 /* Update any entries that match the peer to be deleted. */ 507 if (asoc->peer.primary_path == peer) 508 sctp_assoc_set_primary(asoc, transport); 509 if (asoc->peer.active_path == peer) 510 asoc->peer.active_path = transport; 511 if (asoc->peer.retran_path == peer) 512 asoc->peer.retran_path = transport; 513 if (asoc->peer.last_data_from == peer) 514 asoc->peer.last_data_from = transport; 515 516 if (asoc->strreset_chunk && 517 asoc->strreset_chunk->transport == peer) { 518 asoc->strreset_chunk->transport = transport; 519 sctp_transport_reset_reconf_timer(transport); 520 } 521 522 /* If we remove the transport an INIT was last sent to, set it to 523 * NULL. Combined with the update of the retran path above, this 524 * will cause the next INIT to be sent to the next available 525 * transport, maintaining the cycle. 526 */ 527 if (asoc->init_last_sent_to == peer) 528 asoc->init_last_sent_to = NULL; 529 530 /* If we remove the transport an SHUTDOWN was last sent to, set it 531 * to NULL. Combined with the update of the retran path above, this 532 * will cause the next SHUTDOWN to be sent to the next available 533 * transport, maintaining the cycle. 534 */ 535 if (asoc->shutdown_last_sent_to == peer) 536 asoc->shutdown_last_sent_to = NULL; 537 538 /* If we remove the transport an ASCONF was last sent to, set it to 539 * NULL. 540 */ 541 if (asoc->addip_last_asconf && 542 asoc->addip_last_asconf->transport == peer) 543 asoc->addip_last_asconf->transport = NULL; 544 545 /* If we have something on the transmitted list, we have to 546 * save it off. The best place is the active path. 547 */ 548 if (!list_empty(&peer->transmitted)) { 549 struct sctp_transport *active = asoc->peer.active_path; 550 551 /* Reset the transport of each chunk on this list */ 552 list_for_each_entry(ch, &peer->transmitted, 553 transmitted_list) { 554 ch->transport = NULL; 555 ch->rtt_in_progress = 0; 556 } 557 558 list_splice_tail_init(&peer->transmitted, 559 &active->transmitted); 560 561 /* Start a T3 timer here in case it wasn't running so 562 * that these migrated packets have a chance to get 563 * retransmitted. 564 */ 565 if (!timer_pending(&active->T3_rtx_timer)) 566 if (!mod_timer(&active->T3_rtx_timer, 567 jiffies + active->rto)) 568 sctp_transport_hold(active); 569 } 570 571 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list) 572 if (ch->transport == peer) 573 ch->transport = NULL; 574 575 asoc->peer.transport_count--; 576 577 sctp_ulpevent_nofity_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0); 578 sctp_transport_free(peer); 579 } 580 581 /* Add a transport address to an association. */ 582 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 583 const union sctp_addr *addr, 584 const gfp_t gfp, 585 const int peer_state) 586 { 587 struct net *net = sock_net(asoc->base.sk); 588 struct sctp_transport *peer; 589 struct sctp_sock *sp; 590 unsigned short port; 591 592 sp = sctp_sk(asoc->base.sk); 593 594 /* AF_INET and AF_INET6 share common port field. */ 595 port = ntohs(addr->v4.sin_port); 596 597 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 598 asoc, &addr->sa, peer_state); 599 600 /* Set the port if it has not been set yet. */ 601 if (0 == asoc->peer.port) 602 asoc->peer.port = port; 603 604 /* Check to see if this is a duplicate. */ 605 peer = sctp_assoc_lookup_paddr(asoc, addr); 606 if (peer) { 607 /* An UNKNOWN state is only set on transports added by 608 * user in sctp_connectx() call. Such transports should be 609 * considered CONFIRMED per RFC 4960, Section 5.4. 610 */ 611 if (peer->state == SCTP_UNKNOWN) { 612 peer->state = SCTP_ACTIVE; 613 } 614 return peer; 615 } 616 617 peer = sctp_transport_new(net, addr, gfp); 618 if (!peer) 619 return NULL; 620 621 sctp_transport_set_owner(peer, asoc); 622 623 /* Initialize the peer's heartbeat interval based on the 624 * association configured value. 625 */ 626 peer->hbinterval = asoc->hbinterval; 627 628 /* Set the path max_retrans. */ 629 peer->pathmaxrxt = asoc->pathmaxrxt; 630 631 /* And the partial failure retrans threshold */ 632 peer->pf_retrans = asoc->pf_retrans; 633 /* And the primary path switchover retrans threshold */ 634 peer->ps_retrans = asoc->ps_retrans; 635 636 /* Initialize the peer's SACK delay timeout based on the 637 * association configured value. 638 */ 639 peer->sackdelay = asoc->sackdelay; 640 peer->sackfreq = asoc->sackfreq; 641 642 if (addr->sa.sa_family == AF_INET6) { 643 __be32 info = addr->v6.sin6_flowinfo; 644 645 if (info) { 646 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK); 647 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 648 } else { 649 peer->flowlabel = asoc->flowlabel; 650 } 651 } 652 peer->dscp = asoc->dscp; 653 654 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 655 * based on association setting. 656 */ 657 peer->param_flags = asoc->param_flags; 658 659 /* Initialize the pmtu of the transport. */ 660 sctp_transport_route(peer, NULL, sp); 661 662 /* If this is the first transport addr on this association, 663 * initialize the association PMTU to the peer's PMTU. 664 * If not and the current association PMTU is higher than the new 665 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 666 */ 667 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ? 668 min_t(int, peer->pathmtu, asoc->pathmtu) : 669 peer->pathmtu); 670 671 peer->pmtu_pending = 0; 672 673 /* The asoc->peer.port might not be meaningful yet, but 674 * initialize the packet structure anyway. 675 */ 676 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 677 asoc->peer.port); 678 679 /* 7.2.1 Slow-Start 680 * 681 * o The initial cwnd before DATA transmission or after a sufficiently 682 * long idle period MUST be set to 683 * min(4*MTU, max(2*MTU, 4380 bytes)) 684 * 685 * o The initial value of ssthresh MAY be arbitrarily high 686 * (for example, implementations MAY use the size of the 687 * receiver advertised window). 688 */ 689 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 690 691 /* At this point, we may not have the receiver's advertised window, 692 * so initialize ssthresh to the default value and it will be set 693 * later when we process the INIT. 694 */ 695 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 696 697 peer->partial_bytes_acked = 0; 698 peer->flight_size = 0; 699 peer->burst_limited = 0; 700 701 /* Set the transport's RTO.initial value */ 702 peer->rto = asoc->rto_initial; 703 sctp_max_rto(asoc, peer); 704 705 /* Set the peer's active state. */ 706 peer->state = peer_state; 707 708 /* Add this peer into the transport hashtable */ 709 if (sctp_hash_transport(peer)) { 710 sctp_transport_free(peer); 711 return NULL; 712 } 713 714 /* Attach the remote transport to our asoc. */ 715 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 716 asoc->peer.transport_count++; 717 718 sctp_ulpevent_nofity_peer_addr_change(peer, SCTP_ADDR_ADDED, 0); 719 720 /* If we do not yet have a primary path, set one. */ 721 if (!asoc->peer.primary_path) { 722 sctp_assoc_set_primary(asoc, peer); 723 asoc->peer.retran_path = peer; 724 } 725 726 if (asoc->peer.active_path == asoc->peer.retran_path && 727 peer->state != SCTP_UNCONFIRMED) { 728 asoc->peer.retran_path = peer; 729 } 730 731 return peer; 732 } 733 734 /* Delete a transport address from an association. */ 735 void sctp_assoc_del_peer(struct sctp_association *asoc, 736 const union sctp_addr *addr) 737 { 738 struct list_head *pos; 739 struct list_head *temp; 740 struct sctp_transport *transport; 741 742 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 743 transport = list_entry(pos, struct sctp_transport, transports); 744 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 745 /* Do book keeping for removing the peer and free it. */ 746 sctp_assoc_rm_peer(asoc, transport); 747 break; 748 } 749 } 750 } 751 752 /* Lookup a transport by address. */ 753 struct sctp_transport *sctp_assoc_lookup_paddr( 754 const struct sctp_association *asoc, 755 const union sctp_addr *address) 756 { 757 struct sctp_transport *t; 758 759 /* Cycle through all transports searching for a peer address. */ 760 761 list_for_each_entry(t, &asoc->peer.transport_addr_list, 762 transports) { 763 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 764 return t; 765 } 766 767 return NULL; 768 } 769 770 /* Remove all transports except a give one */ 771 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 772 struct sctp_transport *primary) 773 { 774 struct sctp_transport *temp; 775 struct sctp_transport *t; 776 777 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 778 transports) { 779 /* if the current transport is not the primary one, delete it */ 780 if (t != primary) 781 sctp_assoc_rm_peer(asoc, t); 782 } 783 } 784 785 /* Engage in transport control operations. 786 * Mark the transport up or down and send a notification to the user. 787 * Select and update the new active and retran paths. 788 */ 789 void sctp_assoc_control_transport(struct sctp_association *asoc, 790 struct sctp_transport *transport, 791 enum sctp_transport_cmd command, 792 sctp_sn_error_t error) 793 { 794 int spc_state = SCTP_ADDR_AVAILABLE; 795 bool ulp_notify = true; 796 797 /* Record the transition on the transport. */ 798 switch (command) { 799 case SCTP_TRANSPORT_UP: 800 /* If we are moving from UNCONFIRMED state due 801 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 802 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 803 */ 804 if (transport->state == SCTP_PF && 805 asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE) 806 ulp_notify = false; 807 else if (transport->state == SCTP_UNCONFIRMED && 808 error == SCTP_HEARTBEAT_SUCCESS) 809 spc_state = SCTP_ADDR_CONFIRMED; 810 811 transport->state = SCTP_ACTIVE; 812 break; 813 814 case SCTP_TRANSPORT_DOWN: 815 /* If the transport was never confirmed, do not transition it 816 * to inactive state. Also, release the cached route since 817 * there may be a better route next time. 818 */ 819 if (transport->state != SCTP_UNCONFIRMED) { 820 transport->state = SCTP_INACTIVE; 821 spc_state = SCTP_ADDR_UNREACHABLE; 822 } else { 823 sctp_transport_dst_release(transport); 824 ulp_notify = false; 825 } 826 break; 827 828 case SCTP_TRANSPORT_PF: 829 transport->state = SCTP_PF; 830 if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE) 831 ulp_notify = false; 832 else 833 spc_state = SCTP_ADDR_POTENTIALLY_FAILED; 834 break; 835 836 default: 837 return; 838 } 839 840 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 841 * to the user. 842 */ 843 if (ulp_notify) 844 sctp_ulpevent_nofity_peer_addr_change(transport, 845 spc_state, error); 846 847 /* Select new active and retran paths. */ 848 sctp_select_active_and_retran_path(asoc); 849 } 850 851 /* Hold a reference to an association. */ 852 void sctp_association_hold(struct sctp_association *asoc) 853 { 854 refcount_inc(&asoc->base.refcnt); 855 } 856 857 /* Release a reference to an association and cleanup 858 * if there are no more references. 859 */ 860 void sctp_association_put(struct sctp_association *asoc) 861 { 862 if (refcount_dec_and_test(&asoc->base.refcnt)) 863 sctp_association_destroy(asoc); 864 } 865 866 /* Allocate the next TSN, Transmission Sequence Number, for the given 867 * association. 868 */ 869 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 870 { 871 /* From Section 1.6 Serial Number Arithmetic: 872 * Transmission Sequence Numbers wrap around when they reach 873 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 874 * after transmitting TSN = 2*32 - 1 is TSN = 0. 875 */ 876 __u32 retval = asoc->next_tsn; 877 asoc->next_tsn++; 878 asoc->unack_data++; 879 880 return retval; 881 } 882 883 /* Compare two addresses to see if they match. Wildcard addresses 884 * only match themselves. 885 */ 886 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 887 const union sctp_addr *ss2) 888 { 889 struct sctp_af *af; 890 891 af = sctp_get_af_specific(ss1->sa.sa_family); 892 if (unlikely(!af)) 893 return 0; 894 895 return af->cmp_addr(ss1, ss2); 896 } 897 898 /* Return an ecne chunk to get prepended to a packet. 899 * Note: We are sly and return a shared, prealloced chunk. FIXME: 900 * No we don't, but we could/should. 901 */ 902 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 903 { 904 if (!asoc->need_ecne) 905 return NULL; 906 907 /* Send ECNE if needed. 908 * Not being able to allocate a chunk here is not deadly. 909 */ 910 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 911 } 912 913 /* 914 * Find which transport this TSN was sent on. 915 */ 916 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 917 __u32 tsn) 918 { 919 struct sctp_transport *active; 920 struct sctp_transport *match; 921 struct sctp_transport *transport; 922 struct sctp_chunk *chunk; 923 __be32 key = htonl(tsn); 924 925 match = NULL; 926 927 /* 928 * FIXME: In general, find a more efficient data structure for 929 * searching. 930 */ 931 932 /* 933 * The general strategy is to search each transport's transmitted 934 * list. Return which transport this TSN lives on. 935 * 936 * Let's be hopeful and check the active_path first. 937 * Another optimization would be to know if there is only one 938 * outbound path and not have to look for the TSN at all. 939 * 940 */ 941 942 active = asoc->peer.active_path; 943 944 list_for_each_entry(chunk, &active->transmitted, 945 transmitted_list) { 946 947 if (key == chunk->subh.data_hdr->tsn) { 948 match = active; 949 goto out; 950 } 951 } 952 953 /* If not found, go search all the other transports. */ 954 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 955 transports) { 956 957 if (transport == active) 958 continue; 959 list_for_each_entry(chunk, &transport->transmitted, 960 transmitted_list) { 961 if (key == chunk->subh.data_hdr->tsn) { 962 match = transport; 963 goto out; 964 } 965 } 966 } 967 out: 968 return match; 969 } 970 971 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 972 static void sctp_assoc_bh_rcv(struct work_struct *work) 973 { 974 struct sctp_association *asoc = 975 container_of(work, struct sctp_association, 976 base.inqueue.immediate); 977 struct net *net = sock_net(asoc->base.sk); 978 union sctp_subtype subtype; 979 struct sctp_endpoint *ep; 980 struct sctp_chunk *chunk; 981 struct sctp_inq *inqueue; 982 int first_time = 1; /* is this the first time through the loop */ 983 int error = 0; 984 int state; 985 986 /* The association should be held so we should be safe. */ 987 ep = asoc->ep; 988 989 inqueue = &asoc->base.inqueue; 990 sctp_association_hold(asoc); 991 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 992 state = asoc->state; 993 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 994 995 /* If the first chunk in the packet is AUTH, do special 996 * processing specified in Section 6.3 of SCTP-AUTH spec 997 */ 998 if (first_time && subtype.chunk == SCTP_CID_AUTH) { 999 struct sctp_chunkhdr *next_hdr; 1000 1001 next_hdr = sctp_inq_peek(inqueue); 1002 if (!next_hdr) 1003 goto normal; 1004 1005 /* If the next chunk is COOKIE-ECHO, skip the AUTH 1006 * chunk while saving a pointer to it so we can do 1007 * Authentication later (during cookie-echo 1008 * processing). 1009 */ 1010 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) { 1011 chunk->auth_chunk = skb_clone(chunk->skb, 1012 GFP_ATOMIC); 1013 chunk->auth = 1; 1014 continue; 1015 } 1016 } 1017 1018 normal: 1019 /* SCTP-AUTH, Section 6.3: 1020 * The receiver has a list of chunk types which it expects 1021 * to be received only after an AUTH-chunk. This list has 1022 * been sent to the peer during the association setup. It 1023 * MUST silently discard these chunks if they are not placed 1024 * after an AUTH chunk in the packet. 1025 */ 1026 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1027 continue; 1028 1029 /* Remember where the last DATA chunk came from so we 1030 * know where to send the SACK. 1031 */ 1032 if (sctp_chunk_is_data(chunk)) 1033 asoc->peer.last_data_from = chunk->transport; 1034 else { 1035 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1036 asoc->stats.ictrlchunks++; 1037 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1038 asoc->stats.isacks++; 1039 } 1040 1041 if (chunk->transport) 1042 chunk->transport->last_time_heard = ktime_get(); 1043 1044 /* Run through the state machine. */ 1045 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1046 state, ep, asoc, chunk, GFP_ATOMIC); 1047 1048 /* Check to see if the association is freed in response to 1049 * the incoming chunk. If so, get out of the while loop. 1050 */ 1051 if (asoc->base.dead) 1052 break; 1053 1054 /* If there is an error on chunk, discard this packet. */ 1055 if (error && chunk) 1056 chunk->pdiscard = 1; 1057 1058 if (first_time) 1059 first_time = 0; 1060 } 1061 sctp_association_put(asoc); 1062 } 1063 1064 /* This routine moves an association from its old sk to a new sk. */ 1065 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1066 { 1067 struct sctp_sock *newsp = sctp_sk(newsk); 1068 struct sock *oldsk = assoc->base.sk; 1069 1070 /* Delete the association from the old endpoint's list of 1071 * associations. 1072 */ 1073 list_del_init(&assoc->asocs); 1074 1075 /* Decrement the backlog value for a TCP-style socket. */ 1076 if (sctp_style(oldsk, TCP)) 1077 sk_acceptq_removed(oldsk); 1078 1079 /* Release references to the old endpoint and the sock. */ 1080 sctp_endpoint_put(assoc->ep); 1081 sock_put(assoc->base.sk); 1082 1083 /* Get a reference to the new endpoint. */ 1084 assoc->ep = newsp->ep; 1085 sctp_endpoint_hold(assoc->ep); 1086 1087 /* Get a reference to the new sock. */ 1088 assoc->base.sk = newsk; 1089 sock_hold(assoc->base.sk); 1090 1091 /* Add the association to the new endpoint's list of associations. */ 1092 sctp_endpoint_add_asoc(newsp->ep, assoc); 1093 } 1094 1095 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1096 int sctp_assoc_update(struct sctp_association *asoc, 1097 struct sctp_association *new) 1098 { 1099 struct sctp_transport *trans; 1100 struct list_head *pos, *temp; 1101 1102 /* Copy in new parameters of peer. */ 1103 asoc->c = new->c; 1104 asoc->peer.rwnd = new->peer.rwnd; 1105 asoc->peer.sack_needed = new->peer.sack_needed; 1106 asoc->peer.auth_capable = new->peer.auth_capable; 1107 asoc->peer.i = new->peer.i; 1108 1109 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1110 asoc->peer.i.initial_tsn, GFP_ATOMIC)) 1111 return -ENOMEM; 1112 1113 /* Remove any peer addresses not present in the new association. */ 1114 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1115 trans = list_entry(pos, struct sctp_transport, transports); 1116 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1117 sctp_assoc_rm_peer(asoc, trans); 1118 continue; 1119 } 1120 1121 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1122 sctp_transport_reset(trans); 1123 } 1124 1125 /* If the case is A (association restart), use 1126 * initial_tsn as next_tsn. If the case is B, use 1127 * current next_tsn in case data sent to peer 1128 * has been discarded and needs retransmission. 1129 */ 1130 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1131 asoc->next_tsn = new->next_tsn; 1132 asoc->ctsn_ack_point = new->ctsn_ack_point; 1133 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1134 1135 /* Reinitialize SSN for both local streams 1136 * and peer's streams. 1137 */ 1138 sctp_stream_clear(&asoc->stream); 1139 1140 /* Flush the ULP reassembly and ordered queue. 1141 * Any data there will now be stale and will 1142 * cause problems. 1143 */ 1144 sctp_ulpq_flush(&asoc->ulpq); 1145 1146 /* reset the overall association error count so 1147 * that the restarted association doesn't get torn 1148 * down on the next retransmission timer. 1149 */ 1150 asoc->overall_error_count = 0; 1151 1152 } else { 1153 /* Add any peer addresses from the new association. */ 1154 list_for_each_entry(trans, &new->peer.transport_addr_list, 1155 transports) 1156 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) && 1157 !sctp_assoc_add_peer(asoc, &trans->ipaddr, 1158 GFP_ATOMIC, trans->state)) 1159 return -ENOMEM; 1160 1161 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1162 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1163 1164 if (sctp_state(asoc, COOKIE_WAIT)) 1165 sctp_stream_update(&asoc->stream, &new->stream); 1166 1167 /* get a new assoc id if we don't have one yet. */ 1168 if (sctp_assoc_set_id(asoc, GFP_ATOMIC)) 1169 return -ENOMEM; 1170 } 1171 1172 /* SCTP-AUTH: Save the peer parameters from the new associations 1173 * and also move the association shared keys over 1174 */ 1175 kfree(asoc->peer.peer_random); 1176 asoc->peer.peer_random = new->peer.peer_random; 1177 new->peer.peer_random = NULL; 1178 1179 kfree(asoc->peer.peer_chunks); 1180 asoc->peer.peer_chunks = new->peer.peer_chunks; 1181 new->peer.peer_chunks = NULL; 1182 1183 kfree(asoc->peer.peer_hmacs); 1184 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1185 new->peer.peer_hmacs = NULL; 1186 1187 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1188 } 1189 1190 /* Update the retran path for sending a retransmitted packet. 1191 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1192 * 1193 * When there is outbound data to send and the primary path 1194 * becomes inactive (e.g., due to failures), or where the 1195 * SCTP user explicitly requests to send data to an 1196 * inactive destination transport address, before reporting 1197 * an error to its ULP, the SCTP endpoint should try to send 1198 * the data to an alternate active destination transport 1199 * address if one exists. 1200 * 1201 * When retransmitting data that timed out, if the endpoint 1202 * is multihomed, it should consider each source-destination 1203 * address pair in its retransmission selection policy. 1204 * When retransmitting timed-out data, the endpoint should 1205 * attempt to pick the most divergent source-destination 1206 * pair from the original source-destination pair to which 1207 * the packet was transmitted. 1208 * 1209 * Note: Rules for picking the most divergent source-destination 1210 * pair are an implementation decision and are not specified 1211 * within this document. 1212 * 1213 * Our basic strategy is to round-robin transports in priorities 1214 * according to sctp_trans_score() e.g., if no such 1215 * transport with state SCTP_ACTIVE exists, round-robin through 1216 * SCTP_UNKNOWN, etc. You get the picture. 1217 */ 1218 static u8 sctp_trans_score(const struct sctp_transport *trans) 1219 { 1220 switch (trans->state) { 1221 case SCTP_ACTIVE: 1222 return 3; /* best case */ 1223 case SCTP_UNKNOWN: 1224 return 2; 1225 case SCTP_PF: 1226 return 1; 1227 default: /* case SCTP_INACTIVE */ 1228 return 0; /* worst case */ 1229 } 1230 } 1231 1232 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1233 struct sctp_transport *trans2) 1234 { 1235 if (trans1->error_count > trans2->error_count) { 1236 return trans2; 1237 } else if (trans1->error_count == trans2->error_count && 1238 ktime_after(trans2->last_time_heard, 1239 trans1->last_time_heard)) { 1240 return trans2; 1241 } else { 1242 return trans1; 1243 } 1244 } 1245 1246 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1247 struct sctp_transport *best) 1248 { 1249 u8 score_curr, score_best; 1250 1251 if (best == NULL || curr == best) 1252 return curr; 1253 1254 score_curr = sctp_trans_score(curr); 1255 score_best = sctp_trans_score(best); 1256 1257 /* First, try a score-based selection if both transport states 1258 * differ. If we're in a tie, lets try to make a more clever 1259 * decision here based on error counts and last time heard. 1260 */ 1261 if (score_curr > score_best) 1262 return curr; 1263 else if (score_curr == score_best) 1264 return sctp_trans_elect_tie(best, curr); 1265 else 1266 return best; 1267 } 1268 1269 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1270 { 1271 struct sctp_transport *trans = asoc->peer.retran_path; 1272 struct sctp_transport *trans_next = NULL; 1273 1274 /* We're done as we only have the one and only path. */ 1275 if (asoc->peer.transport_count == 1) 1276 return; 1277 /* If active_path and retran_path are the same and active, 1278 * then this is the only active path. Use it. 1279 */ 1280 if (asoc->peer.active_path == asoc->peer.retran_path && 1281 asoc->peer.active_path->state == SCTP_ACTIVE) 1282 return; 1283 1284 /* Iterate from retran_path's successor back to retran_path. */ 1285 for (trans = list_next_entry(trans, transports); 1; 1286 trans = list_next_entry(trans, transports)) { 1287 /* Manually skip the head element. */ 1288 if (&trans->transports == &asoc->peer.transport_addr_list) 1289 continue; 1290 if (trans->state == SCTP_UNCONFIRMED) 1291 continue; 1292 trans_next = sctp_trans_elect_best(trans, trans_next); 1293 /* Active is good enough for immediate return. */ 1294 if (trans_next->state == SCTP_ACTIVE) 1295 break; 1296 /* We've reached the end, time to update path. */ 1297 if (trans == asoc->peer.retran_path) 1298 break; 1299 } 1300 1301 asoc->peer.retran_path = trans_next; 1302 1303 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1304 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1305 } 1306 1307 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1308 { 1309 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1310 struct sctp_transport *trans_pf = NULL; 1311 1312 /* Look for the two most recently used active transports. */ 1313 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1314 transports) { 1315 /* Skip uninteresting transports. */ 1316 if (trans->state == SCTP_INACTIVE || 1317 trans->state == SCTP_UNCONFIRMED) 1318 continue; 1319 /* Keep track of the best PF transport from our 1320 * list in case we don't find an active one. 1321 */ 1322 if (trans->state == SCTP_PF) { 1323 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1324 continue; 1325 } 1326 /* For active transports, pick the most recent ones. */ 1327 if (trans_pri == NULL || 1328 ktime_after(trans->last_time_heard, 1329 trans_pri->last_time_heard)) { 1330 trans_sec = trans_pri; 1331 trans_pri = trans; 1332 } else if (trans_sec == NULL || 1333 ktime_after(trans->last_time_heard, 1334 trans_sec->last_time_heard)) { 1335 trans_sec = trans; 1336 } 1337 } 1338 1339 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1340 * 1341 * By default, an endpoint should always transmit to the primary 1342 * path, unless the SCTP user explicitly specifies the 1343 * destination transport address (and possibly source transport 1344 * address) to use. [If the primary is active but not most recent, 1345 * bump the most recently used transport.] 1346 */ 1347 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1348 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1349 asoc->peer.primary_path != trans_pri) { 1350 trans_sec = trans_pri; 1351 trans_pri = asoc->peer.primary_path; 1352 } 1353 1354 /* We did not find anything useful for a possible retransmission 1355 * path; either primary path that we found is the the same as 1356 * the current one, or we didn't generally find an active one. 1357 */ 1358 if (trans_sec == NULL) 1359 trans_sec = trans_pri; 1360 1361 /* If we failed to find a usable transport, just camp on the 1362 * active or pick a PF iff it's the better choice. 1363 */ 1364 if (trans_pri == NULL) { 1365 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1366 trans_sec = trans_pri; 1367 } 1368 1369 /* Set the active and retran transports. */ 1370 asoc->peer.active_path = trans_pri; 1371 asoc->peer.retran_path = trans_sec; 1372 } 1373 1374 struct sctp_transport * 1375 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1376 struct sctp_transport *last_sent_to) 1377 { 1378 /* If this is the first time packet is sent, use the active path, 1379 * else use the retran path. If the last packet was sent over the 1380 * retran path, update the retran path and use it. 1381 */ 1382 if (last_sent_to == NULL) { 1383 return asoc->peer.active_path; 1384 } else { 1385 if (last_sent_to == asoc->peer.retran_path) 1386 sctp_assoc_update_retran_path(asoc); 1387 1388 return asoc->peer.retran_path; 1389 } 1390 } 1391 1392 void sctp_assoc_update_frag_point(struct sctp_association *asoc) 1393 { 1394 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu, 1395 sctp_datachk_len(&asoc->stream)); 1396 1397 if (asoc->user_frag) 1398 frag = min_t(int, frag, asoc->user_frag); 1399 1400 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN - 1401 sctp_datachk_len(&asoc->stream)); 1402 1403 asoc->frag_point = SCTP_TRUNC4(frag); 1404 } 1405 1406 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu) 1407 { 1408 if (asoc->pathmtu != pmtu) { 1409 asoc->pathmtu = pmtu; 1410 sctp_assoc_update_frag_point(asoc); 1411 } 1412 1413 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1414 asoc->pathmtu, asoc->frag_point); 1415 } 1416 1417 /* Update the association's pmtu and frag_point by going through all the 1418 * transports. This routine is called when a transport's PMTU has changed. 1419 */ 1420 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1421 { 1422 struct sctp_transport *t; 1423 __u32 pmtu = 0; 1424 1425 if (!asoc) 1426 return; 1427 1428 /* Get the lowest pmtu of all the transports. */ 1429 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 1430 if (t->pmtu_pending && t->dst) { 1431 sctp_transport_update_pmtu(t, 1432 atomic_read(&t->mtu_info)); 1433 t->pmtu_pending = 0; 1434 } 1435 if (!pmtu || (t->pathmtu < pmtu)) 1436 pmtu = t->pathmtu; 1437 } 1438 1439 sctp_assoc_set_pmtu(asoc, pmtu); 1440 } 1441 1442 /* Should we send a SACK to update our peer? */ 1443 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1444 { 1445 struct net *net = sock_net(asoc->base.sk); 1446 switch (asoc->state) { 1447 case SCTP_STATE_ESTABLISHED: 1448 case SCTP_STATE_SHUTDOWN_PENDING: 1449 case SCTP_STATE_SHUTDOWN_RECEIVED: 1450 case SCTP_STATE_SHUTDOWN_SENT: 1451 if ((asoc->rwnd > asoc->a_rwnd) && 1452 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1453 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1454 asoc->pathmtu))) 1455 return true; 1456 break; 1457 default: 1458 break; 1459 } 1460 return false; 1461 } 1462 1463 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1464 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1465 { 1466 struct sctp_chunk *sack; 1467 struct timer_list *timer; 1468 1469 if (asoc->rwnd_over) { 1470 if (asoc->rwnd_over >= len) { 1471 asoc->rwnd_over -= len; 1472 } else { 1473 asoc->rwnd += (len - asoc->rwnd_over); 1474 asoc->rwnd_over = 0; 1475 } 1476 } else { 1477 asoc->rwnd += len; 1478 } 1479 1480 /* If we had window pressure, start recovering it 1481 * once our rwnd had reached the accumulated pressure 1482 * threshold. The idea is to recover slowly, but up 1483 * to the initial advertised window. 1484 */ 1485 if (asoc->rwnd_press) { 1486 int change = min(asoc->pathmtu, asoc->rwnd_press); 1487 asoc->rwnd += change; 1488 asoc->rwnd_press -= change; 1489 } 1490 1491 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1492 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1493 asoc->a_rwnd); 1494 1495 /* Send a window update SACK if the rwnd has increased by at least the 1496 * minimum of the association's PMTU and half of the receive buffer. 1497 * The algorithm used is similar to the one described in 1498 * Section 4.2.3.3 of RFC 1122. 1499 */ 1500 if (sctp_peer_needs_update(asoc)) { 1501 asoc->a_rwnd = asoc->rwnd; 1502 1503 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1504 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1505 asoc->a_rwnd); 1506 1507 sack = sctp_make_sack(asoc); 1508 if (!sack) 1509 return; 1510 1511 asoc->peer.sack_needed = 0; 1512 1513 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1514 1515 /* Stop the SACK timer. */ 1516 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1517 if (del_timer(timer)) 1518 sctp_association_put(asoc); 1519 } 1520 } 1521 1522 /* Decrease asoc's rwnd by len. */ 1523 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1524 { 1525 int rx_count; 1526 int over = 0; 1527 1528 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1529 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1530 "asoc->rwnd_over:%u!\n", __func__, asoc, 1531 asoc->rwnd, asoc->rwnd_over); 1532 1533 if (asoc->ep->rcvbuf_policy) 1534 rx_count = atomic_read(&asoc->rmem_alloc); 1535 else 1536 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1537 1538 /* If we've reached or overflowed our receive buffer, announce 1539 * a 0 rwnd if rwnd would still be positive. Store the 1540 * the potential pressure overflow so that the window can be restored 1541 * back to original value. 1542 */ 1543 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1544 over = 1; 1545 1546 if (asoc->rwnd >= len) { 1547 asoc->rwnd -= len; 1548 if (over) { 1549 asoc->rwnd_press += asoc->rwnd; 1550 asoc->rwnd = 0; 1551 } 1552 } else { 1553 asoc->rwnd_over += len - asoc->rwnd; 1554 asoc->rwnd = 0; 1555 } 1556 1557 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1558 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1559 asoc->rwnd_press); 1560 } 1561 1562 /* Build the bind address list for the association based on info from the 1563 * local endpoint and the remote peer. 1564 */ 1565 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1566 enum sctp_scope scope, gfp_t gfp) 1567 { 1568 int flags; 1569 1570 /* Use scoping rules to determine the subset of addresses from 1571 * the endpoint. 1572 */ 1573 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1574 if (asoc->peer.ipv4_address) 1575 flags |= SCTP_ADDR4_PEERSUPP; 1576 if (asoc->peer.ipv6_address) 1577 flags |= SCTP_ADDR6_PEERSUPP; 1578 1579 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1580 &asoc->base.bind_addr, 1581 &asoc->ep->base.bind_addr, 1582 scope, gfp, flags); 1583 } 1584 1585 /* Build the association's bind address list from the cookie. */ 1586 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1587 struct sctp_cookie *cookie, 1588 gfp_t gfp) 1589 { 1590 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1591 int var_size3 = cookie->raw_addr_list_len; 1592 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1593 1594 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1595 asoc->ep->base.bind_addr.port, gfp); 1596 } 1597 1598 /* Lookup laddr in the bind address list of an association. */ 1599 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1600 const union sctp_addr *laddr) 1601 { 1602 int found = 0; 1603 1604 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1605 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1606 sctp_sk(asoc->base.sk))) 1607 found = 1; 1608 1609 return found; 1610 } 1611 1612 /* Set an association id for a given association */ 1613 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1614 { 1615 bool preload = gfpflags_allow_blocking(gfp); 1616 int ret; 1617 1618 /* If the id is already assigned, keep it. */ 1619 if (asoc->assoc_id) 1620 return 0; 1621 1622 if (preload) 1623 idr_preload(gfp); 1624 spin_lock_bh(&sctp_assocs_id_lock); 1625 /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and 1626 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC. 1627 */ 1628 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0, 1629 GFP_NOWAIT); 1630 spin_unlock_bh(&sctp_assocs_id_lock); 1631 if (preload) 1632 idr_preload_end(); 1633 if (ret < 0) 1634 return ret; 1635 1636 asoc->assoc_id = (sctp_assoc_t)ret; 1637 return 0; 1638 } 1639 1640 /* Free the ASCONF queue */ 1641 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1642 { 1643 struct sctp_chunk *asconf; 1644 struct sctp_chunk *tmp; 1645 1646 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1647 list_del_init(&asconf->list); 1648 sctp_chunk_free(asconf); 1649 } 1650 } 1651 1652 /* Free asconf_ack cache */ 1653 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1654 { 1655 struct sctp_chunk *ack; 1656 struct sctp_chunk *tmp; 1657 1658 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1659 transmitted_list) { 1660 list_del_init(&ack->transmitted_list); 1661 sctp_chunk_free(ack); 1662 } 1663 } 1664 1665 /* Clean up the ASCONF_ACK queue */ 1666 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1667 { 1668 struct sctp_chunk *ack; 1669 struct sctp_chunk *tmp; 1670 1671 /* We can remove all the entries from the queue up to 1672 * the "Peer-Sequence-Number". 1673 */ 1674 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1675 transmitted_list) { 1676 if (ack->subh.addip_hdr->serial == 1677 htonl(asoc->peer.addip_serial)) 1678 break; 1679 1680 list_del_init(&ack->transmitted_list); 1681 sctp_chunk_free(ack); 1682 } 1683 } 1684 1685 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1686 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1687 const struct sctp_association *asoc, 1688 __be32 serial) 1689 { 1690 struct sctp_chunk *ack; 1691 1692 /* Walk through the list of cached ASCONF-ACKs and find the 1693 * ack chunk whose serial number matches that of the request. 1694 */ 1695 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1696 if (sctp_chunk_pending(ack)) 1697 continue; 1698 if (ack->subh.addip_hdr->serial == serial) { 1699 sctp_chunk_hold(ack); 1700 return ack; 1701 } 1702 } 1703 1704 return NULL; 1705 } 1706 1707 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1708 { 1709 /* Free any cached ASCONF_ACK chunk. */ 1710 sctp_assoc_free_asconf_acks(asoc); 1711 1712 /* Free the ASCONF queue. */ 1713 sctp_assoc_free_asconf_queue(asoc); 1714 1715 /* Free any cached ASCONF chunk. */ 1716 if (asoc->addip_last_asconf) 1717 sctp_chunk_free(asoc->addip_last_asconf); 1718 } 1719