xref: /openbmc/linux/net/sctp/associola.c (revision efe4a1ac)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@us.ibm.com>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang             <hui.huang@nokia.com>
38  *    Sridhar Samudrala	    <sri@us.ibm.com>
39  *    Daisy Chang	    <daisyc@us.ibm.com>
40  *    Ryan Layer	    <rmlayer@us.ibm.com>
41  *    Kevin Gao             <kevin.gao@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50 
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56 
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 					  const struct sctp_endpoint *ep,
68 					  const struct sock *sk,
69 					  sctp_scope_t scope,
70 					  gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	sctp_paramhdr_t *p;
75 	int i;
76 
77 	/* Retrieve the SCTP per socket area.  */
78 	sp = sctp_sk((struct sock *)sk);
79 
80 	/* Discarding const is appropriate here.  */
81 	asoc->ep = (struct sctp_endpoint *)ep;
82 	asoc->base.sk = (struct sock *)sk;
83 
84 	sctp_endpoint_hold(asoc->ep);
85 	sock_hold(asoc->base.sk);
86 
87 	/* Initialize the common base substructure.  */
88 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
89 
90 	/* Initialize the object handling fields.  */
91 	atomic_set(&asoc->base.refcnt, 1);
92 
93 	/* Initialize the bind addr area.  */
94 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
95 
96 	asoc->state = SCTP_STATE_CLOSED;
97 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 	asoc->user_frag = sp->user_frag;
99 
100 	/* Set the association max_retrans and RTO values from the
101 	 * socket values.
102 	 */
103 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 	asoc->pf_retrans  = net->sctp.pf_retrans;
105 
106 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
109 
110 	/* Initialize the association's heartbeat interval based on the
111 	 * sock configured value.
112 	 */
113 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
114 
115 	/* Initialize path max retrans value. */
116 	asoc->pathmaxrxt = sp->pathmaxrxt;
117 
118 	/* Initialize default path MTU. */
119 	asoc->pathmtu = sp->pathmtu;
120 
121 	/* Set association default SACK delay */
122 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
123 	asoc->sackfreq = sp->sackfreq;
124 
125 	/* Set the association default flags controlling
126 	 * Heartbeat, SACK delay, and Path MTU Discovery.
127 	 */
128 	asoc->param_flags = sp->param_flags;
129 
130 	/* Initialize the maximum number of new data packets that can be sent
131 	 * in a burst.
132 	 */
133 	asoc->max_burst = sp->max_burst;
134 
135 	/* initialize association timers */
136 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
137 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
138 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
139 
140 	/* sctpimpguide Section 2.12.2
141 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
142 	 * recommended value of 5 times 'RTO.Max'.
143 	 */
144 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
145 		= 5 * asoc->rto_max;
146 
147 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
148 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
149 
150 	/* Initializes the timers */
151 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
152 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
153 				(unsigned long)asoc);
154 
155 	/* Pull default initialization values from the sock options.
156 	 * Note: This assumes that the values have already been
157 	 * validated in the sock.
158 	 */
159 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
160 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
161 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
162 
163 	asoc->max_init_timeo =
164 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
165 
166 	/* Set the local window size for receive.
167 	 * This is also the rcvbuf space per association.
168 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
169 	 * 1500 bytes in one SCTP packet.
170 	 */
171 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
172 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
173 	else
174 		asoc->rwnd = sk->sk_rcvbuf/2;
175 
176 	asoc->a_rwnd = asoc->rwnd;
177 
178 	/* Use my own max window until I learn something better.  */
179 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
180 
181 	/* Initialize the receive memory counter */
182 	atomic_set(&asoc->rmem_alloc, 0);
183 
184 	init_waitqueue_head(&asoc->wait);
185 
186 	asoc->c.my_vtag = sctp_generate_tag(ep);
187 	asoc->c.my_port = ep->base.bind_addr.port;
188 
189 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
190 
191 	asoc->next_tsn = asoc->c.initial_tsn;
192 
193 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
194 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
195 	asoc->highest_sacked = asoc->ctsn_ack_point;
196 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
197 
198 	/* ADDIP Section 4.1 Asconf Chunk Procedures
199 	 *
200 	 * When an endpoint has an ASCONF signaled change to be sent to the
201 	 * remote endpoint it should do the following:
202 	 * ...
203 	 * A2) a serial number should be assigned to the chunk. The serial
204 	 * number SHOULD be a monotonically increasing number. The serial
205 	 * numbers SHOULD be initialized at the start of the
206 	 * association to the same value as the initial TSN.
207 	 */
208 	asoc->addip_serial = asoc->c.initial_tsn;
209 	asoc->strreset_outseq = asoc->c.initial_tsn;
210 
211 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
213 
214 	/* Make an empty list of remote transport addresses.  */
215 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216 
217 	/* RFC 2960 5.1 Normal Establishment of an Association
218 	 *
219 	 * After the reception of the first data chunk in an
220 	 * association the endpoint must immediately respond with a
221 	 * sack to acknowledge the data chunk.  Subsequent
222 	 * acknowledgements should be done as described in Section
223 	 * 6.2.
224 	 *
225 	 * [We implement this by telling a new association that it
226 	 * already received one packet.]
227 	 */
228 	asoc->peer.sack_needed = 1;
229 	asoc->peer.sack_generation = 1;
230 
231 	/* Assume that the peer will tell us if he recognizes ASCONF
232 	 * as part of INIT exchange.
233 	 * The sctp_addip_noauth option is there for backward compatibility
234 	 * and will revert old behavior.
235 	 */
236 	if (net->sctp.addip_noauth)
237 		asoc->peer.asconf_capable = 1;
238 
239 	/* Create an input queue.  */
240 	sctp_inq_init(&asoc->base.inqueue);
241 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242 
243 	/* Create an output queue.  */
244 	sctp_outq_init(asoc, &asoc->outqueue);
245 
246 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 		goto fail_init;
248 
249 	if (sctp_stream_new(asoc, gfp))
250 		goto fail_init;
251 
252 	/* Assume that peer would support both address types unless we are
253 	 * told otherwise.
254 	 */
255 	asoc->peer.ipv4_address = 1;
256 	if (asoc->base.sk->sk_family == PF_INET6)
257 		asoc->peer.ipv6_address = 1;
258 	INIT_LIST_HEAD(&asoc->asocs);
259 
260 	asoc->default_stream = sp->default_stream;
261 	asoc->default_ppid = sp->default_ppid;
262 	asoc->default_flags = sp->default_flags;
263 	asoc->default_context = sp->default_context;
264 	asoc->default_timetolive = sp->default_timetolive;
265 	asoc->default_rcv_context = sp->default_rcv_context;
266 
267 	/* AUTH related initializations */
268 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
269 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
270 		goto stream_free;
271 
272 	asoc->active_key_id = ep->active_key_id;
273 	asoc->prsctp_enable = ep->prsctp_enable;
274 	asoc->reconf_enable = ep->reconf_enable;
275 	asoc->strreset_enable = ep->strreset_enable;
276 
277 	/* Save the hmacs and chunks list into this association */
278 	if (ep->auth_hmacs_list)
279 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
280 			ntohs(ep->auth_hmacs_list->param_hdr.length));
281 	if (ep->auth_chunk_list)
282 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
283 			ntohs(ep->auth_chunk_list->param_hdr.length));
284 
285 	/* Get the AUTH random number for this association */
286 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
287 	p->type = SCTP_PARAM_RANDOM;
288 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
289 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
290 
291 	return asoc;
292 
293 stream_free:
294 	sctp_stream_free(asoc->stream);
295 fail_init:
296 	sock_put(asoc->base.sk);
297 	sctp_endpoint_put(asoc->ep);
298 	return NULL;
299 }
300 
301 /* Allocate and initialize a new association */
302 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
303 					 const struct sock *sk,
304 					 sctp_scope_t scope,
305 					 gfp_t gfp)
306 {
307 	struct sctp_association *asoc;
308 
309 	asoc = kzalloc(sizeof(*asoc), gfp);
310 	if (!asoc)
311 		goto fail;
312 
313 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
314 		goto fail_init;
315 
316 	SCTP_DBG_OBJCNT_INC(assoc);
317 
318 	pr_debug("Created asoc %p\n", asoc);
319 
320 	return asoc;
321 
322 fail_init:
323 	kfree(asoc);
324 fail:
325 	return NULL;
326 }
327 
328 /* Free this association if possible.  There may still be users, so
329  * the actual deallocation may be delayed.
330  */
331 void sctp_association_free(struct sctp_association *asoc)
332 {
333 	struct sock *sk = asoc->base.sk;
334 	struct sctp_transport *transport;
335 	struct list_head *pos, *temp;
336 	int i;
337 
338 	/* Only real associations count against the endpoint, so
339 	 * don't bother for if this is a temporary association.
340 	 */
341 	if (!list_empty(&asoc->asocs)) {
342 		list_del(&asoc->asocs);
343 
344 		/* Decrement the backlog value for a TCP-style listening
345 		 * socket.
346 		 */
347 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
348 			sk->sk_ack_backlog--;
349 	}
350 
351 	/* Mark as dead, so other users can know this structure is
352 	 * going away.
353 	 */
354 	asoc->base.dead = true;
355 
356 	/* Dispose of any data lying around in the outqueue. */
357 	sctp_outq_free(&asoc->outqueue);
358 
359 	/* Dispose of any pending messages for the upper layer. */
360 	sctp_ulpq_free(&asoc->ulpq);
361 
362 	/* Dispose of any pending chunks on the inqueue. */
363 	sctp_inq_free(&asoc->base.inqueue);
364 
365 	sctp_tsnmap_free(&asoc->peer.tsn_map);
366 
367 	/* Free stream information. */
368 	sctp_stream_free(asoc->stream);
369 
370 	if (asoc->strreset_chunk)
371 		sctp_chunk_free(asoc->strreset_chunk);
372 
373 	/* Clean up the bound address list. */
374 	sctp_bind_addr_free(&asoc->base.bind_addr);
375 
376 	/* Do we need to go through all of our timers and
377 	 * delete them?   To be safe we will try to delete all, but we
378 	 * should be able to go through and make a guess based
379 	 * on our state.
380 	 */
381 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
382 		if (del_timer(&asoc->timers[i]))
383 			sctp_association_put(asoc);
384 	}
385 
386 	/* Free peer's cached cookie. */
387 	kfree(asoc->peer.cookie);
388 	kfree(asoc->peer.peer_random);
389 	kfree(asoc->peer.peer_chunks);
390 	kfree(asoc->peer.peer_hmacs);
391 
392 	/* Release the transport structures. */
393 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
394 		transport = list_entry(pos, struct sctp_transport, transports);
395 		list_del_rcu(pos);
396 		sctp_unhash_transport(transport);
397 		sctp_transport_free(transport);
398 	}
399 
400 	asoc->peer.transport_count = 0;
401 
402 	sctp_asconf_queue_teardown(asoc);
403 
404 	/* Free pending address space being deleted */
405 	kfree(asoc->asconf_addr_del_pending);
406 
407 	/* AUTH - Free the endpoint shared keys */
408 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
409 
410 	/* AUTH - Free the association shared key */
411 	sctp_auth_key_put(asoc->asoc_shared_key);
412 
413 	sctp_association_put(asoc);
414 }
415 
416 /* Cleanup and free up an association. */
417 static void sctp_association_destroy(struct sctp_association *asoc)
418 {
419 	if (unlikely(!asoc->base.dead)) {
420 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
421 		return;
422 	}
423 
424 	sctp_endpoint_put(asoc->ep);
425 	sock_put(asoc->base.sk);
426 
427 	if (asoc->assoc_id != 0) {
428 		spin_lock_bh(&sctp_assocs_id_lock);
429 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
430 		spin_unlock_bh(&sctp_assocs_id_lock);
431 	}
432 
433 	WARN_ON(atomic_read(&asoc->rmem_alloc));
434 
435 	kfree(asoc);
436 	SCTP_DBG_OBJCNT_DEC(assoc);
437 }
438 
439 /* Change the primary destination address for the peer. */
440 void sctp_assoc_set_primary(struct sctp_association *asoc,
441 			    struct sctp_transport *transport)
442 {
443 	int changeover = 0;
444 
445 	/* it's a changeover only if we already have a primary path
446 	 * that we are changing
447 	 */
448 	if (asoc->peer.primary_path != NULL &&
449 	    asoc->peer.primary_path != transport)
450 		changeover = 1 ;
451 
452 	asoc->peer.primary_path = transport;
453 
454 	/* Set a default msg_name for events. */
455 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
456 	       sizeof(union sctp_addr));
457 
458 	/* If the primary path is changing, assume that the
459 	 * user wants to use this new path.
460 	 */
461 	if ((transport->state == SCTP_ACTIVE) ||
462 	    (transport->state == SCTP_UNKNOWN))
463 		asoc->peer.active_path = transport;
464 
465 	/*
466 	 * SFR-CACC algorithm:
467 	 * Upon the receipt of a request to change the primary
468 	 * destination address, on the data structure for the new
469 	 * primary destination, the sender MUST do the following:
470 	 *
471 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
472 	 * to this destination address earlier. The sender MUST set
473 	 * CYCLING_CHANGEOVER to indicate that this switch is a
474 	 * double switch to the same destination address.
475 	 *
476 	 * Really, only bother is we have data queued or outstanding on
477 	 * the association.
478 	 */
479 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
480 		return;
481 
482 	if (transport->cacc.changeover_active)
483 		transport->cacc.cycling_changeover = changeover;
484 
485 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
486 	 * a changeover has occurred.
487 	 */
488 	transport->cacc.changeover_active = changeover;
489 
490 	/* 3) The sender MUST store the next TSN to be sent in
491 	 * next_tsn_at_change.
492 	 */
493 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
494 }
495 
496 /* Remove a transport from an association.  */
497 void sctp_assoc_rm_peer(struct sctp_association *asoc,
498 			struct sctp_transport *peer)
499 {
500 	struct list_head	*pos;
501 	struct sctp_transport	*transport;
502 
503 	pr_debug("%s: association:%p addr:%pISpc\n",
504 		 __func__, asoc, &peer->ipaddr.sa);
505 
506 	/* If we are to remove the current retran_path, update it
507 	 * to the next peer before removing this peer from the list.
508 	 */
509 	if (asoc->peer.retran_path == peer)
510 		sctp_assoc_update_retran_path(asoc);
511 
512 	/* Remove this peer from the list. */
513 	list_del_rcu(&peer->transports);
514 	/* Remove this peer from the transport hashtable */
515 	sctp_unhash_transport(peer);
516 
517 	/* Get the first transport of asoc. */
518 	pos = asoc->peer.transport_addr_list.next;
519 	transport = list_entry(pos, struct sctp_transport, transports);
520 
521 	/* Update any entries that match the peer to be deleted. */
522 	if (asoc->peer.primary_path == peer)
523 		sctp_assoc_set_primary(asoc, transport);
524 	if (asoc->peer.active_path == peer)
525 		asoc->peer.active_path = transport;
526 	if (asoc->peer.retran_path == peer)
527 		asoc->peer.retran_path = transport;
528 	if (asoc->peer.last_data_from == peer)
529 		asoc->peer.last_data_from = transport;
530 
531 	if (asoc->strreset_chunk &&
532 	    asoc->strreset_chunk->transport == peer) {
533 		asoc->strreset_chunk->transport = transport;
534 		sctp_transport_reset_reconf_timer(transport);
535 	}
536 
537 	/* If we remove the transport an INIT was last sent to, set it to
538 	 * NULL. Combined with the update of the retran path above, this
539 	 * will cause the next INIT to be sent to the next available
540 	 * transport, maintaining the cycle.
541 	 */
542 	if (asoc->init_last_sent_to == peer)
543 		asoc->init_last_sent_to = NULL;
544 
545 	/* If we remove the transport an SHUTDOWN was last sent to, set it
546 	 * to NULL. Combined with the update of the retran path above, this
547 	 * will cause the next SHUTDOWN to be sent to the next available
548 	 * transport, maintaining the cycle.
549 	 */
550 	if (asoc->shutdown_last_sent_to == peer)
551 		asoc->shutdown_last_sent_to = NULL;
552 
553 	/* If we remove the transport an ASCONF was last sent to, set it to
554 	 * NULL.
555 	 */
556 	if (asoc->addip_last_asconf &&
557 	    asoc->addip_last_asconf->transport == peer)
558 		asoc->addip_last_asconf->transport = NULL;
559 
560 	/* If we have something on the transmitted list, we have to
561 	 * save it off.  The best place is the active path.
562 	 */
563 	if (!list_empty(&peer->transmitted)) {
564 		struct sctp_transport *active = asoc->peer.active_path;
565 		struct sctp_chunk *ch;
566 
567 		/* Reset the transport of each chunk on this list */
568 		list_for_each_entry(ch, &peer->transmitted,
569 					transmitted_list) {
570 			ch->transport = NULL;
571 			ch->rtt_in_progress = 0;
572 		}
573 
574 		list_splice_tail_init(&peer->transmitted,
575 					&active->transmitted);
576 
577 		/* Start a T3 timer here in case it wasn't running so
578 		 * that these migrated packets have a chance to get
579 		 * retransmitted.
580 		 */
581 		if (!timer_pending(&active->T3_rtx_timer))
582 			if (!mod_timer(&active->T3_rtx_timer,
583 					jiffies + active->rto))
584 				sctp_transport_hold(active);
585 	}
586 
587 	asoc->peer.transport_count--;
588 
589 	sctp_transport_free(peer);
590 }
591 
592 /* Add a transport address to an association.  */
593 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
594 					   const union sctp_addr *addr,
595 					   const gfp_t gfp,
596 					   const int peer_state)
597 {
598 	struct net *net = sock_net(asoc->base.sk);
599 	struct sctp_transport *peer;
600 	struct sctp_sock *sp;
601 	unsigned short port;
602 
603 	sp = sctp_sk(asoc->base.sk);
604 
605 	/* AF_INET and AF_INET6 share common port field. */
606 	port = ntohs(addr->v4.sin_port);
607 
608 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
609 		 asoc, &addr->sa, peer_state);
610 
611 	/* Set the port if it has not been set yet.  */
612 	if (0 == asoc->peer.port)
613 		asoc->peer.port = port;
614 
615 	/* Check to see if this is a duplicate. */
616 	peer = sctp_assoc_lookup_paddr(asoc, addr);
617 	if (peer) {
618 		/* An UNKNOWN state is only set on transports added by
619 		 * user in sctp_connectx() call.  Such transports should be
620 		 * considered CONFIRMED per RFC 4960, Section 5.4.
621 		 */
622 		if (peer->state == SCTP_UNKNOWN) {
623 			peer->state = SCTP_ACTIVE;
624 		}
625 		return peer;
626 	}
627 
628 	peer = sctp_transport_new(net, addr, gfp);
629 	if (!peer)
630 		return NULL;
631 
632 	sctp_transport_set_owner(peer, asoc);
633 
634 	/* Initialize the peer's heartbeat interval based on the
635 	 * association configured value.
636 	 */
637 	peer->hbinterval = asoc->hbinterval;
638 
639 	/* Set the path max_retrans.  */
640 	peer->pathmaxrxt = asoc->pathmaxrxt;
641 
642 	/* And the partial failure retrans threshold */
643 	peer->pf_retrans = asoc->pf_retrans;
644 
645 	/* Initialize the peer's SACK delay timeout based on the
646 	 * association configured value.
647 	 */
648 	peer->sackdelay = asoc->sackdelay;
649 	peer->sackfreq = asoc->sackfreq;
650 
651 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
652 	 * based on association setting.
653 	 */
654 	peer->param_flags = asoc->param_flags;
655 
656 	sctp_transport_route(peer, NULL, sp);
657 
658 	/* Initialize the pmtu of the transport. */
659 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
660 		if (asoc->pathmtu)
661 			peer->pathmtu = asoc->pathmtu;
662 		else
663 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
664 	}
665 
666 	/* If this is the first transport addr on this association,
667 	 * initialize the association PMTU to the peer's PMTU.
668 	 * If not and the current association PMTU is higher than the new
669 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
670 	 */
671 	if (asoc->pathmtu)
672 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
673 	else
674 		asoc->pathmtu = peer->pathmtu;
675 
676 	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
677 		 asoc->pathmtu);
678 
679 	peer->pmtu_pending = 0;
680 
681 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
682 
683 	/* The asoc->peer.port might not be meaningful yet, but
684 	 * initialize the packet structure anyway.
685 	 */
686 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
687 			 asoc->peer.port);
688 
689 	/* 7.2.1 Slow-Start
690 	 *
691 	 * o The initial cwnd before DATA transmission or after a sufficiently
692 	 *   long idle period MUST be set to
693 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
694 	 *
695 	 * o The initial value of ssthresh MAY be arbitrarily high
696 	 *   (for example, implementations MAY use the size of the
697 	 *   receiver advertised window).
698 	 */
699 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
700 
701 	/* At this point, we may not have the receiver's advertised window,
702 	 * so initialize ssthresh to the default value and it will be set
703 	 * later when we process the INIT.
704 	 */
705 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
706 
707 	peer->partial_bytes_acked = 0;
708 	peer->flight_size = 0;
709 	peer->burst_limited = 0;
710 
711 	/* Set the transport's RTO.initial value */
712 	peer->rto = asoc->rto_initial;
713 	sctp_max_rto(asoc, peer);
714 
715 	/* Set the peer's active state. */
716 	peer->state = peer_state;
717 
718 	/* Add this peer into the transport hashtable */
719 	if (sctp_hash_transport(peer)) {
720 		sctp_transport_free(peer);
721 		return NULL;
722 	}
723 
724 	/* Attach the remote transport to our asoc.  */
725 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
726 	asoc->peer.transport_count++;
727 
728 	/* If we do not yet have a primary path, set one.  */
729 	if (!asoc->peer.primary_path) {
730 		sctp_assoc_set_primary(asoc, peer);
731 		asoc->peer.retran_path = peer;
732 	}
733 
734 	if (asoc->peer.active_path == asoc->peer.retran_path &&
735 	    peer->state != SCTP_UNCONFIRMED) {
736 		asoc->peer.retran_path = peer;
737 	}
738 
739 	return peer;
740 }
741 
742 /* Delete a transport address from an association.  */
743 void sctp_assoc_del_peer(struct sctp_association *asoc,
744 			 const union sctp_addr *addr)
745 {
746 	struct list_head	*pos;
747 	struct list_head	*temp;
748 	struct sctp_transport	*transport;
749 
750 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
751 		transport = list_entry(pos, struct sctp_transport, transports);
752 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
753 			/* Do book keeping for removing the peer and free it. */
754 			sctp_assoc_rm_peer(asoc, transport);
755 			break;
756 		}
757 	}
758 }
759 
760 /* Lookup a transport by address. */
761 struct sctp_transport *sctp_assoc_lookup_paddr(
762 					const struct sctp_association *asoc,
763 					const union sctp_addr *address)
764 {
765 	struct sctp_transport *t;
766 
767 	/* Cycle through all transports searching for a peer address. */
768 
769 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
770 			transports) {
771 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
772 			return t;
773 	}
774 
775 	return NULL;
776 }
777 
778 /* Remove all transports except a give one */
779 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
780 				     struct sctp_transport *primary)
781 {
782 	struct sctp_transport	*temp;
783 	struct sctp_transport	*t;
784 
785 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
786 				 transports) {
787 		/* if the current transport is not the primary one, delete it */
788 		if (t != primary)
789 			sctp_assoc_rm_peer(asoc, t);
790 	}
791 }
792 
793 /* Engage in transport control operations.
794  * Mark the transport up or down and send a notification to the user.
795  * Select and update the new active and retran paths.
796  */
797 void sctp_assoc_control_transport(struct sctp_association *asoc,
798 				  struct sctp_transport *transport,
799 				  sctp_transport_cmd_t command,
800 				  sctp_sn_error_t error)
801 {
802 	struct sctp_ulpevent *event;
803 	struct sockaddr_storage addr;
804 	int spc_state = 0;
805 	bool ulp_notify = true;
806 
807 	/* Record the transition on the transport.  */
808 	switch (command) {
809 	case SCTP_TRANSPORT_UP:
810 		/* If we are moving from UNCONFIRMED state due
811 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
812 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
813 		 */
814 		if (SCTP_UNCONFIRMED == transport->state &&
815 		    SCTP_HEARTBEAT_SUCCESS == error)
816 			spc_state = SCTP_ADDR_CONFIRMED;
817 		else
818 			spc_state = SCTP_ADDR_AVAILABLE;
819 		/* Don't inform ULP about transition from PF to
820 		 * active state and set cwnd to 1 MTU, see SCTP
821 		 * Quick failover draft section 5.1, point 5
822 		 */
823 		if (transport->state == SCTP_PF) {
824 			ulp_notify = false;
825 			transport->cwnd = asoc->pathmtu;
826 		}
827 		transport->state = SCTP_ACTIVE;
828 		break;
829 
830 	case SCTP_TRANSPORT_DOWN:
831 		/* If the transport was never confirmed, do not transition it
832 		 * to inactive state.  Also, release the cached route since
833 		 * there may be a better route next time.
834 		 */
835 		if (transport->state != SCTP_UNCONFIRMED)
836 			transport->state = SCTP_INACTIVE;
837 		else {
838 			sctp_transport_dst_release(transport);
839 			ulp_notify = false;
840 		}
841 
842 		spc_state = SCTP_ADDR_UNREACHABLE;
843 		break;
844 
845 	case SCTP_TRANSPORT_PF:
846 		transport->state = SCTP_PF;
847 		ulp_notify = false;
848 		break;
849 
850 	default:
851 		return;
852 	}
853 
854 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
855 	 * to the user.
856 	 */
857 	if (ulp_notify) {
858 		memset(&addr, 0, sizeof(struct sockaddr_storage));
859 		memcpy(&addr, &transport->ipaddr,
860 		       transport->af_specific->sockaddr_len);
861 
862 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
863 					0, spc_state, error, GFP_ATOMIC);
864 		if (event)
865 			sctp_ulpq_tail_event(&asoc->ulpq, event);
866 	}
867 
868 	/* Select new active and retran paths. */
869 	sctp_select_active_and_retran_path(asoc);
870 }
871 
872 /* Hold a reference to an association. */
873 void sctp_association_hold(struct sctp_association *asoc)
874 {
875 	atomic_inc(&asoc->base.refcnt);
876 }
877 
878 /* Release a reference to an association and cleanup
879  * if there are no more references.
880  */
881 void sctp_association_put(struct sctp_association *asoc)
882 {
883 	if (atomic_dec_and_test(&asoc->base.refcnt))
884 		sctp_association_destroy(asoc);
885 }
886 
887 /* Allocate the next TSN, Transmission Sequence Number, for the given
888  * association.
889  */
890 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
891 {
892 	/* From Section 1.6 Serial Number Arithmetic:
893 	 * Transmission Sequence Numbers wrap around when they reach
894 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
895 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
896 	 */
897 	__u32 retval = asoc->next_tsn;
898 	asoc->next_tsn++;
899 	asoc->unack_data++;
900 
901 	return retval;
902 }
903 
904 /* Compare two addresses to see if they match.  Wildcard addresses
905  * only match themselves.
906  */
907 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
908 			const union sctp_addr *ss2)
909 {
910 	struct sctp_af *af;
911 
912 	af = sctp_get_af_specific(ss1->sa.sa_family);
913 	if (unlikely(!af))
914 		return 0;
915 
916 	return af->cmp_addr(ss1, ss2);
917 }
918 
919 /* Return an ecne chunk to get prepended to a packet.
920  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
921  * No we don't, but we could/should.
922  */
923 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
924 {
925 	if (!asoc->need_ecne)
926 		return NULL;
927 
928 	/* Send ECNE if needed.
929 	 * Not being able to allocate a chunk here is not deadly.
930 	 */
931 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
932 }
933 
934 /*
935  * Find which transport this TSN was sent on.
936  */
937 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
938 					     __u32 tsn)
939 {
940 	struct sctp_transport *active;
941 	struct sctp_transport *match;
942 	struct sctp_transport *transport;
943 	struct sctp_chunk *chunk;
944 	__be32 key = htonl(tsn);
945 
946 	match = NULL;
947 
948 	/*
949 	 * FIXME: In general, find a more efficient data structure for
950 	 * searching.
951 	 */
952 
953 	/*
954 	 * The general strategy is to search each transport's transmitted
955 	 * list.   Return which transport this TSN lives on.
956 	 *
957 	 * Let's be hopeful and check the active_path first.
958 	 * Another optimization would be to know if there is only one
959 	 * outbound path and not have to look for the TSN at all.
960 	 *
961 	 */
962 
963 	active = asoc->peer.active_path;
964 
965 	list_for_each_entry(chunk, &active->transmitted,
966 			transmitted_list) {
967 
968 		if (key == chunk->subh.data_hdr->tsn) {
969 			match = active;
970 			goto out;
971 		}
972 	}
973 
974 	/* If not found, go search all the other transports. */
975 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
976 			transports) {
977 
978 		if (transport == active)
979 			continue;
980 		list_for_each_entry(chunk, &transport->transmitted,
981 				transmitted_list) {
982 			if (key == chunk->subh.data_hdr->tsn) {
983 				match = transport;
984 				goto out;
985 			}
986 		}
987 	}
988 out:
989 	return match;
990 }
991 
992 /* Is this the association we are looking for? */
993 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
994 					   struct net *net,
995 					   const union sctp_addr *laddr,
996 					   const union sctp_addr *paddr)
997 {
998 	struct sctp_transport *transport;
999 
1000 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1001 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1002 	    net_eq(sock_net(asoc->base.sk), net)) {
1003 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1004 		if (!transport)
1005 			goto out;
1006 
1007 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1008 					 sctp_sk(asoc->base.sk)))
1009 			goto out;
1010 	}
1011 	transport = NULL;
1012 
1013 out:
1014 	return transport;
1015 }
1016 
1017 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1018 static void sctp_assoc_bh_rcv(struct work_struct *work)
1019 {
1020 	struct sctp_association *asoc =
1021 		container_of(work, struct sctp_association,
1022 			     base.inqueue.immediate);
1023 	struct net *net = sock_net(asoc->base.sk);
1024 	struct sctp_endpoint *ep;
1025 	struct sctp_chunk *chunk;
1026 	struct sctp_inq *inqueue;
1027 	int state;
1028 	sctp_subtype_t subtype;
1029 	int error = 0;
1030 
1031 	/* The association should be held so we should be safe. */
1032 	ep = asoc->ep;
1033 
1034 	inqueue = &asoc->base.inqueue;
1035 	sctp_association_hold(asoc);
1036 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1037 		state = asoc->state;
1038 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1039 
1040 		/* SCTP-AUTH, Section 6.3:
1041 		 *    The receiver has a list of chunk types which it expects
1042 		 *    to be received only after an AUTH-chunk.  This list has
1043 		 *    been sent to the peer during the association setup.  It
1044 		 *    MUST silently discard these chunks if they are not placed
1045 		 *    after an AUTH chunk in the packet.
1046 		 */
1047 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1048 			continue;
1049 
1050 		/* Remember where the last DATA chunk came from so we
1051 		 * know where to send the SACK.
1052 		 */
1053 		if (sctp_chunk_is_data(chunk))
1054 			asoc->peer.last_data_from = chunk->transport;
1055 		else {
1056 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1057 			asoc->stats.ictrlchunks++;
1058 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1059 				asoc->stats.isacks++;
1060 		}
1061 
1062 		if (chunk->transport)
1063 			chunk->transport->last_time_heard = ktime_get();
1064 
1065 		/* Run through the state machine. */
1066 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1067 				   state, ep, asoc, chunk, GFP_ATOMIC);
1068 
1069 		/* Check to see if the association is freed in response to
1070 		 * the incoming chunk.  If so, get out of the while loop.
1071 		 */
1072 		if (asoc->base.dead)
1073 			break;
1074 
1075 		/* If there is an error on chunk, discard this packet. */
1076 		if (error && chunk)
1077 			chunk->pdiscard = 1;
1078 	}
1079 	sctp_association_put(asoc);
1080 }
1081 
1082 /* This routine moves an association from its old sk to a new sk.  */
1083 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1084 {
1085 	struct sctp_sock *newsp = sctp_sk(newsk);
1086 	struct sock *oldsk = assoc->base.sk;
1087 
1088 	/* Delete the association from the old endpoint's list of
1089 	 * associations.
1090 	 */
1091 	list_del_init(&assoc->asocs);
1092 
1093 	/* Decrement the backlog value for a TCP-style socket. */
1094 	if (sctp_style(oldsk, TCP))
1095 		oldsk->sk_ack_backlog--;
1096 
1097 	/* Release references to the old endpoint and the sock.  */
1098 	sctp_endpoint_put(assoc->ep);
1099 	sock_put(assoc->base.sk);
1100 
1101 	/* Get a reference to the new endpoint.  */
1102 	assoc->ep = newsp->ep;
1103 	sctp_endpoint_hold(assoc->ep);
1104 
1105 	/* Get a reference to the new sock.  */
1106 	assoc->base.sk = newsk;
1107 	sock_hold(assoc->base.sk);
1108 
1109 	/* Add the association to the new endpoint's list of associations.  */
1110 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1111 }
1112 
1113 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1114 void sctp_assoc_update(struct sctp_association *asoc,
1115 		       struct sctp_association *new)
1116 {
1117 	struct sctp_transport *trans;
1118 	struct list_head *pos, *temp;
1119 
1120 	/* Copy in new parameters of peer. */
1121 	asoc->c = new->c;
1122 	asoc->peer.rwnd = new->peer.rwnd;
1123 	asoc->peer.sack_needed = new->peer.sack_needed;
1124 	asoc->peer.auth_capable = new->peer.auth_capable;
1125 	asoc->peer.i = new->peer.i;
1126 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1127 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1128 
1129 	/* Remove any peer addresses not present in the new association. */
1130 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1131 		trans = list_entry(pos, struct sctp_transport, transports);
1132 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1133 			sctp_assoc_rm_peer(asoc, trans);
1134 			continue;
1135 		}
1136 
1137 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1138 			sctp_transport_reset(trans);
1139 	}
1140 
1141 	/* If the case is A (association restart), use
1142 	 * initial_tsn as next_tsn. If the case is B, use
1143 	 * current next_tsn in case data sent to peer
1144 	 * has been discarded and needs retransmission.
1145 	 */
1146 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1147 		asoc->next_tsn = new->next_tsn;
1148 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1149 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1150 
1151 		/* Reinitialize SSN for both local streams
1152 		 * and peer's streams.
1153 		 */
1154 		sctp_stream_clear(asoc->stream);
1155 
1156 		/* Flush the ULP reassembly and ordered queue.
1157 		 * Any data there will now be stale and will
1158 		 * cause problems.
1159 		 */
1160 		sctp_ulpq_flush(&asoc->ulpq);
1161 
1162 		/* reset the overall association error count so
1163 		 * that the restarted association doesn't get torn
1164 		 * down on the next retransmission timer.
1165 		 */
1166 		asoc->overall_error_count = 0;
1167 
1168 	} else {
1169 		/* Add any peer addresses from the new association. */
1170 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1171 				transports) {
1172 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1173 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1174 						    GFP_ATOMIC, trans->state);
1175 		}
1176 
1177 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1178 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1179 
1180 		if (sctp_state(asoc, COOKIE_WAIT)) {
1181 			sctp_stream_free(asoc->stream);
1182 			asoc->stream = new->stream;
1183 			new->stream = NULL;
1184 		}
1185 
1186 		if (!asoc->assoc_id) {
1187 			/* get a new association id since we don't have one
1188 			 * yet.
1189 			 */
1190 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1191 		}
1192 	}
1193 
1194 	/* SCTP-AUTH: Save the peer parameters from the new associations
1195 	 * and also move the association shared keys over
1196 	 */
1197 	kfree(asoc->peer.peer_random);
1198 	asoc->peer.peer_random = new->peer.peer_random;
1199 	new->peer.peer_random = NULL;
1200 
1201 	kfree(asoc->peer.peer_chunks);
1202 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1203 	new->peer.peer_chunks = NULL;
1204 
1205 	kfree(asoc->peer.peer_hmacs);
1206 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1207 	new->peer.peer_hmacs = NULL;
1208 
1209 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1210 }
1211 
1212 /* Update the retran path for sending a retransmitted packet.
1213  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1214  *
1215  *   When there is outbound data to send and the primary path
1216  *   becomes inactive (e.g., due to failures), or where the
1217  *   SCTP user explicitly requests to send data to an
1218  *   inactive destination transport address, before reporting
1219  *   an error to its ULP, the SCTP endpoint should try to send
1220  *   the data to an alternate active destination transport
1221  *   address if one exists.
1222  *
1223  *   When retransmitting data that timed out, if the endpoint
1224  *   is multihomed, it should consider each source-destination
1225  *   address pair in its retransmission selection policy.
1226  *   When retransmitting timed-out data, the endpoint should
1227  *   attempt to pick the most divergent source-destination
1228  *   pair from the original source-destination pair to which
1229  *   the packet was transmitted.
1230  *
1231  *   Note: Rules for picking the most divergent source-destination
1232  *   pair are an implementation decision and are not specified
1233  *   within this document.
1234  *
1235  * Our basic strategy is to round-robin transports in priorities
1236  * according to sctp_trans_score() e.g., if no such
1237  * transport with state SCTP_ACTIVE exists, round-robin through
1238  * SCTP_UNKNOWN, etc. You get the picture.
1239  */
1240 static u8 sctp_trans_score(const struct sctp_transport *trans)
1241 {
1242 	switch (trans->state) {
1243 	case SCTP_ACTIVE:
1244 		return 3;	/* best case */
1245 	case SCTP_UNKNOWN:
1246 		return 2;
1247 	case SCTP_PF:
1248 		return 1;
1249 	default: /* case SCTP_INACTIVE */
1250 		return 0;	/* worst case */
1251 	}
1252 }
1253 
1254 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1255 						   struct sctp_transport *trans2)
1256 {
1257 	if (trans1->error_count > trans2->error_count) {
1258 		return trans2;
1259 	} else if (trans1->error_count == trans2->error_count &&
1260 		   ktime_after(trans2->last_time_heard,
1261 			       trans1->last_time_heard)) {
1262 		return trans2;
1263 	} else {
1264 		return trans1;
1265 	}
1266 }
1267 
1268 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1269 						    struct sctp_transport *best)
1270 {
1271 	u8 score_curr, score_best;
1272 
1273 	if (best == NULL || curr == best)
1274 		return curr;
1275 
1276 	score_curr = sctp_trans_score(curr);
1277 	score_best = sctp_trans_score(best);
1278 
1279 	/* First, try a score-based selection if both transport states
1280 	 * differ. If we're in a tie, lets try to make a more clever
1281 	 * decision here based on error counts and last time heard.
1282 	 */
1283 	if (score_curr > score_best)
1284 		return curr;
1285 	else if (score_curr == score_best)
1286 		return sctp_trans_elect_tie(best, curr);
1287 	else
1288 		return best;
1289 }
1290 
1291 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1292 {
1293 	struct sctp_transport *trans = asoc->peer.retran_path;
1294 	struct sctp_transport *trans_next = NULL;
1295 
1296 	/* We're done as we only have the one and only path. */
1297 	if (asoc->peer.transport_count == 1)
1298 		return;
1299 	/* If active_path and retran_path are the same and active,
1300 	 * then this is the only active path. Use it.
1301 	 */
1302 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1303 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1304 		return;
1305 
1306 	/* Iterate from retran_path's successor back to retran_path. */
1307 	for (trans = list_next_entry(trans, transports); 1;
1308 	     trans = list_next_entry(trans, transports)) {
1309 		/* Manually skip the head element. */
1310 		if (&trans->transports == &asoc->peer.transport_addr_list)
1311 			continue;
1312 		if (trans->state == SCTP_UNCONFIRMED)
1313 			continue;
1314 		trans_next = sctp_trans_elect_best(trans, trans_next);
1315 		/* Active is good enough for immediate return. */
1316 		if (trans_next->state == SCTP_ACTIVE)
1317 			break;
1318 		/* We've reached the end, time to update path. */
1319 		if (trans == asoc->peer.retran_path)
1320 			break;
1321 	}
1322 
1323 	asoc->peer.retran_path = trans_next;
1324 
1325 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1326 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1327 }
1328 
1329 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1330 {
1331 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1332 	struct sctp_transport *trans_pf = NULL;
1333 
1334 	/* Look for the two most recently used active transports. */
1335 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1336 			    transports) {
1337 		/* Skip uninteresting transports. */
1338 		if (trans->state == SCTP_INACTIVE ||
1339 		    trans->state == SCTP_UNCONFIRMED)
1340 			continue;
1341 		/* Keep track of the best PF transport from our
1342 		 * list in case we don't find an active one.
1343 		 */
1344 		if (trans->state == SCTP_PF) {
1345 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1346 			continue;
1347 		}
1348 		/* For active transports, pick the most recent ones. */
1349 		if (trans_pri == NULL ||
1350 		    ktime_after(trans->last_time_heard,
1351 				trans_pri->last_time_heard)) {
1352 			trans_sec = trans_pri;
1353 			trans_pri = trans;
1354 		} else if (trans_sec == NULL ||
1355 			   ktime_after(trans->last_time_heard,
1356 				       trans_sec->last_time_heard)) {
1357 			trans_sec = trans;
1358 		}
1359 	}
1360 
1361 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1362 	 *
1363 	 * By default, an endpoint should always transmit to the primary
1364 	 * path, unless the SCTP user explicitly specifies the
1365 	 * destination transport address (and possibly source transport
1366 	 * address) to use. [If the primary is active but not most recent,
1367 	 * bump the most recently used transport.]
1368 	 */
1369 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1370 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1371 	     asoc->peer.primary_path != trans_pri) {
1372 		trans_sec = trans_pri;
1373 		trans_pri = asoc->peer.primary_path;
1374 	}
1375 
1376 	/* We did not find anything useful for a possible retransmission
1377 	 * path; either primary path that we found is the the same as
1378 	 * the current one, or we didn't generally find an active one.
1379 	 */
1380 	if (trans_sec == NULL)
1381 		trans_sec = trans_pri;
1382 
1383 	/* If we failed to find a usable transport, just camp on the
1384 	 * active or pick a PF iff it's the better choice.
1385 	 */
1386 	if (trans_pri == NULL) {
1387 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1388 		trans_sec = trans_pri;
1389 	}
1390 
1391 	/* Set the active and retran transports. */
1392 	asoc->peer.active_path = trans_pri;
1393 	asoc->peer.retran_path = trans_sec;
1394 }
1395 
1396 struct sctp_transport *
1397 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1398 				  struct sctp_transport *last_sent_to)
1399 {
1400 	/* If this is the first time packet is sent, use the active path,
1401 	 * else use the retran path. If the last packet was sent over the
1402 	 * retran path, update the retran path and use it.
1403 	 */
1404 	if (last_sent_to == NULL) {
1405 		return asoc->peer.active_path;
1406 	} else {
1407 		if (last_sent_to == asoc->peer.retran_path)
1408 			sctp_assoc_update_retran_path(asoc);
1409 
1410 		return asoc->peer.retran_path;
1411 	}
1412 }
1413 
1414 /* Update the association's pmtu and frag_point by going through all the
1415  * transports. This routine is called when a transport's PMTU has changed.
1416  */
1417 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1418 {
1419 	struct sctp_transport *t;
1420 	__u32 pmtu = 0;
1421 
1422 	if (!asoc)
1423 		return;
1424 
1425 	/* Get the lowest pmtu of all the transports. */
1426 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1427 				transports) {
1428 		if (t->pmtu_pending && t->dst) {
1429 			sctp_transport_update_pmtu(
1430 					t, SCTP_TRUNC4(dst_mtu(t->dst)));
1431 			t->pmtu_pending = 0;
1432 		}
1433 		if (!pmtu || (t->pathmtu < pmtu))
1434 			pmtu = t->pathmtu;
1435 	}
1436 
1437 	if (pmtu) {
1438 		asoc->pathmtu = pmtu;
1439 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1440 	}
1441 
1442 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1443 		 asoc->pathmtu, asoc->frag_point);
1444 }
1445 
1446 /* Should we send a SACK to update our peer? */
1447 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1448 {
1449 	struct net *net = sock_net(asoc->base.sk);
1450 	switch (asoc->state) {
1451 	case SCTP_STATE_ESTABLISHED:
1452 	case SCTP_STATE_SHUTDOWN_PENDING:
1453 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1454 	case SCTP_STATE_SHUTDOWN_SENT:
1455 		if ((asoc->rwnd > asoc->a_rwnd) &&
1456 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1457 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1458 			   asoc->pathmtu)))
1459 			return true;
1460 		break;
1461 	default:
1462 		break;
1463 	}
1464 	return false;
1465 }
1466 
1467 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1468 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1469 {
1470 	struct sctp_chunk *sack;
1471 	struct timer_list *timer;
1472 
1473 	if (asoc->rwnd_over) {
1474 		if (asoc->rwnd_over >= len) {
1475 			asoc->rwnd_over -= len;
1476 		} else {
1477 			asoc->rwnd += (len - asoc->rwnd_over);
1478 			asoc->rwnd_over = 0;
1479 		}
1480 	} else {
1481 		asoc->rwnd += len;
1482 	}
1483 
1484 	/* If we had window pressure, start recovering it
1485 	 * once our rwnd had reached the accumulated pressure
1486 	 * threshold.  The idea is to recover slowly, but up
1487 	 * to the initial advertised window.
1488 	 */
1489 	if (asoc->rwnd_press) {
1490 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1491 		asoc->rwnd += change;
1492 		asoc->rwnd_press -= change;
1493 	}
1494 
1495 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1496 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1497 		 asoc->a_rwnd);
1498 
1499 	/* Send a window update SACK if the rwnd has increased by at least the
1500 	 * minimum of the association's PMTU and half of the receive buffer.
1501 	 * The algorithm used is similar to the one described in
1502 	 * Section 4.2.3.3 of RFC 1122.
1503 	 */
1504 	if (sctp_peer_needs_update(asoc)) {
1505 		asoc->a_rwnd = asoc->rwnd;
1506 
1507 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1508 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1509 			 asoc->a_rwnd);
1510 
1511 		sack = sctp_make_sack(asoc);
1512 		if (!sack)
1513 			return;
1514 
1515 		asoc->peer.sack_needed = 0;
1516 
1517 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1518 
1519 		/* Stop the SACK timer.  */
1520 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1521 		if (del_timer(timer))
1522 			sctp_association_put(asoc);
1523 	}
1524 }
1525 
1526 /* Decrease asoc's rwnd by len. */
1527 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1528 {
1529 	int rx_count;
1530 	int over = 0;
1531 
1532 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1533 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1534 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1535 			 asoc->rwnd, asoc->rwnd_over);
1536 
1537 	if (asoc->ep->rcvbuf_policy)
1538 		rx_count = atomic_read(&asoc->rmem_alloc);
1539 	else
1540 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1541 
1542 	/* If we've reached or overflowed our receive buffer, announce
1543 	 * a 0 rwnd if rwnd would still be positive.  Store the
1544 	 * the potential pressure overflow so that the window can be restored
1545 	 * back to original value.
1546 	 */
1547 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1548 		over = 1;
1549 
1550 	if (asoc->rwnd >= len) {
1551 		asoc->rwnd -= len;
1552 		if (over) {
1553 			asoc->rwnd_press += asoc->rwnd;
1554 			asoc->rwnd = 0;
1555 		}
1556 	} else {
1557 		asoc->rwnd_over += len - asoc->rwnd;
1558 		asoc->rwnd = 0;
1559 	}
1560 
1561 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1562 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1563 		 asoc->rwnd_press);
1564 }
1565 
1566 /* Build the bind address list for the association based on info from the
1567  * local endpoint and the remote peer.
1568  */
1569 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1570 				     sctp_scope_t scope, gfp_t gfp)
1571 {
1572 	int flags;
1573 
1574 	/* Use scoping rules to determine the subset of addresses from
1575 	 * the endpoint.
1576 	 */
1577 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1578 	if (asoc->peer.ipv4_address)
1579 		flags |= SCTP_ADDR4_PEERSUPP;
1580 	if (asoc->peer.ipv6_address)
1581 		flags |= SCTP_ADDR6_PEERSUPP;
1582 
1583 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1584 				   &asoc->base.bind_addr,
1585 				   &asoc->ep->base.bind_addr,
1586 				   scope, gfp, flags);
1587 }
1588 
1589 /* Build the association's bind address list from the cookie.  */
1590 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1591 					 struct sctp_cookie *cookie,
1592 					 gfp_t gfp)
1593 {
1594 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1595 	int var_size3 = cookie->raw_addr_list_len;
1596 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1597 
1598 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1599 				      asoc->ep->base.bind_addr.port, gfp);
1600 }
1601 
1602 /* Lookup laddr in the bind address list of an association. */
1603 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1604 			    const union sctp_addr *laddr)
1605 {
1606 	int found = 0;
1607 
1608 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1609 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1610 				 sctp_sk(asoc->base.sk)))
1611 		found = 1;
1612 
1613 	return found;
1614 }
1615 
1616 /* Set an association id for a given association */
1617 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1618 {
1619 	bool preload = gfpflags_allow_blocking(gfp);
1620 	int ret;
1621 
1622 	/* If the id is already assigned, keep it. */
1623 	if (asoc->assoc_id)
1624 		return 0;
1625 
1626 	if (preload)
1627 		idr_preload(gfp);
1628 	spin_lock_bh(&sctp_assocs_id_lock);
1629 	/* 0 is not a valid assoc_id, must be >= 1 */
1630 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1631 	spin_unlock_bh(&sctp_assocs_id_lock);
1632 	if (preload)
1633 		idr_preload_end();
1634 	if (ret < 0)
1635 		return ret;
1636 
1637 	asoc->assoc_id = (sctp_assoc_t)ret;
1638 	return 0;
1639 }
1640 
1641 /* Free the ASCONF queue */
1642 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1643 {
1644 	struct sctp_chunk *asconf;
1645 	struct sctp_chunk *tmp;
1646 
1647 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1648 		list_del_init(&asconf->list);
1649 		sctp_chunk_free(asconf);
1650 	}
1651 }
1652 
1653 /* Free asconf_ack cache */
1654 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1655 {
1656 	struct sctp_chunk *ack;
1657 	struct sctp_chunk *tmp;
1658 
1659 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1660 				transmitted_list) {
1661 		list_del_init(&ack->transmitted_list);
1662 		sctp_chunk_free(ack);
1663 	}
1664 }
1665 
1666 /* Clean up the ASCONF_ACK queue */
1667 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1668 {
1669 	struct sctp_chunk *ack;
1670 	struct sctp_chunk *tmp;
1671 
1672 	/* We can remove all the entries from the queue up to
1673 	 * the "Peer-Sequence-Number".
1674 	 */
1675 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1676 				transmitted_list) {
1677 		if (ack->subh.addip_hdr->serial ==
1678 				htonl(asoc->peer.addip_serial))
1679 			break;
1680 
1681 		list_del_init(&ack->transmitted_list);
1682 		sctp_chunk_free(ack);
1683 	}
1684 }
1685 
1686 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1687 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1688 					const struct sctp_association *asoc,
1689 					__be32 serial)
1690 {
1691 	struct sctp_chunk *ack;
1692 
1693 	/* Walk through the list of cached ASCONF-ACKs and find the
1694 	 * ack chunk whose serial number matches that of the request.
1695 	 */
1696 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1697 		if (sctp_chunk_pending(ack))
1698 			continue;
1699 		if (ack->subh.addip_hdr->serial == serial) {
1700 			sctp_chunk_hold(ack);
1701 			return ack;
1702 		}
1703 	}
1704 
1705 	return NULL;
1706 }
1707 
1708 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1709 {
1710 	/* Free any cached ASCONF_ACK chunk. */
1711 	sctp_assoc_free_asconf_acks(asoc);
1712 
1713 	/* Free the ASCONF queue. */
1714 	sctp_assoc_free_asconf_queue(asoc);
1715 
1716 	/* Free any cached ASCONF chunk. */
1717 	if (asoc->addip_last_asconf)
1718 		sctp_chunk_free(asoc->addip_last_asconf);
1719 }
1720