1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/types.h> 54 #include <linux/fcntl.h> 55 #include <linux/poll.h> 56 #include <linux/init.h> 57 58 #include <linux/slab.h> 59 #include <linux/in.h> 60 #include <net/ipv6.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal functions. */ 65 static void sctp_assoc_bh_rcv(struct work_struct *work); 66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 68 69 /* 1st Level Abstractions. */ 70 71 /* Initialize a new association from provided memory. */ 72 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 73 const struct sctp_endpoint *ep, 74 const struct sock *sk, 75 sctp_scope_t scope, 76 gfp_t gfp) 77 { 78 struct net *net = sock_net(sk); 79 struct sctp_sock *sp; 80 int i; 81 sctp_paramhdr_t *p; 82 int err; 83 84 /* Retrieve the SCTP per socket area. */ 85 sp = sctp_sk((struct sock *)sk); 86 87 /* Discarding const is appropriate here. */ 88 asoc->ep = (struct sctp_endpoint *)ep; 89 sctp_endpoint_hold(asoc->ep); 90 91 /* Hold the sock. */ 92 asoc->base.sk = (struct sock *)sk; 93 sock_hold(asoc->base.sk); 94 95 /* Initialize the common base substructure. */ 96 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 97 98 /* Initialize the object handling fields. */ 99 atomic_set(&asoc->base.refcnt, 1); 100 asoc->base.dead = false; 101 102 /* Initialize the bind addr area. */ 103 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 104 105 asoc->state = SCTP_STATE_CLOSED; 106 107 /* Set these values from the socket values, a conversion between 108 * millsecons to seconds/microseconds must also be done. 109 */ 110 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 111 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 112 * 1000; 113 asoc->frag_point = 0; 114 asoc->user_frag = sp->user_frag; 115 116 /* Set the association max_retrans and RTO values from the 117 * socket values. 118 */ 119 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 120 asoc->pf_retrans = net->sctp.pf_retrans; 121 122 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 123 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 124 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 125 126 asoc->overall_error_count = 0; 127 128 /* Initialize the association's heartbeat interval based on the 129 * sock configured value. 130 */ 131 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 132 133 /* Initialize path max retrans value. */ 134 asoc->pathmaxrxt = sp->pathmaxrxt; 135 136 /* Initialize default path MTU. */ 137 asoc->pathmtu = sp->pathmtu; 138 139 /* Set association default SACK delay */ 140 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 141 asoc->sackfreq = sp->sackfreq; 142 143 /* Set the association default flags controlling 144 * Heartbeat, SACK delay, and Path MTU Discovery. 145 */ 146 asoc->param_flags = sp->param_flags; 147 148 /* Initialize the maximum mumber of new data packets that can be sent 149 * in a burst. 150 */ 151 asoc->max_burst = sp->max_burst; 152 153 /* initialize association timers */ 154 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 155 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 156 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 157 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 158 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 159 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 160 161 /* sctpimpguide Section 2.12.2 162 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 163 * recommended value of 5 times 'RTO.Max'. 164 */ 165 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 166 = 5 * asoc->rto_max; 167 168 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 169 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 170 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 171 min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ; 172 173 /* Initializes the timers */ 174 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 175 setup_timer(&asoc->timers[i], sctp_timer_events[i], 176 (unsigned long)asoc); 177 178 /* Pull default initialization values from the sock options. 179 * Note: This assumes that the values have already been 180 * validated in the sock. 181 */ 182 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 183 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 184 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 185 186 asoc->max_init_timeo = 187 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 188 189 /* Allocate storage for the ssnmap after the inbound and outbound 190 * streams have been negotiated during Init. 191 */ 192 asoc->ssnmap = NULL; 193 194 /* Set the local window size for receive. 195 * This is also the rcvbuf space per association. 196 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 197 * 1500 bytes in one SCTP packet. 198 */ 199 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 200 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 201 else 202 asoc->rwnd = sk->sk_rcvbuf/2; 203 204 asoc->a_rwnd = asoc->rwnd; 205 206 asoc->rwnd_over = 0; 207 asoc->rwnd_press = 0; 208 209 /* Use my own max window until I learn something better. */ 210 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 211 212 /* Set the sndbuf size for transmit. */ 213 asoc->sndbuf_used = 0; 214 215 /* Initialize the receive memory counter */ 216 atomic_set(&asoc->rmem_alloc, 0); 217 218 init_waitqueue_head(&asoc->wait); 219 220 asoc->c.my_vtag = sctp_generate_tag(ep); 221 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 222 asoc->c.peer_vtag = 0; 223 asoc->c.my_ttag = 0; 224 asoc->c.peer_ttag = 0; 225 asoc->c.my_port = ep->base.bind_addr.port; 226 227 asoc->c.initial_tsn = sctp_generate_tsn(ep); 228 229 asoc->next_tsn = asoc->c.initial_tsn; 230 231 asoc->ctsn_ack_point = asoc->next_tsn - 1; 232 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 233 asoc->highest_sacked = asoc->ctsn_ack_point; 234 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 235 asoc->unack_data = 0; 236 237 /* ADDIP Section 4.1 Asconf Chunk Procedures 238 * 239 * When an endpoint has an ASCONF signaled change to be sent to the 240 * remote endpoint it should do the following: 241 * ... 242 * A2) a serial number should be assigned to the chunk. The serial 243 * number SHOULD be a monotonically increasing number. The serial 244 * numbers SHOULD be initialized at the start of the 245 * association to the same value as the initial TSN. 246 */ 247 asoc->addip_serial = asoc->c.initial_tsn; 248 249 INIT_LIST_HEAD(&asoc->addip_chunk_list); 250 INIT_LIST_HEAD(&asoc->asconf_ack_list); 251 252 /* Make an empty list of remote transport addresses. */ 253 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 254 asoc->peer.transport_count = 0; 255 256 /* RFC 2960 5.1 Normal Establishment of an Association 257 * 258 * After the reception of the first data chunk in an 259 * association the endpoint must immediately respond with a 260 * sack to acknowledge the data chunk. Subsequent 261 * acknowledgements should be done as described in Section 262 * 6.2. 263 * 264 * [We implement this by telling a new association that it 265 * already received one packet.] 266 */ 267 asoc->peer.sack_needed = 1; 268 asoc->peer.sack_cnt = 0; 269 asoc->peer.sack_generation = 1; 270 271 /* Assume that the peer will tell us if he recognizes ASCONF 272 * as part of INIT exchange. 273 * The sctp_addip_noauth option is there for backward compatibilty 274 * and will revert old behavior. 275 */ 276 asoc->peer.asconf_capable = 0; 277 if (net->sctp.addip_noauth) 278 asoc->peer.asconf_capable = 1; 279 asoc->asconf_addr_del_pending = NULL; 280 asoc->src_out_of_asoc_ok = 0; 281 asoc->new_transport = NULL; 282 283 /* Create an input queue. */ 284 sctp_inq_init(&asoc->base.inqueue); 285 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 286 287 /* Create an output queue. */ 288 sctp_outq_init(asoc, &asoc->outqueue); 289 290 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 291 goto fail_init; 292 293 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 294 295 asoc->need_ecne = 0; 296 297 asoc->assoc_id = 0; 298 299 /* Assume that peer would support both address types unless we are 300 * told otherwise. 301 */ 302 asoc->peer.ipv4_address = 1; 303 if (asoc->base.sk->sk_family == PF_INET6) 304 asoc->peer.ipv6_address = 1; 305 INIT_LIST_HEAD(&asoc->asocs); 306 307 asoc->autoclose = sp->autoclose; 308 309 asoc->default_stream = sp->default_stream; 310 asoc->default_ppid = sp->default_ppid; 311 asoc->default_flags = sp->default_flags; 312 asoc->default_context = sp->default_context; 313 asoc->default_timetolive = sp->default_timetolive; 314 asoc->default_rcv_context = sp->default_rcv_context; 315 316 /* SCTP_GET_ASSOC_STATS COUNTERS */ 317 memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats)); 318 319 /* AUTH related initializations */ 320 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 321 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 322 if (err) 323 goto fail_init; 324 325 asoc->active_key_id = ep->active_key_id; 326 asoc->asoc_shared_key = NULL; 327 328 asoc->default_hmac_id = 0; 329 /* Save the hmacs and chunks list into this association */ 330 if (ep->auth_hmacs_list) 331 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 332 ntohs(ep->auth_hmacs_list->param_hdr.length)); 333 if (ep->auth_chunk_list) 334 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 335 ntohs(ep->auth_chunk_list->param_hdr.length)); 336 337 /* Get the AUTH random number for this association */ 338 p = (sctp_paramhdr_t *)asoc->c.auth_random; 339 p->type = SCTP_PARAM_RANDOM; 340 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 341 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 342 343 return asoc; 344 345 fail_init: 346 sctp_endpoint_put(asoc->ep); 347 sock_put(asoc->base.sk); 348 return NULL; 349 } 350 351 /* Allocate and initialize a new association */ 352 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 353 const struct sock *sk, 354 sctp_scope_t scope, 355 gfp_t gfp) 356 { 357 struct sctp_association *asoc; 358 359 asoc = t_new(struct sctp_association, gfp); 360 if (!asoc) 361 goto fail; 362 363 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 364 goto fail_init; 365 366 SCTP_DBG_OBJCNT_INC(assoc); 367 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 368 369 return asoc; 370 371 fail_init: 372 kfree(asoc); 373 fail: 374 return NULL; 375 } 376 377 /* Free this association if possible. There may still be users, so 378 * the actual deallocation may be delayed. 379 */ 380 void sctp_association_free(struct sctp_association *asoc) 381 { 382 struct sock *sk = asoc->base.sk; 383 struct sctp_transport *transport; 384 struct list_head *pos, *temp; 385 int i; 386 387 /* Only real associations count against the endpoint, so 388 * don't bother for if this is a temporary association. 389 */ 390 if (!asoc->temp) { 391 list_del(&asoc->asocs); 392 393 /* Decrement the backlog value for a TCP-style listening 394 * socket. 395 */ 396 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 397 sk->sk_ack_backlog--; 398 } 399 400 /* Mark as dead, so other users can know this structure is 401 * going away. 402 */ 403 asoc->base.dead = true; 404 405 /* Dispose of any data lying around in the outqueue. */ 406 sctp_outq_free(&asoc->outqueue); 407 408 /* Dispose of any pending messages for the upper layer. */ 409 sctp_ulpq_free(&asoc->ulpq); 410 411 /* Dispose of any pending chunks on the inqueue. */ 412 sctp_inq_free(&asoc->base.inqueue); 413 414 sctp_tsnmap_free(&asoc->peer.tsn_map); 415 416 /* Free ssnmap storage. */ 417 sctp_ssnmap_free(asoc->ssnmap); 418 419 /* Clean up the bound address list. */ 420 sctp_bind_addr_free(&asoc->base.bind_addr); 421 422 /* Do we need to go through all of our timers and 423 * delete them? To be safe we will try to delete all, but we 424 * should be able to go through and make a guess based 425 * on our state. 426 */ 427 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 428 if (del_timer(&asoc->timers[i])) 429 sctp_association_put(asoc); 430 } 431 432 /* Free peer's cached cookie. */ 433 kfree(asoc->peer.cookie); 434 kfree(asoc->peer.peer_random); 435 kfree(asoc->peer.peer_chunks); 436 kfree(asoc->peer.peer_hmacs); 437 438 /* Release the transport structures. */ 439 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 440 transport = list_entry(pos, struct sctp_transport, transports); 441 list_del_rcu(pos); 442 sctp_transport_free(transport); 443 } 444 445 asoc->peer.transport_count = 0; 446 447 sctp_asconf_queue_teardown(asoc); 448 449 /* Free pending address space being deleted */ 450 if (asoc->asconf_addr_del_pending != NULL) 451 kfree(asoc->asconf_addr_del_pending); 452 453 /* AUTH - Free the endpoint shared keys */ 454 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 455 456 /* AUTH - Free the association shared key */ 457 sctp_auth_key_put(asoc->asoc_shared_key); 458 459 sctp_association_put(asoc); 460 } 461 462 /* Cleanup and free up an association. */ 463 static void sctp_association_destroy(struct sctp_association *asoc) 464 { 465 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 466 467 sctp_endpoint_put(asoc->ep); 468 sock_put(asoc->base.sk); 469 470 if (asoc->assoc_id != 0) { 471 spin_lock_bh(&sctp_assocs_id_lock); 472 idr_remove(&sctp_assocs_id, asoc->assoc_id); 473 spin_unlock_bh(&sctp_assocs_id_lock); 474 } 475 476 WARN_ON(atomic_read(&asoc->rmem_alloc)); 477 478 kfree(asoc); 479 SCTP_DBG_OBJCNT_DEC(assoc); 480 } 481 482 /* Change the primary destination address for the peer. */ 483 void sctp_assoc_set_primary(struct sctp_association *asoc, 484 struct sctp_transport *transport) 485 { 486 int changeover = 0; 487 488 /* it's a changeover only if we already have a primary path 489 * that we are changing 490 */ 491 if (asoc->peer.primary_path != NULL && 492 asoc->peer.primary_path != transport) 493 changeover = 1 ; 494 495 asoc->peer.primary_path = transport; 496 497 /* Set a default msg_name for events. */ 498 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 499 sizeof(union sctp_addr)); 500 501 /* If the primary path is changing, assume that the 502 * user wants to use this new path. 503 */ 504 if ((transport->state == SCTP_ACTIVE) || 505 (transport->state == SCTP_UNKNOWN)) 506 asoc->peer.active_path = transport; 507 508 /* 509 * SFR-CACC algorithm: 510 * Upon the receipt of a request to change the primary 511 * destination address, on the data structure for the new 512 * primary destination, the sender MUST do the following: 513 * 514 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 515 * to this destination address earlier. The sender MUST set 516 * CYCLING_CHANGEOVER to indicate that this switch is a 517 * double switch to the same destination address. 518 * 519 * Really, only bother is we have data queued or outstanding on 520 * the association. 521 */ 522 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 523 return; 524 525 if (transport->cacc.changeover_active) 526 transport->cacc.cycling_changeover = changeover; 527 528 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 529 * a changeover has occurred. 530 */ 531 transport->cacc.changeover_active = changeover; 532 533 /* 3) The sender MUST store the next TSN to be sent in 534 * next_tsn_at_change. 535 */ 536 transport->cacc.next_tsn_at_change = asoc->next_tsn; 537 } 538 539 /* Remove a transport from an association. */ 540 void sctp_assoc_rm_peer(struct sctp_association *asoc, 541 struct sctp_transport *peer) 542 { 543 struct list_head *pos; 544 struct sctp_transport *transport; 545 546 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 547 " port: %d\n", 548 asoc, 549 (&peer->ipaddr), 550 ntohs(peer->ipaddr.v4.sin_port)); 551 552 /* If we are to remove the current retran_path, update it 553 * to the next peer before removing this peer from the list. 554 */ 555 if (asoc->peer.retran_path == peer) 556 sctp_assoc_update_retran_path(asoc); 557 558 /* Remove this peer from the list. */ 559 list_del_rcu(&peer->transports); 560 561 /* Get the first transport of asoc. */ 562 pos = asoc->peer.transport_addr_list.next; 563 transport = list_entry(pos, struct sctp_transport, transports); 564 565 /* Update any entries that match the peer to be deleted. */ 566 if (asoc->peer.primary_path == peer) 567 sctp_assoc_set_primary(asoc, transport); 568 if (asoc->peer.active_path == peer) 569 asoc->peer.active_path = transport; 570 if (asoc->peer.retran_path == peer) 571 asoc->peer.retran_path = transport; 572 if (asoc->peer.last_data_from == peer) 573 asoc->peer.last_data_from = transport; 574 575 /* If we remove the transport an INIT was last sent to, set it to 576 * NULL. Combined with the update of the retran path above, this 577 * will cause the next INIT to be sent to the next available 578 * transport, maintaining the cycle. 579 */ 580 if (asoc->init_last_sent_to == peer) 581 asoc->init_last_sent_to = NULL; 582 583 /* If we remove the transport an SHUTDOWN was last sent to, set it 584 * to NULL. Combined with the update of the retran path above, this 585 * will cause the next SHUTDOWN to be sent to the next available 586 * transport, maintaining the cycle. 587 */ 588 if (asoc->shutdown_last_sent_to == peer) 589 asoc->shutdown_last_sent_to = NULL; 590 591 /* If we remove the transport an ASCONF was last sent to, set it to 592 * NULL. 593 */ 594 if (asoc->addip_last_asconf && 595 asoc->addip_last_asconf->transport == peer) 596 asoc->addip_last_asconf->transport = NULL; 597 598 /* If we have something on the transmitted list, we have to 599 * save it off. The best place is the active path. 600 */ 601 if (!list_empty(&peer->transmitted)) { 602 struct sctp_transport *active = asoc->peer.active_path; 603 struct sctp_chunk *ch; 604 605 /* Reset the transport of each chunk on this list */ 606 list_for_each_entry(ch, &peer->transmitted, 607 transmitted_list) { 608 ch->transport = NULL; 609 ch->rtt_in_progress = 0; 610 } 611 612 list_splice_tail_init(&peer->transmitted, 613 &active->transmitted); 614 615 /* Start a T3 timer here in case it wasn't running so 616 * that these migrated packets have a chance to get 617 * retrnasmitted. 618 */ 619 if (!timer_pending(&active->T3_rtx_timer)) 620 if (!mod_timer(&active->T3_rtx_timer, 621 jiffies + active->rto)) 622 sctp_transport_hold(active); 623 } 624 625 asoc->peer.transport_count--; 626 627 sctp_transport_free(peer); 628 } 629 630 /* Add a transport address to an association. */ 631 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 632 const union sctp_addr *addr, 633 const gfp_t gfp, 634 const int peer_state) 635 { 636 struct net *net = sock_net(asoc->base.sk); 637 struct sctp_transport *peer; 638 struct sctp_sock *sp; 639 unsigned short port; 640 641 sp = sctp_sk(asoc->base.sk); 642 643 /* AF_INET and AF_INET6 share common port field. */ 644 port = ntohs(addr->v4.sin_port); 645 646 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 647 " port: %d state:%d\n", 648 asoc, 649 addr, 650 port, 651 peer_state); 652 653 /* Set the port if it has not been set yet. */ 654 if (0 == asoc->peer.port) 655 asoc->peer.port = port; 656 657 /* Check to see if this is a duplicate. */ 658 peer = sctp_assoc_lookup_paddr(asoc, addr); 659 if (peer) { 660 /* An UNKNOWN state is only set on transports added by 661 * user in sctp_connectx() call. Such transports should be 662 * considered CONFIRMED per RFC 4960, Section 5.4. 663 */ 664 if (peer->state == SCTP_UNKNOWN) { 665 peer->state = SCTP_ACTIVE; 666 } 667 return peer; 668 } 669 670 peer = sctp_transport_new(net, addr, gfp); 671 if (!peer) 672 return NULL; 673 674 sctp_transport_set_owner(peer, asoc); 675 676 /* Initialize the peer's heartbeat interval based on the 677 * association configured value. 678 */ 679 peer->hbinterval = asoc->hbinterval; 680 681 /* Set the path max_retrans. */ 682 peer->pathmaxrxt = asoc->pathmaxrxt; 683 684 /* And the partial failure retrnas threshold */ 685 peer->pf_retrans = asoc->pf_retrans; 686 687 /* Initialize the peer's SACK delay timeout based on the 688 * association configured value. 689 */ 690 peer->sackdelay = asoc->sackdelay; 691 peer->sackfreq = asoc->sackfreq; 692 693 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 694 * based on association setting. 695 */ 696 peer->param_flags = asoc->param_flags; 697 698 sctp_transport_route(peer, NULL, sp); 699 700 /* Initialize the pmtu of the transport. */ 701 if (peer->param_flags & SPP_PMTUD_DISABLE) { 702 if (asoc->pathmtu) 703 peer->pathmtu = asoc->pathmtu; 704 else 705 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 706 } 707 708 /* If this is the first transport addr on this association, 709 * initialize the association PMTU to the peer's PMTU. 710 * If not and the current association PMTU is higher than the new 711 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 712 */ 713 if (asoc->pathmtu) 714 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 715 else 716 asoc->pathmtu = peer->pathmtu; 717 718 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 719 "%d\n", asoc, asoc->pathmtu); 720 peer->pmtu_pending = 0; 721 722 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 723 724 /* The asoc->peer.port might not be meaningful yet, but 725 * initialize the packet structure anyway. 726 */ 727 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 728 asoc->peer.port); 729 730 /* 7.2.1 Slow-Start 731 * 732 * o The initial cwnd before DATA transmission or after a sufficiently 733 * long idle period MUST be set to 734 * min(4*MTU, max(2*MTU, 4380 bytes)) 735 * 736 * o The initial value of ssthresh MAY be arbitrarily high 737 * (for example, implementations MAY use the size of the 738 * receiver advertised window). 739 */ 740 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 741 742 /* At this point, we may not have the receiver's advertised window, 743 * so initialize ssthresh to the default value and it will be set 744 * later when we process the INIT. 745 */ 746 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 747 748 peer->partial_bytes_acked = 0; 749 peer->flight_size = 0; 750 peer->burst_limited = 0; 751 752 /* Set the transport's RTO.initial value */ 753 peer->rto = asoc->rto_initial; 754 sctp_max_rto(asoc, peer); 755 756 /* Set the peer's active state. */ 757 peer->state = peer_state; 758 759 /* Attach the remote transport to our asoc. */ 760 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 761 asoc->peer.transport_count++; 762 763 /* If we do not yet have a primary path, set one. */ 764 if (!asoc->peer.primary_path) { 765 sctp_assoc_set_primary(asoc, peer); 766 asoc->peer.retran_path = peer; 767 } 768 769 if (asoc->peer.active_path == asoc->peer.retran_path && 770 peer->state != SCTP_UNCONFIRMED) { 771 asoc->peer.retran_path = peer; 772 } 773 774 return peer; 775 } 776 777 /* Delete a transport address from an association. */ 778 void sctp_assoc_del_peer(struct sctp_association *asoc, 779 const union sctp_addr *addr) 780 { 781 struct list_head *pos; 782 struct list_head *temp; 783 struct sctp_transport *transport; 784 785 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 786 transport = list_entry(pos, struct sctp_transport, transports); 787 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 788 /* Do book keeping for removing the peer and free it. */ 789 sctp_assoc_rm_peer(asoc, transport); 790 break; 791 } 792 } 793 } 794 795 /* Lookup a transport by address. */ 796 struct sctp_transport *sctp_assoc_lookup_paddr( 797 const struct sctp_association *asoc, 798 const union sctp_addr *address) 799 { 800 struct sctp_transport *t; 801 802 /* Cycle through all transports searching for a peer address. */ 803 804 list_for_each_entry(t, &asoc->peer.transport_addr_list, 805 transports) { 806 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 807 return t; 808 } 809 810 return NULL; 811 } 812 813 /* Remove all transports except a give one */ 814 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 815 struct sctp_transport *primary) 816 { 817 struct sctp_transport *temp; 818 struct sctp_transport *t; 819 820 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 821 transports) { 822 /* if the current transport is not the primary one, delete it */ 823 if (t != primary) 824 sctp_assoc_rm_peer(asoc, t); 825 } 826 } 827 828 /* Engage in transport control operations. 829 * Mark the transport up or down and send a notification to the user. 830 * Select and update the new active and retran paths. 831 */ 832 void sctp_assoc_control_transport(struct sctp_association *asoc, 833 struct sctp_transport *transport, 834 sctp_transport_cmd_t command, 835 sctp_sn_error_t error) 836 { 837 struct sctp_transport *t = NULL; 838 struct sctp_transport *first; 839 struct sctp_transport *second; 840 struct sctp_ulpevent *event; 841 struct sockaddr_storage addr; 842 int spc_state = 0; 843 bool ulp_notify = true; 844 845 /* Record the transition on the transport. */ 846 switch (command) { 847 case SCTP_TRANSPORT_UP: 848 /* If we are moving from UNCONFIRMED state due 849 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 850 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 851 */ 852 if (SCTP_UNCONFIRMED == transport->state && 853 SCTP_HEARTBEAT_SUCCESS == error) 854 spc_state = SCTP_ADDR_CONFIRMED; 855 else 856 spc_state = SCTP_ADDR_AVAILABLE; 857 /* Don't inform ULP about transition from PF to 858 * active state and set cwnd to 1, see SCTP 859 * Quick failover draft section 5.1, point 5 860 */ 861 if (transport->state == SCTP_PF) { 862 ulp_notify = false; 863 transport->cwnd = 1; 864 } 865 transport->state = SCTP_ACTIVE; 866 break; 867 868 case SCTP_TRANSPORT_DOWN: 869 /* If the transport was never confirmed, do not transition it 870 * to inactive state. Also, release the cached route since 871 * there may be a better route next time. 872 */ 873 if (transport->state != SCTP_UNCONFIRMED) 874 transport->state = SCTP_INACTIVE; 875 else { 876 dst_release(transport->dst); 877 transport->dst = NULL; 878 } 879 880 spc_state = SCTP_ADDR_UNREACHABLE; 881 break; 882 883 case SCTP_TRANSPORT_PF: 884 transport->state = SCTP_PF; 885 ulp_notify = false; 886 break; 887 888 default: 889 return; 890 } 891 892 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 893 * user. 894 */ 895 if (ulp_notify) { 896 memset(&addr, 0, sizeof(struct sockaddr_storage)); 897 memcpy(&addr, &transport->ipaddr, 898 transport->af_specific->sockaddr_len); 899 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 900 0, spc_state, error, GFP_ATOMIC); 901 if (event) 902 sctp_ulpq_tail_event(&asoc->ulpq, event); 903 } 904 905 /* Select new active and retran paths. */ 906 907 /* Look for the two most recently used active transports. 908 * 909 * This code produces the wrong ordering whenever jiffies 910 * rolls over, but we still get usable transports, so we don't 911 * worry about it. 912 */ 913 first = NULL; second = NULL; 914 915 list_for_each_entry(t, &asoc->peer.transport_addr_list, 916 transports) { 917 918 if ((t->state == SCTP_INACTIVE) || 919 (t->state == SCTP_UNCONFIRMED) || 920 (t->state == SCTP_PF)) 921 continue; 922 if (!first || t->last_time_heard > first->last_time_heard) { 923 second = first; 924 first = t; 925 } 926 if (!second || t->last_time_heard > second->last_time_heard) 927 second = t; 928 } 929 930 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 931 * 932 * By default, an endpoint should always transmit to the 933 * primary path, unless the SCTP user explicitly specifies the 934 * destination transport address (and possibly source 935 * transport address) to use. 936 * 937 * [If the primary is active but not most recent, bump the most 938 * recently used transport.] 939 */ 940 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 941 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 942 first != asoc->peer.primary_path) { 943 second = first; 944 first = asoc->peer.primary_path; 945 } 946 947 /* If we failed to find a usable transport, just camp on the 948 * primary, even if it is inactive. 949 */ 950 if (!first) { 951 first = asoc->peer.primary_path; 952 second = asoc->peer.primary_path; 953 } 954 955 /* Set the active and retran transports. */ 956 asoc->peer.active_path = first; 957 asoc->peer.retran_path = second; 958 } 959 960 /* Hold a reference to an association. */ 961 void sctp_association_hold(struct sctp_association *asoc) 962 { 963 atomic_inc(&asoc->base.refcnt); 964 } 965 966 /* Release a reference to an association and cleanup 967 * if there are no more references. 968 */ 969 void sctp_association_put(struct sctp_association *asoc) 970 { 971 if (atomic_dec_and_test(&asoc->base.refcnt)) 972 sctp_association_destroy(asoc); 973 } 974 975 /* Allocate the next TSN, Transmission Sequence Number, for the given 976 * association. 977 */ 978 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 979 { 980 /* From Section 1.6 Serial Number Arithmetic: 981 * Transmission Sequence Numbers wrap around when they reach 982 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 983 * after transmitting TSN = 2*32 - 1 is TSN = 0. 984 */ 985 __u32 retval = asoc->next_tsn; 986 asoc->next_tsn++; 987 asoc->unack_data++; 988 989 return retval; 990 } 991 992 /* Compare two addresses to see if they match. Wildcard addresses 993 * only match themselves. 994 */ 995 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 996 const union sctp_addr *ss2) 997 { 998 struct sctp_af *af; 999 1000 af = sctp_get_af_specific(ss1->sa.sa_family); 1001 if (unlikely(!af)) 1002 return 0; 1003 1004 return af->cmp_addr(ss1, ss2); 1005 } 1006 1007 /* Return an ecne chunk to get prepended to a packet. 1008 * Note: We are sly and return a shared, prealloced chunk. FIXME: 1009 * No we don't, but we could/should. 1010 */ 1011 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 1012 { 1013 struct sctp_chunk *chunk; 1014 1015 /* Send ECNE if needed. 1016 * Not being able to allocate a chunk here is not deadly. 1017 */ 1018 if (asoc->need_ecne) 1019 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 1020 else 1021 chunk = NULL; 1022 1023 return chunk; 1024 } 1025 1026 /* 1027 * Find which transport this TSN was sent on. 1028 */ 1029 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1030 __u32 tsn) 1031 { 1032 struct sctp_transport *active; 1033 struct sctp_transport *match; 1034 struct sctp_transport *transport; 1035 struct sctp_chunk *chunk; 1036 __be32 key = htonl(tsn); 1037 1038 match = NULL; 1039 1040 /* 1041 * FIXME: In general, find a more efficient data structure for 1042 * searching. 1043 */ 1044 1045 /* 1046 * The general strategy is to search each transport's transmitted 1047 * list. Return which transport this TSN lives on. 1048 * 1049 * Let's be hopeful and check the active_path first. 1050 * Another optimization would be to know if there is only one 1051 * outbound path and not have to look for the TSN at all. 1052 * 1053 */ 1054 1055 active = asoc->peer.active_path; 1056 1057 list_for_each_entry(chunk, &active->transmitted, 1058 transmitted_list) { 1059 1060 if (key == chunk->subh.data_hdr->tsn) { 1061 match = active; 1062 goto out; 1063 } 1064 } 1065 1066 /* If not found, go search all the other transports. */ 1067 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1068 transports) { 1069 1070 if (transport == active) 1071 continue; 1072 list_for_each_entry(chunk, &transport->transmitted, 1073 transmitted_list) { 1074 if (key == chunk->subh.data_hdr->tsn) { 1075 match = transport; 1076 goto out; 1077 } 1078 } 1079 } 1080 out: 1081 return match; 1082 } 1083 1084 /* Is this the association we are looking for? */ 1085 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1086 struct net *net, 1087 const union sctp_addr *laddr, 1088 const union sctp_addr *paddr) 1089 { 1090 struct sctp_transport *transport; 1091 1092 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1093 (htons(asoc->peer.port) == paddr->v4.sin_port) && 1094 net_eq(sock_net(asoc->base.sk), net)) { 1095 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1096 if (!transport) 1097 goto out; 1098 1099 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1100 sctp_sk(asoc->base.sk))) 1101 goto out; 1102 } 1103 transport = NULL; 1104 1105 out: 1106 return transport; 1107 } 1108 1109 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1110 static void sctp_assoc_bh_rcv(struct work_struct *work) 1111 { 1112 struct sctp_association *asoc = 1113 container_of(work, struct sctp_association, 1114 base.inqueue.immediate); 1115 struct net *net = sock_net(asoc->base.sk); 1116 struct sctp_endpoint *ep; 1117 struct sctp_chunk *chunk; 1118 struct sctp_inq *inqueue; 1119 int state; 1120 sctp_subtype_t subtype; 1121 int error = 0; 1122 1123 /* The association should be held so we should be safe. */ 1124 ep = asoc->ep; 1125 1126 inqueue = &asoc->base.inqueue; 1127 sctp_association_hold(asoc); 1128 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1129 state = asoc->state; 1130 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1131 1132 /* SCTP-AUTH, Section 6.3: 1133 * The receiver has a list of chunk types which it expects 1134 * to be received only after an AUTH-chunk. This list has 1135 * been sent to the peer during the association setup. It 1136 * MUST silently discard these chunks if they are not placed 1137 * after an AUTH chunk in the packet. 1138 */ 1139 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1140 continue; 1141 1142 /* Remember where the last DATA chunk came from so we 1143 * know where to send the SACK. 1144 */ 1145 if (sctp_chunk_is_data(chunk)) 1146 asoc->peer.last_data_from = chunk->transport; 1147 else { 1148 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1149 asoc->stats.ictrlchunks++; 1150 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1151 asoc->stats.isacks++; 1152 } 1153 1154 if (chunk->transport) 1155 chunk->transport->last_time_heard = jiffies; 1156 1157 /* Run through the state machine. */ 1158 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1159 state, ep, asoc, chunk, GFP_ATOMIC); 1160 1161 /* Check to see if the association is freed in response to 1162 * the incoming chunk. If so, get out of the while loop. 1163 */ 1164 if (asoc->base.dead) 1165 break; 1166 1167 /* If there is an error on chunk, discard this packet. */ 1168 if (error && chunk) 1169 chunk->pdiscard = 1; 1170 } 1171 sctp_association_put(asoc); 1172 } 1173 1174 /* This routine moves an association from its old sk to a new sk. */ 1175 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1176 { 1177 struct sctp_sock *newsp = sctp_sk(newsk); 1178 struct sock *oldsk = assoc->base.sk; 1179 1180 /* Delete the association from the old endpoint's list of 1181 * associations. 1182 */ 1183 list_del_init(&assoc->asocs); 1184 1185 /* Decrement the backlog value for a TCP-style socket. */ 1186 if (sctp_style(oldsk, TCP)) 1187 oldsk->sk_ack_backlog--; 1188 1189 /* Release references to the old endpoint and the sock. */ 1190 sctp_endpoint_put(assoc->ep); 1191 sock_put(assoc->base.sk); 1192 1193 /* Get a reference to the new endpoint. */ 1194 assoc->ep = newsp->ep; 1195 sctp_endpoint_hold(assoc->ep); 1196 1197 /* Get a reference to the new sock. */ 1198 assoc->base.sk = newsk; 1199 sock_hold(assoc->base.sk); 1200 1201 /* Add the association to the new endpoint's list of associations. */ 1202 sctp_endpoint_add_asoc(newsp->ep, assoc); 1203 } 1204 1205 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1206 void sctp_assoc_update(struct sctp_association *asoc, 1207 struct sctp_association *new) 1208 { 1209 struct sctp_transport *trans; 1210 struct list_head *pos, *temp; 1211 1212 /* Copy in new parameters of peer. */ 1213 asoc->c = new->c; 1214 asoc->peer.rwnd = new->peer.rwnd; 1215 asoc->peer.sack_needed = new->peer.sack_needed; 1216 asoc->peer.i = new->peer.i; 1217 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1218 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1219 1220 /* Remove any peer addresses not present in the new association. */ 1221 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1222 trans = list_entry(pos, struct sctp_transport, transports); 1223 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1224 sctp_assoc_rm_peer(asoc, trans); 1225 continue; 1226 } 1227 1228 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1229 sctp_transport_reset(trans); 1230 } 1231 1232 /* If the case is A (association restart), use 1233 * initial_tsn as next_tsn. If the case is B, use 1234 * current next_tsn in case data sent to peer 1235 * has been discarded and needs retransmission. 1236 */ 1237 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1238 asoc->next_tsn = new->next_tsn; 1239 asoc->ctsn_ack_point = new->ctsn_ack_point; 1240 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1241 1242 /* Reinitialize SSN for both local streams 1243 * and peer's streams. 1244 */ 1245 sctp_ssnmap_clear(asoc->ssnmap); 1246 1247 /* Flush the ULP reassembly and ordered queue. 1248 * Any data there will now be stale and will 1249 * cause problems. 1250 */ 1251 sctp_ulpq_flush(&asoc->ulpq); 1252 1253 /* reset the overall association error count so 1254 * that the restarted association doesn't get torn 1255 * down on the next retransmission timer. 1256 */ 1257 asoc->overall_error_count = 0; 1258 1259 } else { 1260 /* Add any peer addresses from the new association. */ 1261 list_for_each_entry(trans, &new->peer.transport_addr_list, 1262 transports) { 1263 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1264 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1265 GFP_ATOMIC, trans->state); 1266 } 1267 1268 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1269 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1270 if (!asoc->ssnmap) { 1271 /* Move the ssnmap. */ 1272 asoc->ssnmap = new->ssnmap; 1273 new->ssnmap = NULL; 1274 } 1275 1276 if (!asoc->assoc_id) { 1277 /* get a new association id since we don't have one 1278 * yet. 1279 */ 1280 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1281 } 1282 } 1283 1284 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1285 * and also move the association shared keys over 1286 */ 1287 kfree(asoc->peer.peer_random); 1288 asoc->peer.peer_random = new->peer.peer_random; 1289 new->peer.peer_random = NULL; 1290 1291 kfree(asoc->peer.peer_chunks); 1292 asoc->peer.peer_chunks = new->peer.peer_chunks; 1293 new->peer.peer_chunks = NULL; 1294 1295 kfree(asoc->peer.peer_hmacs); 1296 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1297 new->peer.peer_hmacs = NULL; 1298 1299 sctp_auth_key_put(asoc->asoc_shared_key); 1300 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1301 } 1302 1303 /* Update the retran path for sending a retransmitted packet. 1304 * Round-robin through the active transports, else round-robin 1305 * through the inactive transports as this is the next best thing 1306 * we can try. 1307 */ 1308 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1309 { 1310 struct sctp_transport *t, *next; 1311 struct list_head *head = &asoc->peer.transport_addr_list; 1312 struct list_head *pos; 1313 1314 if (asoc->peer.transport_count == 1) 1315 return; 1316 1317 /* Find the next transport in a round-robin fashion. */ 1318 t = asoc->peer.retran_path; 1319 pos = &t->transports; 1320 next = NULL; 1321 1322 while (1) { 1323 /* Skip the head. */ 1324 if (pos->next == head) 1325 pos = head->next; 1326 else 1327 pos = pos->next; 1328 1329 t = list_entry(pos, struct sctp_transport, transports); 1330 1331 /* We have exhausted the list, but didn't find any 1332 * other active transports. If so, use the next 1333 * transport. 1334 */ 1335 if (t == asoc->peer.retran_path) { 1336 t = next; 1337 break; 1338 } 1339 1340 /* Try to find an active transport. */ 1341 1342 if ((t->state == SCTP_ACTIVE) || 1343 (t->state == SCTP_UNKNOWN)) { 1344 break; 1345 } else { 1346 /* Keep track of the next transport in case 1347 * we don't find any active transport. 1348 */ 1349 if (t->state != SCTP_UNCONFIRMED && !next) 1350 next = t; 1351 } 1352 } 1353 1354 if (t) 1355 asoc->peer.retran_path = t; 1356 else 1357 t = asoc->peer.retran_path; 1358 1359 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1360 " %p addr: ", 1361 " port: %d\n", 1362 asoc, 1363 (&t->ipaddr), 1364 ntohs(t->ipaddr.v4.sin_port)); 1365 } 1366 1367 /* Choose the transport for sending retransmit packet. */ 1368 struct sctp_transport *sctp_assoc_choose_alter_transport( 1369 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1370 { 1371 /* If this is the first time packet is sent, use the active path, 1372 * else use the retran path. If the last packet was sent over the 1373 * retran path, update the retran path and use it. 1374 */ 1375 if (!last_sent_to) 1376 return asoc->peer.active_path; 1377 else { 1378 if (last_sent_to == asoc->peer.retran_path) 1379 sctp_assoc_update_retran_path(asoc); 1380 return asoc->peer.retran_path; 1381 } 1382 } 1383 1384 /* Update the association's pmtu and frag_point by going through all the 1385 * transports. This routine is called when a transport's PMTU has changed. 1386 */ 1387 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1388 { 1389 struct sctp_transport *t; 1390 __u32 pmtu = 0; 1391 1392 if (!asoc) 1393 return; 1394 1395 /* Get the lowest pmtu of all the transports. */ 1396 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1397 transports) { 1398 if (t->pmtu_pending && t->dst) { 1399 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1400 t->pmtu_pending = 0; 1401 } 1402 if (!pmtu || (t->pathmtu < pmtu)) 1403 pmtu = t->pathmtu; 1404 } 1405 1406 if (pmtu) { 1407 asoc->pathmtu = pmtu; 1408 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1409 } 1410 1411 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1412 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1413 } 1414 1415 /* Should we send a SACK to update our peer? */ 1416 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1417 { 1418 struct net *net = sock_net(asoc->base.sk); 1419 switch (asoc->state) { 1420 case SCTP_STATE_ESTABLISHED: 1421 case SCTP_STATE_SHUTDOWN_PENDING: 1422 case SCTP_STATE_SHUTDOWN_RECEIVED: 1423 case SCTP_STATE_SHUTDOWN_SENT: 1424 if ((asoc->rwnd > asoc->a_rwnd) && 1425 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1426 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1427 asoc->pathmtu))) 1428 return 1; 1429 break; 1430 default: 1431 break; 1432 } 1433 return 0; 1434 } 1435 1436 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1437 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1438 { 1439 struct sctp_chunk *sack; 1440 struct timer_list *timer; 1441 1442 if (asoc->rwnd_over) { 1443 if (asoc->rwnd_over >= len) { 1444 asoc->rwnd_over -= len; 1445 } else { 1446 asoc->rwnd += (len - asoc->rwnd_over); 1447 asoc->rwnd_over = 0; 1448 } 1449 } else { 1450 asoc->rwnd += len; 1451 } 1452 1453 /* If we had window pressure, start recovering it 1454 * once our rwnd had reached the accumulated pressure 1455 * threshold. The idea is to recover slowly, but up 1456 * to the initial advertised window. 1457 */ 1458 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1459 int change = min(asoc->pathmtu, asoc->rwnd_press); 1460 asoc->rwnd += change; 1461 asoc->rwnd_press -= change; 1462 } 1463 1464 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1465 "- %u\n", __func__, asoc, len, asoc->rwnd, 1466 asoc->rwnd_over, asoc->a_rwnd); 1467 1468 /* Send a window update SACK if the rwnd has increased by at least the 1469 * minimum of the association's PMTU and half of the receive buffer. 1470 * The algorithm used is similar to the one described in 1471 * Section 4.2.3.3 of RFC 1122. 1472 */ 1473 if (sctp_peer_needs_update(asoc)) { 1474 asoc->a_rwnd = asoc->rwnd; 1475 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1476 "rwnd: %u a_rwnd: %u\n", __func__, 1477 asoc, asoc->rwnd, asoc->a_rwnd); 1478 sack = sctp_make_sack(asoc); 1479 if (!sack) 1480 return; 1481 1482 asoc->peer.sack_needed = 0; 1483 1484 sctp_outq_tail(&asoc->outqueue, sack); 1485 1486 /* Stop the SACK timer. */ 1487 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1488 if (del_timer(timer)) 1489 sctp_association_put(asoc); 1490 } 1491 } 1492 1493 /* Decrease asoc's rwnd by len. */ 1494 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1495 { 1496 int rx_count; 1497 int over = 0; 1498 1499 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1500 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1501 1502 if (asoc->ep->rcvbuf_policy) 1503 rx_count = atomic_read(&asoc->rmem_alloc); 1504 else 1505 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1506 1507 /* If we've reached or overflowed our receive buffer, announce 1508 * a 0 rwnd if rwnd would still be positive. Store the 1509 * the pottential pressure overflow so that the window can be restored 1510 * back to original value. 1511 */ 1512 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1513 over = 1; 1514 1515 if (asoc->rwnd >= len) { 1516 asoc->rwnd -= len; 1517 if (over) { 1518 asoc->rwnd_press += asoc->rwnd; 1519 asoc->rwnd = 0; 1520 } 1521 } else { 1522 asoc->rwnd_over = len - asoc->rwnd; 1523 asoc->rwnd = 0; 1524 } 1525 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1526 __func__, asoc, len, asoc->rwnd, 1527 asoc->rwnd_over, asoc->rwnd_press); 1528 } 1529 1530 /* Build the bind address list for the association based on info from the 1531 * local endpoint and the remote peer. 1532 */ 1533 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1534 sctp_scope_t scope, gfp_t gfp) 1535 { 1536 int flags; 1537 1538 /* Use scoping rules to determine the subset of addresses from 1539 * the endpoint. 1540 */ 1541 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1542 if (asoc->peer.ipv4_address) 1543 flags |= SCTP_ADDR4_PEERSUPP; 1544 if (asoc->peer.ipv6_address) 1545 flags |= SCTP_ADDR6_PEERSUPP; 1546 1547 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1548 &asoc->base.bind_addr, 1549 &asoc->ep->base.bind_addr, 1550 scope, gfp, flags); 1551 } 1552 1553 /* Build the association's bind address list from the cookie. */ 1554 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1555 struct sctp_cookie *cookie, 1556 gfp_t gfp) 1557 { 1558 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1559 int var_size3 = cookie->raw_addr_list_len; 1560 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1561 1562 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1563 asoc->ep->base.bind_addr.port, gfp); 1564 } 1565 1566 /* Lookup laddr in the bind address list of an association. */ 1567 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1568 const union sctp_addr *laddr) 1569 { 1570 int found = 0; 1571 1572 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1573 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1574 sctp_sk(asoc->base.sk))) 1575 found = 1; 1576 1577 return found; 1578 } 1579 1580 /* Set an association id for a given association */ 1581 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1582 { 1583 bool preload = gfp & __GFP_WAIT; 1584 int ret; 1585 1586 /* If the id is already assigned, keep it. */ 1587 if (asoc->assoc_id) 1588 return 0; 1589 1590 if (preload) 1591 idr_preload(gfp); 1592 spin_lock_bh(&sctp_assocs_id_lock); 1593 /* 0 is not a valid assoc_id, must be >= 1 */ 1594 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1595 spin_unlock_bh(&sctp_assocs_id_lock); 1596 if (preload) 1597 idr_preload_end(); 1598 if (ret < 0) 1599 return ret; 1600 1601 asoc->assoc_id = (sctp_assoc_t)ret; 1602 return 0; 1603 } 1604 1605 /* Free the ASCONF queue */ 1606 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1607 { 1608 struct sctp_chunk *asconf; 1609 struct sctp_chunk *tmp; 1610 1611 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1612 list_del_init(&asconf->list); 1613 sctp_chunk_free(asconf); 1614 } 1615 } 1616 1617 /* Free asconf_ack cache */ 1618 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1619 { 1620 struct sctp_chunk *ack; 1621 struct sctp_chunk *tmp; 1622 1623 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1624 transmitted_list) { 1625 list_del_init(&ack->transmitted_list); 1626 sctp_chunk_free(ack); 1627 } 1628 } 1629 1630 /* Clean up the ASCONF_ACK queue */ 1631 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1632 { 1633 struct sctp_chunk *ack; 1634 struct sctp_chunk *tmp; 1635 1636 /* We can remove all the entries from the queue up to 1637 * the "Peer-Sequence-Number". 1638 */ 1639 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1640 transmitted_list) { 1641 if (ack->subh.addip_hdr->serial == 1642 htonl(asoc->peer.addip_serial)) 1643 break; 1644 1645 list_del_init(&ack->transmitted_list); 1646 sctp_chunk_free(ack); 1647 } 1648 } 1649 1650 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1651 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1652 const struct sctp_association *asoc, 1653 __be32 serial) 1654 { 1655 struct sctp_chunk *ack; 1656 1657 /* Walk through the list of cached ASCONF-ACKs and find the 1658 * ack chunk whose serial number matches that of the request. 1659 */ 1660 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1661 if (ack->subh.addip_hdr->serial == serial) { 1662 sctp_chunk_hold(ack); 1663 return ack; 1664 } 1665 } 1666 1667 return NULL; 1668 } 1669 1670 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1671 { 1672 /* Free any cached ASCONF_ACK chunk. */ 1673 sctp_assoc_free_asconf_acks(asoc); 1674 1675 /* Free the ASCONF queue. */ 1676 sctp_assoc_free_asconf_queue(asoc); 1677 1678 /* Free any cached ASCONF chunk. */ 1679 if (asoc->addip_last_asconf) 1680 sctp_chunk_free(asoc->addip_last_asconf); 1681 } 1682