1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init( 67 struct sctp_association *asoc, 68 const struct sctp_endpoint *ep, 69 const struct sock *sk, 70 enum sctp_scope scope, gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 struct sctp_paramhdr *p; 75 int i; 76 77 /* Retrieve the SCTP per socket area. */ 78 sp = sctp_sk((struct sock *)sk); 79 80 /* Discarding const is appropriate here. */ 81 asoc->ep = (struct sctp_endpoint *)ep; 82 asoc->base.sk = (struct sock *)sk; 83 84 sctp_endpoint_hold(asoc->ep); 85 sock_hold(asoc->base.sk); 86 87 /* Initialize the common base substructure. */ 88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 89 90 /* Initialize the object handling fields. */ 91 refcount_set(&asoc->base.refcnt, 1); 92 93 /* Initialize the bind addr area. */ 94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 95 96 asoc->state = SCTP_STATE_CLOSED; 97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 98 asoc->user_frag = sp->user_frag; 99 100 /* Set the association max_retrans and RTO values from the 101 * socket values. 102 */ 103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 104 asoc->pf_retrans = net->sctp.pf_retrans; 105 106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 109 110 /* Initialize the association's heartbeat interval based on the 111 * sock configured value. 112 */ 113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 114 115 /* Initialize path max retrans value. */ 116 asoc->pathmaxrxt = sp->pathmaxrxt; 117 118 /* Initialize default path MTU. */ 119 asoc->pathmtu = sp->pathmtu; 120 121 /* Set association default SACK delay */ 122 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 123 asoc->sackfreq = sp->sackfreq; 124 125 /* Set the association default flags controlling 126 * Heartbeat, SACK delay, and Path MTU Discovery. 127 */ 128 asoc->param_flags = sp->param_flags; 129 130 /* Initialize the maximum number of new data packets that can be sent 131 * in a burst. 132 */ 133 asoc->max_burst = sp->max_burst; 134 135 /* initialize association timers */ 136 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 139 140 /* sctpimpguide Section 2.12.2 141 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 142 * recommended value of 5 times 'RTO.Max'. 143 */ 144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 145 = 5 * asoc->rto_max; 146 147 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 149 150 /* Initializes the timers */ 151 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 152 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0); 153 154 /* Pull default initialization values from the sock options. 155 * Note: This assumes that the values have already been 156 * validated in the sock. 157 */ 158 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 159 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 160 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 161 162 asoc->max_init_timeo = 163 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 164 165 /* Set the local window size for receive. 166 * This is also the rcvbuf space per association. 167 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 168 * 1500 bytes in one SCTP packet. 169 */ 170 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 171 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 172 else 173 asoc->rwnd = sk->sk_rcvbuf/2; 174 175 asoc->a_rwnd = asoc->rwnd; 176 177 /* Use my own max window until I learn something better. */ 178 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 179 180 /* Initialize the receive memory counter */ 181 atomic_set(&asoc->rmem_alloc, 0); 182 183 init_waitqueue_head(&asoc->wait); 184 185 asoc->c.my_vtag = sctp_generate_tag(ep); 186 asoc->c.my_port = ep->base.bind_addr.port; 187 188 asoc->c.initial_tsn = sctp_generate_tsn(ep); 189 190 asoc->next_tsn = asoc->c.initial_tsn; 191 192 asoc->ctsn_ack_point = asoc->next_tsn - 1; 193 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 194 asoc->highest_sacked = asoc->ctsn_ack_point; 195 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 196 197 /* ADDIP Section 4.1 Asconf Chunk Procedures 198 * 199 * When an endpoint has an ASCONF signaled change to be sent to the 200 * remote endpoint it should do the following: 201 * ... 202 * A2) a serial number should be assigned to the chunk. The serial 203 * number SHOULD be a monotonically increasing number. The serial 204 * numbers SHOULD be initialized at the start of the 205 * association to the same value as the initial TSN. 206 */ 207 asoc->addip_serial = asoc->c.initial_tsn; 208 asoc->strreset_outseq = asoc->c.initial_tsn; 209 210 INIT_LIST_HEAD(&asoc->addip_chunk_list); 211 INIT_LIST_HEAD(&asoc->asconf_ack_list); 212 213 /* Make an empty list of remote transport addresses. */ 214 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 215 216 /* RFC 2960 5.1 Normal Establishment of an Association 217 * 218 * After the reception of the first data chunk in an 219 * association the endpoint must immediately respond with a 220 * sack to acknowledge the data chunk. Subsequent 221 * acknowledgements should be done as described in Section 222 * 6.2. 223 * 224 * [We implement this by telling a new association that it 225 * already received one packet.] 226 */ 227 asoc->peer.sack_needed = 1; 228 asoc->peer.sack_generation = 1; 229 230 /* Assume that the peer will tell us if he recognizes ASCONF 231 * as part of INIT exchange. 232 * The sctp_addip_noauth option is there for backward compatibility 233 * and will revert old behavior. 234 */ 235 if (net->sctp.addip_noauth) 236 asoc->peer.asconf_capable = 1; 237 238 /* Create an input queue. */ 239 sctp_inq_init(&asoc->base.inqueue); 240 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 241 242 /* Create an output queue. */ 243 sctp_outq_init(asoc, &asoc->outqueue); 244 245 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 246 goto fail_init; 247 248 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 249 0, gfp)) 250 goto fail_init; 251 252 /* Assume that peer would support both address types unless we are 253 * told otherwise. 254 */ 255 asoc->peer.ipv4_address = 1; 256 if (asoc->base.sk->sk_family == PF_INET6) 257 asoc->peer.ipv6_address = 1; 258 INIT_LIST_HEAD(&asoc->asocs); 259 260 asoc->default_stream = sp->default_stream; 261 asoc->default_ppid = sp->default_ppid; 262 asoc->default_flags = sp->default_flags; 263 asoc->default_context = sp->default_context; 264 asoc->default_timetolive = sp->default_timetolive; 265 asoc->default_rcv_context = sp->default_rcv_context; 266 267 /* AUTH related initializations */ 268 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 269 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) 270 goto stream_free; 271 272 asoc->active_key_id = ep->active_key_id; 273 asoc->prsctp_enable = ep->prsctp_enable; 274 asoc->reconf_enable = ep->reconf_enable; 275 asoc->strreset_enable = ep->strreset_enable; 276 277 /* Save the hmacs and chunks list into this association */ 278 if (ep->auth_hmacs_list) 279 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 280 ntohs(ep->auth_hmacs_list->param_hdr.length)); 281 if (ep->auth_chunk_list) 282 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 283 ntohs(ep->auth_chunk_list->param_hdr.length)); 284 285 /* Get the AUTH random number for this association */ 286 p = (struct sctp_paramhdr *)asoc->c.auth_random; 287 p->type = SCTP_PARAM_RANDOM; 288 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH); 289 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 290 291 return asoc; 292 293 stream_free: 294 sctp_stream_free(&asoc->stream); 295 fail_init: 296 sock_put(asoc->base.sk); 297 sctp_endpoint_put(asoc->ep); 298 return NULL; 299 } 300 301 /* Allocate and initialize a new association */ 302 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 303 const struct sock *sk, 304 enum sctp_scope scope, gfp_t gfp) 305 { 306 struct sctp_association *asoc; 307 308 asoc = kzalloc(sizeof(*asoc), gfp); 309 if (!asoc) 310 goto fail; 311 312 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 313 goto fail_init; 314 315 SCTP_DBG_OBJCNT_INC(assoc); 316 317 pr_debug("Created asoc %p\n", asoc); 318 319 return asoc; 320 321 fail_init: 322 kfree(asoc); 323 fail: 324 return NULL; 325 } 326 327 /* Free this association if possible. There may still be users, so 328 * the actual deallocation may be delayed. 329 */ 330 void sctp_association_free(struct sctp_association *asoc) 331 { 332 struct sock *sk = asoc->base.sk; 333 struct sctp_transport *transport; 334 struct list_head *pos, *temp; 335 int i; 336 337 /* Only real associations count against the endpoint, so 338 * don't bother for if this is a temporary association. 339 */ 340 if (!list_empty(&asoc->asocs)) { 341 list_del(&asoc->asocs); 342 343 /* Decrement the backlog value for a TCP-style listening 344 * socket. 345 */ 346 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 347 sk->sk_ack_backlog--; 348 } 349 350 /* Mark as dead, so other users can know this structure is 351 * going away. 352 */ 353 asoc->base.dead = true; 354 355 /* Dispose of any data lying around in the outqueue. */ 356 sctp_outq_free(&asoc->outqueue); 357 358 /* Dispose of any pending messages for the upper layer. */ 359 sctp_ulpq_free(&asoc->ulpq); 360 361 /* Dispose of any pending chunks on the inqueue. */ 362 sctp_inq_free(&asoc->base.inqueue); 363 364 sctp_tsnmap_free(&asoc->peer.tsn_map); 365 366 /* Free stream information. */ 367 sctp_stream_free(&asoc->stream); 368 369 if (asoc->strreset_chunk) 370 sctp_chunk_free(asoc->strreset_chunk); 371 372 /* Clean up the bound address list. */ 373 sctp_bind_addr_free(&asoc->base.bind_addr); 374 375 /* Do we need to go through all of our timers and 376 * delete them? To be safe we will try to delete all, but we 377 * should be able to go through and make a guess based 378 * on our state. 379 */ 380 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 381 if (del_timer(&asoc->timers[i])) 382 sctp_association_put(asoc); 383 } 384 385 /* Free peer's cached cookie. */ 386 kfree(asoc->peer.cookie); 387 kfree(asoc->peer.peer_random); 388 kfree(asoc->peer.peer_chunks); 389 kfree(asoc->peer.peer_hmacs); 390 391 /* Release the transport structures. */ 392 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 393 transport = list_entry(pos, struct sctp_transport, transports); 394 list_del_rcu(pos); 395 sctp_unhash_transport(transport); 396 sctp_transport_free(transport); 397 } 398 399 asoc->peer.transport_count = 0; 400 401 sctp_asconf_queue_teardown(asoc); 402 403 /* Free pending address space being deleted */ 404 kfree(asoc->asconf_addr_del_pending); 405 406 /* AUTH - Free the endpoint shared keys */ 407 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 408 409 /* AUTH - Free the association shared key */ 410 sctp_auth_key_put(asoc->asoc_shared_key); 411 412 sctp_association_put(asoc); 413 } 414 415 /* Cleanup and free up an association. */ 416 static void sctp_association_destroy(struct sctp_association *asoc) 417 { 418 if (unlikely(!asoc->base.dead)) { 419 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 420 return; 421 } 422 423 sctp_endpoint_put(asoc->ep); 424 sock_put(asoc->base.sk); 425 426 if (asoc->assoc_id != 0) { 427 spin_lock_bh(&sctp_assocs_id_lock); 428 idr_remove(&sctp_assocs_id, asoc->assoc_id); 429 spin_unlock_bh(&sctp_assocs_id_lock); 430 } 431 432 WARN_ON(atomic_read(&asoc->rmem_alloc)); 433 434 kfree(asoc); 435 SCTP_DBG_OBJCNT_DEC(assoc); 436 } 437 438 /* Change the primary destination address for the peer. */ 439 void sctp_assoc_set_primary(struct sctp_association *asoc, 440 struct sctp_transport *transport) 441 { 442 int changeover = 0; 443 444 /* it's a changeover only if we already have a primary path 445 * that we are changing 446 */ 447 if (asoc->peer.primary_path != NULL && 448 asoc->peer.primary_path != transport) 449 changeover = 1 ; 450 451 asoc->peer.primary_path = transport; 452 453 /* Set a default msg_name for events. */ 454 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 455 sizeof(union sctp_addr)); 456 457 /* If the primary path is changing, assume that the 458 * user wants to use this new path. 459 */ 460 if ((transport->state == SCTP_ACTIVE) || 461 (transport->state == SCTP_UNKNOWN)) 462 asoc->peer.active_path = transport; 463 464 /* 465 * SFR-CACC algorithm: 466 * Upon the receipt of a request to change the primary 467 * destination address, on the data structure for the new 468 * primary destination, the sender MUST do the following: 469 * 470 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 471 * to this destination address earlier. The sender MUST set 472 * CYCLING_CHANGEOVER to indicate that this switch is a 473 * double switch to the same destination address. 474 * 475 * Really, only bother is we have data queued or outstanding on 476 * the association. 477 */ 478 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 479 return; 480 481 if (transport->cacc.changeover_active) 482 transport->cacc.cycling_changeover = changeover; 483 484 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 485 * a changeover has occurred. 486 */ 487 transport->cacc.changeover_active = changeover; 488 489 /* 3) The sender MUST store the next TSN to be sent in 490 * next_tsn_at_change. 491 */ 492 transport->cacc.next_tsn_at_change = asoc->next_tsn; 493 } 494 495 /* Remove a transport from an association. */ 496 void sctp_assoc_rm_peer(struct sctp_association *asoc, 497 struct sctp_transport *peer) 498 { 499 struct list_head *pos; 500 struct sctp_transport *transport; 501 502 pr_debug("%s: association:%p addr:%pISpc\n", 503 __func__, asoc, &peer->ipaddr.sa); 504 505 /* If we are to remove the current retran_path, update it 506 * to the next peer before removing this peer from the list. 507 */ 508 if (asoc->peer.retran_path == peer) 509 sctp_assoc_update_retran_path(asoc); 510 511 /* Remove this peer from the list. */ 512 list_del_rcu(&peer->transports); 513 /* Remove this peer from the transport hashtable */ 514 sctp_unhash_transport(peer); 515 516 /* Get the first transport of asoc. */ 517 pos = asoc->peer.transport_addr_list.next; 518 transport = list_entry(pos, struct sctp_transport, transports); 519 520 /* Update any entries that match the peer to be deleted. */ 521 if (asoc->peer.primary_path == peer) 522 sctp_assoc_set_primary(asoc, transport); 523 if (asoc->peer.active_path == peer) 524 asoc->peer.active_path = transport; 525 if (asoc->peer.retran_path == peer) 526 asoc->peer.retran_path = transport; 527 if (asoc->peer.last_data_from == peer) 528 asoc->peer.last_data_from = transport; 529 530 if (asoc->strreset_chunk && 531 asoc->strreset_chunk->transport == peer) { 532 asoc->strreset_chunk->transport = transport; 533 sctp_transport_reset_reconf_timer(transport); 534 } 535 536 /* If we remove the transport an INIT was last sent to, set it to 537 * NULL. Combined with the update of the retran path above, this 538 * will cause the next INIT to be sent to the next available 539 * transport, maintaining the cycle. 540 */ 541 if (asoc->init_last_sent_to == peer) 542 asoc->init_last_sent_to = NULL; 543 544 /* If we remove the transport an SHUTDOWN was last sent to, set it 545 * to NULL. Combined with the update of the retran path above, this 546 * will cause the next SHUTDOWN to be sent to the next available 547 * transport, maintaining the cycle. 548 */ 549 if (asoc->shutdown_last_sent_to == peer) 550 asoc->shutdown_last_sent_to = NULL; 551 552 /* If we remove the transport an ASCONF was last sent to, set it to 553 * NULL. 554 */ 555 if (asoc->addip_last_asconf && 556 asoc->addip_last_asconf->transport == peer) 557 asoc->addip_last_asconf->transport = NULL; 558 559 /* If we have something on the transmitted list, we have to 560 * save it off. The best place is the active path. 561 */ 562 if (!list_empty(&peer->transmitted)) { 563 struct sctp_transport *active = asoc->peer.active_path; 564 struct sctp_chunk *ch; 565 566 /* Reset the transport of each chunk on this list */ 567 list_for_each_entry(ch, &peer->transmitted, 568 transmitted_list) { 569 ch->transport = NULL; 570 ch->rtt_in_progress = 0; 571 } 572 573 list_splice_tail_init(&peer->transmitted, 574 &active->transmitted); 575 576 /* Start a T3 timer here in case it wasn't running so 577 * that these migrated packets have a chance to get 578 * retransmitted. 579 */ 580 if (!timer_pending(&active->T3_rtx_timer)) 581 if (!mod_timer(&active->T3_rtx_timer, 582 jiffies + active->rto)) 583 sctp_transport_hold(active); 584 } 585 586 asoc->peer.transport_count--; 587 588 sctp_transport_free(peer); 589 } 590 591 /* Add a transport address to an association. */ 592 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 593 const union sctp_addr *addr, 594 const gfp_t gfp, 595 const int peer_state) 596 { 597 struct net *net = sock_net(asoc->base.sk); 598 struct sctp_transport *peer; 599 struct sctp_sock *sp; 600 unsigned short port; 601 602 sp = sctp_sk(asoc->base.sk); 603 604 /* AF_INET and AF_INET6 share common port field. */ 605 port = ntohs(addr->v4.sin_port); 606 607 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 608 asoc, &addr->sa, peer_state); 609 610 /* Set the port if it has not been set yet. */ 611 if (0 == asoc->peer.port) 612 asoc->peer.port = port; 613 614 /* Check to see if this is a duplicate. */ 615 peer = sctp_assoc_lookup_paddr(asoc, addr); 616 if (peer) { 617 /* An UNKNOWN state is only set on transports added by 618 * user in sctp_connectx() call. Such transports should be 619 * considered CONFIRMED per RFC 4960, Section 5.4. 620 */ 621 if (peer->state == SCTP_UNKNOWN) { 622 peer->state = SCTP_ACTIVE; 623 } 624 return peer; 625 } 626 627 peer = sctp_transport_new(net, addr, gfp); 628 if (!peer) 629 return NULL; 630 631 sctp_transport_set_owner(peer, asoc); 632 633 /* Initialize the peer's heartbeat interval based on the 634 * association configured value. 635 */ 636 peer->hbinterval = asoc->hbinterval; 637 638 /* Set the path max_retrans. */ 639 peer->pathmaxrxt = asoc->pathmaxrxt; 640 641 /* And the partial failure retrans threshold */ 642 peer->pf_retrans = asoc->pf_retrans; 643 644 /* Initialize the peer's SACK delay timeout based on the 645 * association configured value. 646 */ 647 peer->sackdelay = asoc->sackdelay; 648 peer->sackfreq = asoc->sackfreq; 649 650 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 651 * based on association setting. 652 */ 653 peer->param_flags = asoc->param_flags; 654 655 sctp_transport_route(peer, NULL, sp); 656 657 /* Initialize the pmtu of the transport. */ 658 if (peer->param_flags & SPP_PMTUD_DISABLE) { 659 if (asoc->pathmtu) 660 peer->pathmtu = asoc->pathmtu; 661 else 662 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 663 } 664 665 /* If this is the first transport addr on this association, 666 * initialize the association PMTU to the peer's PMTU. 667 * If not and the current association PMTU is higher than the new 668 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 669 */ 670 if (asoc->pathmtu) 671 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 672 else 673 asoc->pathmtu = peer->pathmtu; 674 675 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 676 asoc->pathmtu); 677 678 peer->pmtu_pending = 0; 679 680 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 681 682 /* The asoc->peer.port might not be meaningful yet, but 683 * initialize the packet structure anyway. 684 */ 685 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 686 asoc->peer.port); 687 688 /* 7.2.1 Slow-Start 689 * 690 * o The initial cwnd before DATA transmission or after a sufficiently 691 * long idle period MUST be set to 692 * min(4*MTU, max(2*MTU, 4380 bytes)) 693 * 694 * o The initial value of ssthresh MAY be arbitrarily high 695 * (for example, implementations MAY use the size of the 696 * receiver advertised window). 697 */ 698 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 699 700 /* At this point, we may not have the receiver's advertised window, 701 * so initialize ssthresh to the default value and it will be set 702 * later when we process the INIT. 703 */ 704 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 705 706 peer->partial_bytes_acked = 0; 707 peer->flight_size = 0; 708 peer->burst_limited = 0; 709 710 /* Set the transport's RTO.initial value */ 711 peer->rto = asoc->rto_initial; 712 sctp_max_rto(asoc, peer); 713 714 /* Set the peer's active state. */ 715 peer->state = peer_state; 716 717 /* Add this peer into the transport hashtable */ 718 if (sctp_hash_transport(peer)) { 719 sctp_transport_free(peer); 720 return NULL; 721 } 722 723 /* Attach the remote transport to our asoc. */ 724 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 725 asoc->peer.transport_count++; 726 727 /* If we do not yet have a primary path, set one. */ 728 if (!asoc->peer.primary_path) { 729 sctp_assoc_set_primary(asoc, peer); 730 asoc->peer.retran_path = peer; 731 } 732 733 if (asoc->peer.active_path == asoc->peer.retran_path && 734 peer->state != SCTP_UNCONFIRMED) { 735 asoc->peer.retran_path = peer; 736 } 737 738 return peer; 739 } 740 741 /* Delete a transport address from an association. */ 742 void sctp_assoc_del_peer(struct sctp_association *asoc, 743 const union sctp_addr *addr) 744 { 745 struct list_head *pos; 746 struct list_head *temp; 747 struct sctp_transport *transport; 748 749 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 750 transport = list_entry(pos, struct sctp_transport, transports); 751 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 752 /* Do book keeping for removing the peer and free it. */ 753 sctp_assoc_rm_peer(asoc, transport); 754 break; 755 } 756 } 757 } 758 759 /* Lookup a transport by address. */ 760 struct sctp_transport *sctp_assoc_lookup_paddr( 761 const struct sctp_association *asoc, 762 const union sctp_addr *address) 763 { 764 struct sctp_transport *t; 765 766 /* Cycle through all transports searching for a peer address. */ 767 768 list_for_each_entry(t, &asoc->peer.transport_addr_list, 769 transports) { 770 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 771 return t; 772 } 773 774 return NULL; 775 } 776 777 /* Remove all transports except a give one */ 778 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 779 struct sctp_transport *primary) 780 { 781 struct sctp_transport *temp; 782 struct sctp_transport *t; 783 784 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 785 transports) { 786 /* if the current transport is not the primary one, delete it */ 787 if (t != primary) 788 sctp_assoc_rm_peer(asoc, t); 789 } 790 } 791 792 /* Engage in transport control operations. 793 * Mark the transport up or down and send a notification to the user. 794 * Select and update the new active and retran paths. 795 */ 796 void sctp_assoc_control_transport(struct sctp_association *asoc, 797 struct sctp_transport *transport, 798 enum sctp_transport_cmd command, 799 sctp_sn_error_t error) 800 { 801 struct sctp_ulpevent *event; 802 struct sockaddr_storage addr; 803 int spc_state = 0; 804 bool ulp_notify = true; 805 806 /* Record the transition on the transport. */ 807 switch (command) { 808 case SCTP_TRANSPORT_UP: 809 /* If we are moving from UNCONFIRMED state due 810 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 811 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 812 */ 813 if (SCTP_UNCONFIRMED == transport->state && 814 SCTP_HEARTBEAT_SUCCESS == error) 815 spc_state = SCTP_ADDR_CONFIRMED; 816 else 817 spc_state = SCTP_ADDR_AVAILABLE; 818 /* Don't inform ULP about transition from PF to 819 * active state and set cwnd to 1 MTU, see SCTP 820 * Quick failover draft section 5.1, point 5 821 */ 822 if (transport->state == SCTP_PF) { 823 ulp_notify = false; 824 transport->cwnd = asoc->pathmtu; 825 } 826 transport->state = SCTP_ACTIVE; 827 break; 828 829 case SCTP_TRANSPORT_DOWN: 830 /* If the transport was never confirmed, do not transition it 831 * to inactive state. Also, release the cached route since 832 * there may be a better route next time. 833 */ 834 if (transport->state != SCTP_UNCONFIRMED) 835 transport->state = SCTP_INACTIVE; 836 else { 837 sctp_transport_dst_release(transport); 838 ulp_notify = false; 839 } 840 841 spc_state = SCTP_ADDR_UNREACHABLE; 842 break; 843 844 case SCTP_TRANSPORT_PF: 845 transport->state = SCTP_PF; 846 ulp_notify = false; 847 break; 848 849 default: 850 return; 851 } 852 853 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 854 * to the user. 855 */ 856 if (ulp_notify) { 857 memset(&addr, 0, sizeof(struct sockaddr_storage)); 858 memcpy(&addr, &transport->ipaddr, 859 transport->af_specific->sockaddr_len); 860 861 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 862 0, spc_state, error, GFP_ATOMIC); 863 if (event) 864 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 865 } 866 867 /* Select new active and retran paths. */ 868 sctp_select_active_and_retran_path(asoc); 869 } 870 871 /* Hold a reference to an association. */ 872 void sctp_association_hold(struct sctp_association *asoc) 873 { 874 refcount_inc(&asoc->base.refcnt); 875 } 876 877 /* Release a reference to an association and cleanup 878 * if there are no more references. 879 */ 880 void sctp_association_put(struct sctp_association *asoc) 881 { 882 if (refcount_dec_and_test(&asoc->base.refcnt)) 883 sctp_association_destroy(asoc); 884 } 885 886 /* Allocate the next TSN, Transmission Sequence Number, for the given 887 * association. 888 */ 889 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 890 { 891 /* From Section 1.6 Serial Number Arithmetic: 892 * Transmission Sequence Numbers wrap around when they reach 893 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 894 * after transmitting TSN = 2*32 - 1 is TSN = 0. 895 */ 896 __u32 retval = asoc->next_tsn; 897 asoc->next_tsn++; 898 asoc->unack_data++; 899 900 return retval; 901 } 902 903 /* Compare two addresses to see if they match. Wildcard addresses 904 * only match themselves. 905 */ 906 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 907 const union sctp_addr *ss2) 908 { 909 struct sctp_af *af; 910 911 af = sctp_get_af_specific(ss1->sa.sa_family); 912 if (unlikely(!af)) 913 return 0; 914 915 return af->cmp_addr(ss1, ss2); 916 } 917 918 /* Return an ecne chunk to get prepended to a packet. 919 * Note: We are sly and return a shared, prealloced chunk. FIXME: 920 * No we don't, but we could/should. 921 */ 922 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 923 { 924 if (!asoc->need_ecne) 925 return NULL; 926 927 /* Send ECNE if needed. 928 * Not being able to allocate a chunk here is not deadly. 929 */ 930 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 931 } 932 933 /* 934 * Find which transport this TSN was sent on. 935 */ 936 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 937 __u32 tsn) 938 { 939 struct sctp_transport *active; 940 struct sctp_transport *match; 941 struct sctp_transport *transport; 942 struct sctp_chunk *chunk; 943 __be32 key = htonl(tsn); 944 945 match = NULL; 946 947 /* 948 * FIXME: In general, find a more efficient data structure for 949 * searching. 950 */ 951 952 /* 953 * The general strategy is to search each transport's transmitted 954 * list. Return which transport this TSN lives on. 955 * 956 * Let's be hopeful and check the active_path first. 957 * Another optimization would be to know if there is only one 958 * outbound path and not have to look for the TSN at all. 959 * 960 */ 961 962 active = asoc->peer.active_path; 963 964 list_for_each_entry(chunk, &active->transmitted, 965 transmitted_list) { 966 967 if (key == chunk->subh.data_hdr->tsn) { 968 match = active; 969 goto out; 970 } 971 } 972 973 /* If not found, go search all the other transports. */ 974 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 975 transports) { 976 977 if (transport == active) 978 continue; 979 list_for_each_entry(chunk, &transport->transmitted, 980 transmitted_list) { 981 if (key == chunk->subh.data_hdr->tsn) { 982 match = transport; 983 goto out; 984 } 985 } 986 } 987 out: 988 return match; 989 } 990 991 /* Is this the association we are looking for? */ 992 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 993 struct net *net, 994 const union sctp_addr *laddr, 995 const union sctp_addr *paddr) 996 { 997 struct sctp_transport *transport; 998 999 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1000 (htons(asoc->peer.port) == paddr->v4.sin_port) && 1001 net_eq(sock_net(asoc->base.sk), net)) { 1002 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1003 if (!transport) 1004 goto out; 1005 1006 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1007 sctp_sk(asoc->base.sk))) 1008 goto out; 1009 } 1010 transport = NULL; 1011 1012 out: 1013 return transport; 1014 } 1015 1016 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1017 static void sctp_assoc_bh_rcv(struct work_struct *work) 1018 { 1019 struct sctp_association *asoc = 1020 container_of(work, struct sctp_association, 1021 base.inqueue.immediate); 1022 struct net *net = sock_net(asoc->base.sk); 1023 union sctp_subtype subtype; 1024 struct sctp_endpoint *ep; 1025 struct sctp_chunk *chunk; 1026 struct sctp_inq *inqueue; 1027 int state; 1028 int error = 0; 1029 1030 /* The association should be held so we should be safe. */ 1031 ep = asoc->ep; 1032 1033 inqueue = &asoc->base.inqueue; 1034 sctp_association_hold(asoc); 1035 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1036 state = asoc->state; 1037 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1038 1039 /* SCTP-AUTH, Section 6.3: 1040 * The receiver has a list of chunk types which it expects 1041 * to be received only after an AUTH-chunk. This list has 1042 * been sent to the peer during the association setup. It 1043 * MUST silently discard these chunks if they are not placed 1044 * after an AUTH chunk in the packet. 1045 */ 1046 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1047 continue; 1048 1049 /* Remember where the last DATA chunk came from so we 1050 * know where to send the SACK. 1051 */ 1052 if (sctp_chunk_is_data(chunk)) 1053 asoc->peer.last_data_from = chunk->transport; 1054 else { 1055 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1056 asoc->stats.ictrlchunks++; 1057 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1058 asoc->stats.isacks++; 1059 } 1060 1061 if (chunk->transport) 1062 chunk->transport->last_time_heard = ktime_get(); 1063 1064 /* Run through the state machine. */ 1065 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1066 state, ep, asoc, chunk, GFP_ATOMIC); 1067 1068 /* Check to see if the association is freed in response to 1069 * the incoming chunk. If so, get out of the while loop. 1070 */ 1071 if (asoc->base.dead) 1072 break; 1073 1074 /* If there is an error on chunk, discard this packet. */ 1075 if (error && chunk) 1076 chunk->pdiscard = 1; 1077 } 1078 sctp_association_put(asoc); 1079 } 1080 1081 /* This routine moves an association from its old sk to a new sk. */ 1082 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1083 { 1084 struct sctp_sock *newsp = sctp_sk(newsk); 1085 struct sock *oldsk = assoc->base.sk; 1086 1087 /* Delete the association from the old endpoint's list of 1088 * associations. 1089 */ 1090 list_del_init(&assoc->asocs); 1091 1092 /* Decrement the backlog value for a TCP-style socket. */ 1093 if (sctp_style(oldsk, TCP)) 1094 oldsk->sk_ack_backlog--; 1095 1096 /* Release references to the old endpoint and the sock. */ 1097 sctp_endpoint_put(assoc->ep); 1098 sock_put(assoc->base.sk); 1099 1100 /* Get a reference to the new endpoint. */ 1101 assoc->ep = newsp->ep; 1102 sctp_endpoint_hold(assoc->ep); 1103 1104 /* Get a reference to the new sock. */ 1105 assoc->base.sk = newsk; 1106 sock_hold(assoc->base.sk); 1107 1108 /* Add the association to the new endpoint's list of associations. */ 1109 sctp_endpoint_add_asoc(newsp->ep, assoc); 1110 } 1111 1112 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1113 int sctp_assoc_update(struct sctp_association *asoc, 1114 struct sctp_association *new) 1115 { 1116 struct sctp_transport *trans; 1117 struct list_head *pos, *temp; 1118 1119 /* Copy in new parameters of peer. */ 1120 asoc->c = new->c; 1121 asoc->peer.rwnd = new->peer.rwnd; 1122 asoc->peer.sack_needed = new->peer.sack_needed; 1123 asoc->peer.auth_capable = new->peer.auth_capable; 1124 asoc->peer.i = new->peer.i; 1125 1126 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1127 asoc->peer.i.initial_tsn, GFP_ATOMIC)) 1128 return -ENOMEM; 1129 1130 /* Remove any peer addresses not present in the new association. */ 1131 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1132 trans = list_entry(pos, struct sctp_transport, transports); 1133 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1134 sctp_assoc_rm_peer(asoc, trans); 1135 continue; 1136 } 1137 1138 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1139 sctp_transport_reset(trans); 1140 } 1141 1142 /* If the case is A (association restart), use 1143 * initial_tsn as next_tsn. If the case is B, use 1144 * current next_tsn in case data sent to peer 1145 * has been discarded and needs retransmission. 1146 */ 1147 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1148 asoc->next_tsn = new->next_tsn; 1149 asoc->ctsn_ack_point = new->ctsn_ack_point; 1150 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1151 1152 /* Reinitialize SSN for both local streams 1153 * and peer's streams. 1154 */ 1155 sctp_stream_clear(&asoc->stream); 1156 1157 /* Flush the ULP reassembly and ordered queue. 1158 * Any data there will now be stale and will 1159 * cause problems. 1160 */ 1161 sctp_ulpq_flush(&asoc->ulpq); 1162 1163 /* reset the overall association error count so 1164 * that the restarted association doesn't get torn 1165 * down on the next retransmission timer. 1166 */ 1167 asoc->overall_error_count = 0; 1168 1169 } else { 1170 /* Add any peer addresses from the new association. */ 1171 list_for_each_entry(trans, &new->peer.transport_addr_list, 1172 transports) 1173 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) && 1174 !sctp_assoc_add_peer(asoc, &trans->ipaddr, 1175 GFP_ATOMIC, trans->state)) 1176 return -ENOMEM; 1177 1178 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1179 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1180 1181 if (sctp_state(asoc, COOKIE_WAIT)) 1182 sctp_stream_update(&asoc->stream, &new->stream); 1183 1184 /* get a new assoc id if we don't have one yet. */ 1185 if (sctp_assoc_set_id(asoc, GFP_ATOMIC)) 1186 return -ENOMEM; 1187 } 1188 1189 /* SCTP-AUTH: Save the peer parameters from the new associations 1190 * and also move the association shared keys over 1191 */ 1192 kfree(asoc->peer.peer_random); 1193 asoc->peer.peer_random = new->peer.peer_random; 1194 new->peer.peer_random = NULL; 1195 1196 kfree(asoc->peer.peer_chunks); 1197 asoc->peer.peer_chunks = new->peer.peer_chunks; 1198 new->peer.peer_chunks = NULL; 1199 1200 kfree(asoc->peer.peer_hmacs); 1201 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1202 new->peer.peer_hmacs = NULL; 1203 1204 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1205 } 1206 1207 /* Update the retran path for sending a retransmitted packet. 1208 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1209 * 1210 * When there is outbound data to send and the primary path 1211 * becomes inactive (e.g., due to failures), or where the 1212 * SCTP user explicitly requests to send data to an 1213 * inactive destination transport address, before reporting 1214 * an error to its ULP, the SCTP endpoint should try to send 1215 * the data to an alternate active destination transport 1216 * address if one exists. 1217 * 1218 * When retransmitting data that timed out, if the endpoint 1219 * is multihomed, it should consider each source-destination 1220 * address pair in its retransmission selection policy. 1221 * When retransmitting timed-out data, the endpoint should 1222 * attempt to pick the most divergent source-destination 1223 * pair from the original source-destination pair to which 1224 * the packet was transmitted. 1225 * 1226 * Note: Rules for picking the most divergent source-destination 1227 * pair are an implementation decision and are not specified 1228 * within this document. 1229 * 1230 * Our basic strategy is to round-robin transports in priorities 1231 * according to sctp_trans_score() e.g., if no such 1232 * transport with state SCTP_ACTIVE exists, round-robin through 1233 * SCTP_UNKNOWN, etc. You get the picture. 1234 */ 1235 static u8 sctp_trans_score(const struct sctp_transport *trans) 1236 { 1237 switch (trans->state) { 1238 case SCTP_ACTIVE: 1239 return 3; /* best case */ 1240 case SCTP_UNKNOWN: 1241 return 2; 1242 case SCTP_PF: 1243 return 1; 1244 default: /* case SCTP_INACTIVE */ 1245 return 0; /* worst case */ 1246 } 1247 } 1248 1249 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1250 struct sctp_transport *trans2) 1251 { 1252 if (trans1->error_count > trans2->error_count) { 1253 return trans2; 1254 } else if (trans1->error_count == trans2->error_count && 1255 ktime_after(trans2->last_time_heard, 1256 trans1->last_time_heard)) { 1257 return trans2; 1258 } else { 1259 return trans1; 1260 } 1261 } 1262 1263 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1264 struct sctp_transport *best) 1265 { 1266 u8 score_curr, score_best; 1267 1268 if (best == NULL || curr == best) 1269 return curr; 1270 1271 score_curr = sctp_trans_score(curr); 1272 score_best = sctp_trans_score(best); 1273 1274 /* First, try a score-based selection if both transport states 1275 * differ. If we're in a tie, lets try to make a more clever 1276 * decision here based on error counts and last time heard. 1277 */ 1278 if (score_curr > score_best) 1279 return curr; 1280 else if (score_curr == score_best) 1281 return sctp_trans_elect_tie(best, curr); 1282 else 1283 return best; 1284 } 1285 1286 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1287 { 1288 struct sctp_transport *trans = asoc->peer.retran_path; 1289 struct sctp_transport *trans_next = NULL; 1290 1291 /* We're done as we only have the one and only path. */ 1292 if (asoc->peer.transport_count == 1) 1293 return; 1294 /* If active_path and retran_path are the same and active, 1295 * then this is the only active path. Use it. 1296 */ 1297 if (asoc->peer.active_path == asoc->peer.retran_path && 1298 asoc->peer.active_path->state == SCTP_ACTIVE) 1299 return; 1300 1301 /* Iterate from retran_path's successor back to retran_path. */ 1302 for (trans = list_next_entry(trans, transports); 1; 1303 trans = list_next_entry(trans, transports)) { 1304 /* Manually skip the head element. */ 1305 if (&trans->transports == &asoc->peer.transport_addr_list) 1306 continue; 1307 if (trans->state == SCTP_UNCONFIRMED) 1308 continue; 1309 trans_next = sctp_trans_elect_best(trans, trans_next); 1310 /* Active is good enough for immediate return. */ 1311 if (trans_next->state == SCTP_ACTIVE) 1312 break; 1313 /* We've reached the end, time to update path. */ 1314 if (trans == asoc->peer.retran_path) 1315 break; 1316 } 1317 1318 asoc->peer.retran_path = trans_next; 1319 1320 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1321 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1322 } 1323 1324 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1325 { 1326 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1327 struct sctp_transport *trans_pf = NULL; 1328 1329 /* Look for the two most recently used active transports. */ 1330 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1331 transports) { 1332 /* Skip uninteresting transports. */ 1333 if (trans->state == SCTP_INACTIVE || 1334 trans->state == SCTP_UNCONFIRMED) 1335 continue; 1336 /* Keep track of the best PF transport from our 1337 * list in case we don't find an active one. 1338 */ 1339 if (trans->state == SCTP_PF) { 1340 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1341 continue; 1342 } 1343 /* For active transports, pick the most recent ones. */ 1344 if (trans_pri == NULL || 1345 ktime_after(trans->last_time_heard, 1346 trans_pri->last_time_heard)) { 1347 trans_sec = trans_pri; 1348 trans_pri = trans; 1349 } else if (trans_sec == NULL || 1350 ktime_after(trans->last_time_heard, 1351 trans_sec->last_time_heard)) { 1352 trans_sec = trans; 1353 } 1354 } 1355 1356 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1357 * 1358 * By default, an endpoint should always transmit to the primary 1359 * path, unless the SCTP user explicitly specifies the 1360 * destination transport address (and possibly source transport 1361 * address) to use. [If the primary is active but not most recent, 1362 * bump the most recently used transport.] 1363 */ 1364 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1365 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1366 asoc->peer.primary_path != trans_pri) { 1367 trans_sec = trans_pri; 1368 trans_pri = asoc->peer.primary_path; 1369 } 1370 1371 /* We did not find anything useful for a possible retransmission 1372 * path; either primary path that we found is the the same as 1373 * the current one, or we didn't generally find an active one. 1374 */ 1375 if (trans_sec == NULL) 1376 trans_sec = trans_pri; 1377 1378 /* If we failed to find a usable transport, just camp on the 1379 * active or pick a PF iff it's the better choice. 1380 */ 1381 if (trans_pri == NULL) { 1382 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1383 trans_sec = trans_pri; 1384 } 1385 1386 /* Set the active and retran transports. */ 1387 asoc->peer.active_path = trans_pri; 1388 asoc->peer.retran_path = trans_sec; 1389 } 1390 1391 struct sctp_transport * 1392 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1393 struct sctp_transport *last_sent_to) 1394 { 1395 /* If this is the first time packet is sent, use the active path, 1396 * else use the retran path. If the last packet was sent over the 1397 * retran path, update the retran path and use it. 1398 */ 1399 if (last_sent_to == NULL) { 1400 return asoc->peer.active_path; 1401 } else { 1402 if (last_sent_to == asoc->peer.retran_path) 1403 sctp_assoc_update_retran_path(asoc); 1404 1405 return asoc->peer.retran_path; 1406 } 1407 } 1408 1409 /* Update the association's pmtu and frag_point by going through all the 1410 * transports. This routine is called when a transport's PMTU has changed. 1411 */ 1412 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1413 { 1414 struct sctp_transport *t; 1415 __u32 pmtu = 0; 1416 1417 if (!asoc) 1418 return; 1419 1420 /* Get the lowest pmtu of all the transports. */ 1421 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1422 transports) { 1423 if (t->pmtu_pending && t->dst) { 1424 sctp_transport_update_pmtu( 1425 t, SCTP_TRUNC4(dst_mtu(t->dst))); 1426 t->pmtu_pending = 0; 1427 } 1428 if (!pmtu || (t->pathmtu < pmtu)) 1429 pmtu = t->pathmtu; 1430 } 1431 1432 if (pmtu) { 1433 asoc->pathmtu = pmtu; 1434 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1435 } 1436 1437 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1438 asoc->pathmtu, asoc->frag_point); 1439 } 1440 1441 /* Should we send a SACK to update our peer? */ 1442 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1443 { 1444 struct net *net = sock_net(asoc->base.sk); 1445 switch (asoc->state) { 1446 case SCTP_STATE_ESTABLISHED: 1447 case SCTP_STATE_SHUTDOWN_PENDING: 1448 case SCTP_STATE_SHUTDOWN_RECEIVED: 1449 case SCTP_STATE_SHUTDOWN_SENT: 1450 if ((asoc->rwnd > asoc->a_rwnd) && 1451 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1452 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1453 asoc->pathmtu))) 1454 return true; 1455 break; 1456 default: 1457 break; 1458 } 1459 return false; 1460 } 1461 1462 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1463 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1464 { 1465 struct sctp_chunk *sack; 1466 struct timer_list *timer; 1467 1468 if (asoc->rwnd_over) { 1469 if (asoc->rwnd_over >= len) { 1470 asoc->rwnd_over -= len; 1471 } else { 1472 asoc->rwnd += (len - asoc->rwnd_over); 1473 asoc->rwnd_over = 0; 1474 } 1475 } else { 1476 asoc->rwnd += len; 1477 } 1478 1479 /* If we had window pressure, start recovering it 1480 * once our rwnd had reached the accumulated pressure 1481 * threshold. The idea is to recover slowly, but up 1482 * to the initial advertised window. 1483 */ 1484 if (asoc->rwnd_press) { 1485 int change = min(asoc->pathmtu, asoc->rwnd_press); 1486 asoc->rwnd += change; 1487 asoc->rwnd_press -= change; 1488 } 1489 1490 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1491 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1492 asoc->a_rwnd); 1493 1494 /* Send a window update SACK if the rwnd has increased by at least the 1495 * minimum of the association's PMTU and half of the receive buffer. 1496 * The algorithm used is similar to the one described in 1497 * Section 4.2.3.3 of RFC 1122. 1498 */ 1499 if (sctp_peer_needs_update(asoc)) { 1500 asoc->a_rwnd = asoc->rwnd; 1501 1502 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1503 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1504 asoc->a_rwnd); 1505 1506 sack = sctp_make_sack(asoc); 1507 if (!sack) 1508 return; 1509 1510 asoc->peer.sack_needed = 0; 1511 1512 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1513 1514 /* Stop the SACK timer. */ 1515 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1516 if (del_timer(timer)) 1517 sctp_association_put(asoc); 1518 } 1519 } 1520 1521 /* Decrease asoc's rwnd by len. */ 1522 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1523 { 1524 int rx_count; 1525 int over = 0; 1526 1527 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1528 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1529 "asoc->rwnd_over:%u!\n", __func__, asoc, 1530 asoc->rwnd, asoc->rwnd_over); 1531 1532 if (asoc->ep->rcvbuf_policy) 1533 rx_count = atomic_read(&asoc->rmem_alloc); 1534 else 1535 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1536 1537 /* If we've reached or overflowed our receive buffer, announce 1538 * a 0 rwnd if rwnd would still be positive. Store the 1539 * the potential pressure overflow so that the window can be restored 1540 * back to original value. 1541 */ 1542 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1543 over = 1; 1544 1545 if (asoc->rwnd >= len) { 1546 asoc->rwnd -= len; 1547 if (over) { 1548 asoc->rwnd_press += asoc->rwnd; 1549 asoc->rwnd = 0; 1550 } 1551 } else { 1552 asoc->rwnd_over += len - asoc->rwnd; 1553 asoc->rwnd = 0; 1554 } 1555 1556 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1557 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1558 asoc->rwnd_press); 1559 } 1560 1561 /* Build the bind address list for the association based on info from the 1562 * local endpoint and the remote peer. 1563 */ 1564 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1565 enum sctp_scope scope, gfp_t gfp) 1566 { 1567 int flags; 1568 1569 /* Use scoping rules to determine the subset of addresses from 1570 * the endpoint. 1571 */ 1572 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1573 if (asoc->peer.ipv4_address) 1574 flags |= SCTP_ADDR4_PEERSUPP; 1575 if (asoc->peer.ipv6_address) 1576 flags |= SCTP_ADDR6_PEERSUPP; 1577 1578 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1579 &asoc->base.bind_addr, 1580 &asoc->ep->base.bind_addr, 1581 scope, gfp, flags); 1582 } 1583 1584 /* Build the association's bind address list from the cookie. */ 1585 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1586 struct sctp_cookie *cookie, 1587 gfp_t gfp) 1588 { 1589 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1590 int var_size3 = cookie->raw_addr_list_len; 1591 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1592 1593 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1594 asoc->ep->base.bind_addr.port, gfp); 1595 } 1596 1597 /* Lookup laddr in the bind address list of an association. */ 1598 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1599 const union sctp_addr *laddr) 1600 { 1601 int found = 0; 1602 1603 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1604 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1605 sctp_sk(asoc->base.sk))) 1606 found = 1; 1607 1608 return found; 1609 } 1610 1611 /* Set an association id for a given association */ 1612 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1613 { 1614 bool preload = gfpflags_allow_blocking(gfp); 1615 int ret; 1616 1617 /* If the id is already assigned, keep it. */ 1618 if (asoc->assoc_id) 1619 return 0; 1620 1621 if (preload) 1622 idr_preload(gfp); 1623 spin_lock_bh(&sctp_assocs_id_lock); 1624 /* 0 is not a valid assoc_id, must be >= 1 */ 1625 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1626 spin_unlock_bh(&sctp_assocs_id_lock); 1627 if (preload) 1628 idr_preload_end(); 1629 if (ret < 0) 1630 return ret; 1631 1632 asoc->assoc_id = (sctp_assoc_t)ret; 1633 return 0; 1634 } 1635 1636 /* Free the ASCONF queue */ 1637 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1638 { 1639 struct sctp_chunk *asconf; 1640 struct sctp_chunk *tmp; 1641 1642 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1643 list_del_init(&asconf->list); 1644 sctp_chunk_free(asconf); 1645 } 1646 } 1647 1648 /* Free asconf_ack cache */ 1649 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1650 { 1651 struct sctp_chunk *ack; 1652 struct sctp_chunk *tmp; 1653 1654 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1655 transmitted_list) { 1656 list_del_init(&ack->transmitted_list); 1657 sctp_chunk_free(ack); 1658 } 1659 } 1660 1661 /* Clean up the ASCONF_ACK queue */ 1662 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1663 { 1664 struct sctp_chunk *ack; 1665 struct sctp_chunk *tmp; 1666 1667 /* We can remove all the entries from the queue up to 1668 * the "Peer-Sequence-Number". 1669 */ 1670 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1671 transmitted_list) { 1672 if (ack->subh.addip_hdr->serial == 1673 htonl(asoc->peer.addip_serial)) 1674 break; 1675 1676 list_del_init(&ack->transmitted_list); 1677 sctp_chunk_free(ack); 1678 } 1679 } 1680 1681 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1682 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1683 const struct sctp_association *asoc, 1684 __be32 serial) 1685 { 1686 struct sctp_chunk *ack; 1687 1688 /* Walk through the list of cached ASCONF-ACKs and find the 1689 * ack chunk whose serial number matches that of the request. 1690 */ 1691 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1692 if (sctp_chunk_pending(ack)) 1693 continue; 1694 if (ack->subh.addip_hdr->serial == serial) { 1695 sctp_chunk_hold(ack); 1696 return ack; 1697 } 1698 } 1699 1700 return NULL; 1701 } 1702 1703 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1704 { 1705 /* Free any cached ASCONF_ACK chunk. */ 1706 sctp_assoc_free_asconf_acks(asoc); 1707 1708 /* Free the ASCONF queue. */ 1709 sctp_assoc_free_asconf_queue(asoc); 1710 1711 /* Free any cached ASCONF chunk. */ 1712 if (asoc->addip_last_asconf) 1713 sctp_chunk_free(asoc->addip_last_asconf); 1714 } 1715