xref: /openbmc/linux/net/sctp/associola.c (revision de2bdb3d)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@us.ibm.com>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang             <hui.huang@nokia.com>
38  *    Sridhar Samudrala	    <sri@us.ibm.com>
39  *    Daisy Chang	    <daisyc@us.ibm.com>
40  *    Ryan Layer	    <rmlayer@us.ibm.com>
41  *    Kevin Gao             <kevin.gao@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50 
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56 
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 					  const struct sctp_endpoint *ep,
68 					  const struct sock *sk,
69 					  sctp_scope_t scope,
70 					  gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	int i;
75 	sctp_paramhdr_t *p;
76 	int err;
77 
78 	/* Retrieve the SCTP per socket area.  */
79 	sp = sctp_sk((struct sock *)sk);
80 
81 	/* Discarding const is appropriate here.  */
82 	asoc->ep = (struct sctp_endpoint *)ep;
83 	asoc->base.sk = (struct sock *)sk;
84 
85 	sctp_endpoint_hold(asoc->ep);
86 	sock_hold(asoc->base.sk);
87 
88 	/* Initialize the common base substructure.  */
89 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90 
91 	/* Initialize the object handling fields.  */
92 	atomic_set(&asoc->base.refcnt, 1);
93 
94 	/* Initialize the bind addr area.  */
95 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96 
97 	asoc->state = SCTP_STATE_CLOSED;
98 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 	asoc->user_frag = sp->user_frag;
100 
101 	/* Set the association max_retrans and RTO values from the
102 	 * socket values.
103 	 */
104 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 	asoc->pf_retrans  = net->sctp.pf_retrans;
106 
107 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110 
111 	/* Initialize the association's heartbeat interval based on the
112 	 * sock configured value.
113 	 */
114 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115 
116 	/* Initialize path max retrans value. */
117 	asoc->pathmaxrxt = sp->pathmaxrxt;
118 
119 	/* Initialize default path MTU. */
120 	asoc->pathmtu = sp->pathmtu;
121 
122 	/* Set association default SACK delay */
123 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 	asoc->sackfreq = sp->sackfreq;
125 
126 	/* Set the association default flags controlling
127 	 * Heartbeat, SACK delay, and Path MTU Discovery.
128 	 */
129 	asoc->param_flags = sp->param_flags;
130 
131 	/* Initialize the maximum number of new data packets that can be sent
132 	 * in a burst.
133 	 */
134 	asoc->max_burst = sp->max_burst;
135 
136 	/* initialize association timers */
137 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140 
141 	/* sctpimpguide Section 2.12.2
142 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 	 * recommended value of 5 times 'RTO.Max'.
144 	 */
145 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 		= 5 * asoc->rto_max;
147 
148 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150 
151 	/* Initializes the timers */
152 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 				(unsigned long)asoc);
155 
156 	/* Pull default initialization values from the sock options.
157 	 * Note: This assumes that the values have already been
158 	 * validated in the sock.
159 	 */
160 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
162 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
163 
164 	asoc->max_init_timeo =
165 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166 
167 	/* Set the local window size for receive.
168 	 * This is also the rcvbuf space per association.
169 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 	 * 1500 bytes in one SCTP packet.
171 	 */
172 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 	else
175 		asoc->rwnd = sk->sk_rcvbuf/2;
176 
177 	asoc->a_rwnd = asoc->rwnd;
178 
179 	/* Use my own max window until I learn something better.  */
180 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181 
182 	/* Initialize the receive memory counter */
183 	atomic_set(&asoc->rmem_alloc, 0);
184 
185 	init_waitqueue_head(&asoc->wait);
186 
187 	asoc->c.my_vtag = sctp_generate_tag(ep);
188 	asoc->c.my_port = ep->base.bind_addr.port;
189 
190 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
191 
192 	asoc->next_tsn = asoc->c.initial_tsn;
193 
194 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 	asoc->highest_sacked = asoc->ctsn_ack_point;
197 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198 
199 	/* ADDIP Section 4.1 Asconf Chunk Procedures
200 	 *
201 	 * When an endpoint has an ASCONF signaled change to be sent to the
202 	 * remote endpoint it should do the following:
203 	 * ...
204 	 * A2) a serial number should be assigned to the chunk. The serial
205 	 * number SHOULD be a monotonically increasing number. The serial
206 	 * numbers SHOULD be initialized at the start of the
207 	 * association to the same value as the initial TSN.
208 	 */
209 	asoc->addip_serial = asoc->c.initial_tsn;
210 
211 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
213 
214 	/* Make an empty list of remote transport addresses.  */
215 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216 
217 	/* RFC 2960 5.1 Normal Establishment of an Association
218 	 *
219 	 * After the reception of the first data chunk in an
220 	 * association the endpoint must immediately respond with a
221 	 * sack to acknowledge the data chunk.  Subsequent
222 	 * acknowledgements should be done as described in Section
223 	 * 6.2.
224 	 *
225 	 * [We implement this by telling a new association that it
226 	 * already received one packet.]
227 	 */
228 	asoc->peer.sack_needed = 1;
229 	asoc->peer.sack_generation = 1;
230 
231 	/* Assume that the peer will tell us if he recognizes ASCONF
232 	 * as part of INIT exchange.
233 	 * The sctp_addip_noauth option is there for backward compatibility
234 	 * and will revert old behavior.
235 	 */
236 	if (net->sctp.addip_noauth)
237 		asoc->peer.asconf_capable = 1;
238 
239 	/* Create an input queue.  */
240 	sctp_inq_init(&asoc->base.inqueue);
241 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242 
243 	/* Create an output queue.  */
244 	sctp_outq_init(asoc, &asoc->outqueue);
245 
246 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 		goto fail_init;
248 
249 	/* Assume that peer would support both address types unless we are
250 	 * told otherwise.
251 	 */
252 	asoc->peer.ipv4_address = 1;
253 	if (asoc->base.sk->sk_family == PF_INET6)
254 		asoc->peer.ipv6_address = 1;
255 	INIT_LIST_HEAD(&asoc->asocs);
256 
257 	asoc->default_stream = sp->default_stream;
258 	asoc->default_ppid = sp->default_ppid;
259 	asoc->default_flags = sp->default_flags;
260 	asoc->default_context = sp->default_context;
261 	asoc->default_timetolive = sp->default_timetolive;
262 	asoc->default_rcv_context = sp->default_rcv_context;
263 
264 	/* AUTH related initializations */
265 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 	if (err)
268 		goto fail_init;
269 
270 	asoc->active_key_id = ep->active_key_id;
271 	asoc->prsctp_enable = ep->prsctp_enable;
272 
273 	/* Save the hmacs and chunks list into this association */
274 	if (ep->auth_hmacs_list)
275 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
276 			ntohs(ep->auth_hmacs_list->param_hdr.length));
277 	if (ep->auth_chunk_list)
278 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
279 			ntohs(ep->auth_chunk_list->param_hdr.length));
280 
281 	/* Get the AUTH random number for this association */
282 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
283 	p->type = SCTP_PARAM_RANDOM;
284 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
285 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
286 
287 	return asoc;
288 
289 fail_init:
290 	sock_put(asoc->base.sk);
291 	sctp_endpoint_put(asoc->ep);
292 	return NULL;
293 }
294 
295 /* Allocate and initialize a new association */
296 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
297 					 const struct sock *sk,
298 					 sctp_scope_t scope,
299 					 gfp_t gfp)
300 {
301 	struct sctp_association *asoc;
302 
303 	asoc = kzalloc(sizeof(*asoc), gfp);
304 	if (!asoc)
305 		goto fail;
306 
307 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
308 		goto fail_init;
309 
310 	SCTP_DBG_OBJCNT_INC(assoc);
311 
312 	pr_debug("Created asoc %p\n", asoc);
313 
314 	return asoc;
315 
316 fail_init:
317 	kfree(asoc);
318 fail:
319 	return NULL;
320 }
321 
322 /* Free this association if possible.  There may still be users, so
323  * the actual deallocation may be delayed.
324  */
325 void sctp_association_free(struct sctp_association *asoc)
326 {
327 	struct sock *sk = asoc->base.sk;
328 	struct sctp_transport *transport;
329 	struct list_head *pos, *temp;
330 	int i;
331 
332 	/* Only real associations count against the endpoint, so
333 	 * don't bother for if this is a temporary association.
334 	 */
335 	if (!list_empty(&asoc->asocs)) {
336 		list_del(&asoc->asocs);
337 
338 		/* Decrement the backlog value for a TCP-style listening
339 		 * socket.
340 		 */
341 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
342 			sk->sk_ack_backlog--;
343 	}
344 
345 	/* Mark as dead, so other users can know this structure is
346 	 * going away.
347 	 */
348 	asoc->base.dead = true;
349 
350 	/* Dispose of any data lying around in the outqueue. */
351 	sctp_outq_free(&asoc->outqueue);
352 
353 	/* Dispose of any pending messages for the upper layer. */
354 	sctp_ulpq_free(&asoc->ulpq);
355 
356 	/* Dispose of any pending chunks on the inqueue. */
357 	sctp_inq_free(&asoc->base.inqueue);
358 
359 	sctp_tsnmap_free(&asoc->peer.tsn_map);
360 
361 	/* Free ssnmap storage. */
362 	sctp_ssnmap_free(asoc->ssnmap);
363 
364 	/* Clean up the bound address list. */
365 	sctp_bind_addr_free(&asoc->base.bind_addr);
366 
367 	/* Do we need to go through all of our timers and
368 	 * delete them?   To be safe we will try to delete all, but we
369 	 * should be able to go through and make a guess based
370 	 * on our state.
371 	 */
372 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
373 		if (del_timer(&asoc->timers[i]))
374 			sctp_association_put(asoc);
375 	}
376 
377 	/* Free peer's cached cookie. */
378 	kfree(asoc->peer.cookie);
379 	kfree(asoc->peer.peer_random);
380 	kfree(asoc->peer.peer_chunks);
381 	kfree(asoc->peer.peer_hmacs);
382 
383 	/* Release the transport structures. */
384 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
385 		transport = list_entry(pos, struct sctp_transport, transports);
386 		list_del_rcu(pos);
387 		sctp_unhash_transport(transport);
388 		sctp_transport_free(transport);
389 	}
390 
391 	asoc->peer.transport_count = 0;
392 
393 	sctp_asconf_queue_teardown(asoc);
394 
395 	/* Free pending address space being deleted */
396 	kfree(asoc->asconf_addr_del_pending);
397 
398 	/* AUTH - Free the endpoint shared keys */
399 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
400 
401 	/* AUTH - Free the association shared key */
402 	sctp_auth_key_put(asoc->asoc_shared_key);
403 
404 	sctp_association_put(asoc);
405 }
406 
407 /* Cleanup and free up an association. */
408 static void sctp_association_destroy(struct sctp_association *asoc)
409 {
410 	if (unlikely(!asoc->base.dead)) {
411 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
412 		return;
413 	}
414 
415 	sctp_endpoint_put(asoc->ep);
416 	sock_put(asoc->base.sk);
417 
418 	if (asoc->assoc_id != 0) {
419 		spin_lock_bh(&sctp_assocs_id_lock);
420 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
421 		spin_unlock_bh(&sctp_assocs_id_lock);
422 	}
423 
424 	WARN_ON(atomic_read(&asoc->rmem_alloc));
425 
426 	kfree(asoc);
427 	SCTP_DBG_OBJCNT_DEC(assoc);
428 }
429 
430 /* Change the primary destination address for the peer. */
431 void sctp_assoc_set_primary(struct sctp_association *asoc,
432 			    struct sctp_transport *transport)
433 {
434 	int changeover = 0;
435 
436 	/* it's a changeover only if we already have a primary path
437 	 * that we are changing
438 	 */
439 	if (asoc->peer.primary_path != NULL &&
440 	    asoc->peer.primary_path != transport)
441 		changeover = 1 ;
442 
443 	asoc->peer.primary_path = transport;
444 
445 	/* Set a default msg_name for events. */
446 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
447 	       sizeof(union sctp_addr));
448 
449 	/* If the primary path is changing, assume that the
450 	 * user wants to use this new path.
451 	 */
452 	if ((transport->state == SCTP_ACTIVE) ||
453 	    (transport->state == SCTP_UNKNOWN))
454 		asoc->peer.active_path = transport;
455 
456 	/*
457 	 * SFR-CACC algorithm:
458 	 * Upon the receipt of a request to change the primary
459 	 * destination address, on the data structure for the new
460 	 * primary destination, the sender MUST do the following:
461 	 *
462 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
463 	 * to this destination address earlier. The sender MUST set
464 	 * CYCLING_CHANGEOVER to indicate that this switch is a
465 	 * double switch to the same destination address.
466 	 *
467 	 * Really, only bother is we have data queued or outstanding on
468 	 * the association.
469 	 */
470 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
471 		return;
472 
473 	if (transport->cacc.changeover_active)
474 		transport->cacc.cycling_changeover = changeover;
475 
476 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
477 	 * a changeover has occurred.
478 	 */
479 	transport->cacc.changeover_active = changeover;
480 
481 	/* 3) The sender MUST store the next TSN to be sent in
482 	 * next_tsn_at_change.
483 	 */
484 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
485 }
486 
487 /* Remove a transport from an association.  */
488 void sctp_assoc_rm_peer(struct sctp_association *asoc,
489 			struct sctp_transport *peer)
490 {
491 	struct list_head	*pos;
492 	struct sctp_transport	*transport;
493 
494 	pr_debug("%s: association:%p addr:%pISpc\n",
495 		 __func__, asoc, &peer->ipaddr.sa);
496 
497 	/* If we are to remove the current retran_path, update it
498 	 * to the next peer before removing this peer from the list.
499 	 */
500 	if (asoc->peer.retran_path == peer)
501 		sctp_assoc_update_retran_path(asoc);
502 
503 	/* Remove this peer from the list. */
504 	list_del_rcu(&peer->transports);
505 	/* Remove this peer from the transport hashtable */
506 	sctp_unhash_transport(peer);
507 
508 	/* Get the first transport of asoc. */
509 	pos = asoc->peer.transport_addr_list.next;
510 	transport = list_entry(pos, struct sctp_transport, transports);
511 
512 	/* Update any entries that match the peer to be deleted. */
513 	if (asoc->peer.primary_path == peer)
514 		sctp_assoc_set_primary(asoc, transport);
515 	if (asoc->peer.active_path == peer)
516 		asoc->peer.active_path = transport;
517 	if (asoc->peer.retran_path == peer)
518 		asoc->peer.retran_path = transport;
519 	if (asoc->peer.last_data_from == peer)
520 		asoc->peer.last_data_from = transport;
521 
522 	/* If we remove the transport an INIT was last sent to, set it to
523 	 * NULL. Combined with the update of the retran path above, this
524 	 * will cause the next INIT to be sent to the next available
525 	 * transport, maintaining the cycle.
526 	 */
527 	if (asoc->init_last_sent_to == peer)
528 		asoc->init_last_sent_to = NULL;
529 
530 	/* If we remove the transport an SHUTDOWN was last sent to, set it
531 	 * to NULL. Combined with the update of the retran path above, this
532 	 * will cause the next SHUTDOWN to be sent to the next available
533 	 * transport, maintaining the cycle.
534 	 */
535 	if (asoc->shutdown_last_sent_to == peer)
536 		asoc->shutdown_last_sent_to = NULL;
537 
538 	/* If we remove the transport an ASCONF was last sent to, set it to
539 	 * NULL.
540 	 */
541 	if (asoc->addip_last_asconf &&
542 	    asoc->addip_last_asconf->transport == peer)
543 		asoc->addip_last_asconf->transport = NULL;
544 
545 	/* If we have something on the transmitted list, we have to
546 	 * save it off.  The best place is the active path.
547 	 */
548 	if (!list_empty(&peer->transmitted)) {
549 		struct sctp_transport *active = asoc->peer.active_path;
550 		struct sctp_chunk *ch;
551 
552 		/* Reset the transport of each chunk on this list */
553 		list_for_each_entry(ch, &peer->transmitted,
554 					transmitted_list) {
555 			ch->transport = NULL;
556 			ch->rtt_in_progress = 0;
557 		}
558 
559 		list_splice_tail_init(&peer->transmitted,
560 					&active->transmitted);
561 
562 		/* Start a T3 timer here in case it wasn't running so
563 		 * that these migrated packets have a chance to get
564 		 * retransmitted.
565 		 */
566 		if (!timer_pending(&active->T3_rtx_timer))
567 			if (!mod_timer(&active->T3_rtx_timer,
568 					jiffies + active->rto))
569 				sctp_transport_hold(active);
570 	}
571 
572 	asoc->peer.transport_count--;
573 
574 	sctp_transport_free(peer);
575 }
576 
577 /* Add a transport address to an association.  */
578 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
579 					   const union sctp_addr *addr,
580 					   const gfp_t gfp,
581 					   const int peer_state)
582 {
583 	struct net *net = sock_net(asoc->base.sk);
584 	struct sctp_transport *peer;
585 	struct sctp_sock *sp;
586 	unsigned short port;
587 
588 	sp = sctp_sk(asoc->base.sk);
589 
590 	/* AF_INET and AF_INET6 share common port field. */
591 	port = ntohs(addr->v4.sin_port);
592 
593 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
594 		 asoc, &addr->sa, peer_state);
595 
596 	/* Set the port if it has not been set yet.  */
597 	if (0 == asoc->peer.port)
598 		asoc->peer.port = port;
599 
600 	/* Check to see if this is a duplicate. */
601 	peer = sctp_assoc_lookup_paddr(asoc, addr);
602 	if (peer) {
603 		/* An UNKNOWN state is only set on transports added by
604 		 * user in sctp_connectx() call.  Such transports should be
605 		 * considered CONFIRMED per RFC 4960, Section 5.4.
606 		 */
607 		if (peer->state == SCTP_UNKNOWN) {
608 			peer->state = SCTP_ACTIVE;
609 		}
610 		return peer;
611 	}
612 
613 	peer = sctp_transport_new(net, addr, gfp);
614 	if (!peer)
615 		return NULL;
616 
617 	sctp_transport_set_owner(peer, asoc);
618 
619 	/* Initialize the peer's heartbeat interval based on the
620 	 * association configured value.
621 	 */
622 	peer->hbinterval = asoc->hbinterval;
623 
624 	/* Set the path max_retrans.  */
625 	peer->pathmaxrxt = asoc->pathmaxrxt;
626 
627 	/* And the partial failure retrans threshold */
628 	peer->pf_retrans = asoc->pf_retrans;
629 
630 	/* Initialize the peer's SACK delay timeout based on the
631 	 * association configured value.
632 	 */
633 	peer->sackdelay = asoc->sackdelay;
634 	peer->sackfreq = asoc->sackfreq;
635 
636 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
637 	 * based on association setting.
638 	 */
639 	peer->param_flags = asoc->param_flags;
640 
641 	sctp_transport_route(peer, NULL, sp);
642 
643 	/* Initialize the pmtu of the transport. */
644 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
645 		if (asoc->pathmtu)
646 			peer->pathmtu = asoc->pathmtu;
647 		else
648 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
649 	}
650 
651 	/* If this is the first transport addr on this association,
652 	 * initialize the association PMTU to the peer's PMTU.
653 	 * If not and the current association PMTU is higher than the new
654 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
655 	 */
656 	if (asoc->pathmtu)
657 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
658 	else
659 		asoc->pathmtu = peer->pathmtu;
660 
661 	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
662 		 asoc->pathmtu);
663 
664 	peer->pmtu_pending = 0;
665 
666 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
667 
668 	/* The asoc->peer.port might not be meaningful yet, but
669 	 * initialize the packet structure anyway.
670 	 */
671 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
672 			 asoc->peer.port);
673 
674 	/* 7.2.1 Slow-Start
675 	 *
676 	 * o The initial cwnd before DATA transmission or after a sufficiently
677 	 *   long idle period MUST be set to
678 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
679 	 *
680 	 * o The initial value of ssthresh MAY be arbitrarily high
681 	 *   (for example, implementations MAY use the size of the
682 	 *   receiver advertised window).
683 	 */
684 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
685 
686 	/* At this point, we may not have the receiver's advertised window,
687 	 * so initialize ssthresh to the default value and it will be set
688 	 * later when we process the INIT.
689 	 */
690 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
691 
692 	peer->partial_bytes_acked = 0;
693 	peer->flight_size = 0;
694 	peer->burst_limited = 0;
695 
696 	/* Set the transport's RTO.initial value */
697 	peer->rto = asoc->rto_initial;
698 	sctp_max_rto(asoc, peer);
699 
700 	/* Set the peer's active state. */
701 	peer->state = peer_state;
702 
703 	/* Attach the remote transport to our asoc.  */
704 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
705 	asoc->peer.transport_count++;
706 	/* Add this peer into the transport hashtable */
707 	sctp_hash_transport(peer);
708 
709 	/* If we do not yet have a primary path, set one.  */
710 	if (!asoc->peer.primary_path) {
711 		sctp_assoc_set_primary(asoc, peer);
712 		asoc->peer.retran_path = peer;
713 	}
714 
715 	if (asoc->peer.active_path == asoc->peer.retran_path &&
716 	    peer->state != SCTP_UNCONFIRMED) {
717 		asoc->peer.retran_path = peer;
718 	}
719 
720 	return peer;
721 }
722 
723 /* Delete a transport address from an association.  */
724 void sctp_assoc_del_peer(struct sctp_association *asoc,
725 			 const union sctp_addr *addr)
726 {
727 	struct list_head	*pos;
728 	struct list_head	*temp;
729 	struct sctp_transport	*transport;
730 
731 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
732 		transport = list_entry(pos, struct sctp_transport, transports);
733 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
734 			/* Do book keeping for removing the peer and free it. */
735 			sctp_assoc_rm_peer(asoc, transport);
736 			break;
737 		}
738 	}
739 }
740 
741 /* Lookup a transport by address. */
742 struct sctp_transport *sctp_assoc_lookup_paddr(
743 					const struct sctp_association *asoc,
744 					const union sctp_addr *address)
745 {
746 	struct sctp_transport *t;
747 
748 	/* Cycle through all transports searching for a peer address. */
749 
750 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
751 			transports) {
752 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
753 			return t;
754 	}
755 
756 	return NULL;
757 }
758 
759 /* Remove all transports except a give one */
760 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
761 				     struct sctp_transport *primary)
762 {
763 	struct sctp_transport	*temp;
764 	struct sctp_transport	*t;
765 
766 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
767 				 transports) {
768 		/* if the current transport is not the primary one, delete it */
769 		if (t != primary)
770 			sctp_assoc_rm_peer(asoc, t);
771 	}
772 }
773 
774 /* Engage in transport control operations.
775  * Mark the transport up or down and send a notification to the user.
776  * Select and update the new active and retran paths.
777  */
778 void sctp_assoc_control_transport(struct sctp_association *asoc,
779 				  struct sctp_transport *transport,
780 				  sctp_transport_cmd_t command,
781 				  sctp_sn_error_t error)
782 {
783 	struct sctp_ulpevent *event;
784 	struct sockaddr_storage addr;
785 	int spc_state = 0;
786 	bool ulp_notify = true;
787 
788 	/* Record the transition on the transport.  */
789 	switch (command) {
790 	case SCTP_TRANSPORT_UP:
791 		/* If we are moving from UNCONFIRMED state due
792 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
793 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
794 		 */
795 		if (SCTP_UNCONFIRMED == transport->state &&
796 		    SCTP_HEARTBEAT_SUCCESS == error)
797 			spc_state = SCTP_ADDR_CONFIRMED;
798 		else
799 			spc_state = SCTP_ADDR_AVAILABLE;
800 		/* Don't inform ULP about transition from PF to
801 		 * active state and set cwnd to 1 MTU, see SCTP
802 		 * Quick failover draft section 5.1, point 5
803 		 */
804 		if (transport->state == SCTP_PF) {
805 			ulp_notify = false;
806 			transport->cwnd = asoc->pathmtu;
807 		}
808 		transport->state = SCTP_ACTIVE;
809 		break;
810 
811 	case SCTP_TRANSPORT_DOWN:
812 		/* If the transport was never confirmed, do not transition it
813 		 * to inactive state.  Also, release the cached route since
814 		 * there may be a better route next time.
815 		 */
816 		if (transport->state != SCTP_UNCONFIRMED)
817 			transport->state = SCTP_INACTIVE;
818 		else {
819 			dst_release(transport->dst);
820 			transport->dst = NULL;
821 			ulp_notify = false;
822 		}
823 
824 		spc_state = SCTP_ADDR_UNREACHABLE;
825 		break;
826 
827 	case SCTP_TRANSPORT_PF:
828 		transport->state = SCTP_PF;
829 		ulp_notify = false;
830 		break;
831 
832 	default:
833 		return;
834 	}
835 
836 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
837 	 * to the user.
838 	 */
839 	if (ulp_notify) {
840 		memset(&addr, 0, sizeof(struct sockaddr_storage));
841 		memcpy(&addr, &transport->ipaddr,
842 		       transport->af_specific->sockaddr_len);
843 
844 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
845 					0, spc_state, error, GFP_ATOMIC);
846 		if (event)
847 			sctp_ulpq_tail_event(&asoc->ulpq, event);
848 	}
849 
850 	/* Select new active and retran paths. */
851 	sctp_select_active_and_retran_path(asoc);
852 }
853 
854 /* Hold a reference to an association. */
855 void sctp_association_hold(struct sctp_association *asoc)
856 {
857 	atomic_inc(&asoc->base.refcnt);
858 }
859 
860 /* Release a reference to an association and cleanup
861  * if there are no more references.
862  */
863 void sctp_association_put(struct sctp_association *asoc)
864 {
865 	if (atomic_dec_and_test(&asoc->base.refcnt))
866 		sctp_association_destroy(asoc);
867 }
868 
869 /* Allocate the next TSN, Transmission Sequence Number, for the given
870  * association.
871  */
872 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
873 {
874 	/* From Section 1.6 Serial Number Arithmetic:
875 	 * Transmission Sequence Numbers wrap around when they reach
876 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
877 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
878 	 */
879 	__u32 retval = asoc->next_tsn;
880 	asoc->next_tsn++;
881 	asoc->unack_data++;
882 
883 	return retval;
884 }
885 
886 /* Compare two addresses to see if they match.  Wildcard addresses
887  * only match themselves.
888  */
889 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
890 			const union sctp_addr *ss2)
891 {
892 	struct sctp_af *af;
893 
894 	af = sctp_get_af_specific(ss1->sa.sa_family);
895 	if (unlikely(!af))
896 		return 0;
897 
898 	return af->cmp_addr(ss1, ss2);
899 }
900 
901 /* Return an ecne chunk to get prepended to a packet.
902  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
903  * No we don't, but we could/should.
904  */
905 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
906 {
907 	if (!asoc->need_ecne)
908 		return NULL;
909 
910 	/* Send ECNE if needed.
911 	 * Not being able to allocate a chunk here is not deadly.
912 	 */
913 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
914 }
915 
916 /*
917  * Find which transport this TSN was sent on.
918  */
919 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
920 					     __u32 tsn)
921 {
922 	struct sctp_transport *active;
923 	struct sctp_transport *match;
924 	struct sctp_transport *transport;
925 	struct sctp_chunk *chunk;
926 	__be32 key = htonl(tsn);
927 
928 	match = NULL;
929 
930 	/*
931 	 * FIXME: In general, find a more efficient data structure for
932 	 * searching.
933 	 */
934 
935 	/*
936 	 * The general strategy is to search each transport's transmitted
937 	 * list.   Return which transport this TSN lives on.
938 	 *
939 	 * Let's be hopeful and check the active_path first.
940 	 * Another optimization would be to know if there is only one
941 	 * outbound path and not have to look for the TSN at all.
942 	 *
943 	 */
944 
945 	active = asoc->peer.active_path;
946 
947 	list_for_each_entry(chunk, &active->transmitted,
948 			transmitted_list) {
949 
950 		if (key == chunk->subh.data_hdr->tsn) {
951 			match = active;
952 			goto out;
953 		}
954 	}
955 
956 	/* If not found, go search all the other transports. */
957 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
958 			transports) {
959 
960 		if (transport == active)
961 			continue;
962 		list_for_each_entry(chunk, &transport->transmitted,
963 				transmitted_list) {
964 			if (key == chunk->subh.data_hdr->tsn) {
965 				match = transport;
966 				goto out;
967 			}
968 		}
969 	}
970 out:
971 	return match;
972 }
973 
974 /* Is this the association we are looking for? */
975 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
976 					   struct net *net,
977 					   const union sctp_addr *laddr,
978 					   const union sctp_addr *paddr)
979 {
980 	struct sctp_transport *transport;
981 
982 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
983 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
984 	    net_eq(sock_net(asoc->base.sk), net)) {
985 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
986 		if (!transport)
987 			goto out;
988 
989 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
990 					 sctp_sk(asoc->base.sk)))
991 			goto out;
992 	}
993 	transport = NULL;
994 
995 out:
996 	return transport;
997 }
998 
999 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1000 static void sctp_assoc_bh_rcv(struct work_struct *work)
1001 {
1002 	struct sctp_association *asoc =
1003 		container_of(work, struct sctp_association,
1004 			     base.inqueue.immediate);
1005 	struct net *net = sock_net(asoc->base.sk);
1006 	struct sctp_endpoint *ep;
1007 	struct sctp_chunk *chunk;
1008 	struct sctp_inq *inqueue;
1009 	int state;
1010 	sctp_subtype_t subtype;
1011 	int error = 0;
1012 
1013 	/* The association should be held so we should be safe. */
1014 	ep = asoc->ep;
1015 
1016 	inqueue = &asoc->base.inqueue;
1017 	sctp_association_hold(asoc);
1018 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1019 		state = asoc->state;
1020 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1021 
1022 		/* SCTP-AUTH, Section 6.3:
1023 		 *    The receiver has a list of chunk types which it expects
1024 		 *    to be received only after an AUTH-chunk.  This list has
1025 		 *    been sent to the peer during the association setup.  It
1026 		 *    MUST silently discard these chunks if they are not placed
1027 		 *    after an AUTH chunk in the packet.
1028 		 */
1029 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1030 			continue;
1031 
1032 		/* Remember where the last DATA chunk came from so we
1033 		 * know where to send the SACK.
1034 		 */
1035 		if (sctp_chunk_is_data(chunk))
1036 			asoc->peer.last_data_from = chunk->transport;
1037 		else {
1038 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1039 			asoc->stats.ictrlchunks++;
1040 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1041 				asoc->stats.isacks++;
1042 		}
1043 
1044 		if (chunk->transport)
1045 			chunk->transport->last_time_heard = ktime_get();
1046 
1047 		/* Run through the state machine. */
1048 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1049 				   state, ep, asoc, chunk, GFP_ATOMIC);
1050 
1051 		/* Check to see if the association is freed in response to
1052 		 * the incoming chunk.  If so, get out of the while loop.
1053 		 */
1054 		if (asoc->base.dead)
1055 			break;
1056 
1057 		/* If there is an error on chunk, discard this packet. */
1058 		if (error && chunk)
1059 			chunk->pdiscard = 1;
1060 	}
1061 	sctp_association_put(asoc);
1062 }
1063 
1064 /* This routine moves an association from its old sk to a new sk.  */
1065 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1066 {
1067 	struct sctp_sock *newsp = sctp_sk(newsk);
1068 	struct sock *oldsk = assoc->base.sk;
1069 
1070 	/* Delete the association from the old endpoint's list of
1071 	 * associations.
1072 	 */
1073 	list_del_init(&assoc->asocs);
1074 
1075 	/* Decrement the backlog value for a TCP-style socket. */
1076 	if (sctp_style(oldsk, TCP))
1077 		oldsk->sk_ack_backlog--;
1078 
1079 	/* Release references to the old endpoint and the sock.  */
1080 	sctp_endpoint_put(assoc->ep);
1081 	sock_put(assoc->base.sk);
1082 
1083 	/* Get a reference to the new endpoint.  */
1084 	assoc->ep = newsp->ep;
1085 	sctp_endpoint_hold(assoc->ep);
1086 
1087 	/* Get a reference to the new sock.  */
1088 	assoc->base.sk = newsk;
1089 	sock_hold(assoc->base.sk);
1090 
1091 	/* Add the association to the new endpoint's list of associations.  */
1092 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1093 }
1094 
1095 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1096 void sctp_assoc_update(struct sctp_association *asoc,
1097 		       struct sctp_association *new)
1098 {
1099 	struct sctp_transport *trans;
1100 	struct list_head *pos, *temp;
1101 
1102 	/* Copy in new parameters of peer. */
1103 	asoc->c = new->c;
1104 	asoc->peer.rwnd = new->peer.rwnd;
1105 	asoc->peer.sack_needed = new->peer.sack_needed;
1106 	asoc->peer.auth_capable = new->peer.auth_capable;
1107 	asoc->peer.i = new->peer.i;
1108 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1109 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1110 
1111 	/* Remove any peer addresses not present in the new association. */
1112 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1113 		trans = list_entry(pos, struct sctp_transport, transports);
1114 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1115 			sctp_assoc_rm_peer(asoc, trans);
1116 			continue;
1117 		}
1118 
1119 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1120 			sctp_transport_reset(trans);
1121 	}
1122 
1123 	/* If the case is A (association restart), use
1124 	 * initial_tsn as next_tsn. If the case is B, use
1125 	 * current next_tsn in case data sent to peer
1126 	 * has been discarded and needs retransmission.
1127 	 */
1128 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1129 		asoc->next_tsn = new->next_tsn;
1130 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1131 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1132 
1133 		/* Reinitialize SSN for both local streams
1134 		 * and peer's streams.
1135 		 */
1136 		sctp_ssnmap_clear(asoc->ssnmap);
1137 
1138 		/* Flush the ULP reassembly and ordered queue.
1139 		 * Any data there will now be stale and will
1140 		 * cause problems.
1141 		 */
1142 		sctp_ulpq_flush(&asoc->ulpq);
1143 
1144 		/* reset the overall association error count so
1145 		 * that the restarted association doesn't get torn
1146 		 * down on the next retransmission timer.
1147 		 */
1148 		asoc->overall_error_count = 0;
1149 
1150 	} else {
1151 		/* Add any peer addresses from the new association. */
1152 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1153 				transports) {
1154 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1155 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1156 						    GFP_ATOMIC, trans->state);
1157 		}
1158 
1159 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1160 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1161 		if (!asoc->ssnmap) {
1162 			/* Move the ssnmap. */
1163 			asoc->ssnmap = new->ssnmap;
1164 			new->ssnmap = NULL;
1165 		}
1166 
1167 		if (!asoc->assoc_id) {
1168 			/* get a new association id since we don't have one
1169 			 * yet.
1170 			 */
1171 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1172 		}
1173 	}
1174 
1175 	/* SCTP-AUTH: Save the peer parameters from the new associations
1176 	 * and also move the association shared keys over
1177 	 */
1178 	kfree(asoc->peer.peer_random);
1179 	asoc->peer.peer_random = new->peer.peer_random;
1180 	new->peer.peer_random = NULL;
1181 
1182 	kfree(asoc->peer.peer_chunks);
1183 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1184 	new->peer.peer_chunks = NULL;
1185 
1186 	kfree(asoc->peer.peer_hmacs);
1187 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1188 	new->peer.peer_hmacs = NULL;
1189 
1190 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1191 }
1192 
1193 /* Update the retran path for sending a retransmitted packet.
1194  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1195  *
1196  *   When there is outbound data to send and the primary path
1197  *   becomes inactive (e.g., due to failures), or where the
1198  *   SCTP user explicitly requests to send data to an
1199  *   inactive destination transport address, before reporting
1200  *   an error to its ULP, the SCTP endpoint should try to send
1201  *   the data to an alternate active destination transport
1202  *   address if one exists.
1203  *
1204  *   When retransmitting data that timed out, if the endpoint
1205  *   is multihomed, it should consider each source-destination
1206  *   address pair in its retransmission selection policy.
1207  *   When retransmitting timed-out data, the endpoint should
1208  *   attempt to pick the most divergent source-destination
1209  *   pair from the original source-destination pair to which
1210  *   the packet was transmitted.
1211  *
1212  *   Note: Rules for picking the most divergent source-destination
1213  *   pair are an implementation decision and are not specified
1214  *   within this document.
1215  *
1216  * Our basic strategy is to round-robin transports in priorities
1217  * according to sctp_trans_score() e.g., if no such
1218  * transport with state SCTP_ACTIVE exists, round-robin through
1219  * SCTP_UNKNOWN, etc. You get the picture.
1220  */
1221 static u8 sctp_trans_score(const struct sctp_transport *trans)
1222 {
1223 	switch (trans->state) {
1224 	case SCTP_ACTIVE:
1225 		return 3;	/* best case */
1226 	case SCTP_UNKNOWN:
1227 		return 2;
1228 	case SCTP_PF:
1229 		return 1;
1230 	default: /* case SCTP_INACTIVE */
1231 		return 0;	/* worst case */
1232 	}
1233 }
1234 
1235 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1236 						   struct sctp_transport *trans2)
1237 {
1238 	if (trans1->error_count > trans2->error_count) {
1239 		return trans2;
1240 	} else if (trans1->error_count == trans2->error_count &&
1241 		   ktime_after(trans2->last_time_heard,
1242 			       trans1->last_time_heard)) {
1243 		return trans2;
1244 	} else {
1245 		return trans1;
1246 	}
1247 }
1248 
1249 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1250 						    struct sctp_transport *best)
1251 {
1252 	u8 score_curr, score_best;
1253 
1254 	if (best == NULL || curr == best)
1255 		return curr;
1256 
1257 	score_curr = sctp_trans_score(curr);
1258 	score_best = sctp_trans_score(best);
1259 
1260 	/* First, try a score-based selection if both transport states
1261 	 * differ. If we're in a tie, lets try to make a more clever
1262 	 * decision here based on error counts and last time heard.
1263 	 */
1264 	if (score_curr > score_best)
1265 		return curr;
1266 	else if (score_curr == score_best)
1267 		return sctp_trans_elect_tie(best, curr);
1268 	else
1269 		return best;
1270 }
1271 
1272 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1273 {
1274 	struct sctp_transport *trans = asoc->peer.retran_path;
1275 	struct sctp_transport *trans_next = NULL;
1276 
1277 	/* We're done as we only have the one and only path. */
1278 	if (asoc->peer.transport_count == 1)
1279 		return;
1280 	/* If active_path and retran_path are the same and active,
1281 	 * then this is the only active path. Use it.
1282 	 */
1283 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1284 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1285 		return;
1286 
1287 	/* Iterate from retran_path's successor back to retran_path. */
1288 	for (trans = list_next_entry(trans, transports); 1;
1289 	     trans = list_next_entry(trans, transports)) {
1290 		/* Manually skip the head element. */
1291 		if (&trans->transports == &asoc->peer.transport_addr_list)
1292 			continue;
1293 		if (trans->state == SCTP_UNCONFIRMED)
1294 			continue;
1295 		trans_next = sctp_trans_elect_best(trans, trans_next);
1296 		/* Active is good enough for immediate return. */
1297 		if (trans_next->state == SCTP_ACTIVE)
1298 			break;
1299 		/* We've reached the end, time to update path. */
1300 		if (trans == asoc->peer.retran_path)
1301 			break;
1302 	}
1303 
1304 	asoc->peer.retran_path = trans_next;
1305 
1306 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1307 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1308 }
1309 
1310 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1311 {
1312 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1313 	struct sctp_transport *trans_pf = NULL;
1314 
1315 	/* Look for the two most recently used active transports. */
1316 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1317 			    transports) {
1318 		/* Skip uninteresting transports. */
1319 		if (trans->state == SCTP_INACTIVE ||
1320 		    trans->state == SCTP_UNCONFIRMED)
1321 			continue;
1322 		/* Keep track of the best PF transport from our
1323 		 * list in case we don't find an active one.
1324 		 */
1325 		if (trans->state == SCTP_PF) {
1326 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1327 			continue;
1328 		}
1329 		/* For active transports, pick the most recent ones. */
1330 		if (trans_pri == NULL ||
1331 		    ktime_after(trans->last_time_heard,
1332 				trans_pri->last_time_heard)) {
1333 			trans_sec = trans_pri;
1334 			trans_pri = trans;
1335 		} else if (trans_sec == NULL ||
1336 			   ktime_after(trans->last_time_heard,
1337 				       trans_sec->last_time_heard)) {
1338 			trans_sec = trans;
1339 		}
1340 	}
1341 
1342 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1343 	 *
1344 	 * By default, an endpoint should always transmit to the primary
1345 	 * path, unless the SCTP user explicitly specifies the
1346 	 * destination transport address (and possibly source transport
1347 	 * address) to use. [If the primary is active but not most recent,
1348 	 * bump the most recently used transport.]
1349 	 */
1350 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1351 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1352 	     asoc->peer.primary_path != trans_pri) {
1353 		trans_sec = trans_pri;
1354 		trans_pri = asoc->peer.primary_path;
1355 	}
1356 
1357 	/* We did not find anything useful for a possible retransmission
1358 	 * path; either primary path that we found is the the same as
1359 	 * the current one, or we didn't generally find an active one.
1360 	 */
1361 	if (trans_sec == NULL)
1362 		trans_sec = trans_pri;
1363 
1364 	/* If we failed to find a usable transport, just camp on the
1365 	 * active or pick a PF iff it's the better choice.
1366 	 */
1367 	if (trans_pri == NULL) {
1368 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1369 		trans_sec = trans_pri;
1370 	}
1371 
1372 	/* Set the active and retran transports. */
1373 	asoc->peer.active_path = trans_pri;
1374 	asoc->peer.retran_path = trans_sec;
1375 }
1376 
1377 struct sctp_transport *
1378 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1379 				  struct sctp_transport *last_sent_to)
1380 {
1381 	/* If this is the first time packet is sent, use the active path,
1382 	 * else use the retran path. If the last packet was sent over the
1383 	 * retran path, update the retran path and use it.
1384 	 */
1385 	if (last_sent_to == NULL) {
1386 		return asoc->peer.active_path;
1387 	} else {
1388 		if (last_sent_to == asoc->peer.retran_path)
1389 			sctp_assoc_update_retran_path(asoc);
1390 
1391 		return asoc->peer.retran_path;
1392 	}
1393 }
1394 
1395 /* Update the association's pmtu and frag_point by going through all the
1396  * transports. This routine is called when a transport's PMTU has changed.
1397  */
1398 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1399 {
1400 	struct sctp_transport *t;
1401 	__u32 pmtu = 0;
1402 
1403 	if (!asoc)
1404 		return;
1405 
1406 	/* Get the lowest pmtu of all the transports. */
1407 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1408 				transports) {
1409 		if (t->pmtu_pending && t->dst) {
1410 			sctp_transport_update_pmtu(sk, t,
1411 						   SCTP_TRUNC4(dst_mtu(t->dst)));
1412 			t->pmtu_pending = 0;
1413 		}
1414 		if (!pmtu || (t->pathmtu < pmtu))
1415 			pmtu = t->pathmtu;
1416 	}
1417 
1418 	if (pmtu) {
1419 		asoc->pathmtu = pmtu;
1420 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1421 	}
1422 
1423 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1424 		 asoc->pathmtu, asoc->frag_point);
1425 }
1426 
1427 /* Should we send a SACK to update our peer? */
1428 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1429 {
1430 	struct net *net = sock_net(asoc->base.sk);
1431 	switch (asoc->state) {
1432 	case SCTP_STATE_ESTABLISHED:
1433 	case SCTP_STATE_SHUTDOWN_PENDING:
1434 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1435 	case SCTP_STATE_SHUTDOWN_SENT:
1436 		if ((asoc->rwnd > asoc->a_rwnd) &&
1437 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1438 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1439 			   asoc->pathmtu)))
1440 			return true;
1441 		break;
1442 	default:
1443 		break;
1444 	}
1445 	return false;
1446 }
1447 
1448 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1449 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1450 {
1451 	struct sctp_chunk *sack;
1452 	struct timer_list *timer;
1453 
1454 	if (asoc->rwnd_over) {
1455 		if (asoc->rwnd_over >= len) {
1456 			asoc->rwnd_over -= len;
1457 		} else {
1458 			asoc->rwnd += (len - asoc->rwnd_over);
1459 			asoc->rwnd_over = 0;
1460 		}
1461 	} else {
1462 		asoc->rwnd += len;
1463 	}
1464 
1465 	/* If we had window pressure, start recovering it
1466 	 * once our rwnd had reached the accumulated pressure
1467 	 * threshold.  The idea is to recover slowly, but up
1468 	 * to the initial advertised window.
1469 	 */
1470 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1471 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1472 		asoc->rwnd += change;
1473 		asoc->rwnd_press -= change;
1474 	}
1475 
1476 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1477 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1478 		 asoc->a_rwnd);
1479 
1480 	/* Send a window update SACK if the rwnd has increased by at least the
1481 	 * minimum of the association's PMTU and half of the receive buffer.
1482 	 * The algorithm used is similar to the one described in
1483 	 * Section 4.2.3.3 of RFC 1122.
1484 	 */
1485 	if (sctp_peer_needs_update(asoc)) {
1486 		asoc->a_rwnd = asoc->rwnd;
1487 
1488 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1489 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1490 			 asoc->a_rwnd);
1491 
1492 		sack = sctp_make_sack(asoc);
1493 		if (!sack)
1494 			return;
1495 
1496 		asoc->peer.sack_needed = 0;
1497 
1498 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1499 
1500 		/* Stop the SACK timer.  */
1501 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1502 		if (del_timer(timer))
1503 			sctp_association_put(asoc);
1504 	}
1505 }
1506 
1507 /* Decrease asoc's rwnd by len. */
1508 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1509 {
1510 	int rx_count;
1511 	int over = 0;
1512 
1513 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1514 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1515 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1516 			 asoc->rwnd, asoc->rwnd_over);
1517 
1518 	if (asoc->ep->rcvbuf_policy)
1519 		rx_count = atomic_read(&asoc->rmem_alloc);
1520 	else
1521 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1522 
1523 	/* If we've reached or overflowed our receive buffer, announce
1524 	 * a 0 rwnd if rwnd would still be positive.  Store the
1525 	 * the potential pressure overflow so that the window can be restored
1526 	 * back to original value.
1527 	 */
1528 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1529 		over = 1;
1530 
1531 	if (asoc->rwnd >= len) {
1532 		asoc->rwnd -= len;
1533 		if (over) {
1534 			asoc->rwnd_press += asoc->rwnd;
1535 			asoc->rwnd = 0;
1536 		}
1537 	} else {
1538 		asoc->rwnd_over = len - asoc->rwnd;
1539 		asoc->rwnd = 0;
1540 	}
1541 
1542 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1543 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1544 		 asoc->rwnd_press);
1545 }
1546 
1547 /* Build the bind address list for the association based on info from the
1548  * local endpoint and the remote peer.
1549  */
1550 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1551 				     sctp_scope_t scope, gfp_t gfp)
1552 {
1553 	int flags;
1554 
1555 	/* Use scoping rules to determine the subset of addresses from
1556 	 * the endpoint.
1557 	 */
1558 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1559 	if (asoc->peer.ipv4_address)
1560 		flags |= SCTP_ADDR4_PEERSUPP;
1561 	if (asoc->peer.ipv6_address)
1562 		flags |= SCTP_ADDR6_PEERSUPP;
1563 
1564 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1565 				   &asoc->base.bind_addr,
1566 				   &asoc->ep->base.bind_addr,
1567 				   scope, gfp, flags);
1568 }
1569 
1570 /* Build the association's bind address list from the cookie.  */
1571 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1572 					 struct sctp_cookie *cookie,
1573 					 gfp_t gfp)
1574 {
1575 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1576 	int var_size3 = cookie->raw_addr_list_len;
1577 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1578 
1579 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1580 				      asoc->ep->base.bind_addr.port, gfp);
1581 }
1582 
1583 /* Lookup laddr in the bind address list of an association. */
1584 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1585 			    const union sctp_addr *laddr)
1586 {
1587 	int found = 0;
1588 
1589 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1590 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1591 				 sctp_sk(asoc->base.sk)))
1592 		found = 1;
1593 
1594 	return found;
1595 }
1596 
1597 /* Set an association id for a given association */
1598 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1599 {
1600 	bool preload = gfpflags_allow_blocking(gfp);
1601 	int ret;
1602 
1603 	/* If the id is already assigned, keep it. */
1604 	if (asoc->assoc_id)
1605 		return 0;
1606 
1607 	if (preload)
1608 		idr_preload(gfp);
1609 	spin_lock_bh(&sctp_assocs_id_lock);
1610 	/* 0 is not a valid assoc_id, must be >= 1 */
1611 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1612 	spin_unlock_bh(&sctp_assocs_id_lock);
1613 	if (preload)
1614 		idr_preload_end();
1615 	if (ret < 0)
1616 		return ret;
1617 
1618 	asoc->assoc_id = (sctp_assoc_t)ret;
1619 	return 0;
1620 }
1621 
1622 /* Free the ASCONF queue */
1623 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1624 {
1625 	struct sctp_chunk *asconf;
1626 	struct sctp_chunk *tmp;
1627 
1628 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1629 		list_del_init(&asconf->list);
1630 		sctp_chunk_free(asconf);
1631 	}
1632 }
1633 
1634 /* Free asconf_ack cache */
1635 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1636 {
1637 	struct sctp_chunk *ack;
1638 	struct sctp_chunk *tmp;
1639 
1640 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1641 				transmitted_list) {
1642 		list_del_init(&ack->transmitted_list);
1643 		sctp_chunk_free(ack);
1644 	}
1645 }
1646 
1647 /* Clean up the ASCONF_ACK queue */
1648 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1649 {
1650 	struct sctp_chunk *ack;
1651 	struct sctp_chunk *tmp;
1652 
1653 	/* We can remove all the entries from the queue up to
1654 	 * the "Peer-Sequence-Number".
1655 	 */
1656 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1657 				transmitted_list) {
1658 		if (ack->subh.addip_hdr->serial ==
1659 				htonl(asoc->peer.addip_serial))
1660 			break;
1661 
1662 		list_del_init(&ack->transmitted_list);
1663 		sctp_chunk_free(ack);
1664 	}
1665 }
1666 
1667 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1668 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1669 					const struct sctp_association *asoc,
1670 					__be32 serial)
1671 {
1672 	struct sctp_chunk *ack;
1673 
1674 	/* Walk through the list of cached ASCONF-ACKs and find the
1675 	 * ack chunk whose serial number matches that of the request.
1676 	 */
1677 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1678 		if (sctp_chunk_pending(ack))
1679 			continue;
1680 		if (ack->subh.addip_hdr->serial == serial) {
1681 			sctp_chunk_hold(ack);
1682 			return ack;
1683 		}
1684 	}
1685 
1686 	return NULL;
1687 }
1688 
1689 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1690 {
1691 	/* Free any cached ASCONF_ACK chunk. */
1692 	sctp_assoc_free_asconf_acks(asoc);
1693 
1694 	/* Free the ASCONF queue. */
1695 	sctp_assoc_free_asconf_queue(asoc);
1696 
1697 	/* Free any cached ASCONF chunk. */
1698 	if (asoc->addip_last_asconf)
1699 		sctp_chunk_free(asoc->addip_last_asconf);
1700 }
1701