1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init( 67 struct sctp_association *asoc, 68 const struct sctp_endpoint *ep, 69 const struct sock *sk, 70 enum sctp_scope scope, gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 struct sctp_paramhdr *p; 75 int i; 76 77 /* Retrieve the SCTP per socket area. */ 78 sp = sctp_sk((struct sock *)sk); 79 80 /* Discarding const is appropriate here. */ 81 asoc->ep = (struct sctp_endpoint *)ep; 82 asoc->base.sk = (struct sock *)sk; 83 84 sctp_endpoint_hold(asoc->ep); 85 sock_hold(asoc->base.sk); 86 87 /* Initialize the common base substructure. */ 88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 89 90 /* Initialize the object handling fields. */ 91 refcount_set(&asoc->base.refcnt, 1); 92 93 /* Initialize the bind addr area. */ 94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 95 96 asoc->state = SCTP_STATE_CLOSED; 97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 98 asoc->user_frag = sp->user_frag; 99 100 /* Set the association max_retrans and RTO values from the 101 * socket values. 102 */ 103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 104 asoc->pf_retrans = sp->pf_retrans; 105 106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 109 110 /* Initialize the association's heartbeat interval based on the 111 * sock configured value. 112 */ 113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 114 115 /* Initialize path max retrans value. */ 116 asoc->pathmaxrxt = sp->pathmaxrxt; 117 118 asoc->flowlabel = sp->flowlabel; 119 asoc->dscp = sp->dscp; 120 121 /* Set association default SACK delay */ 122 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 123 asoc->sackfreq = sp->sackfreq; 124 125 /* Set the association default flags controlling 126 * Heartbeat, SACK delay, and Path MTU Discovery. 127 */ 128 asoc->param_flags = sp->param_flags; 129 130 /* Initialize the maximum number of new data packets that can be sent 131 * in a burst. 132 */ 133 asoc->max_burst = sp->max_burst; 134 135 asoc->subscribe = sp->subscribe; 136 137 /* initialize association timers */ 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 140 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 141 142 /* sctpimpguide Section 2.12.2 143 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 144 * recommended value of 5 times 'RTO.Max'. 145 */ 146 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 147 = 5 * asoc->rto_max; 148 149 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 150 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 151 152 /* Initializes the timers */ 153 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 154 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0); 155 156 /* Pull default initialization values from the sock options. 157 * Note: This assumes that the values have already been 158 * validated in the sock. 159 */ 160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 163 164 asoc->max_init_timeo = 165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 166 167 /* Set the local window size for receive. 168 * This is also the rcvbuf space per association. 169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 170 * 1500 bytes in one SCTP packet. 171 */ 172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 174 else 175 asoc->rwnd = sk->sk_rcvbuf/2; 176 177 asoc->a_rwnd = asoc->rwnd; 178 179 /* Use my own max window until I learn something better. */ 180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 181 182 /* Initialize the receive memory counter */ 183 atomic_set(&asoc->rmem_alloc, 0); 184 185 init_waitqueue_head(&asoc->wait); 186 187 asoc->c.my_vtag = sctp_generate_tag(ep); 188 asoc->c.my_port = ep->base.bind_addr.port; 189 190 asoc->c.initial_tsn = sctp_generate_tsn(ep); 191 192 asoc->next_tsn = asoc->c.initial_tsn; 193 194 asoc->ctsn_ack_point = asoc->next_tsn - 1; 195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 196 asoc->highest_sacked = asoc->ctsn_ack_point; 197 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 198 199 /* ADDIP Section 4.1 Asconf Chunk Procedures 200 * 201 * When an endpoint has an ASCONF signaled change to be sent to the 202 * remote endpoint it should do the following: 203 * ... 204 * A2) a serial number should be assigned to the chunk. The serial 205 * number SHOULD be a monotonically increasing number. The serial 206 * numbers SHOULD be initialized at the start of the 207 * association to the same value as the initial TSN. 208 */ 209 asoc->addip_serial = asoc->c.initial_tsn; 210 asoc->strreset_outseq = asoc->c.initial_tsn; 211 212 INIT_LIST_HEAD(&asoc->addip_chunk_list); 213 INIT_LIST_HEAD(&asoc->asconf_ack_list); 214 215 /* Make an empty list of remote transport addresses. */ 216 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 217 218 /* RFC 2960 5.1 Normal Establishment of an Association 219 * 220 * After the reception of the first data chunk in an 221 * association the endpoint must immediately respond with a 222 * sack to acknowledge the data chunk. Subsequent 223 * acknowledgements should be done as described in Section 224 * 6.2. 225 * 226 * [We implement this by telling a new association that it 227 * already received one packet.] 228 */ 229 asoc->peer.sack_needed = 1; 230 asoc->peer.sack_generation = 1; 231 232 /* Assume that the peer will tell us if he recognizes ASCONF 233 * as part of INIT exchange. 234 * The sctp_addip_noauth option is there for backward compatibility 235 * and will revert old behavior. 236 */ 237 if (net->sctp.addip_noauth) 238 asoc->peer.asconf_capable = 1; 239 240 /* Create an input queue. */ 241 sctp_inq_init(&asoc->base.inqueue); 242 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 243 244 /* Create an output queue. */ 245 sctp_outq_init(asoc, &asoc->outqueue); 246 247 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 248 goto fail_init; 249 250 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 251 0, gfp)) 252 goto fail_init; 253 254 /* Initialize default path MTU. */ 255 asoc->pathmtu = sp->pathmtu; 256 sctp_assoc_update_frag_point(asoc); 257 258 /* Assume that peer would support both address types unless we are 259 * told otherwise. 260 */ 261 asoc->peer.ipv4_address = 1; 262 if (asoc->base.sk->sk_family == PF_INET6) 263 asoc->peer.ipv6_address = 1; 264 INIT_LIST_HEAD(&asoc->asocs); 265 266 asoc->default_stream = sp->default_stream; 267 asoc->default_ppid = sp->default_ppid; 268 asoc->default_flags = sp->default_flags; 269 asoc->default_context = sp->default_context; 270 asoc->default_timetolive = sp->default_timetolive; 271 asoc->default_rcv_context = sp->default_rcv_context; 272 273 /* AUTH related initializations */ 274 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 275 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) 276 goto stream_free; 277 278 asoc->active_key_id = ep->active_key_id; 279 asoc->prsctp_enable = ep->prsctp_enable; 280 asoc->reconf_enable = ep->reconf_enable; 281 asoc->strreset_enable = ep->strreset_enable; 282 283 /* Save the hmacs and chunks list into this association */ 284 if (ep->auth_hmacs_list) 285 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 286 ntohs(ep->auth_hmacs_list->param_hdr.length)); 287 if (ep->auth_chunk_list) 288 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 289 ntohs(ep->auth_chunk_list->param_hdr.length)); 290 291 /* Get the AUTH random number for this association */ 292 p = (struct sctp_paramhdr *)asoc->c.auth_random; 293 p->type = SCTP_PARAM_RANDOM; 294 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH); 295 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 296 297 return asoc; 298 299 stream_free: 300 sctp_stream_free(&asoc->stream); 301 fail_init: 302 sock_put(asoc->base.sk); 303 sctp_endpoint_put(asoc->ep); 304 return NULL; 305 } 306 307 /* Allocate and initialize a new association */ 308 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 309 const struct sock *sk, 310 enum sctp_scope scope, gfp_t gfp) 311 { 312 struct sctp_association *asoc; 313 314 asoc = kzalloc(sizeof(*asoc), gfp); 315 if (!asoc) 316 goto fail; 317 318 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 319 goto fail_init; 320 321 SCTP_DBG_OBJCNT_INC(assoc); 322 323 pr_debug("Created asoc %p\n", asoc); 324 325 return asoc; 326 327 fail_init: 328 kfree(asoc); 329 fail: 330 return NULL; 331 } 332 333 /* Free this association if possible. There may still be users, so 334 * the actual deallocation may be delayed. 335 */ 336 void sctp_association_free(struct sctp_association *asoc) 337 { 338 struct sock *sk = asoc->base.sk; 339 struct sctp_transport *transport; 340 struct list_head *pos, *temp; 341 int i; 342 343 /* Only real associations count against the endpoint, so 344 * don't bother for if this is a temporary association. 345 */ 346 if (!list_empty(&asoc->asocs)) { 347 list_del(&asoc->asocs); 348 349 /* Decrement the backlog value for a TCP-style listening 350 * socket. 351 */ 352 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 353 sk->sk_ack_backlog--; 354 } 355 356 /* Mark as dead, so other users can know this structure is 357 * going away. 358 */ 359 asoc->base.dead = true; 360 361 /* Dispose of any data lying around in the outqueue. */ 362 sctp_outq_free(&asoc->outqueue); 363 364 /* Dispose of any pending messages for the upper layer. */ 365 sctp_ulpq_free(&asoc->ulpq); 366 367 /* Dispose of any pending chunks on the inqueue. */ 368 sctp_inq_free(&asoc->base.inqueue); 369 370 sctp_tsnmap_free(&asoc->peer.tsn_map); 371 372 /* Free stream information. */ 373 sctp_stream_free(&asoc->stream); 374 375 if (asoc->strreset_chunk) 376 sctp_chunk_free(asoc->strreset_chunk); 377 378 /* Clean up the bound address list. */ 379 sctp_bind_addr_free(&asoc->base.bind_addr); 380 381 /* Do we need to go through all of our timers and 382 * delete them? To be safe we will try to delete all, but we 383 * should be able to go through and make a guess based 384 * on our state. 385 */ 386 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 387 if (del_timer(&asoc->timers[i])) 388 sctp_association_put(asoc); 389 } 390 391 /* Free peer's cached cookie. */ 392 kfree(asoc->peer.cookie); 393 kfree(asoc->peer.peer_random); 394 kfree(asoc->peer.peer_chunks); 395 kfree(asoc->peer.peer_hmacs); 396 397 /* Release the transport structures. */ 398 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 399 transport = list_entry(pos, struct sctp_transport, transports); 400 list_del_rcu(pos); 401 sctp_unhash_transport(transport); 402 sctp_transport_free(transport); 403 } 404 405 asoc->peer.transport_count = 0; 406 407 sctp_asconf_queue_teardown(asoc); 408 409 /* Free pending address space being deleted */ 410 kfree(asoc->asconf_addr_del_pending); 411 412 /* AUTH - Free the endpoint shared keys */ 413 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 414 415 /* AUTH - Free the association shared key */ 416 sctp_auth_key_put(asoc->asoc_shared_key); 417 418 sctp_association_put(asoc); 419 } 420 421 /* Cleanup and free up an association. */ 422 static void sctp_association_destroy(struct sctp_association *asoc) 423 { 424 if (unlikely(!asoc->base.dead)) { 425 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 426 return; 427 } 428 429 sctp_endpoint_put(asoc->ep); 430 sock_put(asoc->base.sk); 431 432 if (asoc->assoc_id != 0) { 433 spin_lock_bh(&sctp_assocs_id_lock); 434 idr_remove(&sctp_assocs_id, asoc->assoc_id); 435 spin_unlock_bh(&sctp_assocs_id_lock); 436 } 437 438 WARN_ON(atomic_read(&asoc->rmem_alloc)); 439 440 kfree_rcu(asoc, rcu); 441 SCTP_DBG_OBJCNT_DEC(assoc); 442 } 443 444 /* Change the primary destination address for the peer. */ 445 void sctp_assoc_set_primary(struct sctp_association *asoc, 446 struct sctp_transport *transport) 447 { 448 int changeover = 0; 449 450 /* it's a changeover only if we already have a primary path 451 * that we are changing 452 */ 453 if (asoc->peer.primary_path != NULL && 454 asoc->peer.primary_path != transport) 455 changeover = 1 ; 456 457 asoc->peer.primary_path = transport; 458 459 /* Set a default msg_name for events. */ 460 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 461 sizeof(union sctp_addr)); 462 463 /* If the primary path is changing, assume that the 464 * user wants to use this new path. 465 */ 466 if ((transport->state == SCTP_ACTIVE) || 467 (transport->state == SCTP_UNKNOWN)) 468 asoc->peer.active_path = transport; 469 470 /* 471 * SFR-CACC algorithm: 472 * Upon the receipt of a request to change the primary 473 * destination address, on the data structure for the new 474 * primary destination, the sender MUST do the following: 475 * 476 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 477 * to this destination address earlier. The sender MUST set 478 * CYCLING_CHANGEOVER to indicate that this switch is a 479 * double switch to the same destination address. 480 * 481 * Really, only bother is we have data queued or outstanding on 482 * the association. 483 */ 484 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 485 return; 486 487 if (transport->cacc.changeover_active) 488 transport->cacc.cycling_changeover = changeover; 489 490 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 491 * a changeover has occurred. 492 */ 493 transport->cacc.changeover_active = changeover; 494 495 /* 3) The sender MUST store the next TSN to be sent in 496 * next_tsn_at_change. 497 */ 498 transport->cacc.next_tsn_at_change = asoc->next_tsn; 499 } 500 501 /* Remove a transport from an association. */ 502 void sctp_assoc_rm_peer(struct sctp_association *asoc, 503 struct sctp_transport *peer) 504 { 505 struct sctp_transport *transport; 506 struct list_head *pos; 507 struct sctp_chunk *ch; 508 509 pr_debug("%s: association:%p addr:%pISpc\n", 510 __func__, asoc, &peer->ipaddr.sa); 511 512 /* If we are to remove the current retran_path, update it 513 * to the next peer before removing this peer from the list. 514 */ 515 if (asoc->peer.retran_path == peer) 516 sctp_assoc_update_retran_path(asoc); 517 518 /* Remove this peer from the list. */ 519 list_del_rcu(&peer->transports); 520 /* Remove this peer from the transport hashtable */ 521 sctp_unhash_transport(peer); 522 523 /* Get the first transport of asoc. */ 524 pos = asoc->peer.transport_addr_list.next; 525 transport = list_entry(pos, struct sctp_transport, transports); 526 527 /* Update any entries that match the peer to be deleted. */ 528 if (asoc->peer.primary_path == peer) 529 sctp_assoc_set_primary(asoc, transport); 530 if (asoc->peer.active_path == peer) 531 asoc->peer.active_path = transport; 532 if (asoc->peer.retran_path == peer) 533 asoc->peer.retran_path = transport; 534 if (asoc->peer.last_data_from == peer) 535 asoc->peer.last_data_from = transport; 536 537 if (asoc->strreset_chunk && 538 asoc->strreset_chunk->transport == peer) { 539 asoc->strreset_chunk->transport = transport; 540 sctp_transport_reset_reconf_timer(transport); 541 } 542 543 /* If we remove the transport an INIT was last sent to, set it to 544 * NULL. Combined with the update of the retran path above, this 545 * will cause the next INIT to be sent to the next available 546 * transport, maintaining the cycle. 547 */ 548 if (asoc->init_last_sent_to == peer) 549 asoc->init_last_sent_to = NULL; 550 551 /* If we remove the transport an SHUTDOWN was last sent to, set it 552 * to NULL. Combined with the update of the retran path above, this 553 * will cause the next SHUTDOWN to be sent to the next available 554 * transport, maintaining the cycle. 555 */ 556 if (asoc->shutdown_last_sent_to == peer) 557 asoc->shutdown_last_sent_to = NULL; 558 559 /* If we remove the transport an ASCONF was last sent to, set it to 560 * NULL. 561 */ 562 if (asoc->addip_last_asconf && 563 asoc->addip_last_asconf->transport == peer) 564 asoc->addip_last_asconf->transport = NULL; 565 566 /* If we have something on the transmitted list, we have to 567 * save it off. The best place is the active path. 568 */ 569 if (!list_empty(&peer->transmitted)) { 570 struct sctp_transport *active = asoc->peer.active_path; 571 572 /* Reset the transport of each chunk on this list */ 573 list_for_each_entry(ch, &peer->transmitted, 574 transmitted_list) { 575 ch->transport = NULL; 576 ch->rtt_in_progress = 0; 577 } 578 579 list_splice_tail_init(&peer->transmitted, 580 &active->transmitted); 581 582 /* Start a T3 timer here in case it wasn't running so 583 * that these migrated packets have a chance to get 584 * retransmitted. 585 */ 586 if (!timer_pending(&active->T3_rtx_timer)) 587 if (!mod_timer(&active->T3_rtx_timer, 588 jiffies + active->rto)) 589 sctp_transport_hold(active); 590 } 591 592 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list) 593 if (ch->transport == peer) 594 ch->transport = NULL; 595 596 asoc->peer.transport_count--; 597 598 sctp_transport_free(peer); 599 } 600 601 /* Add a transport address to an association. */ 602 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 603 const union sctp_addr *addr, 604 const gfp_t gfp, 605 const int peer_state) 606 { 607 struct net *net = sock_net(asoc->base.sk); 608 struct sctp_transport *peer; 609 struct sctp_sock *sp; 610 unsigned short port; 611 612 sp = sctp_sk(asoc->base.sk); 613 614 /* AF_INET and AF_INET6 share common port field. */ 615 port = ntohs(addr->v4.sin_port); 616 617 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 618 asoc, &addr->sa, peer_state); 619 620 /* Set the port if it has not been set yet. */ 621 if (0 == asoc->peer.port) 622 asoc->peer.port = port; 623 624 /* Check to see if this is a duplicate. */ 625 peer = sctp_assoc_lookup_paddr(asoc, addr); 626 if (peer) { 627 /* An UNKNOWN state is only set on transports added by 628 * user in sctp_connectx() call. Such transports should be 629 * considered CONFIRMED per RFC 4960, Section 5.4. 630 */ 631 if (peer->state == SCTP_UNKNOWN) { 632 peer->state = SCTP_ACTIVE; 633 } 634 return peer; 635 } 636 637 peer = sctp_transport_new(net, addr, gfp); 638 if (!peer) 639 return NULL; 640 641 sctp_transport_set_owner(peer, asoc); 642 643 /* Initialize the peer's heartbeat interval based on the 644 * association configured value. 645 */ 646 peer->hbinterval = asoc->hbinterval; 647 648 /* Set the path max_retrans. */ 649 peer->pathmaxrxt = asoc->pathmaxrxt; 650 651 /* And the partial failure retrans threshold */ 652 peer->pf_retrans = asoc->pf_retrans; 653 654 /* Initialize the peer's SACK delay timeout based on the 655 * association configured value. 656 */ 657 peer->sackdelay = asoc->sackdelay; 658 peer->sackfreq = asoc->sackfreq; 659 660 if (addr->sa.sa_family == AF_INET6) { 661 __be32 info = addr->v6.sin6_flowinfo; 662 663 if (info) { 664 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK); 665 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 666 } else { 667 peer->flowlabel = asoc->flowlabel; 668 } 669 } 670 peer->dscp = asoc->dscp; 671 672 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 673 * based on association setting. 674 */ 675 peer->param_flags = asoc->param_flags; 676 677 /* Initialize the pmtu of the transport. */ 678 sctp_transport_route(peer, NULL, sp); 679 680 /* If this is the first transport addr on this association, 681 * initialize the association PMTU to the peer's PMTU. 682 * If not and the current association PMTU is higher than the new 683 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 684 */ 685 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ? 686 min_t(int, peer->pathmtu, asoc->pathmtu) : 687 peer->pathmtu); 688 689 peer->pmtu_pending = 0; 690 691 /* The asoc->peer.port might not be meaningful yet, but 692 * initialize the packet structure anyway. 693 */ 694 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 695 asoc->peer.port); 696 697 /* 7.2.1 Slow-Start 698 * 699 * o The initial cwnd before DATA transmission or after a sufficiently 700 * long idle period MUST be set to 701 * min(4*MTU, max(2*MTU, 4380 bytes)) 702 * 703 * o The initial value of ssthresh MAY be arbitrarily high 704 * (for example, implementations MAY use the size of the 705 * receiver advertised window). 706 */ 707 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 708 709 /* At this point, we may not have the receiver's advertised window, 710 * so initialize ssthresh to the default value and it will be set 711 * later when we process the INIT. 712 */ 713 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 714 715 peer->partial_bytes_acked = 0; 716 peer->flight_size = 0; 717 peer->burst_limited = 0; 718 719 /* Set the transport's RTO.initial value */ 720 peer->rto = asoc->rto_initial; 721 sctp_max_rto(asoc, peer); 722 723 /* Set the peer's active state. */ 724 peer->state = peer_state; 725 726 /* Add this peer into the transport hashtable */ 727 if (sctp_hash_transport(peer)) { 728 sctp_transport_free(peer); 729 return NULL; 730 } 731 732 /* Attach the remote transport to our asoc. */ 733 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 734 asoc->peer.transport_count++; 735 736 /* If we do not yet have a primary path, set one. */ 737 if (!asoc->peer.primary_path) { 738 sctp_assoc_set_primary(asoc, peer); 739 asoc->peer.retran_path = peer; 740 } 741 742 if (asoc->peer.active_path == asoc->peer.retran_path && 743 peer->state != SCTP_UNCONFIRMED) { 744 asoc->peer.retran_path = peer; 745 } 746 747 return peer; 748 } 749 750 /* Delete a transport address from an association. */ 751 void sctp_assoc_del_peer(struct sctp_association *asoc, 752 const union sctp_addr *addr) 753 { 754 struct list_head *pos; 755 struct list_head *temp; 756 struct sctp_transport *transport; 757 758 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 759 transport = list_entry(pos, struct sctp_transport, transports); 760 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 761 /* Do book keeping for removing the peer and free it. */ 762 sctp_assoc_rm_peer(asoc, transport); 763 break; 764 } 765 } 766 } 767 768 /* Lookup a transport by address. */ 769 struct sctp_transport *sctp_assoc_lookup_paddr( 770 const struct sctp_association *asoc, 771 const union sctp_addr *address) 772 { 773 struct sctp_transport *t; 774 775 /* Cycle through all transports searching for a peer address. */ 776 777 list_for_each_entry(t, &asoc->peer.transport_addr_list, 778 transports) { 779 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 780 return t; 781 } 782 783 return NULL; 784 } 785 786 /* Remove all transports except a give one */ 787 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 788 struct sctp_transport *primary) 789 { 790 struct sctp_transport *temp; 791 struct sctp_transport *t; 792 793 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 794 transports) { 795 /* if the current transport is not the primary one, delete it */ 796 if (t != primary) 797 sctp_assoc_rm_peer(asoc, t); 798 } 799 } 800 801 /* Engage in transport control operations. 802 * Mark the transport up or down and send a notification to the user. 803 * Select and update the new active and retran paths. 804 */ 805 void sctp_assoc_control_transport(struct sctp_association *asoc, 806 struct sctp_transport *transport, 807 enum sctp_transport_cmd command, 808 sctp_sn_error_t error) 809 { 810 struct sctp_ulpevent *event; 811 struct sockaddr_storage addr; 812 int spc_state = 0; 813 bool ulp_notify = true; 814 815 /* Record the transition on the transport. */ 816 switch (command) { 817 case SCTP_TRANSPORT_UP: 818 /* If we are moving from UNCONFIRMED state due 819 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 820 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 821 */ 822 if (SCTP_UNCONFIRMED == transport->state && 823 SCTP_HEARTBEAT_SUCCESS == error) 824 spc_state = SCTP_ADDR_CONFIRMED; 825 else 826 spc_state = SCTP_ADDR_AVAILABLE; 827 /* Don't inform ULP about transition from PF to 828 * active state and set cwnd to 1 MTU, see SCTP 829 * Quick failover draft section 5.1, point 5 830 */ 831 if (transport->state == SCTP_PF) { 832 ulp_notify = false; 833 transport->cwnd = asoc->pathmtu; 834 } 835 transport->state = SCTP_ACTIVE; 836 break; 837 838 case SCTP_TRANSPORT_DOWN: 839 /* If the transport was never confirmed, do not transition it 840 * to inactive state. Also, release the cached route since 841 * there may be a better route next time. 842 */ 843 if (transport->state != SCTP_UNCONFIRMED) 844 transport->state = SCTP_INACTIVE; 845 else { 846 sctp_transport_dst_release(transport); 847 ulp_notify = false; 848 } 849 850 spc_state = SCTP_ADDR_UNREACHABLE; 851 break; 852 853 case SCTP_TRANSPORT_PF: 854 transport->state = SCTP_PF; 855 ulp_notify = false; 856 break; 857 858 default: 859 return; 860 } 861 862 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 863 * to the user. 864 */ 865 if (ulp_notify) { 866 memset(&addr, 0, sizeof(struct sockaddr_storage)); 867 memcpy(&addr, &transport->ipaddr, 868 transport->af_specific->sockaddr_len); 869 870 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 871 0, spc_state, error, GFP_ATOMIC); 872 if (event) 873 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 874 } 875 876 /* Select new active and retran paths. */ 877 sctp_select_active_and_retran_path(asoc); 878 } 879 880 /* Hold a reference to an association. */ 881 void sctp_association_hold(struct sctp_association *asoc) 882 { 883 refcount_inc(&asoc->base.refcnt); 884 } 885 886 /* Release a reference to an association and cleanup 887 * if there are no more references. 888 */ 889 void sctp_association_put(struct sctp_association *asoc) 890 { 891 if (refcount_dec_and_test(&asoc->base.refcnt)) 892 sctp_association_destroy(asoc); 893 } 894 895 /* Allocate the next TSN, Transmission Sequence Number, for the given 896 * association. 897 */ 898 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 899 { 900 /* From Section 1.6 Serial Number Arithmetic: 901 * Transmission Sequence Numbers wrap around when they reach 902 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 903 * after transmitting TSN = 2*32 - 1 is TSN = 0. 904 */ 905 __u32 retval = asoc->next_tsn; 906 asoc->next_tsn++; 907 asoc->unack_data++; 908 909 return retval; 910 } 911 912 /* Compare two addresses to see if they match. Wildcard addresses 913 * only match themselves. 914 */ 915 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 916 const union sctp_addr *ss2) 917 { 918 struct sctp_af *af; 919 920 af = sctp_get_af_specific(ss1->sa.sa_family); 921 if (unlikely(!af)) 922 return 0; 923 924 return af->cmp_addr(ss1, ss2); 925 } 926 927 /* Return an ecne chunk to get prepended to a packet. 928 * Note: We are sly and return a shared, prealloced chunk. FIXME: 929 * No we don't, but we could/should. 930 */ 931 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 932 { 933 if (!asoc->need_ecne) 934 return NULL; 935 936 /* Send ECNE if needed. 937 * Not being able to allocate a chunk here is not deadly. 938 */ 939 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 940 } 941 942 /* 943 * Find which transport this TSN was sent on. 944 */ 945 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 946 __u32 tsn) 947 { 948 struct sctp_transport *active; 949 struct sctp_transport *match; 950 struct sctp_transport *transport; 951 struct sctp_chunk *chunk; 952 __be32 key = htonl(tsn); 953 954 match = NULL; 955 956 /* 957 * FIXME: In general, find a more efficient data structure for 958 * searching. 959 */ 960 961 /* 962 * The general strategy is to search each transport's transmitted 963 * list. Return which transport this TSN lives on. 964 * 965 * Let's be hopeful and check the active_path first. 966 * Another optimization would be to know if there is only one 967 * outbound path and not have to look for the TSN at all. 968 * 969 */ 970 971 active = asoc->peer.active_path; 972 973 list_for_each_entry(chunk, &active->transmitted, 974 transmitted_list) { 975 976 if (key == chunk->subh.data_hdr->tsn) { 977 match = active; 978 goto out; 979 } 980 } 981 982 /* If not found, go search all the other transports. */ 983 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 984 transports) { 985 986 if (transport == active) 987 continue; 988 list_for_each_entry(chunk, &transport->transmitted, 989 transmitted_list) { 990 if (key == chunk->subh.data_hdr->tsn) { 991 match = transport; 992 goto out; 993 } 994 } 995 } 996 out: 997 return match; 998 } 999 1000 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1001 static void sctp_assoc_bh_rcv(struct work_struct *work) 1002 { 1003 struct sctp_association *asoc = 1004 container_of(work, struct sctp_association, 1005 base.inqueue.immediate); 1006 struct net *net = sock_net(asoc->base.sk); 1007 union sctp_subtype subtype; 1008 struct sctp_endpoint *ep; 1009 struct sctp_chunk *chunk; 1010 struct sctp_inq *inqueue; 1011 int first_time = 1; /* is this the first time through the loop */ 1012 int error = 0; 1013 int state; 1014 1015 /* The association should be held so we should be safe. */ 1016 ep = asoc->ep; 1017 1018 inqueue = &asoc->base.inqueue; 1019 sctp_association_hold(asoc); 1020 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1021 state = asoc->state; 1022 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1023 1024 /* If the first chunk in the packet is AUTH, do special 1025 * processing specified in Section 6.3 of SCTP-AUTH spec 1026 */ 1027 if (first_time && subtype.chunk == SCTP_CID_AUTH) { 1028 struct sctp_chunkhdr *next_hdr; 1029 1030 next_hdr = sctp_inq_peek(inqueue); 1031 if (!next_hdr) 1032 goto normal; 1033 1034 /* If the next chunk is COOKIE-ECHO, skip the AUTH 1035 * chunk while saving a pointer to it so we can do 1036 * Authentication later (during cookie-echo 1037 * processing). 1038 */ 1039 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) { 1040 chunk->auth_chunk = skb_clone(chunk->skb, 1041 GFP_ATOMIC); 1042 chunk->auth = 1; 1043 continue; 1044 } 1045 } 1046 1047 normal: 1048 /* SCTP-AUTH, Section 6.3: 1049 * The receiver has a list of chunk types which it expects 1050 * to be received only after an AUTH-chunk. This list has 1051 * been sent to the peer during the association setup. It 1052 * MUST silently discard these chunks if they are not placed 1053 * after an AUTH chunk in the packet. 1054 */ 1055 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1056 continue; 1057 1058 /* Remember where the last DATA chunk came from so we 1059 * know where to send the SACK. 1060 */ 1061 if (sctp_chunk_is_data(chunk)) 1062 asoc->peer.last_data_from = chunk->transport; 1063 else { 1064 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1065 asoc->stats.ictrlchunks++; 1066 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1067 asoc->stats.isacks++; 1068 } 1069 1070 if (chunk->transport) 1071 chunk->transport->last_time_heard = ktime_get(); 1072 1073 /* Run through the state machine. */ 1074 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1075 state, ep, asoc, chunk, GFP_ATOMIC); 1076 1077 /* Check to see if the association is freed in response to 1078 * the incoming chunk. If so, get out of the while loop. 1079 */ 1080 if (asoc->base.dead) 1081 break; 1082 1083 /* If there is an error on chunk, discard this packet. */ 1084 if (error && chunk) 1085 chunk->pdiscard = 1; 1086 1087 if (first_time) 1088 first_time = 0; 1089 } 1090 sctp_association_put(asoc); 1091 } 1092 1093 /* This routine moves an association from its old sk to a new sk. */ 1094 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1095 { 1096 struct sctp_sock *newsp = sctp_sk(newsk); 1097 struct sock *oldsk = assoc->base.sk; 1098 1099 /* Delete the association from the old endpoint's list of 1100 * associations. 1101 */ 1102 list_del_init(&assoc->asocs); 1103 1104 /* Decrement the backlog value for a TCP-style socket. */ 1105 if (sctp_style(oldsk, TCP)) 1106 oldsk->sk_ack_backlog--; 1107 1108 /* Release references to the old endpoint and the sock. */ 1109 sctp_endpoint_put(assoc->ep); 1110 sock_put(assoc->base.sk); 1111 1112 /* Get a reference to the new endpoint. */ 1113 assoc->ep = newsp->ep; 1114 sctp_endpoint_hold(assoc->ep); 1115 1116 /* Get a reference to the new sock. */ 1117 assoc->base.sk = newsk; 1118 sock_hold(assoc->base.sk); 1119 1120 /* Add the association to the new endpoint's list of associations. */ 1121 sctp_endpoint_add_asoc(newsp->ep, assoc); 1122 } 1123 1124 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1125 int sctp_assoc_update(struct sctp_association *asoc, 1126 struct sctp_association *new) 1127 { 1128 struct sctp_transport *trans; 1129 struct list_head *pos, *temp; 1130 1131 /* Copy in new parameters of peer. */ 1132 asoc->c = new->c; 1133 asoc->peer.rwnd = new->peer.rwnd; 1134 asoc->peer.sack_needed = new->peer.sack_needed; 1135 asoc->peer.auth_capable = new->peer.auth_capable; 1136 asoc->peer.i = new->peer.i; 1137 1138 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1139 asoc->peer.i.initial_tsn, GFP_ATOMIC)) 1140 return -ENOMEM; 1141 1142 /* Remove any peer addresses not present in the new association. */ 1143 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1144 trans = list_entry(pos, struct sctp_transport, transports); 1145 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1146 sctp_assoc_rm_peer(asoc, trans); 1147 continue; 1148 } 1149 1150 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1151 sctp_transport_reset(trans); 1152 } 1153 1154 /* If the case is A (association restart), use 1155 * initial_tsn as next_tsn. If the case is B, use 1156 * current next_tsn in case data sent to peer 1157 * has been discarded and needs retransmission. 1158 */ 1159 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1160 asoc->next_tsn = new->next_tsn; 1161 asoc->ctsn_ack_point = new->ctsn_ack_point; 1162 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1163 1164 /* Reinitialize SSN for both local streams 1165 * and peer's streams. 1166 */ 1167 sctp_stream_clear(&asoc->stream); 1168 1169 /* Flush the ULP reassembly and ordered queue. 1170 * Any data there will now be stale and will 1171 * cause problems. 1172 */ 1173 sctp_ulpq_flush(&asoc->ulpq); 1174 1175 /* reset the overall association error count so 1176 * that the restarted association doesn't get torn 1177 * down on the next retransmission timer. 1178 */ 1179 asoc->overall_error_count = 0; 1180 1181 } else { 1182 /* Add any peer addresses from the new association. */ 1183 list_for_each_entry(trans, &new->peer.transport_addr_list, 1184 transports) 1185 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) && 1186 !sctp_assoc_add_peer(asoc, &trans->ipaddr, 1187 GFP_ATOMIC, trans->state)) 1188 return -ENOMEM; 1189 1190 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1191 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1192 1193 if (sctp_state(asoc, COOKIE_WAIT)) 1194 sctp_stream_update(&asoc->stream, &new->stream); 1195 1196 /* get a new assoc id if we don't have one yet. */ 1197 if (sctp_assoc_set_id(asoc, GFP_ATOMIC)) 1198 return -ENOMEM; 1199 } 1200 1201 /* SCTP-AUTH: Save the peer parameters from the new associations 1202 * and also move the association shared keys over 1203 */ 1204 kfree(asoc->peer.peer_random); 1205 asoc->peer.peer_random = new->peer.peer_random; 1206 new->peer.peer_random = NULL; 1207 1208 kfree(asoc->peer.peer_chunks); 1209 asoc->peer.peer_chunks = new->peer.peer_chunks; 1210 new->peer.peer_chunks = NULL; 1211 1212 kfree(asoc->peer.peer_hmacs); 1213 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1214 new->peer.peer_hmacs = NULL; 1215 1216 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1217 } 1218 1219 /* Update the retran path for sending a retransmitted packet. 1220 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1221 * 1222 * When there is outbound data to send and the primary path 1223 * becomes inactive (e.g., due to failures), or where the 1224 * SCTP user explicitly requests to send data to an 1225 * inactive destination transport address, before reporting 1226 * an error to its ULP, the SCTP endpoint should try to send 1227 * the data to an alternate active destination transport 1228 * address if one exists. 1229 * 1230 * When retransmitting data that timed out, if the endpoint 1231 * is multihomed, it should consider each source-destination 1232 * address pair in its retransmission selection policy. 1233 * When retransmitting timed-out data, the endpoint should 1234 * attempt to pick the most divergent source-destination 1235 * pair from the original source-destination pair to which 1236 * the packet was transmitted. 1237 * 1238 * Note: Rules for picking the most divergent source-destination 1239 * pair are an implementation decision and are not specified 1240 * within this document. 1241 * 1242 * Our basic strategy is to round-robin transports in priorities 1243 * according to sctp_trans_score() e.g., if no such 1244 * transport with state SCTP_ACTIVE exists, round-robin through 1245 * SCTP_UNKNOWN, etc. You get the picture. 1246 */ 1247 static u8 sctp_trans_score(const struct sctp_transport *trans) 1248 { 1249 switch (trans->state) { 1250 case SCTP_ACTIVE: 1251 return 3; /* best case */ 1252 case SCTP_UNKNOWN: 1253 return 2; 1254 case SCTP_PF: 1255 return 1; 1256 default: /* case SCTP_INACTIVE */ 1257 return 0; /* worst case */ 1258 } 1259 } 1260 1261 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1262 struct sctp_transport *trans2) 1263 { 1264 if (trans1->error_count > trans2->error_count) { 1265 return trans2; 1266 } else if (trans1->error_count == trans2->error_count && 1267 ktime_after(trans2->last_time_heard, 1268 trans1->last_time_heard)) { 1269 return trans2; 1270 } else { 1271 return trans1; 1272 } 1273 } 1274 1275 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1276 struct sctp_transport *best) 1277 { 1278 u8 score_curr, score_best; 1279 1280 if (best == NULL || curr == best) 1281 return curr; 1282 1283 score_curr = sctp_trans_score(curr); 1284 score_best = sctp_trans_score(best); 1285 1286 /* First, try a score-based selection if both transport states 1287 * differ. If we're in a tie, lets try to make a more clever 1288 * decision here based on error counts and last time heard. 1289 */ 1290 if (score_curr > score_best) 1291 return curr; 1292 else if (score_curr == score_best) 1293 return sctp_trans_elect_tie(best, curr); 1294 else 1295 return best; 1296 } 1297 1298 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1299 { 1300 struct sctp_transport *trans = asoc->peer.retran_path; 1301 struct sctp_transport *trans_next = NULL; 1302 1303 /* We're done as we only have the one and only path. */ 1304 if (asoc->peer.transport_count == 1) 1305 return; 1306 /* If active_path and retran_path are the same and active, 1307 * then this is the only active path. Use it. 1308 */ 1309 if (asoc->peer.active_path == asoc->peer.retran_path && 1310 asoc->peer.active_path->state == SCTP_ACTIVE) 1311 return; 1312 1313 /* Iterate from retran_path's successor back to retran_path. */ 1314 for (trans = list_next_entry(trans, transports); 1; 1315 trans = list_next_entry(trans, transports)) { 1316 /* Manually skip the head element. */ 1317 if (&trans->transports == &asoc->peer.transport_addr_list) 1318 continue; 1319 if (trans->state == SCTP_UNCONFIRMED) 1320 continue; 1321 trans_next = sctp_trans_elect_best(trans, trans_next); 1322 /* Active is good enough for immediate return. */ 1323 if (trans_next->state == SCTP_ACTIVE) 1324 break; 1325 /* We've reached the end, time to update path. */ 1326 if (trans == asoc->peer.retran_path) 1327 break; 1328 } 1329 1330 asoc->peer.retran_path = trans_next; 1331 1332 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1333 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1334 } 1335 1336 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1337 { 1338 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1339 struct sctp_transport *trans_pf = NULL; 1340 1341 /* Look for the two most recently used active transports. */ 1342 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1343 transports) { 1344 /* Skip uninteresting transports. */ 1345 if (trans->state == SCTP_INACTIVE || 1346 trans->state == SCTP_UNCONFIRMED) 1347 continue; 1348 /* Keep track of the best PF transport from our 1349 * list in case we don't find an active one. 1350 */ 1351 if (trans->state == SCTP_PF) { 1352 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1353 continue; 1354 } 1355 /* For active transports, pick the most recent ones. */ 1356 if (trans_pri == NULL || 1357 ktime_after(trans->last_time_heard, 1358 trans_pri->last_time_heard)) { 1359 trans_sec = trans_pri; 1360 trans_pri = trans; 1361 } else if (trans_sec == NULL || 1362 ktime_after(trans->last_time_heard, 1363 trans_sec->last_time_heard)) { 1364 trans_sec = trans; 1365 } 1366 } 1367 1368 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1369 * 1370 * By default, an endpoint should always transmit to the primary 1371 * path, unless the SCTP user explicitly specifies the 1372 * destination transport address (and possibly source transport 1373 * address) to use. [If the primary is active but not most recent, 1374 * bump the most recently used transport.] 1375 */ 1376 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1377 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1378 asoc->peer.primary_path != trans_pri) { 1379 trans_sec = trans_pri; 1380 trans_pri = asoc->peer.primary_path; 1381 } 1382 1383 /* We did not find anything useful for a possible retransmission 1384 * path; either primary path that we found is the the same as 1385 * the current one, or we didn't generally find an active one. 1386 */ 1387 if (trans_sec == NULL) 1388 trans_sec = trans_pri; 1389 1390 /* If we failed to find a usable transport, just camp on the 1391 * active or pick a PF iff it's the better choice. 1392 */ 1393 if (trans_pri == NULL) { 1394 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1395 trans_sec = trans_pri; 1396 } 1397 1398 /* Set the active and retran transports. */ 1399 asoc->peer.active_path = trans_pri; 1400 asoc->peer.retran_path = trans_sec; 1401 } 1402 1403 struct sctp_transport * 1404 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1405 struct sctp_transport *last_sent_to) 1406 { 1407 /* If this is the first time packet is sent, use the active path, 1408 * else use the retran path. If the last packet was sent over the 1409 * retran path, update the retran path and use it. 1410 */ 1411 if (last_sent_to == NULL) { 1412 return asoc->peer.active_path; 1413 } else { 1414 if (last_sent_to == asoc->peer.retran_path) 1415 sctp_assoc_update_retran_path(asoc); 1416 1417 return asoc->peer.retran_path; 1418 } 1419 } 1420 1421 void sctp_assoc_update_frag_point(struct sctp_association *asoc) 1422 { 1423 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu, 1424 sctp_datachk_len(&asoc->stream)); 1425 1426 if (asoc->user_frag) 1427 frag = min_t(int, frag, asoc->user_frag); 1428 1429 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN - 1430 sctp_datachk_len(&asoc->stream)); 1431 1432 asoc->frag_point = SCTP_TRUNC4(frag); 1433 } 1434 1435 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu) 1436 { 1437 if (asoc->pathmtu != pmtu) { 1438 asoc->pathmtu = pmtu; 1439 sctp_assoc_update_frag_point(asoc); 1440 } 1441 1442 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1443 asoc->pathmtu, asoc->frag_point); 1444 } 1445 1446 /* Update the association's pmtu and frag_point by going through all the 1447 * transports. This routine is called when a transport's PMTU has changed. 1448 */ 1449 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1450 { 1451 struct sctp_transport *t; 1452 __u32 pmtu = 0; 1453 1454 if (!asoc) 1455 return; 1456 1457 /* Get the lowest pmtu of all the transports. */ 1458 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 1459 if (t->pmtu_pending && t->dst) { 1460 sctp_transport_update_pmtu(t, 1461 atomic_read(&t->mtu_info)); 1462 t->pmtu_pending = 0; 1463 } 1464 if (!pmtu || (t->pathmtu < pmtu)) 1465 pmtu = t->pathmtu; 1466 } 1467 1468 sctp_assoc_set_pmtu(asoc, pmtu); 1469 } 1470 1471 /* Should we send a SACK to update our peer? */ 1472 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1473 { 1474 struct net *net = sock_net(asoc->base.sk); 1475 switch (asoc->state) { 1476 case SCTP_STATE_ESTABLISHED: 1477 case SCTP_STATE_SHUTDOWN_PENDING: 1478 case SCTP_STATE_SHUTDOWN_RECEIVED: 1479 case SCTP_STATE_SHUTDOWN_SENT: 1480 if ((asoc->rwnd > asoc->a_rwnd) && 1481 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1482 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1483 asoc->pathmtu))) 1484 return true; 1485 break; 1486 default: 1487 break; 1488 } 1489 return false; 1490 } 1491 1492 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1493 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1494 { 1495 struct sctp_chunk *sack; 1496 struct timer_list *timer; 1497 1498 if (asoc->rwnd_over) { 1499 if (asoc->rwnd_over >= len) { 1500 asoc->rwnd_over -= len; 1501 } else { 1502 asoc->rwnd += (len - asoc->rwnd_over); 1503 asoc->rwnd_over = 0; 1504 } 1505 } else { 1506 asoc->rwnd += len; 1507 } 1508 1509 /* If we had window pressure, start recovering it 1510 * once our rwnd had reached the accumulated pressure 1511 * threshold. The idea is to recover slowly, but up 1512 * to the initial advertised window. 1513 */ 1514 if (asoc->rwnd_press) { 1515 int change = min(asoc->pathmtu, asoc->rwnd_press); 1516 asoc->rwnd += change; 1517 asoc->rwnd_press -= change; 1518 } 1519 1520 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1521 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1522 asoc->a_rwnd); 1523 1524 /* Send a window update SACK if the rwnd has increased by at least the 1525 * minimum of the association's PMTU and half of the receive buffer. 1526 * The algorithm used is similar to the one described in 1527 * Section 4.2.3.3 of RFC 1122. 1528 */ 1529 if (sctp_peer_needs_update(asoc)) { 1530 asoc->a_rwnd = asoc->rwnd; 1531 1532 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1533 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1534 asoc->a_rwnd); 1535 1536 sack = sctp_make_sack(asoc); 1537 if (!sack) 1538 return; 1539 1540 asoc->peer.sack_needed = 0; 1541 1542 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1543 1544 /* Stop the SACK timer. */ 1545 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1546 if (del_timer(timer)) 1547 sctp_association_put(asoc); 1548 } 1549 } 1550 1551 /* Decrease asoc's rwnd by len. */ 1552 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1553 { 1554 int rx_count; 1555 int over = 0; 1556 1557 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1558 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1559 "asoc->rwnd_over:%u!\n", __func__, asoc, 1560 asoc->rwnd, asoc->rwnd_over); 1561 1562 if (asoc->ep->rcvbuf_policy) 1563 rx_count = atomic_read(&asoc->rmem_alloc); 1564 else 1565 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1566 1567 /* If we've reached or overflowed our receive buffer, announce 1568 * a 0 rwnd if rwnd would still be positive. Store the 1569 * the potential pressure overflow so that the window can be restored 1570 * back to original value. 1571 */ 1572 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1573 over = 1; 1574 1575 if (asoc->rwnd >= len) { 1576 asoc->rwnd -= len; 1577 if (over) { 1578 asoc->rwnd_press += asoc->rwnd; 1579 asoc->rwnd = 0; 1580 } 1581 } else { 1582 asoc->rwnd_over += len - asoc->rwnd; 1583 asoc->rwnd = 0; 1584 } 1585 1586 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1587 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1588 asoc->rwnd_press); 1589 } 1590 1591 /* Build the bind address list for the association based on info from the 1592 * local endpoint and the remote peer. 1593 */ 1594 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1595 enum sctp_scope scope, gfp_t gfp) 1596 { 1597 int flags; 1598 1599 /* Use scoping rules to determine the subset of addresses from 1600 * the endpoint. 1601 */ 1602 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1603 if (asoc->peer.ipv4_address) 1604 flags |= SCTP_ADDR4_PEERSUPP; 1605 if (asoc->peer.ipv6_address) 1606 flags |= SCTP_ADDR6_PEERSUPP; 1607 1608 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1609 &asoc->base.bind_addr, 1610 &asoc->ep->base.bind_addr, 1611 scope, gfp, flags); 1612 } 1613 1614 /* Build the association's bind address list from the cookie. */ 1615 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1616 struct sctp_cookie *cookie, 1617 gfp_t gfp) 1618 { 1619 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1620 int var_size3 = cookie->raw_addr_list_len; 1621 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1622 1623 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1624 asoc->ep->base.bind_addr.port, gfp); 1625 } 1626 1627 /* Lookup laddr in the bind address list of an association. */ 1628 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1629 const union sctp_addr *laddr) 1630 { 1631 int found = 0; 1632 1633 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1634 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1635 sctp_sk(asoc->base.sk))) 1636 found = 1; 1637 1638 return found; 1639 } 1640 1641 /* Set an association id for a given association */ 1642 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1643 { 1644 bool preload = gfpflags_allow_blocking(gfp); 1645 int ret; 1646 1647 /* If the id is already assigned, keep it. */ 1648 if (asoc->assoc_id) 1649 return 0; 1650 1651 if (preload) 1652 idr_preload(gfp); 1653 spin_lock_bh(&sctp_assocs_id_lock); 1654 /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and 1655 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC. 1656 */ 1657 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0, 1658 GFP_NOWAIT); 1659 spin_unlock_bh(&sctp_assocs_id_lock); 1660 if (preload) 1661 idr_preload_end(); 1662 if (ret < 0) 1663 return ret; 1664 1665 asoc->assoc_id = (sctp_assoc_t)ret; 1666 return 0; 1667 } 1668 1669 /* Free the ASCONF queue */ 1670 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1671 { 1672 struct sctp_chunk *asconf; 1673 struct sctp_chunk *tmp; 1674 1675 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1676 list_del_init(&asconf->list); 1677 sctp_chunk_free(asconf); 1678 } 1679 } 1680 1681 /* Free asconf_ack cache */ 1682 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1683 { 1684 struct sctp_chunk *ack; 1685 struct sctp_chunk *tmp; 1686 1687 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1688 transmitted_list) { 1689 list_del_init(&ack->transmitted_list); 1690 sctp_chunk_free(ack); 1691 } 1692 } 1693 1694 /* Clean up the ASCONF_ACK queue */ 1695 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1696 { 1697 struct sctp_chunk *ack; 1698 struct sctp_chunk *tmp; 1699 1700 /* We can remove all the entries from the queue up to 1701 * the "Peer-Sequence-Number". 1702 */ 1703 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1704 transmitted_list) { 1705 if (ack->subh.addip_hdr->serial == 1706 htonl(asoc->peer.addip_serial)) 1707 break; 1708 1709 list_del_init(&ack->transmitted_list); 1710 sctp_chunk_free(ack); 1711 } 1712 } 1713 1714 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1715 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1716 const struct sctp_association *asoc, 1717 __be32 serial) 1718 { 1719 struct sctp_chunk *ack; 1720 1721 /* Walk through the list of cached ASCONF-ACKs and find the 1722 * ack chunk whose serial number matches that of the request. 1723 */ 1724 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1725 if (sctp_chunk_pending(ack)) 1726 continue; 1727 if (ack->subh.addip_hdr->serial == serial) { 1728 sctp_chunk_hold(ack); 1729 return ack; 1730 } 1731 } 1732 1733 return NULL; 1734 } 1735 1736 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1737 { 1738 /* Free any cached ASCONF_ACK chunk. */ 1739 sctp_assoc_free_asconf_acks(asoc); 1740 1741 /* Free the ASCONF queue. */ 1742 sctp_assoc_free_asconf_queue(asoc); 1743 1744 /* Free any cached ASCONF chunk. */ 1745 if (asoc->addip_last_asconf) 1746 sctp_chunk_free(asoc->addip_last_asconf); 1747 } 1748