xref: /openbmc/linux/net/sctp/associola.c (revision ca79522c)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57 
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68 
69 /* 1st Level Abstractions. */
70 
71 /* Initialize a new association from provided memory. */
72 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
73 					  const struct sctp_endpoint *ep,
74 					  const struct sock *sk,
75 					  sctp_scope_t scope,
76 					  gfp_t gfp)
77 {
78 	struct net *net = sock_net(sk);
79 	struct sctp_sock *sp;
80 	int i;
81 	sctp_paramhdr_t *p;
82 	int err;
83 
84 	/* Retrieve the SCTP per socket area.  */
85 	sp = sctp_sk((struct sock *)sk);
86 
87 	/* Discarding const is appropriate here.  */
88 	asoc->ep = (struct sctp_endpoint *)ep;
89 	sctp_endpoint_hold(asoc->ep);
90 
91 	/* Hold the sock.  */
92 	asoc->base.sk = (struct sock *)sk;
93 	sock_hold(asoc->base.sk);
94 
95 	/* Initialize the common base substructure.  */
96 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
97 
98 	/* Initialize the object handling fields.  */
99 	atomic_set(&asoc->base.refcnt, 1);
100 	asoc->base.dead = false;
101 
102 	/* Initialize the bind addr area.  */
103 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
104 
105 	asoc->state = SCTP_STATE_CLOSED;
106 
107 	/* Set these values from the socket values, a conversion between
108 	 * millsecons to seconds/microseconds must also be done.
109 	 */
110 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
111 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
112 					* 1000;
113 	asoc->frag_point = 0;
114 	asoc->user_frag = sp->user_frag;
115 
116 	/* Set the association max_retrans and RTO values from the
117 	 * socket values.
118 	 */
119 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
120 	asoc->pf_retrans  = net->sctp.pf_retrans;
121 
122 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
123 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
124 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
125 
126 	asoc->overall_error_count = 0;
127 
128 	/* Initialize the association's heartbeat interval based on the
129 	 * sock configured value.
130 	 */
131 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
132 
133 	/* Initialize path max retrans value. */
134 	asoc->pathmaxrxt = sp->pathmaxrxt;
135 
136 	/* Initialize default path MTU. */
137 	asoc->pathmtu = sp->pathmtu;
138 
139 	/* Set association default SACK delay */
140 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
141 	asoc->sackfreq = sp->sackfreq;
142 
143 	/* Set the association default flags controlling
144 	 * Heartbeat, SACK delay, and Path MTU Discovery.
145 	 */
146 	asoc->param_flags = sp->param_flags;
147 
148 	/* Initialize the maximum mumber of new data packets that can be sent
149 	 * in a burst.
150 	 */
151 	asoc->max_burst = sp->max_burst;
152 
153 	/* initialize association timers */
154 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
155 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
156 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
157 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
158 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
159 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
160 
161 	/* sctpimpguide Section 2.12.2
162 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
163 	 * recommended value of 5 times 'RTO.Max'.
164 	 */
165 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
166 		= 5 * asoc->rto_max;
167 
168 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
169 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
170 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
171 		min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
172 
173 	/* Initializes the timers */
174 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
175 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
176 				(unsigned long)asoc);
177 
178 	/* Pull default initialization values from the sock options.
179 	 * Note: This assumes that the values have already been
180 	 * validated in the sock.
181 	 */
182 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
183 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
184 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
185 
186 	asoc->max_init_timeo =
187 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
188 
189 	/* Allocate storage for the ssnmap after the inbound and outbound
190 	 * streams have been negotiated during Init.
191 	 */
192 	asoc->ssnmap = NULL;
193 
194 	/* Set the local window size for receive.
195 	 * This is also the rcvbuf space per association.
196 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
197 	 * 1500 bytes in one SCTP packet.
198 	 */
199 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
200 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
201 	else
202 		asoc->rwnd = sk->sk_rcvbuf/2;
203 
204 	asoc->a_rwnd = asoc->rwnd;
205 
206 	asoc->rwnd_over = 0;
207 	asoc->rwnd_press = 0;
208 
209 	/* Use my own max window until I learn something better.  */
210 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
211 
212 	/* Set the sndbuf size for transmit.  */
213 	asoc->sndbuf_used = 0;
214 
215 	/* Initialize the receive memory counter */
216 	atomic_set(&asoc->rmem_alloc, 0);
217 
218 	init_waitqueue_head(&asoc->wait);
219 
220 	asoc->c.my_vtag = sctp_generate_tag(ep);
221 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
222 	asoc->c.peer_vtag = 0;
223 	asoc->c.my_ttag   = 0;
224 	asoc->c.peer_ttag = 0;
225 	asoc->c.my_port = ep->base.bind_addr.port;
226 
227 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
228 
229 	asoc->next_tsn = asoc->c.initial_tsn;
230 
231 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
232 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
233 	asoc->highest_sacked = asoc->ctsn_ack_point;
234 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
235 	asoc->unack_data = 0;
236 
237 	/* ADDIP Section 4.1 Asconf Chunk Procedures
238 	 *
239 	 * When an endpoint has an ASCONF signaled change to be sent to the
240 	 * remote endpoint it should do the following:
241 	 * ...
242 	 * A2) a serial number should be assigned to the chunk. The serial
243 	 * number SHOULD be a monotonically increasing number. The serial
244 	 * numbers SHOULD be initialized at the start of the
245 	 * association to the same value as the initial TSN.
246 	 */
247 	asoc->addip_serial = asoc->c.initial_tsn;
248 
249 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
250 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
251 
252 	/* Make an empty list of remote transport addresses.  */
253 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
254 	asoc->peer.transport_count = 0;
255 
256 	/* RFC 2960 5.1 Normal Establishment of an Association
257 	 *
258 	 * After the reception of the first data chunk in an
259 	 * association the endpoint must immediately respond with a
260 	 * sack to acknowledge the data chunk.  Subsequent
261 	 * acknowledgements should be done as described in Section
262 	 * 6.2.
263 	 *
264 	 * [We implement this by telling a new association that it
265 	 * already received one packet.]
266 	 */
267 	asoc->peer.sack_needed = 1;
268 	asoc->peer.sack_cnt = 0;
269 	asoc->peer.sack_generation = 1;
270 
271 	/* Assume that the peer will tell us if he recognizes ASCONF
272 	 * as part of INIT exchange.
273 	 * The sctp_addip_noauth option is there for backward compatibilty
274 	 * and will revert old behavior.
275 	 */
276 	asoc->peer.asconf_capable = 0;
277 	if (net->sctp.addip_noauth)
278 		asoc->peer.asconf_capable = 1;
279 	asoc->asconf_addr_del_pending = NULL;
280 	asoc->src_out_of_asoc_ok = 0;
281 	asoc->new_transport = NULL;
282 
283 	/* Create an input queue.  */
284 	sctp_inq_init(&asoc->base.inqueue);
285 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
286 
287 	/* Create an output queue.  */
288 	sctp_outq_init(asoc, &asoc->outqueue);
289 
290 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
291 		goto fail_init;
292 
293 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
294 
295 	asoc->need_ecne = 0;
296 
297 	asoc->assoc_id = 0;
298 
299 	/* Assume that peer would support both address types unless we are
300 	 * told otherwise.
301 	 */
302 	asoc->peer.ipv4_address = 1;
303 	if (asoc->base.sk->sk_family == PF_INET6)
304 		asoc->peer.ipv6_address = 1;
305 	INIT_LIST_HEAD(&asoc->asocs);
306 
307 	asoc->autoclose = sp->autoclose;
308 
309 	asoc->default_stream = sp->default_stream;
310 	asoc->default_ppid = sp->default_ppid;
311 	asoc->default_flags = sp->default_flags;
312 	asoc->default_context = sp->default_context;
313 	asoc->default_timetolive = sp->default_timetolive;
314 	asoc->default_rcv_context = sp->default_rcv_context;
315 
316 	/* SCTP_GET_ASSOC_STATS COUNTERS */
317 	memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats));
318 
319 	/* AUTH related initializations */
320 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
321 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
322 	if (err)
323 		goto fail_init;
324 
325 	asoc->active_key_id = ep->active_key_id;
326 	asoc->asoc_shared_key = NULL;
327 
328 	asoc->default_hmac_id = 0;
329 	/* Save the hmacs and chunks list into this association */
330 	if (ep->auth_hmacs_list)
331 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
332 			ntohs(ep->auth_hmacs_list->param_hdr.length));
333 	if (ep->auth_chunk_list)
334 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
335 			ntohs(ep->auth_chunk_list->param_hdr.length));
336 
337 	/* Get the AUTH random number for this association */
338 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
339 	p->type = SCTP_PARAM_RANDOM;
340 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
341 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
342 
343 	return asoc;
344 
345 fail_init:
346 	sctp_endpoint_put(asoc->ep);
347 	sock_put(asoc->base.sk);
348 	return NULL;
349 }
350 
351 /* Allocate and initialize a new association */
352 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
353 					 const struct sock *sk,
354 					 sctp_scope_t scope,
355 					 gfp_t gfp)
356 {
357 	struct sctp_association *asoc;
358 
359 	asoc = t_new(struct sctp_association, gfp);
360 	if (!asoc)
361 		goto fail;
362 
363 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
364 		goto fail_init;
365 
366 	SCTP_DBG_OBJCNT_INC(assoc);
367 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
368 
369 	return asoc;
370 
371 fail_init:
372 	kfree(asoc);
373 fail:
374 	return NULL;
375 }
376 
377 /* Free this association if possible.  There may still be users, so
378  * the actual deallocation may be delayed.
379  */
380 void sctp_association_free(struct sctp_association *asoc)
381 {
382 	struct sock *sk = asoc->base.sk;
383 	struct sctp_transport *transport;
384 	struct list_head *pos, *temp;
385 	int i;
386 
387 	/* Only real associations count against the endpoint, so
388 	 * don't bother for if this is a temporary association.
389 	 */
390 	if (!asoc->temp) {
391 		list_del(&asoc->asocs);
392 
393 		/* Decrement the backlog value for a TCP-style listening
394 		 * socket.
395 		 */
396 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
397 			sk->sk_ack_backlog--;
398 	}
399 
400 	/* Mark as dead, so other users can know this structure is
401 	 * going away.
402 	 */
403 	asoc->base.dead = true;
404 
405 	/* Dispose of any data lying around in the outqueue. */
406 	sctp_outq_free(&asoc->outqueue);
407 
408 	/* Dispose of any pending messages for the upper layer. */
409 	sctp_ulpq_free(&asoc->ulpq);
410 
411 	/* Dispose of any pending chunks on the inqueue. */
412 	sctp_inq_free(&asoc->base.inqueue);
413 
414 	sctp_tsnmap_free(&asoc->peer.tsn_map);
415 
416 	/* Free ssnmap storage. */
417 	sctp_ssnmap_free(asoc->ssnmap);
418 
419 	/* Clean up the bound address list. */
420 	sctp_bind_addr_free(&asoc->base.bind_addr);
421 
422 	/* Do we need to go through all of our timers and
423 	 * delete them?   To be safe we will try to delete all, but we
424 	 * should be able to go through and make a guess based
425 	 * on our state.
426 	 */
427 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
428 		if (del_timer(&asoc->timers[i]))
429 			sctp_association_put(asoc);
430 	}
431 
432 	/* Free peer's cached cookie. */
433 	kfree(asoc->peer.cookie);
434 	kfree(asoc->peer.peer_random);
435 	kfree(asoc->peer.peer_chunks);
436 	kfree(asoc->peer.peer_hmacs);
437 
438 	/* Release the transport structures. */
439 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
440 		transport = list_entry(pos, struct sctp_transport, transports);
441 		list_del_rcu(pos);
442 		sctp_transport_free(transport);
443 	}
444 
445 	asoc->peer.transport_count = 0;
446 
447 	sctp_asconf_queue_teardown(asoc);
448 
449 	/* Free pending address space being deleted */
450 	if (asoc->asconf_addr_del_pending != NULL)
451 		kfree(asoc->asconf_addr_del_pending);
452 
453 	/* AUTH - Free the endpoint shared keys */
454 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
455 
456 	/* AUTH - Free the association shared key */
457 	sctp_auth_key_put(asoc->asoc_shared_key);
458 
459 	sctp_association_put(asoc);
460 }
461 
462 /* Cleanup and free up an association. */
463 static void sctp_association_destroy(struct sctp_association *asoc)
464 {
465 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
466 
467 	sctp_endpoint_put(asoc->ep);
468 	sock_put(asoc->base.sk);
469 
470 	if (asoc->assoc_id != 0) {
471 		spin_lock_bh(&sctp_assocs_id_lock);
472 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
473 		spin_unlock_bh(&sctp_assocs_id_lock);
474 	}
475 
476 	WARN_ON(atomic_read(&asoc->rmem_alloc));
477 
478 	kfree(asoc);
479 	SCTP_DBG_OBJCNT_DEC(assoc);
480 }
481 
482 /* Change the primary destination address for the peer. */
483 void sctp_assoc_set_primary(struct sctp_association *asoc,
484 			    struct sctp_transport *transport)
485 {
486 	int changeover = 0;
487 
488 	/* it's a changeover only if we already have a primary path
489 	 * that we are changing
490 	 */
491 	if (asoc->peer.primary_path != NULL &&
492 	    asoc->peer.primary_path != transport)
493 		changeover = 1 ;
494 
495 	asoc->peer.primary_path = transport;
496 
497 	/* Set a default msg_name for events. */
498 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
499 	       sizeof(union sctp_addr));
500 
501 	/* If the primary path is changing, assume that the
502 	 * user wants to use this new path.
503 	 */
504 	if ((transport->state == SCTP_ACTIVE) ||
505 	    (transport->state == SCTP_UNKNOWN))
506 		asoc->peer.active_path = transport;
507 
508 	/*
509 	 * SFR-CACC algorithm:
510 	 * Upon the receipt of a request to change the primary
511 	 * destination address, on the data structure for the new
512 	 * primary destination, the sender MUST do the following:
513 	 *
514 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
515 	 * to this destination address earlier. The sender MUST set
516 	 * CYCLING_CHANGEOVER to indicate that this switch is a
517 	 * double switch to the same destination address.
518 	 *
519 	 * Really, only bother is we have data queued or outstanding on
520 	 * the association.
521 	 */
522 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
523 		return;
524 
525 	if (transport->cacc.changeover_active)
526 		transport->cacc.cycling_changeover = changeover;
527 
528 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
529 	 * a changeover has occurred.
530 	 */
531 	transport->cacc.changeover_active = changeover;
532 
533 	/* 3) The sender MUST store the next TSN to be sent in
534 	 * next_tsn_at_change.
535 	 */
536 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
537 }
538 
539 /* Remove a transport from an association.  */
540 void sctp_assoc_rm_peer(struct sctp_association *asoc,
541 			struct sctp_transport *peer)
542 {
543 	struct list_head	*pos;
544 	struct sctp_transport	*transport;
545 
546 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
547 				 " port: %d\n",
548 				 asoc,
549 				 (&peer->ipaddr),
550 				 ntohs(peer->ipaddr.v4.sin_port));
551 
552 	/* If we are to remove the current retran_path, update it
553 	 * to the next peer before removing this peer from the list.
554 	 */
555 	if (asoc->peer.retran_path == peer)
556 		sctp_assoc_update_retran_path(asoc);
557 
558 	/* Remove this peer from the list. */
559 	list_del_rcu(&peer->transports);
560 
561 	/* Get the first transport of asoc. */
562 	pos = asoc->peer.transport_addr_list.next;
563 	transport = list_entry(pos, struct sctp_transport, transports);
564 
565 	/* Update any entries that match the peer to be deleted. */
566 	if (asoc->peer.primary_path == peer)
567 		sctp_assoc_set_primary(asoc, transport);
568 	if (asoc->peer.active_path == peer)
569 		asoc->peer.active_path = transport;
570 	if (asoc->peer.retran_path == peer)
571 		asoc->peer.retran_path = transport;
572 	if (asoc->peer.last_data_from == peer)
573 		asoc->peer.last_data_from = transport;
574 
575 	/* If we remove the transport an INIT was last sent to, set it to
576 	 * NULL. Combined with the update of the retran path above, this
577 	 * will cause the next INIT to be sent to the next available
578 	 * transport, maintaining the cycle.
579 	 */
580 	if (asoc->init_last_sent_to == peer)
581 		asoc->init_last_sent_to = NULL;
582 
583 	/* If we remove the transport an SHUTDOWN was last sent to, set it
584 	 * to NULL. Combined with the update of the retran path above, this
585 	 * will cause the next SHUTDOWN to be sent to the next available
586 	 * transport, maintaining the cycle.
587 	 */
588 	if (asoc->shutdown_last_sent_to == peer)
589 		asoc->shutdown_last_sent_to = NULL;
590 
591 	/* If we remove the transport an ASCONF was last sent to, set it to
592 	 * NULL.
593 	 */
594 	if (asoc->addip_last_asconf &&
595 	    asoc->addip_last_asconf->transport == peer)
596 		asoc->addip_last_asconf->transport = NULL;
597 
598 	/* If we have something on the transmitted list, we have to
599 	 * save it off.  The best place is the active path.
600 	 */
601 	if (!list_empty(&peer->transmitted)) {
602 		struct sctp_transport *active = asoc->peer.active_path;
603 		struct sctp_chunk *ch;
604 
605 		/* Reset the transport of each chunk on this list */
606 		list_for_each_entry(ch, &peer->transmitted,
607 					transmitted_list) {
608 			ch->transport = NULL;
609 			ch->rtt_in_progress = 0;
610 		}
611 
612 		list_splice_tail_init(&peer->transmitted,
613 					&active->transmitted);
614 
615 		/* Start a T3 timer here in case it wasn't running so
616 		 * that these migrated packets have a chance to get
617 		 * retrnasmitted.
618 		 */
619 		if (!timer_pending(&active->T3_rtx_timer))
620 			if (!mod_timer(&active->T3_rtx_timer,
621 					jiffies + active->rto))
622 				sctp_transport_hold(active);
623 	}
624 
625 	asoc->peer.transport_count--;
626 
627 	sctp_transport_free(peer);
628 }
629 
630 /* Add a transport address to an association.  */
631 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
632 					   const union sctp_addr *addr,
633 					   const gfp_t gfp,
634 					   const int peer_state)
635 {
636 	struct net *net = sock_net(asoc->base.sk);
637 	struct sctp_transport *peer;
638 	struct sctp_sock *sp;
639 	unsigned short port;
640 
641 	sp = sctp_sk(asoc->base.sk);
642 
643 	/* AF_INET and AF_INET6 share common port field. */
644 	port = ntohs(addr->v4.sin_port);
645 
646 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
647 				 " port: %d state:%d\n",
648 				 asoc,
649 				 addr,
650 				 port,
651 				 peer_state);
652 
653 	/* Set the port if it has not been set yet.  */
654 	if (0 == asoc->peer.port)
655 		asoc->peer.port = port;
656 
657 	/* Check to see if this is a duplicate. */
658 	peer = sctp_assoc_lookup_paddr(asoc, addr);
659 	if (peer) {
660 		/* An UNKNOWN state is only set on transports added by
661 		 * user in sctp_connectx() call.  Such transports should be
662 		 * considered CONFIRMED per RFC 4960, Section 5.4.
663 		 */
664 		if (peer->state == SCTP_UNKNOWN) {
665 			peer->state = SCTP_ACTIVE;
666 		}
667 		return peer;
668 	}
669 
670 	peer = sctp_transport_new(net, addr, gfp);
671 	if (!peer)
672 		return NULL;
673 
674 	sctp_transport_set_owner(peer, asoc);
675 
676 	/* Initialize the peer's heartbeat interval based on the
677 	 * association configured value.
678 	 */
679 	peer->hbinterval = asoc->hbinterval;
680 
681 	/* Set the path max_retrans.  */
682 	peer->pathmaxrxt = asoc->pathmaxrxt;
683 
684 	/* And the partial failure retrnas threshold */
685 	peer->pf_retrans = asoc->pf_retrans;
686 
687 	/* Initialize the peer's SACK delay timeout based on the
688 	 * association configured value.
689 	 */
690 	peer->sackdelay = asoc->sackdelay;
691 	peer->sackfreq = asoc->sackfreq;
692 
693 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
694 	 * based on association setting.
695 	 */
696 	peer->param_flags = asoc->param_flags;
697 
698 	sctp_transport_route(peer, NULL, sp);
699 
700 	/* Initialize the pmtu of the transport. */
701 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
702 		if (asoc->pathmtu)
703 			peer->pathmtu = asoc->pathmtu;
704 		else
705 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
706 	}
707 
708 	/* If this is the first transport addr on this association,
709 	 * initialize the association PMTU to the peer's PMTU.
710 	 * If not and the current association PMTU is higher than the new
711 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
712 	 */
713 	if (asoc->pathmtu)
714 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
715 	else
716 		asoc->pathmtu = peer->pathmtu;
717 
718 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
719 			  "%d\n", asoc, asoc->pathmtu);
720 	peer->pmtu_pending = 0;
721 
722 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
723 
724 	/* The asoc->peer.port might not be meaningful yet, but
725 	 * initialize the packet structure anyway.
726 	 */
727 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
728 			 asoc->peer.port);
729 
730 	/* 7.2.1 Slow-Start
731 	 *
732 	 * o The initial cwnd before DATA transmission or after a sufficiently
733 	 *   long idle period MUST be set to
734 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
735 	 *
736 	 * o The initial value of ssthresh MAY be arbitrarily high
737 	 *   (for example, implementations MAY use the size of the
738 	 *   receiver advertised window).
739 	 */
740 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
741 
742 	/* At this point, we may not have the receiver's advertised window,
743 	 * so initialize ssthresh to the default value and it will be set
744 	 * later when we process the INIT.
745 	 */
746 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
747 
748 	peer->partial_bytes_acked = 0;
749 	peer->flight_size = 0;
750 	peer->burst_limited = 0;
751 
752 	/* Set the transport's RTO.initial value */
753 	peer->rto = asoc->rto_initial;
754 	sctp_max_rto(asoc, peer);
755 
756 	/* Set the peer's active state. */
757 	peer->state = peer_state;
758 
759 	/* Attach the remote transport to our asoc.  */
760 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
761 	asoc->peer.transport_count++;
762 
763 	/* If we do not yet have a primary path, set one.  */
764 	if (!asoc->peer.primary_path) {
765 		sctp_assoc_set_primary(asoc, peer);
766 		asoc->peer.retran_path = peer;
767 	}
768 
769 	if (asoc->peer.active_path == asoc->peer.retran_path &&
770 	    peer->state != SCTP_UNCONFIRMED) {
771 		asoc->peer.retran_path = peer;
772 	}
773 
774 	return peer;
775 }
776 
777 /* Delete a transport address from an association.  */
778 void sctp_assoc_del_peer(struct sctp_association *asoc,
779 			 const union sctp_addr *addr)
780 {
781 	struct list_head	*pos;
782 	struct list_head	*temp;
783 	struct sctp_transport	*transport;
784 
785 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
786 		transport = list_entry(pos, struct sctp_transport, transports);
787 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
788 			/* Do book keeping for removing the peer and free it. */
789 			sctp_assoc_rm_peer(asoc, transport);
790 			break;
791 		}
792 	}
793 }
794 
795 /* Lookup a transport by address. */
796 struct sctp_transport *sctp_assoc_lookup_paddr(
797 					const struct sctp_association *asoc,
798 					const union sctp_addr *address)
799 {
800 	struct sctp_transport *t;
801 
802 	/* Cycle through all transports searching for a peer address. */
803 
804 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
805 			transports) {
806 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
807 			return t;
808 	}
809 
810 	return NULL;
811 }
812 
813 /* Remove all transports except a give one */
814 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
815 				     struct sctp_transport *primary)
816 {
817 	struct sctp_transport	*temp;
818 	struct sctp_transport	*t;
819 
820 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
821 				 transports) {
822 		/* if the current transport is not the primary one, delete it */
823 		if (t != primary)
824 			sctp_assoc_rm_peer(asoc, t);
825 	}
826 }
827 
828 /* Engage in transport control operations.
829  * Mark the transport up or down and send a notification to the user.
830  * Select and update the new active and retran paths.
831  */
832 void sctp_assoc_control_transport(struct sctp_association *asoc,
833 				  struct sctp_transport *transport,
834 				  sctp_transport_cmd_t command,
835 				  sctp_sn_error_t error)
836 {
837 	struct sctp_transport *t = NULL;
838 	struct sctp_transport *first;
839 	struct sctp_transport *second;
840 	struct sctp_ulpevent *event;
841 	struct sockaddr_storage addr;
842 	int spc_state = 0;
843 	bool ulp_notify = true;
844 
845 	/* Record the transition on the transport.  */
846 	switch (command) {
847 	case SCTP_TRANSPORT_UP:
848 		/* If we are moving from UNCONFIRMED state due
849 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
850 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
851 		 */
852 		if (SCTP_UNCONFIRMED == transport->state &&
853 		    SCTP_HEARTBEAT_SUCCESS == error)
854 			spc_state = SCTP_ADDR_CONFIRMED;
855 		else
856 			spc_state = SCTP_ADDR_AVAILABLE;
857 		/* Don't inform ULP about transition from PF to
858 		 * active state and set cwnd to 1, see SCTP
859 		 * Quick failover draft section 5.1, point 5
860 		 */
861 		if (transport->state == SCTP_PF) {
862 			ulp_notify = false;
863 			transport->cwnd = 1;
864 		}
865 		transport->state = SCTP_ACTIVE;
866 		break;
867 
868 	case SCTP_TRANSPORT_DOWN:
869 		/* If the transport was never confirmed, do not transition it
870 		 * to inactive state.  Also, release the cached route since
871 		 * there may be a better route next time.
872 		 */
873 		if (transport->state != SCTP_UNCONFIRMED)
874 			transport->state = SCTP_INACTIVE;
875 		else {
876 			dst_release(transport->dst);
877 			transport->dst = NULL;
878 		}
879 
880 		spc_state = SCTP_ADDR_UNREACHABLE;
881 		break;
882 
883 	case SCTP_TRANSPORT_PF:
884 		transport->state = SCTP_PF;
885 		ulp_notify = false;
886 		break;
887 
888 	default:
889 		return;
890 	}
891 
892 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
893 	 * user.
894 	 */
895 	if (ulp_notify) {
896 		memset(&addr, 0, sizeof(struct sockaddr_storage));
897 		memcpy(&addr, &transport->ipaddr,
898 		       transport->af_specific->sockaddr_len);
899 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
900 					0, spc_state, error, GFP_ATOMIC);
901 		if (event)
902 			sctp_ulpq_tail_event(&asoc->ulpq, event);
903 	}
904 
905 	/* Select new active and retran paths. */
906 
907 	/* Look for the two most recently used active transports.
908 	 *
909 	 * This code produces the wrong ordering whenever jiffies
910 	 * rolls over, but we still get usable transports, so we don't
911 	 * worry about it.
912 	 */
913 	first = NULL; second = NULL;
914 
915 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
916 			transports) {
917 
918 		if ((t->state == SCTP_INACTIVE) ||
919 		    (t->state == SCTP_UNCONFIRMED) ||
920 		    (t->state == SCTP_PF))
921 			continue;
922 		if (!first || t->last_time_heard > first->last_time_heard) {
923 			second = first;
924 			first = t;
925 		}
926 		if (!second || t->last_time_heard > second->last_time_heard)
927 			second = t;
928 	}
929 
930 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
931 	 *
932 	 * By default, an endpoint should always transmit to the
933 	 * primary path, unless the SCTP user explicitly specifies the
934 	 * destination transport address (and possibly source
935 	 * transport address) to use.
936 	 *
937 	 * [If the primary is active but not most recent, bump the most
938 	 * recently used transport.]
939 	 */
940 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
941 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
942 	    first != asoc->peer.primary_path) {
943 		second = first;
944 		first = asoc->peer.primary_path;
945 	}
946 
947 	/* If we failed to find a usable transport, just camp on the
948 	 * primary, even if it is inactive.
949 	 */
950 	if (!first) {
951 		first = asoc->peer.primary_path;
952 		second = asoc->peer.primary_path;
953 	}
954 
955 	/* Set the active and retran transports.  */
956 	asoc->peer.active_path = first;
957 	asoc->peer.retran_path = second;
958 }
959 
960 /* Hold a reference to an association. */
961 void sctp_association_hold(struct sctp_association *asoc)
962 {
963 	atomic_inc(&asoc->base.refcnt);
964 }
965 
966 /* Release a reference to an association and cleanup
967  * if there are no more references.
968  */
969 void sctp_association_put(struct sctp_association *asoc)
970 {
971 	if (atomic_dec_and_test(&asoc->base.refcnt))
972 		sctp_association_destroy(asoc);
973 }
974 
975 /* Allocate the next TSN, Transmission Sequence Number, for the given
976  * association.
977  */
978 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
979 {
980 	/* From Section 1.6 Serial Number Arithmetic:
981 	 * Transmission Sequence Numbers wrap around when they reach
982 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
983 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
984 	 */
985 	__u32 retval = asoc->next_tsn;
986 	asoc->next_tsn++;
987 	asoc->unack_data++;
988 
989 	return retval;
990 }
991 
992 /* Compare two addresses to see if they match.  Wildcard addresses
993  * only match themselves.
994  */
995 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
996 			const union sctp_addr *ss2)
997 {
998 	struct sctp_af *af;
999 
1000 	af = sctp_get_af_specific(ss1->sa.sa_family);
1001 	if (unlikely(!af))
1002 		return 0;
1003 
1004 	return af->cmp_addr(ss1, ss2);
1005 }
1006 
1007 /* Return an ecne chunk to get prepended to a packet.
1008  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
1009  * No we don't, but we could/should.
1010  */
1011 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
1012 {
1013 	struct sctp_chunk *chunk;
1014 
1015 	/* Send ECNE if needed.
1016 	 * Not being able to allocate a chunk here is not deadly.
1017 	 */
1018 	if (asoc->need_ecne)
1019 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1020 	else
1021 		chunk = NULL;
1022 
1023 	return chunk;
1024 }
1025 
1026 /*
1027  * Find which transport this TSN was sent on.
1028  */
1029 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1030 					     __u32 tsn)
1031 {
1032 	struct sctp_transport *active;
1033 	struct sctp_transport *match;
1034 	struct sctp_transport *transport;
1035 	struct sctp_chunk *chunk;
1036 	__be32 key = htonl(tsn);
1037 
1038 	match = NULL;
1039 
1040 	/*
1041 	 * FIXME: In general, find a more efficient data structure for
1042 	 * searching.
1043 	 */
1044 
1045 	/*
1046 	 * The general strategy is to search each transport's transmitted
1047 	 * list.   Return which transport this TSN lives on.
1048 	 *
1049 	 * Let's be hopeful and check the active_path first.
1050 	 * Another optimization would be to know if there is only one
1051 	 * outbound path and not have to look for the TSN at all.
1052 	 *
1053 	 */
1054 
1055 	active = asoc->peer.active_path;
1056 
1057 	list_for_each_entry(chunk, &active->transmitted,
1058 			transmitted_list) {
1059 
1060 		if (key == chunk->subh.data_hdr->tsn) {
1061 			match = active;
1062 			goto out;
1063 		}
1064 	}
1065 
1066 	/* If not found, go search all the other transports. */
1067 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1068 			transports) {
1069 
1070 		if (transport == active)
1071 			continue;
1072 		list_for_each_entry(chunk, &transport->transmitted,
1073 				transmitted_list) {
1074 			if (key == chunk->subh.data_hdr->tsn) {
1075 				match = transport;
1076 				goto out;
1077 			}
1078 		}
1079 	}
1080 out:
1081 	return match;
1082 }
1083 
1084 /* Is this the association we are looking for? */
1085 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1086 					   struct net *net,
1087 					   const union sctp_addr *laddr,
1088 					   const union sctp_addr *paddr)
1089 {
1090 	struct sctp_transport *transport;
1091 
1092 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1093 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1094 	    net_eq(sock_net(asoc->base.sk), net)) {
1095 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1096 		if (!transport)
1097 			goto out;
1098 
1099 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1100 					 sctp_sk(asoc->base.sk)))
1101 			goto out;
1102 	}
1103 	transport = NULL;
1104 
1105 out:
1106 	return transport;
1107 }
1108 
1109 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1110 static void sctp_assoc_bh_rcv(struct work_struct *work)
1111 {
1112 	struct sctp_association *asoc =
1113 		container_of(work, struct sctp_association,
1114 			     base.inqueue.immediate);
1115 	struct net *net = sock_net(asoc->base.sk);
1116 	struct sctp_endpoint *ep;
1117 	struct sctp_chunk *chunk;
1118 	struct sctp_inq *inqueue;
1119 	int state;
1120 	sctp_subtype_t subtype;
1121 	int error = 0;
1122 
1123 	/* The association should be held so we should be safe. */
1124 	ep = asoc->ep;
1125 
1126 	inqueue = &asoc->base.inqueue;
1127 	sctp_association_hold(asoc);
1128 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1129 		state = asoc->state;
1130 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1131 
1132 		/* SCTP-AUTH, Section 6.3:
1133 		 *    The receiver has a list of chunk types which it expects
1134 		 *    to be received only after an AUTH-chunk.  This list has
1135 		 *    been sent to the peer during the association setup.  It
1136 		 *    MUST silently discard these chunks if they are not placed
1137 		 *    after an AUTH chunk in the packet.
1138 		 */
1139 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1140 			continue;
1141 
1142 		/* Remember where the last DATA chunk came from so we
1143 		 * know where to send the SACK.
1144 		 */
1145 		if (sctp_chunk_is_data(chunk))
1146 			asoc->peer.last_data_from = chunk->transport;
1147 		else {
1148 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1149 			asoc->stats.ictrlchunks++;
1150 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1151 				asoc->stats.isacks++;
1152 		}
1153 
1154 		if (chunk->transport)
1155 			chunk->transport->last_time_heard = jiffies;
1156 
1157 		/* Run through the state machine. */
1158 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1159 				   state, ep, asoc, chunk, GFP_ATOMIC);
1160 
1161 		/* Check to see if the association is freed in response to
1162 		 * the incoming chunk.  If so, get out of the while loop.
1163 		 */
1164 		if (asoc->base.dead)
1165 			break;
1166 
1167 		/* If there is an error on chunk, discard this packet. */
1168 		if (error && chunk)
1169 			chunk->pdiscard = 1;
1170 	}
1171 	sctp_association_put(asoc);
1172 }
1173 
1174 /* This routine moves an association from its old sk to a new sk.  */
1175 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1176 {
1177 	struct sctp_sock *newsp = sctp_sk(newsk);
1178 	struct sock *oldsk = assoc->base.sk;
1179 
1180 	/* Delete the association from the old endpoint's list of
1181 	 * associations.
1182 	 */
1183 	list_del_init(&assoc->asocs);
1184 
1185 	/* Decrement the backlog value for a TCP-style socket. */
1186 	if (sctp_style(oldsk, TCP))
1187 		oldsk->sk_ack_backlog--;
1188 
1189 	/* Release references to the old endpoint and the sock.  */
1190 	sctp_endpoint_put(assoc->ep);
1191 	sock_put(assoc->base.sk);
1192 
1193 	/* Get a reference to the new endpoint.  */
1194 	assoc->ep = newsp->ep;
1195 	sctp_endpoint_hold(assoc->ep);
1196 
1197 	/* Get a reference to the new sock.  */
1198 	assoc->base.sk = newsk;
1199 	sock_hold(assoc->base.sk);
1200 
1201 	/* Add the association to the new endpoint's list of associations.  */
1202 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1203 }
1204 
1205 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1206 void sctp_assoc_update(struct sctp_association *asoc,
1207 		       struct sctp_association *new)
1208 {
1209 	struct sctp_transport *trans;
1210 	struct list_head *pos, *temp;
1211 
1212 	/* Copy in new parameters of peer. */
1213 	asoc->c = new->c;
1214 	asoc->peer.rwnd = new->peer.rwnd;
1215 	asoc->peer.sack_needed = new->peer.sack_needed;
1216 	asoc->peer.i = new->peer.i;
1217 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1218 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1219 
1220 	/* Remove any peer addresses not present in the new association. */
1221 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1222 		trans = list_entry(pos, struct sctp_transport, transports);
1223 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1224 			sctp_assoc_rm_peer(asoc, trans);
1225 			continue;
1226 		}
1227 
1228 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1229 			sctp_transport_reset(trans);
1230 	}
1231 
1232 	/* If the case is A (association restart), use
1233 	 * initial_tsn as next_tsn. If the case is B, use
1234 	 * current next_tsn in case data sent to peer
1235 	 * has been discarded and needs retransmission.
1236 	 */
1237 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1238 		asoc->next_tsn = new->next_tsn;
1239 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1240 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1241 
1242 		/* Reinitialize SSN for both local streams
1243 		 * and peer's streams.
1244 		 */
1245 		sctp_ssnmap_clear(asoc->ssnmap);
1246 
1247 		/* Flush the ULP reassembly and ordered queue.
1248 		 * Any data there will now be stale and will
1249 		 * cause problems.
1250 		 */
1251 		sctp_ulpq_flush(&asoc->ulpq);
1252 
1253 		/* reset the overall association error count so
1254 		 * that the restarted association doesn't get torn
1255 		 * down on the next retransmission timer.
1256 		 */
1257 		asoc->overall_error_count = 0;
1258 
1259 	} else {
1260 		/* Add any peer addresses from the new association. */
1261 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1262 				transports) {
1263 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1264 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1265 						    GFP_ATOMIC, trans->state);
1266 		}
1267 
1268 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1269 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1270 		if (!asoc->ssnmap) {
1271 			/* Move the ssnmap. */
1272 			asoc->ssnmap = new->ssnmap;
1273 			new->ssnmap = NULL;
1274 		}
1275 
1276 		if (!asoc->assoc_id) {
1277 			/* get a new association id since we don't have one
1278 			 * yet.
1279 			 */
1280 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1281 		}
1282 	}
1283 
1284 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1285 	 * and also move the association shared keys over
1286 	 */
1287 	kfree(asoc->peer.peer_random);
1288 	asoc->peer.peer_random = new->peer.peer_random;
1289 	new->peer.peer_random = NULL;
1290 
1291 	kfree(asoc->peer.peer_chunks);
1292 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1293 	new->peer.peer_chunks = NULL;
1294 
1295 	kfree(asoc->peer.peer_hmacs);
1296 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1297 	new->peer.peer_hmacs = NULL;
1298 
1299 	sctp_auth_key_put(asoc->asoc_shared_key);
1300 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1301 }
1302 
1303 /* Update the retran path for sending a retransmitted packet.
1304  * Round-robin through the active transports, else round-robin
1305  * through the inactive transports as this is the next best thing
1306  * we can try.
1307  */
1308 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1309 {
1310 	struct sctp_transport *t, *next;
1311 	struct list_head *head = &asoc->peer.transport_addr_list;
1312 	struct list_head *pos;
1313 
1314 	if (asoc->peer.transport_count == 1)
1315 		return;
1316 
1317 	/* Find the next transport in a round-robin fashion. */
1318 	t = asoc->peer.retran_path;
1319 	pos = &t->transports;
1320 	next = NULL;
1321 
1322 	while (1) {
1323 		/* Skip the head. */
1324 		if (pos->next == head)
1325 			pos = head->next;
1326 		else
1327 			pos = pos->next;
1328 
1329 		t = list_entry(pos, struct sctp_transport, transports);
1330 
1331 		/* We have exhausted the list, but didn't find any
1332 		 * other active transports.  If so, use the next
1333 		 * transport.
1334 		 */
1335 		if (t == asoc->peer.retran_path) {
1336 			t = next;
1337 			break;
1338 		}
1339 
1340 		/* Try to find an active transport. */
1341 
1342 		if ((t->state == SCTP_ACTIVE) ||
1343 		    (t->state == SCTP_UNKNOWN)) {
1344 			break;
1345 		} else {
1346 			/* Keep track of the next transport in case
1347 			 * we don't find any active transport.
1348 			 */
1349 			if (t->state != SCTP_UNCONFIRMED && !next)
1350 				next = t;
1351 		}
1352 	}
1353 
1354 	if (t)
1355 		asoc->peer.retran_path = t;
1356 	else
1357 		t = asoc->peer.retran_path;
1358 
1359 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1360 				 " %p addr: ",
1361 				 " port: %d\n",
1362 				 asoc,
1363 				 (&t->ipaddr),
1364 				 ntohs(t->ipaddr.v4.sin_port));
1365 }
1366 
1367 /* Choose the transport for sending retransmit packet.  */
1368 struct sctp_transport *sctp_assoc_choose_alter_transport(
1369 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1370 {
1371 	/* If this is the first time packet is sent, use the active path,
1372 	 * else use the retran path. If the last packet was sent over the
1373 	 * retran path, update the retran path and use it.
1374 	 */
1375 	if (!last_sent_to)
1376 		return asoc->peer.active_path;
1377 	else {
1378 		if (last_sent_to == asoc->peer.retran_path)
1379 			sctp_assoc_update_retran_path(asoc);
1380 		return asoc->peer.retran_path;
1381 	}
1382 }
1383 
1384 /* Update the association's pmtu and frag_point by going through all the
1385  * transports. This routine is called when a transport's PMTU has changed.
1386  */
1387 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1388 {
1389 	struct sctp_transport *t;
1390 	__u32 pmtu = 0;
1391 
1392 	if (!asoc)
1393 		return;
1394 
1395 	/* Get the lowest pmtu of all the transports. */
1396 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1397 				transports) {
1398 		if (t->pmtu_pending && t->dst) {
1399 			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1400 			t->pmtu_pending = 0;
1401 		}
1402 		if (!pmtu || (t->pathmtu < pmtu))
1403 			pmtu = t->pathmtu;
1404 	}
1405 
1406 	if (pmtu) {
1407 		asoc->pathmtu = pmtu;
1408 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1409 	}
1410 
1411 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1412 			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1413 }
1414 
1415 /* Should we send a SACK to update our peer? */
1416 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1417 {
1418 	struct net *net = sock_net(asoc->base.sk);
1419 	switch (asoc->state) {
1420 	case SCTP_STATE_ESTABLISHED:
1421 	case SCTP_STATE_SHUTDOWN_PENDING:
1422 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1423 	case SCTP_STATE_SHUTDOWN_SENT:
1424 		if ((asoc->rwnd > asoc->a_rwnd) &&
1425 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1426 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1427 			   asoc->pathmtu)))
1428 			return 1;
1429 		break;
1430 	default:
1431 		break;
1432 	}
1433 	return 0;
1434 }
1435 
1436 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1437 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1438 {
1439 	struct sctp_chunk *sack;
1440 	struct timer_list *timer;
1441 
1442 	if (asoc->rwnd_over) {
1443 		if (asoc->rwnd_over >= len) {
1444 			asoc->rwnd_over -= len;
1445 		} else {
1446 			asoc->rwnd += (len - asoc->rwnd_over);
1447 			asoc->rwnd_over = 0;
1448 		}
1449 	} else {
1450 		asoc->rwnd += len;
1451 	}
1452 
1453 	/* If we had window pressure, start recovering it
1454 	 * once our rwnd had reached the accumulated pressure
1455 	 * threshold.  The idea is to recover slowly, but up
1456 	 * to the initial advertised window.
1457 	 */
1458 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1459 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1460 		asoc->rwnd += change;
1461 		asoc->rwnd_press -= change;
1462 	}
1463 
1464 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1465 			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1466 			  asoc->rwnd_over, asoc->a_rwnd);
1467 
1468 	/* Send a window update SACK if the rwnd has increased by at least the
1469 	 * minimum of the association's PMTU and half of the receive buffer.
1470 	 * The algorithm used is similar to the one described in
1471 	 * Section 4.2.3.3 of RFC 1122.
1472 	 */
1473 	if (sctp_peer_needs_update(asoc)) {
1474 		asoc->a_rwnd = asoc->rwnd;
1475 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1476 				  "rwnd: %u a_rwnd: %u\n", __func__,
1477 				  asoc, asoc->rwnd, asoc->a_rwnd);
1478 		sack = sctp_make_sack(asoc);
1479 		if (!sack)
1480 			return;
1481 
1482 		asoc->peer.sack_needed = 0;
1483 
1484 		sctp_outq_tail(&asoc->outqueue, sack);
1485 
1486 		/* Stop the SACK timer.  */
1487 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1488 		if (del_timer(timer))
1489 			sctp_association_put(asoc);
1490 	}
1491 }
1492 
1493 /* Decrease asoc's rwnd by len. */
1494 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1495 {
1496 	int rx_count;
1497 	int over = 0;
1498 
1499 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1500 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1501 
1502 	if (asoc->ep->rcvbuf_policy)
1503 		rx_count = atomic_read(&asoc->rmem_alloc);
1504 	else
1505 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1506 
1507 	/* If we've reached or overflowed our receive buffer, announce
1508 	 * a 0 rwnd if rwnd would still be positive.  Store the
1509 	 * the pottential pressure overflow so that the window can be restored
1510 	 * back to original value.
1511 	 */
1512 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1513 		over = 1;
1514 
1515 	if (asoc->rwnd >= len) {
1516 		asoc->rwnd -= len;
1517 		if (over) {
1518 			asoc->rwnd_press += asoc->rwnd;
1519 			asoc->rwnd = 0;
1520 		}
1521 	} else {
1522 		asoc->rwnd_over = len - asoc->rwnd;
1523 		asoc->rwnd = 0;
1524 	}
1525 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1526 			  __func__, asoc, len, asoc->rwnd,
1527 			  asoc->rwnd_over, asoc->rwnd_press);
1528 }
1529 
1530 /* Build the bind address list for the association based on info from the
1531  * local endpoint and the remote peer.
1532  */
1533 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1534 				     sctp_scope_t scope, gfp_t gfp)
1535 {
1536 	int flags;
1537 
1538 	/* Use scoping rules to determine the subset of addresses from
1539 	 * the endpoint.
1540 	 */
1541 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1542 	if (asoc->peer.ipv4_address)
1543 		flags |= SCTP_ADDR4_PEERSUPP;
1544 	if (asoc->peer.ipv6_address)
1545 		flags |= SCTP_ADDR6_PEERSUPP;
1546 
1547 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1548 				   &asoc->base.bind_addr,
1549 				   &asoc->ep->base.bind_addr,
1550 				   scope, gfp, flags);
1551 }
1552 
1553 /* Build the association's bind address list from the cookie.  */
1554 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1555 					 struct sctp_cookie *cookie,
1556 					 gfp_t gfp)
1557 {
1558 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1559 	int var_size3 = cookie->raw_addr_list_len;
1560 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1561 
1562 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1563 				      asoc->ep->base.bind_addr.port, gfp);
1564 }
1565 
1566 /* Lookup laddr in the bind address list of an association. */
1567 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1568 			    const union sctp_addr *laddr)
1569 {
1570 	int found = 0;
1571 
1572 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1573 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1574 				 sctp_sk(asoc->base.sk)))
1575 		found = 1;
1576 
1577 	return found;
1578 }
1579 
1580 /* Set an association id for a given association */
1581 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1582 {
1583 	bool preload = gfp & __GFP_WAIT;
1584 	int ret;
1585 
1586 	/* If the id is already assigned, keep it. */
1587 	if (asoc->assoc_id)
1588 		return 0;
1589 
1590 	if (preload)
1591 		idr_preload(gfp);
1592 	spin_lock_bh(&sctp_assocs_id_lock);
1593 	/* 0 is not a valid assoc_id, must be >= 1 */
1594 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1595 	spin_unlock_bh(&sctp_assocs_id_lock);
1596 	if (preload)
1597 		idr_preload_end();
1598 	if (ret < 0)
1599 		return ret;
1600 
1601 	asoc->assoc_id = (sctp_assoc_t)ret;
1602 	return 0;
1603 }
1604 
1605 /* Free the ASCONF queue */
1606 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1607 {
1608 	struct sctp_chunk *asconf;
1609 	struct sctp_chunk *tmp;
1610 
1611 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1612 		list_del_init(&asconf->list);
1613 		sctp_chunk_free(asconf);
1614 	}
1615 }
1616 
1617 /* Free asconf_ack cache */
1618 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1619 {
1620 	struct sctp_chunk *ack;
1621 	struct sctp_chunk *tmp;
1622 
1623 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1624 				transmitted_list) {
1625 		list_del_init(&ack->transmitted_list);
1626 		sctp_chunk_free(ack);
1627 	}
1628 }
1629 
1630 /* Clean up the ASCONF_ACK queue */
1631 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1632 {
1633 	struct sctp_chunk *ack;
1634 	struct sctp_chunk *tmp;
1635 
1636 	/* We can remove all the entries from the queue up to
1637 	 * the "Peer-Sequence-Number".
1638 	 */
1639 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1640 				transmitted_list) {
1641 		if (ack->subh.addip_hdr->serial ==
1642 				htonl(asoc->peer.addip_serial))
1643 			break;
1644 
1645 		list_del_init(&ack->transmitted_list);
1646 		sctp_chunk_free(ack);
1647 	}
1648 }
1649 
1650 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1651 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1652 					const struct sctp_association *asoc,
1653 					__be32 serial)
1654 {
1655 	struct sctp_chunk *ack;
1656 
1657 	/* Walk through the list of cached ASCONF-ACKs and find the
1658 	 * ack chunk whose serial number matches that of the request.
1659 	 */
1660 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1661 		if (ack->subh.addip_hdr->serial == serial) {
1662 			sctp_chunk_hold(ack);
1663 			return ack;
1664 		}
1665 	}
1666 
1667 	return NULL;
1668 }
1669 
1670 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1671 {
1672 	/* Free any cached ASCONF_ACK chunk. */
1673 	sctp_assoc_free_asconf_acks(asoc);
1674 
1675 	/* Free the ASCONF queue. */
1676 	sctp_assoc_free_asconf_queue(asoc);
1677 
1678 	/* Free any cached ASCONF chunk. */
1679 	if (asoc->addip_last_asconf)
1680 		sctp_chunk_free(asoc->addip_last_asconf);
1681 }
1682