1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_assoc_bh_rcv(struct work_struct *work); 59 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 60 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 61 62 /* 1st Level Abstractions. */ 63 64 /* Initialize a new association from provided memory. */ 65 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 66 const struct sctp_endpoint *ep, 67 const struct sock *sk, 68 sctp_scope_t scope, 69 gfp_t gfp) 70 { 71 struct net *net = sock_net(sk); 72 struct sctp_sock *sp; 73 int i; 74 sctp_paramhdr_t *p; 75 int err; 76 77 /* Retrieve the SCTP per socket area. */ 78 sp = sctp_sk((struct sock *)sk); 79 80 /* Discarding const is appropriate here. */ 81 asoc->ep = (struct sctp_endpoint *)ep; 82 asoc->base.sk = (struct sock *)sk; 83 84 sctp_endpoint_hold(asoc->ep); 85 sock_hold(asoc->base.sk); 86 87 /* Initialize the common base substructure. */ 88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 89 90 /* Initialize the object handling fields. */ 91 atomic_set(&asoc->base.refcnt, 1); 92 93 /* Initialize the bind addr area. */ 94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 95 96 asoc->state = SCTP_STATE_CLOSED; 97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 98 asoc->user_frag = sp->user_frag; 99 100 /* Set the association max_retrans and RTO values from the 101 * socket values. 102 */ 103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 104 asoc->pf_retrans = net->sctp.pf_retrans; 105 106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 109 110 /* Initialize the association's heartbeat interval based on the 111 * sock configured value. 112 */ 113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 114 115 /* Initialize path max retrans value. */ 116 asoc->pathmaxrxt = sp->pathmaxrxt; 117 118 /* Initialize default path MTU. */ 119 asoc->pathmtu = sp->pathmtu; 120 121 /* Set association default SACK delay */ 122 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 123 asoc->sackfreq = sp->sackfreq; 124 125 /* Set the association default flags controlling 126 * Heartbeat, SACK delay, and Path MTU Discovery. 127 */ 128 asoc->param_flags = sp->param_flags; 129 130 /* Initialize the maximum number of new data packets that can be sent 131 * in a burst. 132 */ 133 asoc->max_burst = sp->max_burst; 134 135 /* initialize association timers */ 136 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 139 140 /* sctpimpguide Section 2.12.2 141 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 142 * recommended value of 5 times 'RTO.Max'. 143 */ 144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 145 = 5 * asoc->rto_max; 146 147 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 149 150 /* Initializes the timers */ 151 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 152 setup_timer(&asoc->timers[i], sctp_timer_events[i], 153 (unsigned long)asoc); 154 155 /* Pull default initialization values from the sock options. 156 * Note: This assumes that the values have already been 157 * validated in the sock. 158 */ 159 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 160 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 161 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 162 163 asoc->max_init_timeo = 164 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 165 166 /* Set the local window size for receive. 167 * This is also the rcvbuf space per association. 168 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 169 * 1500 bytes in one SCTP packet. 170 */ 171 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 172 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 173 else 174 asoc->rwnd = sk->sk_rcvbuf/2; 175 176 asoc->a_rwnd = asoc->rwnd; 177 178 /* Use my own max window until I learn something better. */ 179 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 180 181 /* Initialize the receive memory counter */ 182 atomic_set(&asoc->rmem_alloc, 0); 183 184 init_waitqueue_head(&asoc->wait); 185 186 asoc->c.my_vtag = sctp_generate_tag(ep); 187 asoc->c.my_port = ep->base.bind_addr.port; 188 189 asoc->c.initial_tsn = sctp_generate_tsn(ep); 190 191 asoc->next_tsn = asoc->c.initial_tsn; 192 193 asoc->ctsn_ack_point = asoc->next_tsn - 1; 194 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 195 asoc->highest_sacked = asoc->ctsn_ack_point; 196 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 197 198 /* ADDIP Section 4.1 Asconf Chunk Procedures 199 * 200 * When an endpoint has an ASCONF signaled change to be sent to the 201 * remote endpoint it should do the following: 202 * ... 203 * A2) a serial number should be assigned to the chunk. The serial 204 * number SHOULD be a monotonically increasing number. The serial 205 * numbers SHOULD be initialized at the start of the 206 * association to the same value as the initial TSN. 207 */ 208 asoc->addip_serial = asoc->c.initial_tsn; 209 210 INIT_LIST_HEAD(&asoc->addip_chunk_list); 211 INIT_LIST_HEAD(&asoc->asconf_ack_list); 212 213 /* Make an empty list of remote transport addresses. */ 214 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 215 216 /* RFC 2960 5.1 Normal Establishment of an Association 217 * 218 * After the reception of the first data chunk in an 219 * association the endpoint must immediately respond with a 220 * sack to acknowledge the data chunk. Subsequent 221 * acknowledgements should be done as described in Section 222 * 6.2. 223 * 224 * [We implement this by telling a new association that it 225 * already received one packet.] 226 */ 227 asoc->peer.sack_needed = 1; 228 asoc->peer.sack_generation = 1; 229 230 /* Assume that the peer will tell us if he recognizes ASCONF 231 * as part of INIT exchange. 232 * The sctp_addip_noauth option is there for backward compatibility 233 * and will revert old behavior. 234 */ 235 if (net->sctp.addip_noauth) 236 asoc->peer.asconf_capable = 1; 237 238 /* Create an input queue. */ 239 sctp_inq_init(&asoc->base.inqueue); 240 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 241 242 /* Create an output queue. */ 243 sctp_outq_init(asoc, &asoc->outqueue); 244 245 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 246 goto fail_init; 247 248 /* Assume that peer would support both address types unless we are 249 * told otherwise. 250 */ 251 asoc->peer.ipv4_address = 1; 252 if (asoc->base.sk->sk_family == PF_INET6) 253 asoc->peer.ipv6_address = 1; 254 INIT_LIST_HEAD(&asoc->asocs); 255 256 asoc->default_stream = sp->default_stream; 257 asoc->default_ppid = sp->default_ppid; 258 asoc->default_flags = sp->default_flags; 259 asoc->default_context = sp->default_context; 260 asoc->default_timetolive = sp->default_timetolive; 261 asoc->default_rcv_context = sp->default_rcv_context; 262 263 /* AUTH related initializations */ 264 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 265 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 266 if (err) 267 goto fail_init; 268 269 asoc->active_key_id = ep->active_key_id; 270 271 /* Save the hmacs and chunks list into this association */ 272 if (ep->auth_hmacs_list) 273 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 274 ntohs(ep->auth_hmacs_list->param_hdr.length)); 275 if (ep->auth_chunk_list) 276 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 277 ntohs(ep->auth_chunk_list->param_hdr.length)); 278 279 /* Get the AUTH random number for this association */ 280 p = (sctp_paramhdr_t *)asoc->c.auth_random; 281 p->type = SCTP_PARAM_RANDOM; 282 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 283 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 284 285 return asoc; 286 287 fail_init: 288 sock_put(asoc->base.sk); 289 sctp_endpoint_put(asoc->ep); 290 return NULL; 291 } 292 293 /* Allocate and initialize a new association */ 294 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 295 const struct sock *sk, 296 sctp_scope_t scope, 297 gfp_t gfp) 298 { 299 struct sctp_association *asoc; 300 301 asoc = kzalloc(sizeof(*asoc), gfp); 302 if (!asoc) 303 goto fail; 304 305 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 306 goto fail_init; 307 308 SCTP_DBG_OBJCNT_INC(assoc); 309 310 pr_debug("Created asoc %p\n", asoc); 311 312 return asoc; 313 314 fail_init: 315 kfree(asoc); 316 fail: 317 return NULL; 318 } 319 320 /* Free this association if possible. There may still be users, so 321 * the actual deallocation may be delayed. 322 */ 323 void sctp_association_free(struct sctp_association *asoc) 324 { 325 struct sock *sk = asoc->base.sk; 326 struct sctp_transport *transport; 327 struct list_head *pos, *temp; 328 int i; 329 330 /* Only real associations count against the endpoint, so 331 * don't bother for if this is a temporary association. 332 */ 333 if (!asoc->temp) { 334 list_del(&asoc->asocs); 335 336 /* Decrement the backlog value for a TCP-style listening 337 * socket. 338 */ 339 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 340 sk->sk_ack_backlog--; 341 } 342 343 /* Mark as dead, so other users can know this structure is 344 * going away. 345 */ 346 asoc->base.dead = true; 347 348 /* Dispose of any data lying around in the outqueue. */ 349 sctp_outq_free(&asoc->outqueue); 350 351 /* Dispose of any pending messages for the upper layer. */ 352 sctp_ulpq_free(&asoc->ulpq); 353 354 /* Dispose of any pending chunks on the inqueue. */ 355 sctp_inq_free(&asoc->base.inqueue); 356 357 sctp_tsnmap_free(&asoc->peer.tsn_map); 358 359 /* Free ssnmap storage. */ 360 sctp_ssnmap_free(asoc->ssnmap); 361 362 /* Clean up the bound address list. */ 363 sctp_bind_addr_free(&asoc->base.bind_addr); 364 365 /* Do we need to go through all of our timers and 366 * delete them? To be safe we will try to delete all, but we 367 * should be able to go through and make a guess based 368 * on our state. 369 */ 370 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 371 if (del_timer(&asoc->timers[i])) 372 sctp_association_put(asoc); 373 } 374 375 /* Free peer's cached cookie. */ 376 kfree(asoc->peer.cookie); 377 kfree(asoc->peer.peer_random); 378 kfree(asoc->peer.peer_chunks); 379 kfree(asoc->peer.peer_hmacs); 380 381 /* Release the transport structures. */ 382 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 383 transport = list_entry(pos, struct sctp_transport, transports); 384 list_del_rcu(pos); 385 sctp_transport_free(transport); 386 } 387 388 asoc->peer.transport_count = 0; 389 390 sctp_asconf_queue_teardown(asoc); 391 392 /* Free pending address space being deleted */ 393 if (asoc->asconf_addr_del_pending != NULL) 394 kfree(asoc->asconf_addr_del_pending); 395 396 /* AUTH - Free the endpoint shared keys */ 397 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 398 399 /* AUTH - Free the association shared key */ 400 sctp_auth_key_put(asoc->asoc_shared_key); 401 402 sctp_association_put(asoc); 403 } 404 405 /* Cleanup and free up an association. */ 406 static void sctp_association_destroy(struct sctp_association *asoc) 407 { 408 if (unlikely(!asoc->base.dead)) { 409 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 410 return; 411 } 412 413 sctp_endpoint_put(asoc->ep); 414 sock_put(asoc->base.sk); 415 416 if (asoc->assoc_id != 0) { 417 spin_lock_bh(&sctp_assocs_id_lock); 418 idr_remove(&sctp_assocs_id, asoc->assoc_id); 419 spin_unlock_bh(&sctp_assocs_id_lock); 420 } 421 422 WARN_ON(atomic_read(&asoc->rmem_alloc)); 423 424 kfree(asoc); 425 SCTP_DBG_OBJCNT_DEC(assoc); 426 } 427 428 /* Change the primary destination address for the peer. */ 429 void sctp_assoc_set_primary(struct sctp_association *asoc, 430 struct sctp_transport *transport) 431 { 432 int changeover = 0; 433 434 /* it's a changeover only if we already have a primary path 435 * that we are changing 436 */ 437 if (asoc->peer.primary_path != NULL && 438 asoc->peer.primary_path != transport) 439 changeover = 1 ; 440 441 asoc->peer.primary_path = transport; 442 443 /* Set a default msg_name for events. */ 444 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 445 sizeof(union sctp_addr)); 446 447 /* If the primary path is changing, assume that the 448 * user wants to use this new path. 449 */ 450 if ((transport->state == SCTP_ACTIVE) || 451 (transport->state == SCTP_UNKNOWN)) 452 asoc->peer.active_path = transport; 453 454 /* 455 * SFR-CACC algorithm: 456 * Upon the receipt of a request to change the primary 457 * destination address, on the data structure for the new 458 * primary destination, the sender MUST do the following: 459 * 460 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 461 * to this destination address earlier. The sender MUST set 462 * CYCLING_CHANGEOVER to indicate that this switch is a 463 * double switch to the same destination address. 464 * 465 * Really, only bother is we have data queued or outstanding on 466 * the association. 467 */ 468 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 469 return; 470 471 if (transport->cacc.changeover_active) 472 transport->cacc.cycling_changeover = changeover; 473 474 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 475 * a changeover has occurred. 476 */ 477 transport->cacc.changeover_active = changeover; 478 479 /* 3) The sender MUST store the next TSN to be sent in 480 * next_tsn_at_change. 481 */ 482 transport->cacc.next_tsn_at_change = asoc->next_tsn; 483 } 484 485 /* Remove a transport from an association. */ 486 void sctp_assoc_rm_peer(struct sctp_association *asoc, 487 struct sctp_transport *peer) 488 { 489 struct list_head *pos; 490 struct sctp_transport *transport; 491 492 pr_debug("%s: association:%p addr:%pISpc\n", 493 __func__, asoc, &peer->ipaddr.sa); 494 495 /* If we are to remove the current retran_path, update it 496 * to the next peer before removing this peer from the list. 497 */ 498 if (asoc->peer.retran_path == peer) 499 sctp_assoc_update_retran_path(asoc); 500 501 /* Remove this peer from the list. */ 502 list_del_rcu(&peer->transports); 503 504 /* Get the first transport of asoc. */ 505 pos = asoc->peer.transport_addr_list.next; 506 transport = list_entry(pos, struct sctp_transport, transports); 507 508 /* Update any entries that match the peer to be deleted. */ 509 if (asoc->peer.primary_path == peer) 510 sctp_assoc_set_primary(asoc, transport); 511 if (asoc->peer.active_path == peer) 512 asoc->peer.active_path = transport; 513 if (asoc->peer.retran_path == peer) 514 asoc->peer.retran_path = transport; 515 if (asoc->peer.last_data_from == peer) 516 asoc->peer.last_data_from = transport; 517 518 /* If we remove the transport an INIT was last sent to, set it to 519 * NULL. Combined with the update of the retran path above, this 520 * will cause the next INIT to be sent to the next available 521 * transport, maintaining the cycle. 522 */ 523 if (asoc->init_last_sent_to == peer) 524 asoc->init_last_sent_to = NULL; 525 526 /* If we remove the transport an SHUTDOWN was last sent to, set it 527 * to NULL. Combined with the update of the retran path above, this 528 * will cause the next SHUTDOWN to be sent to the next available 529 * transport, maintaining the cycle. 530 */ 531 if (asoc->shutdown_last_sent_to == peer) 532 asoc->shutdown_last_sent_to = NULL; 533 534 /* If we remove the transport an ASCONF was last sent to, set it to 535 * NULL. 536 */ 537 if (asoc->addip_last_asconf && 538 asoc->addip_last_asconf->transport == peer) 539 asoc->addip_last_asconf->transport = NULL; 540 541 /* If we have something on the transmitted list, we have to 542 * save it off. The best place is the active path. 543 */ 544 if (!list_empty(&peer->transmitted)) { 545 struct sctp_transport *active = asoc->peer.active_path; 546 struct sctp_chunk *ch; 547 548 /* Reset the transport of each chunk on this list */ 549 list_for_each_entry(ch, &peer->transmitted, 550 transmitted_list) { 551 ch->transport = NULL; 552 ch->rtt_in_progress = 0; 553 } 554 555 list_splice_tail_init(&peer->transmitted, 556 &active->transmitted); 557 558 /* Start a T3 timer here in case it wasn't running so 559 * that these migrated packets have a chance to get 560 * retransmitted. 561 */ 562 if (!timer_pending(&active->T3_rtx_timer)) 563 if (!mod_timer(&active->T3_rtx_timer, 564 jiffies + active->rto)) 565 sctp_transport_hold(active); 566 } 567 568 asoc->peer.transport_count--; 569 570 sctp_transport_free(peer); 571 } 572 573 /* Add a transport address to an association. */ 574 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 575 const union sctp_addr *addr, 576 const gfp_t gfp, 577 const int peer_state) 578 { 579 struct net *net = sock_net(asoc->base.sk); 580 struct sctp_transport *peer; 581 struct sctp_sock *sp; 582 unsigned short port; 583 584 sp = sctp_sk(asoc->base.sk); 585 586 /* AF_INET and AF_INET6 share common port field. */ 587 port = ntohs(addr->v4.sin_port); 588 589 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 590 asoc, &addr->sa, peer_state); 591 592 /* Set the port if it has not been set yet. */ 593 if (0 == asoc->peer.port) 594 asoc->peer.port = port; 595 596 /* Check to see if this is a duplicate. */ 597 peer = sctp_assoc_lookup_paddr(asoc, addr); 598 if (peer) { 599 /* An UNKNOWN state is only set on transports added by 600 * user in sctp_connectx() call. Such transports should be 601 * considered CONFIRMED per RFC 4960, Section 5.4. 602 */ 603 if (peer->state == SCTP_UNKNOWN) { 604 peer->state = SCTP_ACTIVE; 605 } 606 return peer; 607 } 608 609 peer = sctp_transport_new(net, addr, gfp); 610 if (!peer) 611 return NULL; 612 613 sctp_transport_set_owner(peer, asoc); 614 615 /* Initialize the peer's heartbeat interval based on the 616 * association configured value. 617 */ 618 peer->hbinterval = asoc->hbinterval; 619 620 /* Set the path max_retrans. */ 621 peer->pathmaxrxt = asoc->pathmaxrxt; 622 623 /* And the partial failure retrans threshold */ 624 peer->pf_retrans = asoc->pf_retrans; 625 626 /* Initialize the peer's SACK delay timeout based on the 627 * association configured value. 628 */ 629 peer->sackdelay = asoc->sackdelay; 630 peer->sackfreq = asoc->sackfreq; 631 632 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 633 * based on association setting. 634 */ 635 peer->param_flags = asoc->param_flags; 636 637 sctp_transport_route(peer, NULL, sp); 638 639 /* Initialize the pmtu of the transport. */ 640 if (peer->param_flags & SPP_PMTUD_DISABLE) { 641 if (asoc->pathmtu) 642 peer->pathmtu = asoc->pathmtu; 643 else 644 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 645 } 646 647 /* If this is the first transport addr on this association, 648 * initialize the association PMTU to the peer's PMTU. 649 * If not and the current association PMTU is higher than the new 650 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 651 */ 652 if (asoc->pathmtu) 653 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 654 else 655 asoc->pathmtu = peer->pathmtu; 656 657 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 658 asoc->pathmtu); 659 660 peer->pmtu_pending = 0; 661 662 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 663 664 /* The asoc->peer.port might not be meaningful yet, but 665 * initialize the packet structure anyway. 666 */ 667 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 668 asoc->peer.port); 669 670 /* 7.2.1 Slow-Start 671 * 672 * o The initial cwnd before DATA transmission or after a sufficiently 673 * long idle period MUST be set to 674 * min(4*MTU, max(2*MTU, 4380 bytes)) 675 * 676 * o The initial value of ssthresh MAY be arbitrarily high 677 * (for example, implementations MAY use the size of the 678 * receiver advertised window). 679 */ 680 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 681 682 /* At this point, we may not have the receiver's advertised window, 683 * so initialize ssthresh to the default value and it will be set 684 * later when we process the INIT. 685 */ 686 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 687 688 peer->partial_bytes_acked = 0; 689 peer->flight_size = 0; 690 peer->burst_limited = 0; 691 692 /* Set the transport's RTO.initial value */ 693 peer->rto = asoc->rto_initial; 694 sctp_max_rto(asoc, peer); 695 696 /* Set the peer's active state. */ 697 peer->state = peer_state; 698 699 /* Attach the remote transport to our asoc. */ 700 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 701 asoc->peer.transport_count++; 702 703 /* If we do not yet have a primary path, set one. */ 704 if (!asoc->peer.primary_path) { 705 sctp_assoc_set_primary(asoc, peer); 706 asoc->peer.retran_path = peer; 707 } 708 709 if (asoc->peer.active_path == asoc->peer.retran_path && 710 peer->state != SCTP_UNCONFIRMED) { 711 asoc->peer.retran_path = peer; 712 } 713 714 return peer; 715 } 716 717 /* Delete a transport address from an association. */ 718 void sctp_assoc_del_peer(struct sctp_association *asoc, 719 const union sctp_addr *addr) 720 { 721 struct list_head *pos; 722 struct list_head *temp; 723 struct sctp_transport *transport; 724 725 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 726 transport = list_entry(pos, struct sctp_transport, transports); 727 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 728 /* Do book keeping for removing the peer and free it. */ 729 sctp_assoc_rm_peer(asoc, transport); 730 break; 731 } 732 } 733 } 734 735 /* Lookup a transport by address. */ 736 struct sctp_transport *sctp_assoc_lookup_paddr( 737 const struct sctp_association *asoc, 738 const union sctp_addr *address) 739 { 740 struct sctp_transport *t; 741 742 /* Cycle through all transports searching for a peer address. */ 743 744 list_for_each_entry(t, &asoc->peer.transport_addr_list, 745 transports) { 746 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 747 return t; 748 } 749 750 return NULL; 751 } 752 753 /* Remove all transports except a give one */ 754 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 755 struct sctp_transport *primary) 756 { 757 struct sctp_transport *temp; 758 struct sctp_transport *t; 759 760 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 761 transports) { 762 /* if the current transport is not the primary one, delete it */ 763 if (t != primary) 764 sctp_assoc_rm_peer(asoc, t); 765 } 766 } 767 768 /* Engage in transport control operations. 769 * Mark the transport up or down and send a notification to the user. 770 * Select and update the new active and retran paths. 771 */ 772 void sctp_assoc_control_transport(struct sctp_association *asoc, 773 struct sctp_transport *transport, 774 sctp_transport_cmd_t command, 775 sctp_sn_error_t error) 776 { 777 struct sctp_transport *t = NULL; 778 struct sctp_transport *first; 779 struct sctp_transport *second; 780 struct sctp_ulpevent *event; 781 struct sockaddr_storage addr; 782 int spc_state = 0; 783 bool ulp_notify = true; 784 785 /* Record the transition on the transport. */ 786 switch (command) { 787 case SCTP_TRANSPORT_UP: 788 /* If we are moving from UNCONFIRMED state due 789 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 790 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 791 */ 792 if (SCTP_UNCONFIRMED == transport->state && 793 SCTP_HEARTBEAT_SUCCESS == error) 794 spc_state = SCTP_ADDR_CONFIRMED; 795 else 796 spc_state = SCTP_ADDR_AVAILABLE; 797 /* Don't inform ULP about transition from PF to 798 * active state and set cwnd to 1 MTU, see SCTP 799 * Quick failover draft section 5.1, point 5 800 */ 801 if (transport->state == SCTP_PF) { 802 ulp_notify = false; 803 transport->cwnd = asoc->pathmtu; 804 } 805 transport->state = SCTP_ACTIVE; 806 break; 807 808 case SCTP_TRANSPORT_DOWN: 809 /* If the transport was never confirmed, do not transition it 810 * to inactive state. Also, release the cached route since 811 * there may be a better route next time. 812 */ 813 if (transport->state != SCTP_UNCONFIRMED) 814 transport->state = SCTP_INACTIVE; 815 else { 816 dst_release(transport->dst); 817 transport->dst = NULL; 818 } 819 820 spc_state = SCTP_ADDR_UNREACHABLE; 821 break; 822 823 case SCTP_TRANSPORT_PF: 824 transport->state = SCTP_PF; 825 ulp_notify = false; 826 break; 827 828 default: 829 return; 830 } 831 832 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 833 * user. 834 */ 835 if (ulp_notify) { 836 memset(&addr, 0, sizeof(struct sockaddr_storage)); 837 memcpy(&addr, &transport->ipaddr, 838 transport->af_specific->sockaddr_len); 839 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 840 0, spc_state, error, GFP_ATOMIC); 841 if (event) 842 sctp_ulpq_tail_event(&asoc->ulpq, event); 843 } 844 845 /* Select new active and retran paths. */ 846 847 /* Look for the two most recently used active transports. 848 * 849 * This code produces the wrong ordering whenever jiffies 850 * rolls over, but we still get usable transports, so we don't 851 * worry about it. 852 */ 853 first = NULL; second = NULL; 854 855 list_for_each_entry(t, &asoc->peer.transport_addr_list, 856 transports) { 857 858 if ((t->state == SCTP_INACTIVE) || 859 (t->state == SCTP_UNCONFIRMED) || 860 (t->state == SCTP_PF)) 861 continue; 862 if (!first || t->last_time_heard > first->last_time_heard) { 863 second = first; 864 first = t; 865 } else if (!second || 866 t->last_time_heard > second->last_time_heard) 867 second = t; 868 } 869 870 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 871 * 872 * By default, an endpoint should always transmit to the 873 * primary path, unless the SCTP user explicitly specifies the 874 * destination transport address (and possibly source 875 * transport address) to use. 876 * 877 * [If the primary is active but not most recent, bump the most 878 * recently used transport.] 879 */ 880 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 881 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 882 first != asoc->peer.primary_path) { 883 second = first; 884 first = asoc->peer.primary_path; 885 } 886 887 if (!second) 888 second = first; 889 /* If we failed to find a usable transport, just camp on the 890 * primary, even if it is inactive. 891 */ 892 if (!first) { 893 first = asoc->peer.primary_path; 894 second = asoc->peer.primary_path; 895 } 896 897 /* Set the active and retran transports. */ 898 asoc->peer.active_path = first; 899 asoc->peer.retran_path = second; 900 } 901 902 /* Hold a reference to an association. */ 903 void sctp_association_hold(struct sctp_association *asoc) 904 { 905 atomic_inc(&asoc->base.refcnt); 906 } 907 908 /* Release a reference to an association and cleanup 909 * if there are no more references. 910 */ 911 void sctp_association_put(struct sctp_association *asoc) 912 { 913 if (atomic_dec_and_test(&asoc->base.refcnt)) 914 sctp_association_destroy(asoc); 915 } 916 917 /* Allocate the next TSN, Transmission Sequence Number, for the given 918 * association. 919 */ 920 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 921 { 922 /* From Section 1.6 Serial Number Arithmetic: 923 * Transmission Sequence Numbers wrap around when they reach 924 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 925 * after transmitting TSN = 2*32 - 1 is TSN = 0. 926 */ 927 __u32 retval = asoc->next_tsn; 928 asoc->next_tsn++; 929 asoc->unack_data++; 930 931 return retval; 932 } 933 934 /* Compare two addresses to see if they match. Wildcard addresses 935 * only match themselves. 936 */ 937 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 938 const union sctp_addr *ss2) 939 { 940 struct sctp_af *af; 941 942 af = sctp_get_af_specific(ss1->sa.sa_family); 943 if (unlikely(!af)) 944 return 0; 945 946 return af->cmp_addr(ss1, ss2); 947 } 948 949 /* Return an ecne chunk to get prepended to a packet. 950 * Note: We are sly and return a shared, prealloced chunk. FIXME: 951 * No we don't, but we could/should. 952 */ 953 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 954 { 955 if (!asoc->need_ecne) 956 return NULL; 957 958 /* Send ECNE if needed. 959 * Not being able to allocate a chunk here is not deadly. 960 */ 961 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 962 } 963 964 /* 965 * Find which transport this TSN was sent on. 966 */ 967 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 968 __u32 tsn) 969 { 970 struct sctp_transport *active; 971 struct sctp_transport *match; 972 struct sctp_transport *transport; 973 struct sctp_chunk *chunk; 974 __be32 key = htonl(tsn); 975 976 match = NULL; 977 978 /* 979 * FIXME: In general, find a more efficient data structure for 980 * searching. 981 */ 982 983 /* 984 * The general strategy is to search each transport's transmitted 985 * list. Return which transport this TSN lives on. 986 * 987 * Let's be hopeful and check the active_path first. 988 * Another optimization would be to know if there is only one 989 * outbound path and not have to look for the TSN at all. 990 * 991 */ 992 993 active = asoc->peer.active_path; 994 995 list_for_each_entry(chunk, &active->transmitted, 996 transmitted_list) { 997 998 if (key == chunk->subh.data_hdr->tsn) { 999 match = active; 1000 goto out; 1001 } 1002 } 1003 1004 /* If not found, go search all the other transports. */ 1005 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1006 transports) { 1007 1008 if (transport == active) 1009 continue; 1010 list_for_each_entry(chunk, &transport->transmitted, 1011 transmitted_list) { 1012 if (key == chunk->subh.data_hdr->tsn) { 1013 match = transport; 1014 goto out; 1015 } 1016 } 1017 } 1018 out: 1019 return match; 1020 } 1021 1022 /* Is this the association we are looking for? */ 1023 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1024 struct net *net, 1025 const union sctp_addr *laddr, 1026 const union sctp_addr *paddr) 1027 { 1028 struct sctp_transport *transport; 1029 1030 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1031 (htons(asoc->peer.port) == paddr->v4.sin_port) && 1032 net_eq(sock_net(asoc->base.sk), net)) { 1033 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1034 if (!transport) 1035 goto out; 1036 1037 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1038 sctp_sk(asoc->base.sk))) 1039 goto out; 1040 } 1041 transport = NULL; 1042 1043 out: 1044 return transport; 1045 } 1046 1047 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1048 static void sctp_assoc_bh_rcv(struct work_struct *work) 1049 { 1050 struct sctp_association *asoc = 1051 container_of(work, struct sctp_association, 1052 base.inqueue.immediate); 1053 struct net *net = sock_net(asoc->base.sk); 1054 struct sctp_endpoint *ep; 1055 struct sctp_chunk *chunk; 1056 struct sctp_inq *inqueue; 1057 int state; 1058 sctp_subtype_t subtype; 1059 int error = 0; 1060 1061 /* The association should be held so we should be safe. */ 1062 ep = asoc->ep; 1063 1064 inqueue = &asoc->base.inqueue; 1065 sctp_association_hold(asoc); 1066 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1067 state = asoc->state; 1068 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1069 1070 /* SCTP-AUTH, Section 6.3: 1071 * The receiver has a list of chunk types which it expects 1072 * to be received only after an AUTH-chunk. This list has 1073 * been sent to the peer during the association setup. It 1074 * MUST silently discard these chunks if they are not placed 1075 * after an AUTH chunk in the packet. 1076 */ 1077 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1078 continue; 1079 1080 /* Remember where the last DATA chunk came from so we 1081 * know where to send the SACK. 1082 */ 1083 if (sctp_chunk_is_data(chunk)) 1084 asoc->peer.last_data_from = chunk->transport; 1085 else { 1086 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1087 asoc->stats.ictrlchunks++; 1088 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1089 asoc->stats.isacks++; 1090 } 1091 1092 if (chunk->transport) 1093 chunk->transport->last_time_heard = jiffies; 1094 1095 /* Run through the state machine. */ 1096 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1097 state, ep, asoc, chunk, GFP_ATOMIC); 1098 1099 /* Check to see if the association is freed in response to 1100 * the incoming chunk. If so, get out of the while loop. 1101 */ 1102 if (asoc->base.dead) 1103 break; 1104 1105 /* If there is an error on chunk, discard this packet. */ 1106 if (error && chunk) 1107 chunk->pdiscard = 1; 1108 } 1109 sctp_association_put(asoc); 1110 } 1111 1112 /* This routine moves an association from its old sk to a new sk. */ 1113 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1114 { 1115 struct sctp_sock *newsp = sctp_sk(newsk); 1116 struct sock *oldsk = assoc->base.sk; 1117 1118 /* Delete the association from the old endpoint's list of 1119 * associations. 1120 */ 1121 list_del_init(&assoc->asocs); 1122 1123 /* Decrement the backlog value for a TCP-style socket. */ 1124 if (sctp_style(oldsk, TCP)) 1125 oldsk->sk_ack_backlog--; 1126 1127 /* Release references to the old endpoint and the sock. */ 1128 sctp_endpoint_put(assoc->ep); 1129 sock_put(assoc->base.sk); 1130 1131 /* Get a reference to the new endpoint. */ 1132 assoc->ep = newsp->ep; 1133 sctp_endpoint_hold(assoc->ep); 1134 1135 /* Get a reference to the new sock. */ 1136 assoc->base.sk = newsk; 1137 sock_hold(assoc->base.sk); 1138 1139 /* Add the association to the new endpoint's list of associations. */ 1140 sctp_endpoint_add_asoc(newsp->ep, assoc); 1141 } 1142 1143 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1144 void sctp_assoc_update(struct sctp_association *asoc, 1145 struct sctp_association *new) 1146 { 1147 struct sctp_transport *trans; 1148 struct list_head *pos, *temp; 1149 1150 /* Copy in new parameters of peer. */ 1151 asoc->c = new->c; 1152 asoc->peer.rwnd = new->peer.rwnd; 1153 asoc->peer.sack_needed = new->peer.sack_needed; 1154 asoc->peer.i = new->peer.i; 1155 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1156 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1157 1158 /* Remove any peer addresses not present in the new association. */ 1159 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1160 trans = list_entry(pos, struct sctp_transport, transports); 1161 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1162 sctp_assoc_rm_peer(asoc, trans); 1163 continue; 1164 } 1165 1166 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1167 sctp_transport_reset(trans); 1168 } 1169 1170 /* If the case is A (association restart), use 1171 * initial_tsn as next_tsn. If the case is B, use 1172 * current next_tsn in case data sent to peer 1173 * has been discarded and needs retransmission. 1174 */ 1175 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1176 asoc->next_tsn = new->next_tsn; 1177 asoc->ctsn_ack_point = new->ctsn_ack_point; 1178 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1179 1180 /* Reinitialize SSN for both local streams 1181 * and peer's streams. 1182 */ 1183 sctp_ssnmap_clear(asoc->ssnmap); 1184 1185 /* Flush the ULP reassembly and ordered queue. 1186 * Any data there will now be stale and will 1187 * cause problems. 1188 */ 1189 sctp_ulpq_flush(&asoc->ulpq); 1190 1191 /* reset the overall association error count so 1192 * that the restarted association doesn't get torn 1193 * down on the next retransmission timer. 1194 */ 1195 asoc->overall_error_count = 0; 1196 1197 } else { 1198 /* Add any peer addresses from the new association. */ 1199 list_for_each_entry(trans, &new->peer.transport_addr_list, 1200 transports) { 1201 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1202 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1203 GFP_ATOMIC, trans->state); 1204 } 1205 1206 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1207 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1208 if (!asoc->ssnmap) { 1209 /* Move the ssnmap. */ 1210 asoc->ssnmap = new->ssnmap; 1211 new->ssnmap = NULL; 1212 } 1213 1214 if (!asoc->assoc_id) { 1215 /* get a new association id since we don't have one 1216 * yet. 1217 */ 1218 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1219 } 1220 } 1221 1222 /* SCTP-AUTH: Save the peer parameters from the new associations 1223 * and also move the association shared keys over 1224 */ 1225 kfree(asoc->peer.peer_random); 1226 asoc->peer.peer_random = new->peer.peer_random; 1227 new->peer.peer_random = NULL; 1228 1229 kfree(asoc->peer.peer_chunks); 1230 asoc->peer.peer_chunks = new->peer.peer_chunks; 1231 new->peer.peer_chunks = NULL; 1232 1233 kfree(asoc->peer.peer_hmacs); 1234 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1235 new->peer.peer_hmacs = NULL; 1236 1237 sctp_auth_key_put(asoc->asoc_shared_key); 1238 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1239 } 1240 1241 /* Update the retran path for sending a retransmitted packet. 1242 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1243 * 1244 * When there is outbound data to send and the primary path 1245 * becomes inactive (e.g., due to failures), or where the 1246 * SCTP user explicitly requests to send data to an 1247 * inactive destination transport address, before reporting 1248 * an error to its ULP, the SCTP endpoint should try to send 1249 * the data to an alternate active destination transport 1250 * address if one exists. 1251 * 1252 * When retransmitting data that timed out, if the endpoint 1253 * is multihomed, it should consider each source-destination 1254 * address pair in its retransmission selection policy. 1255 * When retransmitting timed-out data, the endpoint should 1256 * attempt to pick the most divergent source-destination 1257 * pair from the original source-destination pair to which 1258 * the packet was transmitted. 1259 * 1260 * Note: Rules for picking the most divergent source-destination 1261 * pair are an implementation decision and are not specified 1262 * within this document. 1263 * 1264 * Our basic strategy is to round-robin transports in priorities 1265 * according to sctp_state_prio_map[] e.g., if no such 1266 * transport with state SCTP_ACTIVE exists, round-robin through 1267 * SCTP_UNKNOWN, etc. You get the picture. 1268 */ 1269 static const u8 sctp_trans_state_to_prio_map[] = { 1270 [SCTP_ACTIVE] = 3, /* best case */ 1271 [SCTP_UNKNOWN] = 2, 1272 [SCTP_PF] = 1, 1273 [SCTP_INACTIVE] = 0, /* worst case */ 1274 }; 1275 1276 static u8 sctp_trans_score(const struct sctp_transport *trans) 1277 { 1278 return sctp_trans_state_to_prio_map[trans->state]; 1279 } 1280 1281 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1282 struct sctp_transport *best) 1283 { 1284 if (best == NULL) 1285 return curr; 1286 1287 return sctp_trans_score(curr) > sctp_trans_score(best) ? curr : best; 1288 } 1289 1290 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1291 { 1292 struct sctp_transport *trans = asoc->peer.retran_path; 1293 struct sctp_transport *trans_next = NULL; 1294 1295 /* We're done as we only have the one and only path. */ 1296 if (asoc->peer.transport_count == 1) 1297 return; 1298 /* If active_path and retran_path are the same and active, 1299 * then this is the only active path. Use it. 1300 */ 1301 if (asoc->peer.active_path == asoc->peer.retran_path && 1302 asoc->peer.active_path->state == SCTP_ACTIVE) 1303 return; 1304 1305 /* Iterate from retran_path's successor back to retran_path. */ 1306 for (trans = list_next_entry(trans, transports); 1; 1307 trans = list_next_entry(trans, transports)) { 1308 /* Manually skip the head element. */ 1309 if (&trans->transports == &asoc->peer.transport_addr_list) 1310 continue; 1311 if (trans->state == SCTP_UNCONFIRMED) 1312 continue; 1313 trans_next = sctp_trans_elect_best(trans, trans_next); 1314 /* Active is good enough for immediate return. */ 1315 if (trans_next->state == SCTP_ACTIVE) 1316 break; 1317 /* We've reached the end, time to update path. */ 1318 if (trans == asoc->peer.retran_path) 1319 break; 1320 } 1321 1322 asoc->peer.retran_path = trans_next; 1323 1324 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1325 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1326 } 1327 1328 struct sctp_transport * 1329 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1330 struct sctp_transport *last_sent_to) 1331 { 1332 /* If this is the first time packet is sent, use the active path, 1333 * else use the retran path. If the last packet was sent over the 1334 * retran path, update the retran path and use it. 1335 */ 1336 if (last_sent_to == NULL) { 1337 return asoc->peer.active_path; 1338 } else { 1339 if (last_sent_to == asoc->peer.retran_path) 1340 sctp_assoc_update_retran_path(asoc); 1341 1342 return asoc->peer.retran_path; 1343 } 1344 } 1345 1346 /* Update the association's pmtu and frag_point by going through all the 1347 * transports. This routine is called when a transport's PMTU has changed. 1348 */ 1349 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1350 { 1351 struct sctp_transport *t; 1352 __u32 pmtu = 0; 1353 1354 if (!asoc) 1355 return; 1356 1357 /* Get the lowest pmtu of all the transports. */ 1358 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1359 transports) { 1360 if (t->pmtu_pending && t->dst) { 1361 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1362 t->pmtu_pending = 0; 1363 } 1364 if (!pmtu || (t->pathmtu < pmtu)) 1365 pmtu = t->pathmtu; 1366 } 1367 1368 if (pmtu) { 1369 asoc->pathmtu = pmtu; 1370 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1371 } 1372 1373 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1374 asoc->pathmtu, asoc->frag_point); 1375 } 1376 1377 /* Should we send a SACK to update our peer? */ 1378 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1379 { 1380 struct net *net = sock_net(asoc->base.sk); 1381 switch (asoc->state) { 1382 case SCTP_STATE_ESTABLISHED: 1383 case SCTP_STATE_SHUTDOWN_PENDING: 1384 case SCTP_STATE_SHUTDOWN_RECEIVED: 1385 case SCTP_STATE_SHUTDOWN_SENT: 1386 if ((asoc->rwnd > asoc->a_rwnd) && 1387 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1388 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1389 asoc->pathmtu))) 1390 return true; 1391 break; 1392 default: 1393 break; 1394 } 1395 return false; 1396 } 1397 1398 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1399 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1400 { 1401 struct sctp_chunk *sack; 1402 struct timer_list *timer; 1403 1404 if (asoc->rwnd_over) { 1405 if (asoc->rwnd_over >= len) { 1406 asoc->rwnd_over -= len; 1407 } else { 1408 asoc->rwnd += (len - asoc->rwnd_over); 1409 asoc->rwnd_over = 0; 1410 } 1411 } else { 1412 asoc->rwnd += len; 1413 } 1414 1415 /* If we had window pressure, start recovering it 1416 * once our rwnd had reached the accumulated pressure 1417 * threshold. The idea is to recover slowly, but up 1418 * to the initial advertised window. 1419 */ 1420 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1421 int change = min(asoc->pathmtu, asoc->rwnd_press); 1422 asoc->rwnd += change; 1423 asoc->rwnd_press -= change; 1424 } 1425 1426 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1427 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1428 asoc->a_rwnd); 1429 1430 /* Send a window update SACK if the rwnd has increased by at least the 1431 * minimum of the association's PMTU and half of the receive buffer. 1432 * The algorithm used is similar to the one described in 1433 * Section 4.2.3.3 of RFC 1122. 1434 */ 1435 if (sctp_peer_needs_update(asoc)) { 1436 asoc->a_rwnd = asoc->rwnd; 1437 1438 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1439 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1440 asoc->a_rwnd); 1441 1442 sack = sctp_make_sack(asoc); 1443 if (!sack) 1444 return; 1445 1446 asoc->peer.sack_needed = 0; 1447 1448 sctp_outq_tail(&asoc->outqueue, sack); 1449 1450 /* Stop the SACK timer. */ 1451 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1452 if (del_timer(timer)) 1453 sctp_association_put(asoc); 1454 } 1455 } 1456 1457 /* Decrease asoc's rwnd by len. */ 1458 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1459 { 1460 int rx_count; 1461 int over = 0; 1462 1463 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1464 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1465 "asoc->rwnd_over:%u!\n", __func__, asoc, 1466 asoc->rwnd, asoc->rwnd_over); 1467 1468 if (asoc->ep->rcvbuf_policy) 1469 rx_count = atomic_read(&asoc->rmem_alloc); 1470 else 1471 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1472 1473 /* If we've reached or overflowed our receive buffer, announce 1474 * a 0 rwnd if rwnd would still be positive. Store the 1475 * the potential pressure overflow so that the window can be restored 1476 * back to original value. 1477 */ 1478 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1479 over = 1; 1480 1481 if (asoc->rwnd >= len) { 1482 asoc->rwnd -= len; 1483 if (over) { 1484 asoc->rwnd_press += asoc->rwnd; 1485 asoc->rwnd = 0; 1486 } 1487 } else { 1488 asoc->rwnd_over = len - asoc->rwnd; 1489 asoc->rwnd = 0; 1490 } 1491 1492 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1493 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1494 asoc->rwnd_press); 1495 } 1496 1497 /* Build the bind address list for the association based on info from the 1498 * local endpoint and the remote peer. 1499 */ 1500 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1501 sctp_scope_t scope, gfp_t gfp) 1502 { 1503 int flags; 1504 1505 /* Use scoping rules to determine the subset of addresses from 1506 * the endpoint. 1507 */ 1508 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1509 if (asoc->peer.ipv4_address) 1510 flags |= SCTP_ADDR4_PEERSUPP; 1511 if (asoc->peer.ipv6_address) 1512 flags |= SCTP_ADDR6_PEERSUPP; 1513 1514 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1515 &asoc->base.bind_addr, 1516 &asoc->ep->base.bind_addr, 1517 scope, gfp, flags); 1518 } 1519 1520 /* Build the association's bind address list from the cookie. */ 1521 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1522 struct sctp_cookie *cookie, 1523 gfp_t gfp) 1524 { 1525 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1526 int var_size3 = cookie->raw_addr_list_len; 1527 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1528 1529 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1530 asoc->ep->base.bind_addr.port, gfp); 1531 } 1532 1533 /* Lookup laddr in the bind address list of an association. */ 1534 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1535 const union sctp_addr *laddr) 1536 { 1537 int found = 0; 1538 1539 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1540 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1541 sctp_sk(asoc->base.sk))) 1542 found = 1; 1543 1544 return found; 1545 } 1546 1547 /* Set an association id for a given association */ 1548 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1549 { 1550 bool preload = gfp & __GFP_WAIT; 1551 int ret; 1552 1553 /* If the id is already assigned, keep it. */ 1554 if (asoc->assoc_id) 1555 return 0; 1556 1557 if (preload) 1558 idr_preload(gfp); 1559 spin_lock_bh(&sctp_assocs_id_lock); 1560 /* 0 is not a valid assoc_id, must be >= 1 */ 1561 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1562 spin_unlock_bh(&sctp_assocs_id_lock); 1563 if (preload) 1564 idr_preload_end(); 1565 if (ret < 0) 1566 return ret; 1567 1568 asoc->assoc_id = (sctp_assoc_t)ret; 1569 return 0; 1570 } 1571 1572 /* Free the ASCONF queue */ 1573 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1574 { 1575 struct sctp_chunk *asconf; 1576 struct sctp_chunk *tmp; 1577 1578 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1579 list_del_init(&asconf->list); 1580 sctp_chunk_free(asconf); 1581 } 1582 } 1583 1584 /* Free asconf_ack cache */ 1585 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1586 { 1587 struct sctp_chunk *ack; 1588 struct sctp_chunk *tmp; 1589 1590 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1591 transmitted_list) { 1592 list_del_init(&ack->transmitted_list); 1593 sctp_chunk_free(ack); 1594 } 1595 } 1596 1597 /* Clean up the ASCONF_ACK queue */ 1598 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1599 { 1600 struct sctp_chunk *ack; 1601 struct sctp_chunk *tmp; 1602 1603 /* We can remove all the entries from the queue up to 1604 * the "Peer-Sequence-Number". 1605 */ 1606 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1607 transmitted_list) { 1608 if (ack->subh.addip_hdr->serial == 1609 htonl(asoc->peer.addip_serial)) 1610 break; 1611 1612 list_del_init(&ack->transmitted_list); 1613 sctp_chunk_free(ack); 1614 } 1615 } 1616 1617 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1618 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1619 const struct sctp_association *asoc, 1620 __be32 serial) 1621 { 1622 struct sctp_chunk *ack; 1623 1624 /* Walk through the list of cached ASCONF-ACKs and find the 1625 * ack chunk whose serial number matches that of the request. 1626 */ 1627 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1628 if (ack->subh.addip_hdr->serial == serial) { 1629 sctp_chunk_hold(ack); 1630 return ack; 1631 } 1632 } 1633 1634 return NULL; 1635 } 1636 1637 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1638 { 1639 /* Free any cached ASCONF_ACK chunk. */ 1640 sctp_assoc_free_asconf_acks(asoc); 1641 1642 /* Free the ASCONF queue. */ 1643 sctp_assoc_free_asconf_queue(asoc); 1644 1645 /* Free any cached ASCONF chunk. */ 1646 if (asoc->addip_last_asconf) 1647 sctp_chunk_free(asoc->addip_last_asconf); 1648 } 1649