1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 67 const struct sctp_endpoint *ep, 68 const struct sock *sk, 69 sctp_scope_t scope, 70 gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 int i; 75 sctp_paramhdr_t *p; 76 int err; 77 78 /* Retrieve the SCTP per socket area. */ 79 sp = sctp_sk((struct sock *)sk); 80 81 /* Discarding const is appropriate here. */ 82 asoc->ep = (struct sctp_endpoint *)ep; 83 asoc->base.sk = (struct sock *)sk; 84 85 sctp_endpoint_hold(asoc->ep); 86 sock_hold(asoc->base.sk); 87 88 /* Initialize the common base substructure. */ 89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 90 91 /* Initialize the object handling fields. */ 92 atomic_set(&asoc->base.refcnt, 1); 93 94 /* Initialize the bind addr area. */ 95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 96 97 asoc->state = SCTP_STATE_CLOSED; 98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 99 asoc->user_frag = sp->user_frag; 100 101 /* Set the association max_retrans and RTO values from the 102 * socket values. 103 */ 104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 105 asoc->pf_retrans = net->sctp.pf_retrans; 106 107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 110 111 /* Initialize the association's heartbeat interval based on the 112 * sock configured value. 113 */ 114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 115 116 /* Initialize path max retrans value. */ 117 asoc->pathmaxrxt = sp->pathmaxrxt; 118 119 /* Initialize default path MTU. */ 120 asoc->pathmtu = sp->pathmtu; 121 122 /* Set association default SACK delay */ 123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 124 asoc->sackfreq = sp->sackfreq; 125 126 /* Set the association default flags controlling 127 * Heartbeat, SACK delay, and Path MTU Discovery. 128 */ 129 asoc->param_flags = sp->param_flags; 130 131 /* Initialize the maximum number of new data packets that can be sent 132 * in a burst. 133 */ 134 asoc->max_burst = sp->max_burst; 135 136 /* initialize association timers */ 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 140 141 /* sctpimpguide Section 2.12.2 142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 143 * recommended value of 5 times 'RTO.Max'. 144 */ 145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 146 = 5 * asoc->rto_max; 147 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 150 151 /* Initializes the timers */ 152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 153 setup_timer(&asoc->timers[i], sctp_timer_events[i], 154 (unsigned long)asoc); 155 156 /* Pull default initialization values from the sock options. 157 * Note: This assumes that the values have already been 158 * validated in the sock. 159 */ 160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 163 164 asoc->max_init_timeo = 165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 166 167 /* Set the local window size for receive. 168 * This is also the rcvbuf space per association. 169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 170 * 1500 bytes in one SCTP packet. 171 */ 172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 174 else 175 asoc->rwnd = sk->sk_rcvbuf/2; 176 177 asoc->a_rwnd = asoc->rwnd; 178 179 /* Use my own max window until I learn something better. */ 180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 181 182 /* Initialize the receive memory counter */ 183 atomic_set(&asoc->rmem_alloc, 0); 184 185 init_waitqueue_head(&asoc->wait); 186 187 asoc->c.my_vtag = sctp_generate_tag(ep); 188 asoc->c.my_port = ep->base.bind_addr.port; 189 190 asoc->c.initial_tsn = sctp_generate_tsn(ep); 191 192 asoc->next_tsn = asoc->c.initial_tsn; 193 194 asoc->ctsn_ack_point = asoc->next_tsn - 1; 195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 196 asoc->highest_sacked = asoc->ctsn_ack_point; 197 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 198 199 /* ADDIP Section 4.1 Asconf Chunk Procedures 200 * 201 * When an endpoint has an ASCONF signaled change to be sent to the 202 * remote endpoint it should do the following: 203 * ... 204 * A2) a serial number should be assigned to the chunk. The serial 205 * number SHOULD be a monotonically increasing number. The serial 206 * numbers SHOULD be initialized at the start of the 207 * association to the same value as the initial TSN. 208 */ 209 asoc->addip_serial = asoc->c.initial_tsn; 210 asoc->strreset_outseq = asoc->c.initial_tsn; 211 212 INIT_LIST_HEAD(&asoc->addip_chunk_list); 213 INIT_LIST_HEAD(&asoc->asconf_ack_list); 214 215 /* Make an empty list of remote transport addresses. */ 216 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 217 218 /* RFC 2960 5.1 Normal Establishment of an Association 219 * 220 * After the reception of the first data chunk in an 221 * association the endpoint must immediately respond with a 222 * sack to acknowledge the data chunk. Subsequent 223 * acknowledgements should be done as described in Section 224 * 6.2. 225 * 226 * [We implement this by telling a new association that it 227 * already received one packet.] 228 */ 229 asoc->peer.sack_needed = 1; 230 asoc->peer.sack_generation = 1; 231 232 /* Assume that the peer will tell us if he recognizes ASCONF 233 * as part of INIT exchange. 234 * The sctp_addip_noauth option is there for backward compatibility 235 * and will revert old behavior. 236 */ 237 if (net->sctp.addip_noauth) 238 asoc->peer.asconf_capable = 1; 239 240 /* Create an input queue. */ 241 sctp_inq_init(&asoc->base.inqueue); 242 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 243 244 /* Create an output queue. */ 245 sctp_outq_init(asoc, &asoc->outqueue); 246 247 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 248 goto fail_init; 249 250 /* Assume that peer would support both address types unless we are 251 * told otherwise. 252 */ 253 asoc->peer.ipv4_address = 1; 254 if (asoc->base.sk->sk_family == PF_INET6) 255 asoc->peer.ipv6_address = 1; 256 INIT_LIST_HEAD(&asoc->asocs); 257 258 asoc->default_stream = sp->default_stream; 259 asoc->default_ppid = sp->default_ppid; 260 asoc->default_flags = sp->default_flags; 261 asoc->default_context = sp->default_context; 262 asoc->default_timetolive = sp->default_timetolive; 263 asoc->default_rcv_context = sp->default_rcv_context; 264 265 /* AUTH related initializations */ 266 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 267 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 268 if (err) 269 goto fail_init; 270 271 asoc->active_key_id = ep->active_key_id; 272 asoc->prsctp_enable = ep->prsctp_enable; 273 asoc->reconf_enable = ep->reconf_enable; 274 asoc->strreset_enable = ep->strreset_enable; 275 276 /* Save the hmacs and chunks list into this association */ 277 if (ep->auth_hmacs_list) 278 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 279 ntohs(ep->auth_hmacs_list->param_hdr.length)); 280 if (ep->auth_chunk_list) 281 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 282 ntohs(ep->auth_chunk_list->param_hdr.length)); 283 284 /* Get the AUTH random number for this association */ 285 p = (sctp_paramhdr_t *)asoc->c.auth_random; 286 p->type = SCTP_PARAM_RANDOM; 287 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 288 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 289 290 return asoc; 291 292 fail_init: 293 sock_put(asoc->base.sk); 294 sctp_endpoint_put(asoc->ep); 295 return NULL; 296 } 297 298 /* Allocate and initialize a new association */ 299 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 300 const struct sock *sk, 301 sctp_scope_t scope, 302 gfp_t gfp) 303 { 304 struct sctp_association *asoc; 305 306 asoc = kzalloc(sizeof(*asoc), gfp); 307 if (!asoc) 308 goto fail; 309 310 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 311 goto fail_init; 312 313 SCTP_DBG_OBJCNT_INC(assoc); 314 315 pr_debug("Created asoc %p\n", asoc); 316 317 return asoc; 318 319 fail_init: 320 kfree(asoc); 321 fail: 322 return NULL; 323 } 324 325 /* Free this association if possible. There may still be users, so 326 * the actual deallocation may be delayed. 327 */ 328 void sctp_association_free(struct sctp_association *asoc) 329 { 330 struct sock *sk = asoc->base.sk; 331 struct sctp_transport *transport; 332 struct list_head *pos, *temp; 333 int i; 334 335 /* Only real associations count against the endpoint, so 336 * don't bother for if this is a temporary association. 337 */ 338 if (!list_empty(&asoc->asocs)) { 339 list_del(&asoc->asocs); 340 341 /* Decrement the backlog value for a TCP-style listening 342 * socket. 343 */ 344 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 345 sk->sk_ack_backlog--; 346 } 347 348 /* Mark as dead, so other users can know this structure is 349 * going away. 350 */ 351 asoc->base.dead = true; 352 353 /* Dispose of any data lying around in the outqueue. */ 354 sctp_outq_free(&asoc->outqueue); 355 356 /* Dispose of any pending messages for the upper layer. */ 357 sctp_ulpq_free(&asoc->ulpq); 358 359 /* Dispose of any pending chunks on the inqueue. */ 360 sctp_inq_free(&asoc->base.inqueue); 361 362 sctp_tsnmap_free(&asoc->peer.tsn_map); 363 364 /* Free stream information. */ 365 sctp_stream_free(asoc->stream); 366 367 if (asoc->strreset_chunk) 368 sctp_chunk_free(asoc->strreset_chunk); 369 370 /* Clean up the bound address list. */ 371 sctp_bind_addr_free(&asoc->base.bind_addr); 372 373 /* Do we need to go through all of our timers and 374 * delete them? To be safe we will try to delete all, but we 375 * should be able to go through and make a guess based 376 * on our state. 377 */ 378 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 379 if (del_timer(&asoc->timers[i])) 380 sctp_association_put(asoc); 381 } 382 383 /* Free peer's cached cookie. */ 384 kfree(asoc->peer.cookie); 385 kfree(asoc->peer.peer_random); 386 kfree(asoc->peer.peer_chunks); 387 kfree(asoc->peer.peer_hmacs); 388 389 /* Release the transport structures. */ 390 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 391 transport = list_entry(pos, struct sctp_transport, transports); 392 list_del_rcu(pos); 393 sctp_unhash_transport(transport); 394 sctp_transport_free(transport); 395 } 396 397 asoc->peer.transport_count = 0; 398 399 sctp_asconf_queue_teardown(asoc); 400 401 /* Free pending address space being deleted */ 402 kfree(asoc->asconf_addr_del_pending); 403 404 /* AUTH - Free the endpoint shared keys */ 405 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 406 407 /* AUTH - Free the association shared key */ 408 sctp_auth_key_put(asoc->asoc_shared_key); 409 410 sctp_association_put(asoc); 411 } 412 413 /* Cleanup and free up an association. */ 414 static void sctp_association_destroy(struct sctp_association *asoc) 415 { 416 if (unlikely(!asoc->base.dead)) { 417 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 418 return; 419 } 420 421 sctp_endpoint_put(asoc->ep); 422 sock_put(asoc->base.sk); 423 424 if (asoc->assoc_id != 0) { 425 spin_lock_bh(&sctp_assocs_id_lock); 426 idr_remove(&sctp_assocs_id, asoc->assoc_id); 427 spin_unlock_bh(&sctp_assocs_id_lock); 428 } 429 430 WARN_ON(atomic_read(&asoc->rmem_alloc)); 431 432 kfree(asoc); 433 SCTP_DBG_OBJCNT_DEC(assoc); 434 } 435 436 /* Change the primary destination address for the peer. */ 437 void sctp_assoc_set_primary(struct sctp_association *asoc, 438 struct sctp_transport *transport) 439 { 440 int changeover = 0; 441 442 /* it's a changeover only if we already have a primary path 443 * that we are changing 444 */ 445 if (asoc->peer.primary_path != NULL && 446 asoc->peer.primary_path != transport) 447 changeover = 1 ; 448 449 asoc->peer.primary_path = transport; 450 451 /* Set a default msg_name for events. */ 452 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 453 sizeof(union sctp_addr)); 454 455 /* If the primary path is changing, assume that the 456 * user wants to use this new path. 457 */ 458 if ((transport->state == SCTP_ACTIVE) || 459 (transport->state == SCTP_UNKNOWN)) 460 asoc->peer.active_path = transport; 461 462 /* 463 * SFR-CACC algorithm: 464 * Upon the receipt of a request to change the primary 465 * destination address, on the data structure for the new 466 * primary destination, the sender MUST do the following: 467 * 468 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 469 * to this destination address earlier. The sender MUST set 470 * CYCLING_CHANGEOVER to indicate that this switch is a 471 * double switch to the same destination address. 472 * 473 * Really, only bother is we have data queued or outstanding on 474 * the association. 475 */ 476 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 477 return; 478 479 if (transport->cacc.changeover_active) 480 transport->cacc.cycling_changeover = changeover; 481 482 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 483 * a changeover has occurred. 484 */ 485 transport->cacc.changeover_active = changeover; 486 487 /* 3) The sender MUST store the next TSN to be sent in 488 * next_tsn_at_change. 489 */ 490 transport->cacc.next_tsn_at_change = asoc->next_tsn; 491 } 492 493 /* Remove a transport from an association. */ 494 void sctp_assoc_rm_peer(struct sctp_association *asoc, 495 struct sctp_transport *peer) 496 { 497 struct list_head *pos; 498 struct sctp_transport *transport; 499 500 pr_debug("%s: association:%p addr:%pISpc\n", 501 __func__, asoc, &peer->ipaddr.sa); 502 503 /* If we are to remove the current retran_path, update it 504 * to the next peer before removing this peer from the list. 505 */ 506 if (asoc->peer.retran_path == peer) 507 sctp_assoc_update_retran_path(asoc); 508 509 /* Remove this peer from the list. */ 510 list_del_rcu(&peer->transports); 511 /* Remove this peer from the transport hashtable */ 512 sctp_unhash_transport(peer); 513 514 /* Get the first transport of asoc. */ 515 pos = asoc->peer.transport_addr_list.next; 516 transport = list_entry(pos, struct sctp_transport, transports); 517 518 /* Update any entries that match the peer to be deleted. */ 519 if (asoc->peer.primary_path == peer) 520 sctp_assoc_set_primary(asoc, transport); 521 if (asoc->peer.active_path == peer) 522 asoc->peer.active_path = transport; 523 if (asoc->peer.retran_path == peer) 524 asoc->peer.retran_path = transport; 525 if (asoc->peer.last_data_from == peer) 526 asoc->peer.last_data_from = transport; 527 528 if (asoc->strreset_chunk && 529 asoc->strreset_chunk->transport == peer) { 530 asoc->strreset_chunk->transport = transport; 531 sctp_transport_reset_reconf_timer(transport); 532 } 533 534 /* If we remove the transport an INIT was last sent to, set it to 535 * NULL. Combined with the update of the retran path above, this 536 * will cause the next INIT to be sent to the next available 537 * transport, maintaining the cycle. 538 */ 539 if (asoc->init_last_sent_to == peer) 540 asoc->init_last_sent_to = NULL; 541 542 /* If we remove the transport an SHUTDOWN was last sent to, set it 543 * to NULL. Combined with the update of the retran path above, this 544 * will cause the next SHUTDOWN to be sent to the next available 545 * transport, maintaining the cycle. 546 */ 547 if (asoc->shutdown_last_sent_to == peer) 548 asoc->shutdown_last_sent_to = NULL; 549 550 /* If we remove the transport an ASCONF was last sent to, set it to 551 * NULL. 552 */ 553 if (asoc->addip_last_asconf && 554 asoc->addip_last_asconf->transport == peer) 555 asoc->addip_last_asconf->transport = NULL; 556 557 /* If we have something on the transmitted list, we have to 558 * save it off. The best place is the active path. 559 */ 560 if (!list_empty(&peer->transmitted)) { 561 struct sctp_transport *active = asoc->peer.active_path; 562 struct sctp_chunk *ch; 563 564 /* Reset the transport of each chunk on this list */ 565 list_for_each_entry(ch, &peer->transmitted, 566 transmitted_list) { 567 ch->transport = NULL; 568 ch->rtt_in_progress = 0; 569 } 570 571 list_splice_tail_init(&peer->transmitted, 572 &active->transmitted); 573 574 /* Start a T3 timer here in case it wasn't running so 575 * that these migrated packets have a chance to get 576 * retransmitted. 577 */ 578 if (!timer_pending(&active->T3_rtx_timer)) 579 if (!mod_timer(&active->T3_rtx_timer, 580 jiffies + active->rto)) 581 sctp_transport_hold(active); 582 } 583 584 asoc->peer.transport_count--; 585 586 sctp_transport_free(peer); 587 } 588 589 /* Add a transport address to an association. */ 590 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 591 const union sctp_addr *addr, 592 const gfp_t gfp, 593 const int peer_state) 594 { 595 struct net *net = sock_net(asoc->base.sk); 596 struct sctp_transport *peer; 597 struct sctp_sock *sp; 598 unsigned short port; 599 600 sp = sctp_sk(asoc->base.sk); 601 602 /* AF_INET and AF_INET6 share common port field. */ 603 port = ntohs(addr->v4.sin_port); 604 605 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 606 asoc, &addr->sa, peer_state); 607 608 /* Set the port if it has not been set yet. */ 609 if (0 == asoc->peer.port) 610 asoc->peer.port = port; 611 612 /* Check to see if this is a duplicate. */ 613 peer = sctp_assoc_lookup_paddr(asoc, addr); 614 if (peer) { 615 /* An UNKNOWN state is only set on transports added by 616 * user in sctp_connectx() call. Such transports should be 617 * considered CONFIRMED per RFC 4960, Section 5.4. 618 */ 619 if (peer->state == SCTP_UNKNOWN) { 620 peer->state = SCTP_ACTIVE; 621 } 622 return peer; 623 } 624 625 peer = sctp_transport_new(net, addr, gfp); 626 if (!peer) 627 return NULL; 628 629 sctp_transport_set_owner(peer, asoc); 630 631 /* Initialize the peer's heartbeat interval based on the 632 * association configured value. 633 */ 634 peer->hbinterval = asoc->hbinterval; 635 636 /* Set the path max_retrans. */ 637 peer->pathmaxrxt = asoc->pathmaxrxt; 638 639 /* And the partial failure retrans threshold */ 640 peer->pf_retrans = asoc->pf_retrans; 641 642 /* Initialize the peer's SACK delay timeout based on the 643 * association configured value. 644 */ 645 peer->sackdelay = asoc->sackdelay; 646 peer->sackfreq = asoc->sackfreq; 647 648 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 649 * based on association setting. 650 */ 651 peer->param_flags = asoc->param_flags; 652 653 sctp_transport_route(peer, NULL, sp); 654 655 /* Initialize the pmtu of the transport. */ 656 if (peer->param_flags & SPP_PMTUD_DISABLE) { 657 if (asoc->pathmtu) 658 peer->pathmtu = asoc->pathmtu; 659 else 660 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 661 } 662 663 /* If this is the first transport addr on this association, 664 * initialize the association PMTU to the peer's PMTU. 665 * If not and the current association PMTU is higher than the new 666 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 667 */ 668 if (asoc->pathmtu) 669 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 670 else 671 asoc->pathmtu = peer->pathmtu; 672 673 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 674 asoc->pathmtu); 675 676 peer->pmtu_pending = 0; 677 678 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 679 680 /* The asoc->peer.port might not be meaningful yet, but 681 * initialize the packet structure anyway. 682 */ 683 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 684 asoc->peer.port); 685 686 /* 7.2.1 Slow-Start 687 * 688 * o The initial cwnd before DATA transmission or after a sufficiently 689 * long idle period MUST be set to 690 * min(4*MTU, max(2*MTU, 4380 bytes)) 691 * 692 * o The initial value of ssthresh MAY be arbitrarily high 693 * (for example, implementations MAY use the size of the 694 * receiver advertised window). 695 */ 696 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 697 698 /* At this point, we may not have the receiver's advertised window, 699 * so initialize ssthresh to the default value and it will be set 700 * later when we process the INIT. 701 */ 702 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 703 704 peer->partial_bytes_acked = 0; 705 peer->flight_size = 0; 706 peer->burst_limited = 0; 707 708 /* Set the transport's RTO.initial value */ 709 peer->rto = asoc->rto_initial; 710 sctp_max_rto(asoc, peer); 711 712 /* Set the peer's active state. */ 713 peer->state = peer_state; 714 715 /* Add this peer into the transport hashtable */ 716 if (sctp_hash_transport(peer)) { 717 sctp_transport_free(peer); 718 return NULL; 719 } 720 721 /* Attach the remote transport to our asoc. */ 722 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 723 asoc->peer.transport_count++; 724 725 /* If we do not yet have a primary path, set one. */ 726 if (!asoc->peer.primary_path) { 727 sctp_assoc_set_primary(asoc, peer); 728 asoc->peer.retran_path = peer; 729 } 730 731 if (asoc->peer.active_path == asoc->peer.retran_path && 732 peer->state != SCTP_UNCONFIRMED) { 733 asoc->peer.retran_path = peer; 734 } 735 736 return peer; 737 } 738 739 /* Delete a transport address from an association. */ 740 void sctp_assoc_del_peer(struct sctp_association *asoc, 741 const union sctp_addr *addr) 742 { 743 struct list_head *pos; 744 struct list_head *temp; 745 struct sctp_transport *transport; 746 747 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 748 transport = list_entry(pos, struct sctp_transport, transports); 749 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 750 /* Do book keeping for removing the peer and free it. */ 751 sctp_assoc_rm_peer(asoc, transport); 752 break; 753 } 754 } 755 } 756 757 /* Lookup a transport by address. */ 758 struct sctp_transport *sctp_assoc_lookup_paddr( 759 const struct sctp_association *asoc, 760 const union sctp_addr *address) 761 { 762 struct sctp_transport *t; 763 764 /* Cycle through all transports searching for a peer address. */ 765 766 list_for_each_entry(t, &asoc->peer.transport_addr_list, 767 transports) { 768 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 769 return t; 770 } 771 772 return NULL; 773 } 774 775 /* Remove all transports except a give one */ 776 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 777 struct sctp_transport *primary) 778 { 779 struct sctp_transport *temp; 780 struct sctp_transport *t; 781 782 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 783 transports) { 784 /* if the current transport is not the primary one, delete it */ 785 if (t != primary) 786 sctp_assoc_rm_peer(asoc, t); 787 } 788 } 789 790 /* Engage in transport control operations. 791 * Mark the transport up or down and send a notification to the user. 792 * Select and update the new active and retran paths. 793 */ 794 void sctp_assoc_control_transport(struct sctp_association *asoc, 795 struct sctp_transport *transport, 796 sctp_transport_cmd_t command, 797 sctp_sn_error_t error) 798 { 799 struct sctp_ulpevent *event; 800 struct sockaddr_storage addr; 801 int spc_state = 0; 802 bool ulp_notify = true; 803 804 /* Record the transition on the transport. */ 805 switch (command) { 806 case SCTP_TRANSPORT_UP: 807 /* If we are moving from UNCONFIRMED state due 808 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 809 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 810 */ 811 if (SCTP_UNCONFIRMED == transport->state && 812 SCTP_HEARTBEAT_SUCCESS == error) 813 spc_state = SCTP_ADDR_CONFIRMED; 814 else 815 spc_state = SCTP_ADDR_AVAILABLE; 816 /* Don't inform ULP about transition from PF to 817 * active state and set cwnd to 1 MTU, see SCTP 818 * Quick failover draft section 5.1, point 5 819 */ 820 if (transport->state == SCTP_PF) { 821 ulp_notify = false; 822 transport->cwnd = asoc->pathmtu; 823 } 824 transport->state = SCTP_ACTIVE; 825 break; 826 827 case SCTP_TRANSPORT_DOWN: 828 /* If the transport was never confirmed, do not transition it 829 * to inactive state. Also, release the cached route since 830 * there may be a better route next time. 831 */ 832 if (transport->state != SCTP_UNCONFIRMED) 833 transport->state = SCTP_INACTIVE; 834 else { 835 sctp_transport_dst_release(transport); 836 ulp_notify = false; 837 } 838 839 spc_state = SCTP_ADDR_UNREACHABLE; 840 break; 841 842 case SCTP_TRANSPORT_PF: 843 transport->state = SCTP_PF; 844 ulp_notify = false; 845 break; 846 847 default: 848 return; 849 } 850 851 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 852 * to the user. 853 */ 854 if (ulp_notify) { 855 memset(&addr, 0, sizeof(struct sockaddr_storage)); 856 memcpy(&addr, &transport->ipaddr, 857 transport->af_specific->sockaddr_len); 858 859 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 860 0, spc_state, error, GFP_ATOMIC); 861 if (event) 862 sctp_ulpq_tail_event(&asoc->ulpq, event); 863 } 864 865 /* Select new active and retran paths. */ 866 sctp_select_active_and_retran_path(asoc); 867 } 868 869 /* Hold a reference to an association. */ 870 void sctp_association_hold(struct sctp_association *asoc) 871 { 872 atomic_inc(&asoc->base.refcnt); 873 } 874 875 /* Release a reference to an association and cleanup 876 * if there are no more references. 877 */ 878 void sctp_association_put(struct sctp_association *asoc) 879 { 880 if (atomic_dec_and_test(&asoc->base.refcnt)) 881 sctp_association_destroy(asoc); 882 } 883 884 /* Allocate the next TSN, Transmission Sequence Number, for the given 885 * association. 886 */ 887 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 888 { 889 /* From Section 1.6 Serial Number Arithmetic: 890 * Transmission Sequence Numbers wrap around when they reach 891 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 892 * after transmitting TSN = 2*32 - 1 is TSN = 0. 893 */ 894 __u32 retval = asoc->next_tsn; 895 asoc->next_tsn++; 896 asoc->unack_data++; 897 898 return retval; 899 } 900 901 /* Compare two addresses to see if they match. Wildcard addresses 902 * only match themselves. 903 */ 904 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 905 const union sctp_addr *ss2) 906 { 907 struct sctp_af *af; 908 909 af = sctp_get_af_specific(ss1->sa.sa_family); 910 if (unlikely(!af)) 911 return 0; 912 913 return af->cmp_addr(ss1, ss2); 914 } 915 916 /* Return an ecne chunk to get prepended to a packet. 917 * Note: We are sly and return a shared, prealloced chunk. FIXME: 918 * No we don't, but we could/should. 919 */ 920 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 921 { 922 if (!asoc->need_ecne) 923 return NULL; 924 925 /* Send ECNE if needed. 926 * Not being able to allocate a chunk here is not deadly. 927 */ 928 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 929 } 930 931 /* 932 * Find which transport this TSN was sent on. 933 */ 934 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 935 __u32 tsn) 936 { 937 struct sctp_transport *active; 938 struct sctp_transport *match; 939 struct sctp_transport *transport; 940 struct sctp_chunk *chunk; 941 __be32 key = htonl(tsn); 942 943 match = NULL; 944 945 /* 946 * FIXME: In general, find a more efficient data structure for 947 * searching. 948 */ 949 950 /* 951 * The general strategy is to search each transport's transmitted 952 * list. Return which transport this TSN lives on. 953 * 954 * Let's be hopeful and check the active_path first. 955 * Another optimization would be to know if there is only one 956 * outbound path and not have to look for the TSN at all. 957 * 958 */ 959 960 active = asoc->peer.active_path; 961 962 list_for_each_entry(chunk, &active->transmitted, 963 transmitted_list) { 964 965 if (key == chunk->subh.data_hdr->tsn) { 966 match = active; 967 goto out; 968 } 969 } 970 971 /* If not found, go search all the other transports. */ 972 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 973 transports) { 974 975 if (transport == active) 976 continue; 977 list_for_each_entry(chunk, &transport->transmitted, 978 transmitted_list) { 979 if (key == chunk->subh.data_hdr->tsn) { 980 match = transport; 981 goto out; 982 } 983 } 984 } 985 out: 986 return match; 987 } 988 989 /* Is this the association we are looking for? */ 990 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 991 struct net *net, 992 const union sctp_addr *laddr, 993 const union sctp_addr *paddr) 994 { 995 struct sctp_transport *transport; 996 997 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 998 (htons(asoc->peer.port) == paddr->v4.sin_port) && 999 net_eq(sock_net(asoc->base.sk), net)) { 1000 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1001 if (!transport) 1002 goto out; 1003 1004 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1005 sctp_sk(asoc->base.sk))) 1006 goto out; 1007 } 1008 transport = NULL; 1009 1010 out: 1011 return transport; 1012 } 1013 1014 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1015 static void sctp_assoc_bh_rcv(struct work_struct *work) 1016 { 1017 struct sctp_association *asoc = 1018 container_of(work, struct sctp_association, 1019 base.inqueue.immediate); 1020 struct net *net = sock_net(asoc->base.sk); 1021 struct sctp_endpoint *ep; 1022 struct sctp_chunk *chunk; 1023 struct sctp_inq *inqueue; 1024 int state; 1025 sctp_subtype_t subtype; 1026 int error = 0; 1027 1028 /* The association should be held so we should be safe. */ 1029 ep = asoc->ep; 1030 1031 inqueue = &asoc->base.inqueue; 1032 sctp_association_hold(asoc); 1033 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1034 state = asoc->state; 1035 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1036 1037 /* SCTP-AUTH, Section 6.3: 1038 * The receiver has a list of chunk types which it expects 1039 * to be received only after an AUTH-chunk. This list has 1040 * been sent to the peer during the association setup. It 1041 * MUST silently discard these chunks if they are not placed 1042 * after an AUTH chunk in the packet. 1043 */ 1044 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1045 continue; 1046 1047 /* Remember where the last DATA chunk came from so we 1048 * know where to send the SACK. 1049 */ 1050 if (sctp_chunk_is_data(chunk)) 1051 asoc->peer.last_data_from = chunk->transport; 1052 else { 1053 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1054 asoc->stats.ictrlchunks++; 1055 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1056 asoc->stats.isacks++; 1057 } 1058 1059 if (chunk->transport) 1060 chunk->transport->last_time_heard = ktime_get(); 1061 1062 /* Run through the state machine. */ 1063 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1064 state, ep, asoc, chunk, GFP_ATOMIC); 1065 1066 /* Check to see if the association is freed in response to 1067 * the incoming chunk. If so, get out of the while loop. 1068 */ 1069 if (asoc->base.dead) 1070 break; 1071 1072 /* If there is an error on chunk, discard this packet. */ 1073 if (error && chunk) 1074 chunk->pdiscard = 1; 1075 } 1076 sctp_association_put(asoc); 1077 } 1078 1079 /* This routine moves an association from its old sk to a new sk. */ 1080 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1081 { 1082 struct sctp_sock *newsp = sctp_sk(newsk); 1083 struct sock *oldsk = assoc->base.sk; 1084 1085 /* Delete the association from the old endpoint's list of 1086 * associations. 1087 */ 1088 list_del_init(&assoc->asocs); 1089 1090 /* Decrement the backlog value for a TCP-style socket. */ 1091 if (sctp_style(oldsk, TCP)) 1092 oldsk->sk_ack_backlog--; 1093 1094 /* Release references to the old endpoint and the sock. */ 1095 sctp_endpoint_put(assoc->ep); 1096 sock_put(assoc->base.sk); 1097 1098 /* Get a reference to the new endpoint. */ 1099 assoc->ep = newsp->ep; 1100 sctp_endpoint_hold(assoc->ep); 1101 1102 /* Get a reference to the new sock. */ 1103 assoc->base.sk = newsk; 1104 sock_hold(assoc->base.sk); 1105 1106 /* Add the association to the new endpoint's list of associations. */ 1107 sctp_endpoint_add_asoc(newsp->ep, assoc); 1108 } 1109 1110 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1111 void sctp_assoc_update(struct sctp_association *asoc, 1112 struct sctp_association *new) 1113 { 1114 struct sctp_transport *trans; 1115 struct list_head *pos, *temp; 1116 1117 /* Copy in new parameters of peer. */ 1118 asoc->c = new->c; 1119 asoc->peer.rwnd = new->peer.rwnd; 1120 asoc->peer.sack_needed = new->peer.sack_needed; 1121 asoc->peer.auth_capable = new->peer.auth_capable; 1122 asoc->peer.i = new->peer.i; 1123 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1124 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1125 1126 /* Remove any peer addresses not present in the new association. */ 1127 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1128 trans = list_entry(pos, struct sctp_transport, transports); 1129 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1130 sctp_assoc_rm_peer(asoc, trans); 1131 continue; 1132 } 1133 1134 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1135 sctp_transport_reset(trans); 1136 } 1137 1138 /* If the case is A (association restart), use 1139 * initial_tsn as next_tsn. If the case is B, use 1140 * current next_tsn in case data sent to peer 1141 * has been discarded and needs retransmission. 1142 */ 1143 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1144 asoc->next_tsn = new->next_tsn; 1145 asoc->ctsn_ack_point = new->ctsn_ack_point; 1146 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1147 1148 /* Reinitialize SSN for both local streams 1149 * and peer's streams. 1150 */ 1151 sctp_stream_clear(asoc->stream); 1152 1153 /* Flush the ULP reassembly and ordered queue. 1154 * Any data there will now be stale and will 1155 * cause problems. 1156 */ 1157 sctp_ulpq_flush(&asoc->ulpq); 1158 1159 /* reset the overall association error count so 1160 * that the restarted association doesn't get torn 1161 * down on the next retransmission timer. 1162 */ 1163 asoc->overall_error_count = 0; 1164 1165 } else { 1166 /* Add any peer addresses from the new association. */ 1167 list_for_each_entry(trans, &new->peer.transport_addr_list, 1168 transports) { 1169 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1170 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1171 GFP_ATOMIC, trans->state); 1172 } 1173 1174 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1175 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1176 if (!asoc->stream) { 1177 asoc->stream = new->stream; 1178 new->stream = NULL; 1179 } 1180 1181 if (!asoc->assoc_id) { 1182 /* get a new association id since we don't have one 1183 * yet. 1184 */ 1185 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1186 } 1187 } 1188 1189 /* SCTP-AUTH: Save the peer parameters from the new associations 1190 * and also move the association shared keys over 1191 */ 1192 kfree(asoc->peer.peer_random); 1193 asoc->peer.peer_random = new->peer.peer_random; 1194 new->peer.peer_random = NULL; 1195 1196 kfree(asoc->peer.peer_chunks); 1197 asoc->peer.peer_chunks = new->peer.peer_chunks; 1198 new->peer.peer_chunks = NULL; 1199 1200 kfree(asoc->peer.peer_hmacs); 1201 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1202 new->peer.peer_hmacs = NULL; 1203 1204 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1205 } 1206 1207 /* Update the retran path for sending a retransmitted packet. 1208 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1209 * 1210 * When there is outbound data to send and the primary path 1211 * becomes inactive (e.g., due to failures), or where the 1212 * SCTP user explicitly requests to send data to an 1213 * inactive destination transport address, before reporting 1214 * an error to its ULP, the SCTP endpoint should try to send 1215 * the data to an alternate active destination transport 1216 * address if one exists. 1217 * 1218 * When retransmitting data that timed out, if the endpoint 1219 * is multihomed, it should consider each source-destination 1220 * address pair in its retransmission selection policy. 1221 * When retransmitting timed-out data, the endpoint should 1222 * attempt to pick the most divergent source-destination 1223 * pair from the original source-destination pair to which 1224 * the packet was transmitted. 1225 * 1226 * Note: Rules for picking the most divergent source-destination 1227 * pair are an implementation decision and are not specified 1228 * within this document. 1229 * 1230 * Our basic strategy is to round-robin transports in priorities 1231 * according to sctp_trans_score() e.g., if no such 1232 * transport with state SCTP_ACTIVE exists, round-robin through 1233 * SCTP_UNKNOWN, etc. You get the picture. 1234 */ 1235 static u8 sctp_trans_score(const struct sctp_transport *trans) 1236 { 1237 switch (trans->state) { 1238 case SCTP_ACTIVE: 1239 return 3; /* best case */ 1240 case SCTP_UNKNOWN: 1241 return 2; 1242 case SCTP_PF: 1243 return 1; 1244 default: /* case SCTP_INACTIVE */ 1245 return 0; /* worst case */ 1246 } 1247 } 1248 1249 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1250 struct sctp_transport *trans2) 1251 { 1252 if (trans1->error_count > trans2->error_count) { 1253 return trans2; 1254 } else if (trans1->error_count == trans2->error_count && 1255 ktime_after(trans2->last_time_heard, 1256 trans1->last_time_heard)) { 1257 return trans2; 1258 } else { 1259 return trans1; 1260 } 1261 } 1262 1263 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1264 struct sctp_transport *best) 1265 { 1266 u8 score_curr, score_best; 1267 1268 if (best == NULL || curr == best) 1269 return curr; 1270 1271 score_curr = sctp_trans_score(curr); 1272 score_best = sctp_trans_score(best); 1273 1274 /* First, try a score-based selection if both transport states 1275 * differ. If we're in a tie, lets try to make a more clever 1276 * decision here based on error counts and last time heard. 1277 */ 1278 if (score_curr > score_best) 1279 return curr; 1280 else if (score_curr == score_best) 1281 return sctp_trans_elect_tie(best, curr); 1282 else 1283 return best; 1284 } 1285 1286 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1287 { 1288 struct sctp_transport *trans = asoc->peer.retran_path; 1289 struct sctp_transport *trans_next = NULL; 1290 1291 /* We're done as we only have the one and only path. */ 1292 if (asoc->peer.transport_count == 1) 1293 return; 1294 /* If active_path and retran_path are the same and active, 1295 * then this is the only active path. Use it. 1296 */ 1297 if (asoc->peer.active_path == asoc->peer.retran_path && 1298 asoc->peer.active_path->state == SCTP_ACTIVE) 1299 return; 1300 1301 /* Iterate from retran_path's successor back to retran_path. */ 1302 for (trans = list_next_entry(trans, transports); 1; 1303 trans = list_next_entry(trans, transports)) { 1304 /* Manually skip the head element. */ 1305 if (&trans->transports == &asoc->peer.transport_addr_list) 1306 continue; 1307 if (trans->state == SCTP_UNCONFIRMED) 1308 continue; 1309 trans_next = sctp_trans_elect_best(trans, trans_next); 1310 /* Active is good enough for immediate return. */ 1311 if (trans_next->state == SCTP_ACTIVE) 1312 break; 1313 /* We've reached the end, time to update path. */ 1314 if (trans == asoc->peer.retran_path) 1315 break; 1316 } 1317 1318 asoc->peer.retran_path = trans_next; 1319 1320 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1321 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1322 } 1323 1324 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1325 { 1326 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1327 struct sctp_transport *trans_pf = NULL; 1328 1329 /* Look for the two most recently used active transports. */ 1330 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1331 transports) { 1332 /* Skip uninteresting transports. */ 1333 if (trans->state == SCTP_INACTIVE || 1334 trans->state == SCTP_UNCONFIRMED) 1335 continue; 1336 /* Keep track of the best PF transport from our 1337 * list in case we don't find an active one. 1338 */ 1339 if (trans->state == SCTP_PF) { 1340 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1341 continue; 1342 } 1343 /* For active transports, pick the most recent ones. */ 1344 if (trans_pri == NULL || 1345 ktime_after(trans->last_time_heard, 1346 trans_pri->last_time_heard)) { 1347 trans_sec = trans_pri; 1348 trans_pri = trans; 1349 } else if (trans_sec == NULL || 1350 ktime_after(trans->last_time_heard, 1351 trans_sec->last_time_heard)) { 1352 trans_sec = trans; 1353 } 1354 } 1355 1356 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1357 * 1358 * By default, an endpoint should always transmit to the primary 1359 * path, unless the SCTP user explicitly specifies the 1360 * destination transport address (and possibly source transport 1361 * address) to use. [If the primary is active but not most recent, 1362 * bump the most recently used transport.] 1363 */ 1364 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1365 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1366 asoc->peer.primary_path != trans_pri) { 1367 trans_sec = trans_pri; 1368 trans_pri = asoc->peer.primary_path; 1369 } 1370 1371 /* We did not find anything useful for a possible retransmission 1372 * path; either primary path that we found is the the same as 1373 * the current one, or we didn't generally find an active one. 1374 */ 1375 if (trans_sec == NULL) 1376 trans_sec = trans_pri; 1377 1378 /* If we failed to find a usable transport, just camp on the 1379 * active or pick a PF iff it's the better choice. 1380 */ 1381 if (trans_pri == NULL) { 1382 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1383 trans_sec = trans_pri; 1384 } 1385 1386 /* Set the active and retran transports. */ 1387 asoc->peer.active_path = trans_pri; 1388 asoc->peer.retran_path = trans_sec; 1389 } 1390 1391 struct sctp_transport * 1392 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1393 struct sctp_transport *last_sent_to) 1394 { 1395 /* If this is the first time packet is sent, use the active path, 1396 * else use the retran path. If the last packet was sent over the 1397 * retran path, update the retran path and use it. 1398 */ 1399 if (last_sent_to == NULL) { 1400 return asoc->peer.active_path; 1401 } else { 1402 if (last_sent_to == asoc->peer.retran_path) 1403 sctp_assoc_update_retran_path(asoc); 1404 1405 return asoc->peer.retran_path; 1406 } 1407 } 1408 1409 /* Update the association's pmtu and frag_point by going through all the 1410 * transports. This routine is called when a transport's PMTU has changed. 1411 */ 1412 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1413 { 1414 struct sctp_transport *t; 1415 __u32 pmtu = 0; 1416 1417 if (!asoc) 1418 return; 1419 1420 /* Get the lowest pmtu of all the transports. */ 1421 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1422 transports) { 1423 if (t->pmtu_pending && t->dst) { 1424 sctp_transport_update_pmtu(sk, t, 1425 SCTP_TRUNC4(dst_mtu(t->dst))); 1426 t->pmtu_pending = 0; 1427 } 1428 if (!pmtu || (t->pathmtu < pmtu)) 1429 pmtu = t->pathmtu; 1430 } 1431 1432 if (pmtu) { 1433 asoc->pathmtu = pmtu; 1434 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1435 } 1436 1437 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1438 asoc->pathmtu, asoc->frag_point); 1439 } 1440 1441 /* Should we send a SACK to update our peer? */ 1442 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1443 { 1444 struct net *net = sock_net(asoc->base.sk); 1445 switch (asoc->state) { 1446 case SCTP_STATE_ESTABLISHED: 1447 case SCTP_STATE_SHUTDOWN_PENDING: 1448 case SCTP_STATE_SHUTDOWN_RECEIVED: 1449 case SCTP_STATE_SHUTDOWN_SENT: 1450 if ((asoc->rwnd > asoc->a_rwnd) && 1451 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1452 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1453 asoc->pathmtu))) 1454 return true; 1455 break; 1456 default: 1457 break; 1458 } 1459 return false; 1460 } 1461 1462 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1463 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1464 { 1465 struct sctp_chunk *sack; 1466 struct timer_list *timer; 1467 1468 if (asoc->rwnd_over) { 1469 if (asoc->rwnd_over >= len) { 1470 asoc->rwnd_over -= len; 1471 } else { 1472 asoc->rwnd += (len - asoc->rwnd_over); 1473 asoc->rwnd_over = 0; 1474 } 1475 } else { 1476 asoc->rwnd += len; 1477 } 1478 1479 /* If we had window pressure, start recovering it 1480 * once our rwnd had reached the accumulated pressure 1481 * threshold. The idea is to recover slowly, but up 1482 * to the initial advertised window. 1483 */ 1484 if (asoc->rwnd_press) { 1485 int change = min(asoc->pathmtu, asoc->rwnd_press); 1486 asoc->rwnd += change; 1487 asoc->rwnd_press -= change; 1488 } 1489 1490 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1491 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1492 asoc->a_rwnd); 1493 1494 /* Send a window update SACK if the rwnd has increased by at least the 1495 * minimum of the association's PMTU and half of the receive buffer. 1496 * The algorithm used is similar to the one described in 1497 * Section 4.2.3.3 of RFC 1122. 1498 */ 1499 if (sctp_peer_needs_update(asoc)) { 1500 asoc->a_rwnd = asoc->rwnd; 1501 1502 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1503 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1504 asoc->a_rwnd); 1505 1506 sack = sctp_make_sack(asoc); 1507 if (!sack) 1508 return; 1509 1510 asoc->peer.sack_needed = 0; 1511 1512 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1513 1514 /* Stop the SACK timer. */ 1515 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1516 if (del_timer(timer)) 1517 sctp_association_put(asoc); 1518 } 1519 } 1520 1521 /* Decrease asoc's rwnd by len. */ 1522 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1523 { 1524 int rx_count; 1525 int over = 0; 1526 1527 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1528 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1529 "asoc->rwnd_over:%u!\n", __func__, asoc, 1530 asoc->rwnd, asoc->rwnd_over); 1531 1532 if (asoc->ep->rcvbuf_policy) 1533 rx_count = atomic_read(&asoc->rmem_alloc); 1534 else 1535 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1536 1537 /* If we've reached or overflowed our receive buffer, announce 1538 * a 0 rwnd if rwnd would still be positive. Store the 1539 * the potential pressure overflow so that the window can be restored 1540 * back to original value. 1541 */ 1542 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1543 over = 1; 1544 1545 if (asoc->rwnd >= len) { 1546 asoc->rwnd -= len; 1547 if (over) { 1548 asoc->rwnd_press += asoc->rwnd; 1549 asoc->rwnd = 0; 1550 } 1551 } else { 1552 asoc->rwnd_over += len - asoc->rwnd; 1553 asoc->rwnd = 0; 1554 } 1555 1556 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1557 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1558 asoc->rwnd_press); 1559 } 1560 1561 /* Build the bind address list for the association based on info from the 1562 * local endpoint and the remote peer. 1563 */ 1564 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1565 sctp_scope_t scope, gfp_t gfp) 1566 { 1567 int flags; 1568 1569 /* Use scoping rules to determine the subset of addresses from 1570 * the endpoint. 1571 */ 1572 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1573 if (asoc->peer.ipv4_address) 1574 flags |= SCTP_ADDR4_PEERSUPP; 1575 if (asoc->peer.ipv6_address) 1576 flags |= SCTP_ADDR6_PEERSUPP; 1577 1578 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1579 &asoc->base.bind_addr, 1580 &asoc->ep->base.bind_addr, 1581 scope, gfp, flags); 1582 } 1583 1584 /* Build the association's bind address list from the cookie. */ 1585 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1586 struct sctp_cookie *cookie, 1587 gfp_t gfp) 1588 { 1589 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1590 int var_size3 = cookie->raw_addr_list_len; 1591 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1592 1593 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1594 asoc->ep->base.bind_addr.port, gfp); 1595 } 1596 1597 /* Lookup laddr in the bind address list of an association. */ 1598 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1599 const union sctp_addr *laddr) 1600 { 1601 int found = 0; 1602 1603 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1604 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1605 sctp_sk(asoc->base.sk))) 1606 found = 1; 1607 1608 return found; 1609 } 1610 1611 /* Set an association id for a given association */ 1612 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1613 { 1614 bool preload = gfpflags_allow_blocking(gfp); 1615 int ret; 1616 1617 /* If the id is already assigned, keep it. */ 1618 if (asoc->assoc_id) 1619 return 0; 1620 1621 if (preload) 1622 idr_preload(gfp); 1623 spin_lock_bh(&sctp_assocs_id_lock); 1624 /* 0 is not a valid assoc_id, must be >= 1 */ 1625 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1626 spin_unlock_bh(&sctp_assocs_id_lock); 1627 if (preload) 1628 idr_preload_end(); 1629 if (ret < 0) 1630 return ret; 1631 1632 asoc->assoc_id = (sctp_assoc_t)ret; 1633 return 0; 1634 } 1635 1636 /* Free the ASCONF queue */ 1637 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1638 { 1639 struct sctp_chunk *asconf; 1640 struct sctp_chunk *tmp; 1641 1642 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1643 list_del_init(&asconf->list); 1644 sctp_chunk_free(asconf); 1645 } 1646 } 1647 1648 /* Free asconf_ack cache */ 1649 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1650 { 1651 struct sctp_chunk *ack; 1652 struct sctp_chunk *tmp; 1653 1654 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1655 transmitted_list) { 1656 list_del_init(&ack->transmitted_list); 1657 sctp_chunk_free(ack); 1658 } 1659 } 1660 1661 /* Clean up the ASCONF_ACK queue */ 1662 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1663 { 1664 struct sctp_chunk *ack; 1665 struct sctp_chunk *tmp; 1666 1667 /* We can remove all the entries from the queue up to 1668 * the "Peer-Sequence-Number". 1669 */ 1670 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1671 transmitted_list) { 1672 if (ack->subh.addip_hdr->serial == 1673 htonl(asoc->peer.addip_serial)) 1674 break; 1675 1676 list_del_init(&ack->transmitted_list); 1677 sctp_chunk_free(ack); 1678 } 1679 } 1680 1681 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1682 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1683 const struct sctp_association *asoc, 1684 __be32 serial) 1685 { 1686 struct sctp_chunk *ack; 1687 1688 /* Walk through the list of cached ASCONF-ACKs and find the 1689 * ack chunk whose serial number matches that of the request. 1690 */ 1691 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1692 if (sctp_chunk_pending(ack)) 1693 continue; 1694 if (ack->subh.addip_hdr->serial == serial) { 1695 sctp_chunk_hold(ack); 1696 return ack; 1697 } 1698 } 1699 1700 return NULL; 1701 } 1702 1703 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1704 { 1705 /* Free any cached ASCONF_ACK chunk. */ 1706 sctp_assoc_free_asconf_acks(asoc); 1707 1708 /* Free the ASCONF queue. */ 1709 sctp_assoc_free_asconf_queue(asoc); 1710 1711 /* Free any cached ASCONF chunk. */ 1712 if (asoc->addip_last_asconf) 1713 sctp_chunk_free(asoc->addip_last_asconf); 1714 } 1715