xref: /openbmc/linux/net/sctp/associola.c (revision 9d749629)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57 
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68 
69 /* Keep track of the new idr low so that we don't re-use association id
70  * numbers too fast.  It is protected by they idr spin lock is in the
71  * range of 1 - INT_MAX.
72  */
73 static u32 idr_low = 1;
74 
75 
76 /* 1st Level Abstractions. */
77 
78 /* Initialize a new association from provided memory. */
79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80 					  const struct sctp_endpoint *ep,
81 					  const struct sock *sk,
82 					  sctp_scope_t scope,
83 					  gfp_t gfp)
84 {
85 	struct net *net = sock_net(sk);
86 	struct sctp_sock *sp;
87 	int i;
88 	sctp_paramhdr_t *p;
89 	int err;
90 
91 	/* Retrieve the SCTP per socket area.  */
92 	sp = sctp_sk((struct sock *)sk);
93 
94 	/* Discarding const is appropriate here.  */
95 	asoc->ep = (struct sctp_endpoint *)ep;
96 	sctp_endpoint_hold(asoc->ep);
97 
98 	/* Hold the sock.  */
99 	asoc->base.sk = (struct sock *)sk;
100 	sock_hold(asoc->base.sk);
101 
102 	/* Initialize the common base substructure.  */
103 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
104 
105 	/* Initialize the object handling fields.  */
106 	atomic_set(&asoc->base.refcnt, 1);
107 	asoc->base.dead = 0;
108 	asoc->base.malloced = 0;
109 
110 	/* Initialize the bind addr area.  */
111 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
112 
113 	asoc->state = SCTP_STATE_CLOSED;
114 
115 	/* Set these values from the socket values, a conversion between
116 	 * millsecons to seconds/microseconds must also be done.
117 	 */
118 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
119 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
120 					* 1000;
121 	asoc->frag_point = 0;
122 	asoc->user_frag = sp->user_frag;
123 
124 	/* Set the association max_retrans and RTO values from the
125 	 * socket values.
126 	 */
127 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
128 	asoc->pf_retrans  = net->sctp.pf_retrans;
129 
130 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
131 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
132 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
133 
134 	asoc->overall_error_count = 0;
135 
136 	/* Initialize the association's heartbeat interval based on the
137 	 * sock configured value.
138 	 */
139 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
140 
141 	/* Initialize path max retrans value. */
142 	asoc->pathmaxrxt = sp->pathmaxrxt;
143 
144 	/* Initialize default path MTU. */
145 	asoc->pathmtu = sp->pathmtu;
146 
147 	/* Set association default SACK delay */
148 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
149 	asoc->sackfreq = sp->sackfreq;
150 
151 	/* Set the association default flags controlling
152 	 * Heartbeat, SACK delay, and Path MTU Discovery.
153 	 */
154 	asoc->param_flags = sp->param_flags;
155 
156 	/* Initialize the maximum mumber of new data packets that can be sent
157 	 * in a burst.
158 	 */
159 	asoc->max_burst = sp->max_burst;
160 
161 	/* initialize association timers */
162 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
163 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
164 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
165 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
166 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
167 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
168 
169 	/* sctpimpguide Section 2.12.2
170 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
171 	 * recommended value of 5 times 'RTO.Max'.
172 	 */
173 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
174 		= 5 * asoc->rto_max;
175 
176 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
177 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
178 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
179 		min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
180 
181 	/* Initializes the timers */
182 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
183 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
184 				(unsigned long)asoc);
185 
186 	/* Pull default initialization values from the sock options.
187 	 * Note: This assumes that the values have already been
188 	 * validated in the sock.
189 	 */
190 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
191 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
192 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
193 
194 	asoc->max_init_timeo =
195 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
196 
197 	/* Allocate storage for the ssnmap after the inbound and outbound
198 	 * streams have been negotiated during Init.
199 	 */
200 	asoc->ssnmap = NULL;
201 
202 	/* Set the local window size for receive.
203 	 * This is also the rcvbuf space per association.
204 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
205 	 * 1500 bytes in one SCTP packet.
206 	 */
207 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
208 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
209 	else
210 		asoc->rwnd = sk->sk_rcvbuf/2;
211 
212 	asoc->a_rwnd = asoc->rwnd;
213 
214 	asoc->rwnd_over = 0;
215 	asoc->rwnd_press = 0;
216 
217 	/* Use my own max window until I learn something better.  */
218 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
219 
220 	/* Set the sndbuf size for transmit.  */
221 	asoc->sndbuf_used = 0;
222 
223 	/* Initialize the receive memory counter */
224 	atomic_set(&asoc->rmem_alloc, 0);
225 
226 	init_waitqueue_head(&asoc->wait);
227 
228 	asoc->c.my_vtag = sctp_generate_tag(ep);
229 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
230 	asoc->c.peer_vtag = 0;
231 	asoc->c.my_ttag   = 0;
232 	asoc->c.peer_ttag = 0;
233 	asoc->c.my_port = ep->base.bind_addr.port;
234 
235 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
236 
237 	asoc->next_tsn = asoc->c.initial_tsn;
238 
239 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
240 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
241 	asoc->highest_sacked = asoc->ctsn_ack_point;
242 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
243 	asoc->unack_data = 0;
244 
245 	/* ADDIP Section 4.1 Asconf Chunk Procedures
246 	 *
247 	 * When an endpoint has an ASCONF signaled change to be sent to the
248 	 * remote endpoint it should do the following:
249 	 * ...
250 	 * A2) a serial number should be assigned to the chunk. The serial
251 	 * number SHOULD be a monotonically increasing number. The serial
252 	 * numbers SHOULD be initialized at the start of the
253 	 * association to the same value as the initial TSN.
254 	 */
255 	asoc->addip_serial = asoc->c.initial_tsn;
256 
257 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
258 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
259 
260 	/* Make an empty list of remote transport addresses.  */
261 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
262 	asoc->peer.transport_count = 0;
263 
264 	/* RFC 2960 5.1 Normal Establishment of an Association
265 	 *
266 	 * After the reception of the first data chunk in an
267 	 * association the endpoint must immediately respond with a
268 	 * sack to acknowledge the data chunk.  Subsequent
269 	 * acknowledgements should be done as described in Section
270 	 * 6.2.
271 	 *
272 	 * [We implement this by telling a new association that it
273 	 * already received one packet.]
274 	 */
275 	asoc->peer.sack_needed = 1;
276 	asoc->peer.sack_cnt = 0;
277 	asoc->peer.sack_generation = 1;
278 
279 	/* Assume that the peer will tell us if he recognizes ASCONF
280 	 * as part of INIT exchange.
281 	 * The sctp_addip_noauth option is there for backward compatibilty
282 	 * and will revert old behavior.
283 	 */
284 	asoc->peer.asconf_capable = 0;
285 	if (net->sctp.addip_noauth)
286 		asoc->peer.asconf_capable = 1;
287 	asoc->asconf_addr_del_pending = NULL;
288 	asoc->src_out_of_asoc_ok = 0;
289 	asoc->new_transport = NULL;
290 
291 	/* Create an input queue.  */
292 	sctp_inq_init(&asoc->base.inqueue);
293 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
294 
295 	/* Create an output queue.  */
296 	sctp_outq_init(asoc, &asoc->outqueue);
297 
298 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
299 		goto fail_init;
300 
301 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
302 
303 	asoc->need_ecne = 0;
304 
305 	asoc->assoc_id = 0;
306 
307 	/* Assume that peer would support both address types unless we are
308 	 * told otherwise.
309 	 */
310 	asoc->peer.ipv4_address = 1;
311 	if (asoc->base.sk->sk_family == PF_INET6)
312 		asoc->peer.ipv6_address = 1;
313 	INIT_LIST_HEAD(&asoc->asocs);
314 
315 	asoc->autoclose = sp->autoclose;
316 
317 	asoc->default_stream = sp->default_stream;
318 	asoc->default_ppid = sp->default_ppid;
319 	asoc->default_flags = sp->default_flags;
320 	asoc->default_context = sp->default_context;
321 	asoc->default_timetolive = sp->default_timetolive;
322 	asoc->default_rcv_context = sp->default_rcv_context;
323 
324 	/* SCTP_GET_ASSOC_STATS COUNTERS */
325 	memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats));
326 
327 	/* AUTH related initializations */
328 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
329 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
330 	if (err)
331 		goto fail_init;
332 
333 	asoc->active_key_id = ep->active_key_id;
334 	asoc->asoc_shared_key = NULL;
335 
336 	asoc->default_hmac_id = 0;
337 	/* Save the hmacs and chunks list into this association */
338 	if (ep->auth_hmacs_list)
339 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
340 			ntohs(ep->auth_hmacs_list->param_hdr.length));
341 	if (ep->auth_chunk_list)
342 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
343 			ntohs(ep->auth_chunk_list->param_hdr.length));
344 
345 	/* Get the AUTH random number for this association */
346 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
347 	p->type = SCTP_PARAM_RANDOM;
348 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
349 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
350 
351 	return asoc;
352 
353 fail_init:
354 	sctp_endpoint_put(asoc->ep);
355 	sock_put(asoc->base.sk);
356 	return NULL;
357 }
358 
359 /* Allocate and initialize a new association */
360 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
361 					 const struct sock *sk,
362 					 sctp_scope_t scope,
363 					 gfp_t gfp)
364 {
365 	struct sctp_association *asoc;
366 
367 	asoc = t_new(struct sctp_association, gfp);
368 	if (!asoc)
369 		goto fail;
370 
371 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
372 		goto fail_init;
373 
374 	asoc->base.malloced = 1;
375 	SCTP_DBG_OBJCNT_INC(assoc);
376 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
377 
378 	return asoc;
379 
380 fail_init:
381 	kfree(asoc);
382 fail:
383 	return NULL;
384 }
385 
386 /* Free this association if possible.  There may still be users, so
387  * the actual deallocation may be delayed.
388  */
389 void sctp_association_free(struct sctp_association *asoc)
390 {
391 	struct sock *sk = asoc->base.sk;
392 	struct sctp_transport *transport;
393 	struct list_head *pos, *temp;
394 	int i;
395 
396 	/* Only real associations count against the endpoint, so
397 	 * don't bother for if this is a temporary association.
398 	 */
399 	if (!asoc->temp) {
400 		list_del(&asoc->asocs);
401 
402 		/* Decrement the backlog value for a TCP-style listening
403 		 * socket.
404 		 */
405 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
406 			sk->sk_ack_backlog--;
407 	}
408 
409 	/* Mark as dead, so other users can know this structure is
410 	 * going away.
411 	 */
412 	asoc->base.dead = 1;
413 
414 	/* Dispose of any data lying around in the outqueue. */
415 	sctp_outq_free(&asoc->outqueue);
416 
417 	/* Dispose of any pending messages for the upper layer. */
418 	sctp_ulpq_free(&asoc->ulpq);
419 
420 	/* Dispose of any pending chunks on the inqueue. */
421 	sctp_inq_free(&asoc->base.inqueue);
422 
423 	sctp_tsnmap_free(&asoc->peer.tsn_map);
424 
425 	/* Free ssnmap storage. */
426 	sctp_ssnmap_free(asoc->ssnmap);
427 
428 	/* Clean up the bound address list. */
429 	sctp_bind_addr_free(&asoc->base.bind_addr);
430 
431 	/* Do we need to go through all of our timers and
432 	 * delete them?   To be safe we will try to delete all, but we
433 	 * should be able to go through and make a guess based
434 	 * on our state.
435 	 */
436 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
437 		if (del_timer(&asoc->timers[i]))
438 			sctp_association_put(asoc);
439 	}
440 
441 	/* Free peer's cached cookie. */
442 	kfree(asoc->peer.cookie);
443 	kfree(asoc->peer.peer_random);
444 	kfree(asoc->peer.peer_chunks);
445 	kfree(asoc->peer.peer_hmacs);
446 
447 	/* Release the transport structures. */
448 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
449 		transport = list_entry(pos, struct sctp_transport, transports);
450 		list_del_rcu(pos);
451 		sctp_transport_free(transport);
452 	}
453 
454 	asoc->peer.transport_count = 0;
455 
456 	sctp_asconf_queue_teardown(asoc);
457 
458 	/* Free pending address space being deleted */
459 	if (asoc->asconf_addr_del_pending != NULL)
460 		kfree(asoc->asconf_addr_del_pending);
461 
462 	/* AUTH - Free the endpoint shared keys */
463 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
464 
465 	/* AUTH - Free the association shared key */
466 	sctp_auth_key_put(asoc->asoc_shared_key);
467 
468 	sctp_association_put(asoc);
469 }
470 
471 /* Cleanup and free up an association. */
472 static void sctp_association_destroy(struct sctp_association *asoc)
473 {
474 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
475 
476 	sctp_endpoint_put(asoc->ep);
477 	sock_put(asoc->base.sk);
478 
479 	if (asoc->assoc_id != 0) {
480 		spin_lock_bh(&sctp_assocs_id_lock);
481 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
482 		spin_unlock_bh(&sctp_assocs_id_lock);
483 	}
484 
485 	WARN_ON(atomic_read(&asoc->rmem_alloc));
486 
487 	if (asoc->base.malloced) {
488 		kfree(asoc);
489 		SCTP_DBG_OBJCNT_DEC(assoc);
490 	}
491 }
492 
493 /* Change the primary destination address for the peer. */
494 void sctp_assoc_set_primary(struct sctp_association *asoc,
495 			    struct sctp_transport *transport)
496 {
497 	int changeover = 0;
498 
499 	/* it's a changeover only if we already have a primary path
500 	 * that we are changing
501 	 */
502 	if (asoc->peer.primary_path != NULL &&
503 	    asoc->peer.primary_path != transport)
504 		changeover = 1 ;
505 
506 	asoc->peer.primary_path = transport;
507 
508 	/* Set a default msg_name for events. */
509 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
510 	       sizeof(union sctp_addr));
511 
512 	/* If the primary path is changing, assume that the
513 	 * user wants to use this new path.
514 	 */
515 	if ((transport->state == SCTP_ACTIVE) ||
516 	    (transport->state == SCTP_UNKNOWN))
517 		asoc->peer.active_path = transport;
518 
519 	/*
520 	 * SFR-CACC algorithm:
521 	 * Upon the receipt of a request to change the primary
522 	 * destination address, on the data structure for the new
523 	 * primary destination, the sender MUST do the following:
524 	 *
525 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
526 	 * to this destination address earlier. The sender MUST set
527 	 * CYCLING_CHANGEOVER to indicate that this switch is a
528 	 * double switch to the same destination address.
529 	 *
530 	 * Really, only bother is we have data queued or outstanding on
531 	 * the association.
532 	 */
533 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
534 		return;
535 
536 	if (transport->cacc.changeover_active)
537 		transport->cacc.cycling_changeover = changeover;
538 
539 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
540 	 * a changeover has occurred.
541 	 */
542 	transport->cacc.changeover_active = changeover;
543 
544 	/* 3) The sender MUST store the next TSN to be sent in
545 	 * next_tsn_at_change.
546 	 */
547 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
548 }
549 
550 /* Remove a transport from an association.  */
551 void sctp_assoc_rm_peer(struct sctp_association *asoc,
552 			struct sctp_transport *peer)
553 {
554 	struct list_head	*pos;
555 	struct sctp_transport	*transport;
556 
557 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
558 				 " port: %d\n",
559 				 asoc,
560 				 (&peer->ipaddr),
561 				 ntohs(peer->ipaddr.v4.sin_port));
562 
563 	/* If we are to remove the current retran_path, update it
564 	 * to the next peer before removing this peer from the list.
565 	 */
566 	if (asoc->peer.retran_path == peer)
567 		sctp_assoc_update_retran_path(asoc);
568 
569 	/* Remove this peer from the list. */
570 	list_del_rcu(&peer->transports);
571 
572 	/* Get the first transport of asoc. */
573 	pos = asoc->peer.transport_addr_list.next;
574 	transport = list_entry(pos, struct sctp_transport, transports);
575 
576 	/* Update any entries that match the peer to be deleted. */
577 	if (asoc->peer.primary_path == peer)
578 		sctp_assoc_set_primary(asoc, transport);
579 	if (asoc->peer.active_path == peer)
580 		asoc->peer.active_path = transport;
581 	if (asoc->peer.retran_path == peer)
582 		asoc->peer.retran_path = transport;
583 	if (asoc->peer.last_data_from == peer)
584 		asoc->peer.last_data_from = transport;
585 
586 	/* If we remove the transport an INIT was last sent to, set it to
587 	 * NULL. Combined with the update of the retran path above, this
588 	 * will cause the next INIT to be sent to the next available
589 	 * transport, maintaining the cycle.
590 	 */
591 	if (asoc->init_last_sent_to == peer)
592 		asoc->init_last_sent_to = NULL;
593 
594 	/* If we remove the transport an SHUTDOWN was last sent to, set it
595 	 * to NULL. Combined with the update of the retran path above, this
596 	 * will cause the next SHUTDOWN to be sent to the next available
597 	 * transport, maintaining the cycle.
598 	 */
599 	if (asoc->shutdown_last_sent_to == peer)
600 		asoc->shutdown_last_sent_to = NULL;
601 
602 	/* If we remove the transport an ASCONF was last sent to, set it to
603 	 * NULL.
604 	 */
605 	if (asoc->addip_last_asconf &&
606 	    asoc->addip_last_asconf->transport == peer)
607 		asoc->addip_last_asconf->transport = NULL;
608 
609 	/* If we have something on the transmitted list, we have to
610 	 * save it off.  The best place is the active path.
611 	 */
612 	if (!list_empty(&peer->transmitted)) {
613 		struct sctp_transport *active = asoc->peer.active_path;
614 		struct sctp_chunk *ch;
615 
616 		/* Reset the transport of each chunk on this list */
617 		list_for_each_entry(ch, &peer->transmitted,
618 					transmitted_list) {
619 			ch->transport = NULL;
620 			ch->rtt_in_progress = 0;
621 		}
622 
623 		list_splice_tail_init(&peer->transmitted,
624 					&active->transmitted);
625 
626 		/* Start a T3 timer here in case it wasn't running so
627 		 * that these migrated packets have a chance to get
628 		 * retrnasmitted.
629 		 */
630 		if (!timer_pending(&active->T3_rtx_timer))
631 			if (!mod_timer(&active->T3_rtx_timer,
632 					jiffies + active->rto))
633 				sctp_transport_hold(active);
634 	}
635 
636 	asoc->peer.transport_count--;
637 
638 	sctp_transport_free(peer);
639 }
640 
641 /* Add a transport address to an association.  */
642 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
643 					   const union sctp_addr *addr,
644 					   const gfp_t gfp,
645 					   const int peer_state)
646 {
647 	struct net *net = sock_net(asoc->base.sk);
648 	struct sctp_transport *peer;
649 	struct sctp_sock *sp;
650 	unsigned short port;
651 
652 	sp = sctp_sk(asoc->base.sk);
653 
654 	/* AF_INET and AF_INET6 share common port field. */
655 	port = ntohs(addr->v4.sin_port);
656 
657 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
658 				 " port: %d state:%d\n",
659 				 asoc,
660 				 addr,
661 				 port,
662 				 peer_state);
663 
664 	/* Set the port if it has not been set yet.  */
665 	if (0 == asoc->peer.port)
666 		asoc->peer.port = port;
667 
668 	/* Check to see if this is a duplicate. */
669 	peer = sctp_assoc_lookup_paddr(asoc, addr);
670 	if (peer) {
671 		/* An UNKNOWN state is only set on transports added by
672 		 * user in sctp_connectx() call.  Such transports should be
673 		 * considered CONFIRMED per RFC 4960, Section 5.4.
674 		 */
675 		if (peer->state == SCTP_UNKNOWN) {
676 			peer->state = SCTP_ACTIVE;
677 		}
678 		return peer;
679 	}
680 
681 	peer = sctp_transport_new(net, addr, gfp);
682 	if (!peer)
683 		return NULL;
684 
685 	sctp_transport_set_owner(peer, asoc);
686 
687 	/* Initialize the peer's heartbeat interval based on the
688 	 * association configured value.
689 	 */
690 	peer->hbinterval = asoc->hbinterval;
691 
692 	/* Set the path max_retrans.  */
693 	peer->pathmaxrxt = asoc->pathmaxrxt;
694 
695 	/* And the partial failure retrnas threshold */
696 	peer->pf_retrans = asoc->pf_retrans;
697 
698 	/* Initialize the peer's SACK delay timeout based on the
699 	 * association configured value.
700 	 */
701 	peer->sackdelay = asoc->sackdelay;
702 	peer->sackfreq = asoc->sackfreq;
703 
704 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
705 	 * based on association setting.
706 	 */
707 	peer->param_flags = asoc->param_flags;
708 
709 	sctp_transport_route(peer, NULL, sp);
710 
711 	/* Initialize the pmtu of the transport. */
712 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
713 		if (asoc->pathmtu)
714 			peer->pathmtu = asoc->pathmtu;
715 		else
716 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
717 	}
718 
719 	/* If this is the first transport addr on this association,
720 	 * initialize the association PMTU to the peer's PMTU.
721 	 * If not and the current association PMTU is higher than the new
722 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
723 	 */
724 	if (asoc->pathmtu)
725 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
726 	else
727 		asoc->pathmtu = peer->pathmtu;
728 
729 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
730 			  "%d\n", asoc, asoc->pathmtu);
731 	peer->pmtu_pending = 0;
732 
733 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
734 
735 	/* The asoc->peer.port might not be meaningful yet, but
736 	 * initialize the packet structure anyway.
737 	 */
738 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
739 			 asoc->peer.port);
740 
741 	/* 7.2.1 Slow-Start
742 	 *
743 	 * o The initial cwnd before DATA transmission or after a sufficiently
744 	 *   long idle period MUST be set to
745 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
746 	 *
747 	 * o The initial value of ssthresh MAY be arbitrarily high
748 	 *   (for example, implementations MAY use the size of the
749 	 *   receiver advertised window).
750 	 */
751 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
752 
753 	/* At this point, we may not have the receiver's advertised window,
754 	 * so initialize ssthresh to the default value and it will be set
755 	 * later when we process the INIT.
756 	 */
757 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
758 
759 	peer->partial_bytes_acked = 0;
760 	peer->flight_size = 0;
761 	peer->burst_limited = 0;
762 
763 	/* Set the transport's RTO.initial value */
764 	peer->rto = asoc->rto_initial;
765 	sctp_max_rto(asoc, peer);
766 
767 	/* Set the peer's active state. */
768 	peer->state = peer_state;
769 
770 	/* Attach the remote transport to our asoc.  */
771 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
772 	asoc->peer.transport_count++;
773 
774 	/* If we do not yet have a primary path, set one.  */
775 	if (!asoc->peer.primary_path) {
776 		sctp_assoc_set_primary(asoc, peer);
777 		asoc->peer.retran_path = peer;
778 	}
779 
780 	if (asoc->peer.active_path == asoc->peer.retran_path &&
781 	    peer->state != SCTP_UNCONFIRMED) {
782 		asoc->peer.retran_path = peer;
783 	}
784 
785 	return peer;
786 }
787 
788 /* Delete a transport address from an association.  */
789 void sctp_assoc_del_peer(struct sctp_association *asoc,
790 			 const union sctp_addr *addr)
791 {
792 	struct list_head	*pos;
793 	struct list_head	*temp;
794 	struct sctp_transport	*transport;
795 
796 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
797 		transport = list_entry(pos, struct sctp_transport, transports);
798 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
799 			/* Do book keeping for removing the peer and free it. */
800 			sctp_assoc_rm_peer(asoc, transport);
801 			break;
802 		}
803 	}
804 }
805 
806 /* Lookup a transport by address. */
807 struct sctp_transport *sctp_assoc_lookup_paddr(
808 					const struct sctp_association *asoc,
809 					const union sctp_addr *address)
810 {
811 	struct sctp_transport *t;
812 
813 	/* Cycle through all transports searching for a peer address. */
814 
815 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
816 			transports) {
817 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
818 			return t;
819 	}
820 
821 	return NULL;
822 }
823 
824 /* Remove all transports except a give one */
825 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
826 				     struct sctp_transport *primary)
827 {
828 	struct sctp_transport	*temp;
829 	struct sctp_transport	*t;
830 
831 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
832 				 transports) {
833 		/* if the current transport is not the primary one, delete it */
834 		if (t != primary)
835 			sctp_assoc_rm_peer(asoc, t);
836 	}
837 }
838 
839 /* Engage in transport control operations.
840  * Mark the transport up or down and send a notification to the user.
841  * Select and update the new active and retran paths.
842  */
843 void sctp_assoc_control_transport(struct sctp_association *asoc,
844 				  struct sctp_transport *transport,
845 				  sctp_transport_cmd_t command,
846 				  sctp_sn_error_t error)
847 {
848 	struct sctp_transport *t = NULL;
849 	struct sctp_transport *first;
850 	struct sctp_transport *second;
851 	struct sctp_ulpevent *event;
852 	struct sockaddr_storage addr;
853 	int spc_state = 0;
854 	bool ulp_notify = true;
855 
856 	/* Record the transition on the transport.  */
857 	switch (command) {
858 	case SCTP_TRANSPORT_UP:
859 		/* If we are moving from UNCONFIRMED state due
860 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
861 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
862 		 */
863 		if (SCTP_UNCONFIRMED == transport->state &&
864 		    SCTP_HEARTBEAT_SUCCESS == error)
865 			spc_state = SCTP_ADDR_CONFIRMED;
866 		else
867 			spc_state = SCTP_ADDR_AVAILABLE;
868 		/* Don't inform ULP about transition from PF to
869 		 * active state and set cwnd to 1, see SCTP
870 		 * Quick failover draft section 5.1, point 5
871 		 */
872 		if (transport->state == SCTP_PF) {
873 			ulp_notify = false;
874 			transport->cwnd = 1;
875 		}
876 		transport->state = SCTP_ACTIVE;
877 		break;
878 
879 	case SCTP_TRANSPORT_DOWN:
880 		/* If the transport was never confirmed, do not transition it
881 		 * to inactive state.  Also, release the cached route since
882 		 * there may be a better route next time.
883 		 */
884 		if (transport->state != SCTP_UNCONFIRMED)
885 			transport->state = SCTP_INACTIVE;
886 		else {
887 			dst_release(transport->dst);
888 			transport->dst = NULL;
889 		}
890 
891 		spc_state = SCTP_ADDR_UNREACHABLE;
892 		break;
893 
894 	case SCTP_TRANSPORT_PF:
895 		transport->state = SCTP_PF;
896 		ulp_notify = false;
897 		break;
898 
899 	default:
900 		return;
901 	}
902 
903 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
904 	 * user.
905 	 */
906 	if (ulp_notify) {
907 		memset(&addr, 0, sizeof(struct sockaddr_storage));
908 		memcpy(&addr, &transport->ipaddr,
909 		       transport->af_specific->sockaddr_len);
910 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
911 					0, spc_state, error, GFP_ATOMIC);
912 		if (event)
913 			sctp_ulpq_tail_event(&asoc->ulpq, event);
914 	}
915 
916 	/* Select new active and retran paths. */
917 
918 	/* Look for the two most recently used active transports.
919 	 *
920 	 * This code produces the wrong ordering whenever jiffies
921 	 * rolls over, but we still get usable transports, so we don't
922 	 * worry about it.
923 	 */
924 	first = NULL; second = NULL;
925 
926 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
927 			transports) {
928 
929 		if ((t->state == SCTP_INACTIVE) ||
930 		    (t->state == SCTP_UNCONFIRMED) ||
931 		    (t->state == SCTP_PF))
932 			continue;
933 		if (!first || t->last_time_heard > first->last_time_heard) {
934 			second = first;
935 			first = t;
936 		}
937 		if (!second || t->last_time_heard > second->last_time_heard)
938 			second = t;
939 	}
940 
941 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
942 	 *
943 	 * By default, an endpoint should always transmit to the
944 	 * primary path, unless the SCTP user explicitly specifies the
945 	 * destination transport address (and possibly source
946 	 * transport address) to use.
947 	 *
948 	 * [If the primary is active but not most recent, bump the most
949 	 * recently used transport.]
950 	 */
951 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
952 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
953 	    first != asoc->peer.primary_path) {
954 		second = first;
955 		first = asoc->peer.primary_path;
956 	}
957 
958 	/* If we failed to find a usable transport, just camp on the
959 	 * primary, even if it is inactive.
960 	 */
961 	if (!first) {
962 		first = asoc->peer.primary_path;
963 		second = asoc->peer.primary_path;
964 	}
965 
966 	/* Set the active and retran transports.  */
967 	asoc->peer.active_path = first;
968 	asoc->peer.retran_path = second;
969 }
970 
971 /* Hold a reference to an association. */
972 void sctp_association_hold(struct sctp_association *asoc)
973 {
974 	atomic_inc(&asoc->base.refcnt);
975 }
976 
977 /* Release a reference to an association and cleanup
978  * if there are no more references.
979  */
980 void sctp_association_put(struct sctp_association *asoc)
981 {
982 	if (atomic_dec_and_test(&asoc->base.refcnt))
983 		sctp_association_destroy(asoc);
984 }
985 
986 /* Allocate the next TSN, Transmission Sequence Number, for the given
987  * association.
988  */
989 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
990 {
991 	/* From Section 1.6 Serial Number Arithmetic:
992 	 * Transmission Sequence Numbers wrap around when they reach
993 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
994 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
995 	 */
996 	__u32 retval = asoc->next_tsn;
997 	asoc->next_tsn++;
998 	asoc->unack_data++;
999 
1000 	return retval;
1001 }
1002 
1003 /* Compare two addresses to see if they match.  Wildcard addresses
1004  * only match themselves.
1005  */
1006 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
1007 			const union sctp_addr *ss2)
1008 {
1009 	struct sctp_af *af;
1010 
1011 	af = sctp_get_af_specific(ss1->sa.sa_family);
1012 	if (unlikely(!af))
1013 		return 0;
1014 
1015 	return af->cmp_addr(ss1, ss2);
1016 }
1017 
1018 /* Return an ecne chunk to get prepended to a packet.
1019  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
1020  * No we don't, but we could/should.
1021  */
1022 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
1023 {
1024 	struct sctp_chunk *chunk;
1025 
1026 	/* Send ECNE if needed.
1027 	 * Not being able to allocate a chunk here is not deadly.
1028 	 */
1029 	if (asoc->need_ecne)
1030 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1031 	else
1032 		chunk = NULL;
1033 
1034 	return chunk;
1035 }
1036 
1037 /*
1038  * Find which transport this TSN was sent on.
1039  */
1040 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1041 					     __u32 tsn)
1042 {
1043 	struct sctp_transport *active;
1044 	struct sctp_transport *match;
1045 	struct sctp_transport *transport;
1046 	struct sctp_chunk *chunk;
1047 	__be32 key = htonl(tsn);
1048 
1049 	match = NULL;
1050 
1051 	/*
1052 	 * FIXME: In general, find a more efficient data structure for
1053 	 * searching.
1054 	 */
1055 
1056 	/*
1057 	 * The general strategy is to search each transport's transmitted
1058 	 * list.   Return which transport this TSN lives on.
1059 	 *
1060 	 * Let's be hopeful and check the active_path first.
1061 	 * Another optimization would be to know if there is only one
1062 	 * outbound path and not have to look for the TSN at all.
1063 	 *
1064 	 */
1065 
1066 	active = asoc->peer.active_path;
1067 
1068 	list_for_each_entry(chunk, &active->transmitted,
1069 			transmitted_list) {
1070 
1071 		if (key == chunk->subh.data_hdr->tsn) {
1072 			match = active;
1073 			goto out;
1074 		}
1075 	}
1076 
1077 	/* If not found, go search all the other transports. */
1078 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1079 			transports) {
1080 
1081 		if (transport == active)
1082 			break;
1083 		list_for_each_entry(chunk, &transport->transmitted,
1084 				transmitted_list) {
1085 			if (key == chunk->subh.data_hdr->tsn) {
1086 				match = transport;
1087 				goto out;
1088 			}
1089 		}
1090 	}
1091 out:
1092 	return match;
1093 }
1094 
1095 /* Is this the association we are looking for? */
1096 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1097 					   struct net *net,
1098 					   const union sctp_addr *laddr,
1099 					   const union sctp_addr *paddr)
1100 {
1101 	struct sctp_transport *transport;
1102 
1103 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1104 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1105 	    net_eq(sock_net(asoc->base.sk), net)) {
1106 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1107 		if (!transport)
1108 			goto out;
1109 
1110 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1111 					 sctp_sk(asoc->base.sk)))
1112 			goto out;
1113 	}
1114 	transport = NULL;
1115 
1116 out:
1117 	return transport;
1118 }
1119 
1120 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1121 static void sctp_assoc_bh_rcv(struct work_struct *work)
1122 {
1123 	struct sctp_association *asoc =
1124 		container_of(work, struct sctp_association,
1125 			     base.inqueue.immediate);
1126 	struct net *net = sock_net(asoc->base.sk);
1127 	struct sctp_endpoint *ep;
1128 	struct sctp_chunk *chunk;
1129 	struct sctp_inq *inqueue;
1130 	int state;
1131 	sctp_subtype_t subtype;
1132 	int error = 0;
1133 
1134 	/* The association should be held so we should be safe. */
1135 	ep = asoc->ep;
1136 
1137 	inqueue = &asoc->base.inqueue;
1138 	sctp_association_hold(asoc);
1139 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1140 		state = asoc->state;
1141 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1142 
1143 		/* SCTP-AUTH, Section 6.3:
1144 		 *    The receiver has a list of chunk types which it expects
1145 		 *    to be received only after an AUTH-chunk.  This list has
1146 		 *    been sent to the peer during the association setup.  It
1147 		 *    MUST silently discard these chunks if they are not placed
1148 		 *    after an AUTH chunk in the packet.
1149 		 */
1150 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1151 			continue;
1152 
1153 		/* Remember where the last DATA chunk came from so we
1154 		 * know where to send the SACK.
1155 		 */
1156 		if (sctp_chunk_is_data(chunk))
1157 			asoc->peer.last_data_from = chunk->transport;
1158 		else {
1159 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1160 			asoc->stats.ictrlchunks++;
1161 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1162 				asoc->stats.isacks++;
1163 		}
1164 
1165 		if (chunk->transport)
1166 			chunk->transport->last_time_heard = jiffies;
1167 
1168 		/* Run through the state machine. */
1169 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1170 				   state, ep, asoc, chunk, GFP_ATOMIC);
1171 
1172 		/* Check to see if the association is freed in response to
1173 		 * the incoming chunk.  If so, get out of the while loop.
1174 		 */
1175 		if (asoc->base.dead)
1176 			break;
1177 
1178 		/* If there is an error on chunk, discard this packet. */
1179 		if (error && chunk)
1180 			chunk->pdiscard = 1;
1181 	}
1182 	sctp_association_put(asoc);
1183 }
1184 
1185 /* This routine moves an association from its old sk to a new sk.  */
1186 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1187 {
1188 	struct sctp_sock *newsp = sctp_sk(newsk);
1189 	struct sock *oldsk = assoc->base.sk;
1190 
1191 	/* Delete the association from the old endpoint's list of
1192 	 * associations.
1193 	 */
1194 	list_del_init(&assoc->asocs);
1195 
1196 	/* Decrement the backlog value for a TCP-style socket. */
1197 	if (sctp_style(oldsk, TCP))
1198 		oldsk->sk_ack_backlog--;
1199 
1200 	/* Release references to the old endpoint and the sock.  */
1201 	sctp_endpoint_put(assoc->ep);
1202 	sock_put(assoc->base.sk);
1203 
1204 	/* Get a reference to the new endpoint.  */
1205 	assoc->ep = newsp->ep;
1206 	sctp_endpoint_hold(assoc->ep);
1207 
1208 	/* Get a reference to the new sock.  */
1209 	assoc->base.sk = newsk;
1210 	sock_hold(assoc->base.sk);
1211 
1212 	/* Add the association to the new endpoint's list of associations.  */
1213 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1214 }
1215 
1216 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1217 void sctp_assoc_update(struct sctp_association *asoc,
1218 		       struct sctp_association *new)
1219 {
1220 	struct sctp_transport *trans;
1221 	struct list_head *pos, *temp;
1222 
1223 	/* Copy in new parameters of peer. */
1224 	asoc->c = new->c;
1225 	asoc->peer.rwnd = new->peer.rwnd;
1226 	asoc->peer.sack_needed = new->peer.sack_needed;
1227 	asoc->peer.i = new->peer.i;
1228 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1229 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1230 
1231 	/* Remove any peer addresses not present in the new association. */
1232 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1233 		trans = list_entry(pos, struct sctp_transport, transports);
1234 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1235 			sctp_assoc_rm_peer(asoc, trans);
1236 			continue;
1237 		}
1238 
1239 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1240 			sctp_transport_reset(trans);
1241 	}
1242 
1243 	/* If the case is A (association restart), use
1244 	 * initial_tsn as next_tsn. If the case is B, use
1245 	 * current next_tsn in case data sent to peer
1246 	 * has been discarded and needs retransmission.
1247 	 */
1248 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1249 		asoc->next_tsn = new->next_tsn;
1250 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1251 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1252 
1253 		/* Reinitialize SSN for both local streams
1254 		 * and peer's streams.
1255 		 */
1256 		sctp_ssnmap_clear(asoc->ssnmap);
1257 
1258 		/* Flush the ULP reassembly and ordered queue.
1259 		 * Any data there will now be stale and will
1260 		 * cause problems.
1261 		 */
1262 		sctp_ulpq_flush(&asoc->ulpq);
1263 
1264 		/* reset the overall association error count so
1265 		 * that the restarted association doesn't get torn
1266 		 * down on the next retransmission timer.
1267 		 */
1268 		asoc->overall_error_count = 0;
1269 
1270 	} else {
1271 		/* Add any peer addresses from the new association. */
1272 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1273 				transports) {
1274 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1275 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1276 						    GFP_ATOMIC, trans->state);
1277 		}
1278 
1279 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1280 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1281 		if (!asoc->ssnmap) {
1282 			/* Move the ssnmap. */
1283 			asoc->ssnmap = new->ssnmap;
1284 			new->ssnmap = NULL;
1285 		}
1286 
1287 		if (!asoc->assoc_id) {
1288 			/* get a new association id since we don't have one
1289 			 * yet.
1290 			 */
1291 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1292 		}
1293 	}
1294 
1295 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1296 	 * and also move the association shared keys over
1297 	 */
1298 	kfree(asoc->peer.peer_random);
1299 	asoc->peer.peer_random = new->peer.peer_random;
1300 	new->peer.peer_random = NULL;
1301 
1302 	kfree(asoc->peer.peer_chunks);
1303 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1304 	new->peer.peer_chunks = NULL;
1305 
1306 	kfree(asoc->peer.peer_hmacs);
1307 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1308 	new->peer.peer_hmacs = NULL;
1309 
1310 	sctp_auth_key_put(asoc->asoc_shared_key);
1311 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1312 }
1313 
1314 /* Update the retran path for sending a retransmitted packet.
1315  * Round-robin through the active transports, else round-robin
1316  * through the inactive transports as this is the next best thing
1317  * we can try.
1318  */
1319 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1320 {
1321 	struct sctp_transport *t, *next;
1322 	struct list_head *head = &asoc->peer.transport_addr_list;
1323 	struct list_head *pos;
1324 
1325 	if (asoc->peer.transport_count == 1)
1326 		return;
1327 
1328 	/* Find the next transport in a round-robin fashion. */
1329 	t = asoc->peer.retran_path;
1330 	pos = &t->transports;
1331 	next = NULL;
1332 
1333 	while (1) {
1334 		/* Skip the head. */
1335 		if (pos->next == head)
1336 			pos = head->next;
1337 		else
1338 			pos = pos->next;
1339 
1340 		t = list_entry(pos, struct sctp_transport, transports);
1341 
1342 		/* We have exhausted the list, but didn't find any
1343 		 * other active transports.  If so, use the next
1344 		 * transport.
1345 		 */
1346 		if (t == asoc->peer.retran_path) {
1347 			t = next;
1348 			break;
1349 		}
1350 
1351 		/* Try to find an active transport. */
1352 
1353 		if ((t->state == SCTP_ACTIVE) ||
1354 		    (t->state == SCTP_UNKNOWN)) {
1355 			break;
1356 		} else {
1357 			/* Keep track of the next transport in case
1358 			 * we don't find any active transport.
1359 			 */
1360 			if (t->state != SCTP_UNCONFIRMED && !next)
1361 				next = t;
1362 		}
1363 	}
1364 
1365 	if (t)
1366 		asoc->peer.retran_path = t;
1367 	else
1368 		t = asoc->peer.retran_path;
1369 
1370 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1371 				 " %p addr: ",
1372 				 " port: %d\n",
1373 				 asoc,
1374 				 (&t->ipaddr),
1375 				 ntohs(t->ipaddr.v4.sin_port));
1376 }
1377 
1378 /* Choose the transport for sending retransmit packet.  */
1379 struct sctp_transport *sctp_assoc_choose_alter_transport(
1380 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1381 {
1382 	/* If this is the first time packet is sent, use the active path,
1383 	 * else use the retran path. If the last packet was sent over the
1384 	 * retran path, update the retran path and use it.
1385 	 */
1386 	if (!last_sent_to)
1387 		return asoc->peer.active_path;
1388 	else {
1389 		if (last_sent_to == asoc->peer.retran_path)
1390 			sctp_assoc_update_retran_path(asoc);
1391 		return asoc->peer.retran_path;
1392 	}
1393 }
1394 
1395 /* Update the association's pmtu and frag_point by going through all the
1396  * transports. This routine is called when a transport's PMTU has changed.
1397  */
1398 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1399 {
1400 	struct sctp_transport *t;
1401 	__u32 pmtu = 0;
1402 
1403 	if (!asoc)
1404 		return;
1405 
1406 	/* Get the lowest pmtu of all the transports. */
1407 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1408 				transports) {
1409 		if (t->pmtu_pending && t->dst) {
1410 			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1411 			t->pmtu_pending = 0;
1412 		}
1413 		if (!pmtu || (t->pathmtu < pmtu))
1414 			pmtu = t->pathmtu;
1415 	}
1416 
1417 	if (pmtu) {
1418 		asoc->pathmtu = pmtu;
1419 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1420 	}
1421 
1422 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1423 			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1424 }
1425 
1426 /* Should we send a SACK to update our peer? */
1427 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1428 {
1429 	struct net *net = sock_net(asoc->base.sk);
1430 	switch (asoc->state) {
1431 	case SCTP_STATE_ESTABLISHED:
1432 	case SCTP_STATE_SHUTDOWN_PENDING:
1433 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1434 	case SCTP_STATE_SHUTDOWN_SENT:
1435 		if ((asoc->rwnd > asoc->a_rwnd) &&
1436 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1437 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1438 			   asoc->pathmtu)))
1439 			return 1;
1440 		break;
1441 	default:
1442 		break;
1443 	}
1444 	return 0;
1445 }
1446 
1447 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1448 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1449 {
1450 	struct sctp_chunk *sack;
1451 	struct timer_list *timer;
1452 
1453 	if (asoc->rwnd_over) {
1454 		if (asoc->rwnd_over >= len) {
1455 			asoc->rwnd_over -= len;
1456 		} else {
1457 			asoc->rwnd += (len - asoc->rwnd_over);
1458 			asoc->rwnd_over = 0;
1459 		}
1460 	} else {
1461 		asoc->rwnd += len;
1462 	}
1463 
1464 	/* If we had window pressure, start recovering it
1465 	 * once our rwnd had reached the accumulated pressure
1466 	 * threshold.  The idea is to recover slowly, but up
1467 	 * to the initial advertised window.
1468 	 */
1469 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1470 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1471 		asoc->rwnd += change;
1472 		asoc->rwnd_press -= change;
1473 	}
1474 
1475 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1476 			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1477 			  asoc->rwnd_over, asoc->a_rwnd);
1478 
1479 	/* Send a window update SACK if the rwnd has increased by at least the
1480 	 * minimum of the association's PMTU and half of the receive buffer.
1481 	 * The algorithm used is similar to the one described in
1482 	 * Section 4.2.3.3 of RFC 1122.
1483 	 */
1484 	if (sctp_peer_needs_update(asoc)) {
1485 		asoc->a_rwnd = asoc->rwnd;
1486 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1487 				  "rwnd: %u a_rwnd: %u\n", __func__,
1488 				  asoc, asoc->rwnd, asoc->a_rwnd);
1489 		sack = sctp_make_sack(asoc);
1490 		if (!sack)
1491 			return;
1492 
1493 		asoc->peer.sack_needed = 0;
1494 
1495 		sctp_outq_tail(&asoc->outqueue, sack);
1496 
1497 		/* Stop the SACK timer.  */
1498 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1499 		if (del_timer(timer))
1500 			sctp_association_put(asoc);
1501 	}
1502 }
1503 
1504 /* Decrease asoc's rwnd by len. */
1505 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1506 {
1507 	int rx_count;
1508 	int over = 0;
1509 
1510 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1511 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1512 
1513 	if (asoc->ep->rcvbuf_policy)
1514 		rx_count = atomic_read(&asoc->rmem_alloc);
1515 	else
1516 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1517 
1518 	/* If we've reached or overflowed our receive buffer, announce
1519 	 * a 0 rwnd if rwnd would still be positive.  Store the
1520 	 * the pottential pressure overflow so that the window can be restored
1521 	 * back to original value.
1522 	 */
1523 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1524 		over = 1;
1525 
1526 	if (asoc->rwnd >= len) {
1527 		asoc->rwnd -= len;
1528 		if (over) {
1529 			asoc->rwnd_press += asoc->rwnd;
1530 			asoc->rwnd = 0;
1531 		}
1532 	} else {
1533 		asoc->rwnd_over = len - asoc->rwnd;
1534 		asoc->rwnd = 0;
1535 	}
1536 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1537 			  __func__, asoc, len, asoc->rwnd,
1538 			  asoc->rwnd_over, asoc->rwnd_press);
1539 }
1540 
1541 /* Build the bind address list for the association based on info from the
1542  * local endpoint and the remote peer.
1543  */
1544 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1545 				     sctp_scope_t scope, gfp_t gfp)
1546 {
1547 	int flags;
1548 
1549 	/* Use scoping rules to determine the subset of addresses from
1550 	 * the endpoint.
1551 	 */
1552 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1553 	if (asoc->peer.ipv4_address)
1554 		flags |= SCTP_ADDR4_PEERSUPP;
1555 	if (asoc->peer.ipv6_address)
1556 		flags |= SCTP_ADDR6_PEERSUPP;
1557 
1558 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1559 				   &asoc->base.bind_addr,
1560 				   &asoc->ep->base.bind_addr,
1561 				   scope, gfp, flags);
1562 }
1563 
1564 /* Build the association's bind address list from the cookie.  */
1565 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1566 					 struct sctp_cookie *cookie,
1567 					 gfp_t gfp)
1568 {
1569 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1570 	int var_size3 = cookie->raw_addr_list_len;
1571 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1572 
1573 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1574 				      asoc->ep->base.bind_addr.port, gfp);
1575 }
1576 
1577 /* Lookup laddr in the bind address list of an association. */
1578 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1579 			    const union sctp_addr *laddr)
1580 {
1581 	int found = 0;
1582 
1583 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1584 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1585 				 sctp_sk(asoc->base.sk)))
1586 		found = 1;
1587 
1588 	return found;
1589 }
1590 
1591 /* Set an association id for a given association */
1592 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1593 {
1594 	int assoc_id;
1595 	int error = 0;
1596 
1597 	/* If the id is already assigned, keep it. */
1598 	if (asoc->assoc_id)
1599 		return error;
1600 retry:
1601 	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1602 		return -ENOMEM;
1603 
1604 	spin_lock_bh(&sctp_assocs_id_lock);
1605 	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1606 				    idr_low, &assoc_id);
1607 	if (!error) {
1608 		idr_low = assoc_id + 1;
1609 		if (idr_low == INT_MAX)
1610 			idr_low = 1;
1611 	}
1612 	spin_unlock_bh(&sctp_assocs_id_lock);
1613 	if (error == -EAGAIN)
1614 		goto retry;
1615 	else if (error)
1616 		return error;
1617 
1618 	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1619 	return error;
1620 }
1621 
1622 /* Free the ASCONF queue */
1623 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1624 {
1625 	struct sctp_chunk *asconf;
1626 	struct sctp_chunk *tmp;
1627 
1628 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1629 		list_del_init(&asconf->list);
1630 		sctp_chunk_free(asconf);
1631 	}
1632 }
1633 
1634 /* Free asconf_ack cache */
1635 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1636 {
1637 	struct sctp_chunk *ack;
1638 	struct sctp_chunk *tmp;
1639 
1640 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1641 				transmitted_list) {
1642 		list_del_init(&ack->transmitted_list);
1643 		sctp_chunk_free(ack);
1644 	}
1645 }
1646 
1647 /* Clean up the ASCONF_ACK queue */
1648 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1649 {
1650 	struct sctp_chunk *ack;
1651 	struct sctp_chunk *tmp;
1652 
1653 	/* We can remove all the entries from the queue up to
1654 	 * the "Peer-Sequence-Number".
1655 	 */
1656 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1657 				transmitted_list) {
1658 		if (ack->subh.addip_hdr->serial ==
1659 				htonl(asoc->peer.addip_serial))
1660 			break;
1661 
1662 		list_del_init(&ack->transmitted_list);
1663 		sctp_chunk_free(ack);
1664 	}
1665 }
1666 
1667 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1668 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1669 					const struct sctp_association *asoc,
1670 					__be32 serial)
1671 {
1672 	struct sctp_chunk *ack;
1673 
1674 	/* Walk through the list of cached ASCONF-ACKs and find the
1675 	 * ack chunk whose serial number matches that of the request.
1676 	 */
1677 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1678 		if (ack->subh.addip_hdr->serial == serial) {
1679 			sctp_chunk_hold(ack);
1680 			return ack;
1681 		}
1682 	}
1683 
1684 	return NULL;
1685 }
1686 
1687 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1688 {
1689 	/* Free any cached ASCONF_ACK chunk. */
1690 	sctp_assoc_free_asconf_acks(asoc);
1691 
1692 	/* Free the ASCONF queue. */
1693 	sctp_assoc_free_asconf_queue(asoc);
1694 
1695 	/* Free any cached ASCONF chunk. */
1696 	if (asoc->addip_last_asconf)
1697 		sctp_chunk_free(asoc->addip_last_asconf);
1698 }
1699