1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/poll.h> 54 #include <linux/init.h> 55 56 #include <linux/slab.h> 57 #include <linux/in.h> 58 #include <net/ipv6.h> 59 #include <net/sctp/sctp.h> 60 #include <net/sctp/sm.h> 61 62 /* Forward declarations for internal functions. */ 63 static void sctp_assoc_bh_rcv(struct work_struct *work); 64 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 65 66 67 /* 1st Level Abstractions. */ 68 69 /* Initialize a new association from provided memory. */ 70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 71 const struct sctp_endpoint *ep, 72 const struct sock *sk, 73 sctp_scope_t scope, 74 gfp_t gfp) 75 { 76 struct sctp_sock *sp; 77 int i; 78 sctp_paramhdr_t *p; 79 int err; 80 81 /* Retrieve the SCTP per socket area. */ 82 sp = sctp_sk((struct sock *)sk); 83 84 /* Init all variables to a known value. */ 85 memset(asoc, 0, sizeof(struct sctp_association)); 86 87 /* Discarding const is appropriate here. */ 88 asoc->ep = (struct sctp_endpoint *)ep; 89 sctp_endpoint_hold(asoc->ep); 90 91 /* Hold the sock. */ 92 asoc->base.sk = (struct sock *)sk; 93 sock_hold(asoc->base.sk); 94 95 /* Initialize the common base substructure. */ 96 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 97 98 /* Initialize the object handling fields. */ 99 atomic_set(&asoc->base.refcnt, 1); 100 asoc->base.dead = 0; 101 asoc->base.malloced = 0; 102 103 /* Initialize the bind addr area. */ 104 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 105 106 asoc->state = SCTP_STATE_CLOSED; 107 108 /* Set these values from the socket values, a conversion between 109 * millsecons to seconds/microseconds must also be done. 110 */ 111 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 112 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 113 * 1000; 114 asoc->frag_point = 0; 115 116 /* Set the association max_retrans and RTO values from the 117 * socket values. 118 */ 119 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 120 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 121 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 122 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 123 124 asoc->overall_error_count = 0; 125 126 /* Initialize the association's heartbeat interval based on the 127 * sock configured value. 128 */ 129 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 130 131 /* Initialize path max retrans value. */ 132 asoc->pathmaxrxt = sp->pathmaxrxt; 133 134 /* Initialize default path MTU. */ 135 asoc->pathmtu = sp->pathmtu; 136 137 /* Set association default SACK delay */ 138 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 139 asoc->sackfreq = sp->sackfreq; 140 141 /* Set the association default flags controlling 142 * Heartbeat, SACK delay, and Path MTU Discovery. 143 */ 144 asoc->param_flags = sp->param_flags; 145 146 /* Initialize the maximum mumber of new data packets that can be sent 147 * in a burst. 148 */ 149 asoc->max_burst = sp->max_burst; 150 151 /* initialize association timers */ 152 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 153 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 154 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 155 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 156 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 157 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 158 159 /* sctpimpguide Section 2.12.2 160 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 161 * recommended value of 5 times 'RTO.Max'. 162 */ 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 164 = 5 * asoc->rto_max; 165 166 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 167 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 168 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 169 sp->autoclose * HZ; 170 171 /* Initilizes the timers */ 172 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 173 setup_timer(&asoc->timers[i], sctp_timer_events[i], 174 (unsigned long)asoc); 175 176 /* Pull default initialization values from the sock options. 177 * Note: This assumes that the values have already been 178 * validated in the sock. 179 */ 180 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 181 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 182 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 183 184 asoc->max_init_timeo = 185 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 186 187 /* Allocate storage for the ssnmap after the inbound and outbound 188 * streams have been negotiated during Init. 189 */ 190 asoc->ssnmap = NULL; 191 192 /* Set the local window size for receive. 193 * This is also the rcvbuf space per association. 194 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 195 * 1500 bytes in one SCTP packet. 196 */ 197 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 198 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 199 else 200 asoc->rwnd = sk->sk_rcvbuf/2; 201 202 asoc->a_rwnd = asoc->rwnd; 203 204 asoc->rwnd_over = 0; 205 206 /* Use my own max window until I learn something better. */ 207 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 208 209 /* Set the sndbuf size for transmit. */ 210 asoc->sndbuf_used = 0; 211 212 /* Initialize the receive memory counter */ 213 atomic_set(&asoc->rmem_alloc, 0); 214 215 init_waitqueue_head(&asoc->wait); 216 217 asoc->c.my_vtag = sctp_generate_tag(ep); 218 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 219 asoc->c.peer_vtag = 0; 220 asoc->c.my_ttag = 0; 221 asoc->c.peer_ttag = 0; 222 asoc->c.my_port = ep->base.bind_addr.port; 223 224 asoc->c.initial_tsn = sctp_generate_tsn(ep); 225 226 asoc->next_tsn = asoc->c.initial_tsn; 227 228 asoc->ctsn_ack_point = asoc->next_tsn - 1; 229 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 230 asoc->highest_sacked = asoc->ctsn_ack_point; 231 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 232 asoc->unack_data = 0; 233 234 /* ADDIP Section 4.1 Asconf Chunk Procedures 235 * 236 * When an endpoint has an ASCONF signaled change to be sent to the 237 * remote endpoint it should do the following: 238 * ... 239 * A2) a serial number should be assigned to the chunk. The serial 240 * number SHOULD be a monotonically increasing number. The serial 241 * numbers SHOULD be initialized at the start of the 242 * association to the same value as the initial TSN. 243 */ 244 asoc->addip_serial = asoc->c.initial_tsn; 245 246 INIT_LIST_HEAD(&asoc->addip_chunk_list); 247 INIT_LIST_HEAD(&asoc->asconf_ack_list); 248 249 /* Make an empty list of remote transport addresses. */ 250 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 251 asoc->peer.transport_count = 0; 252 253 /* RFC 2960 5.1 Normal Establishment of an Association 254 * 255 * After the reception of the first data chunk in an 256 * association the endpoint must immediately respond with a 257 * sack to acknowledge the data chunk. Subsequent 258 * acknowledgements should be done as described in Section 259 * 6.2. 260 * 261 * [We implement this by telling a new association that it 262 * already received one packet.] 263 */ 264 asoc->peer.sack_needed = 1; 265 asoc->peer.sack_cnt = 0; 266 267 /* Assume that the peer will tell us if he recognizes ASCONF 268 * as part of INIT exchange. 269 * The sctp_addip_noauth option is there for backward compatibilty 270 * and will revert old behavior. 271 */ 272 asoc->peer.asconf_capable = 0; 273 if (sctp_addip_noauth) 274 asoc->peer.asconf_capable = 1; 275 276 /* Create an input queue. */ 277 sctp_inq_init(&asoc->base.inqueue); 278 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 279 280 /* Create an output queue. */ 281 sctp_outq_init(asoc, &asoc->outqueue); 282 283 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 284 goto fail_init; 285 286 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 287 288 asoc->need_ecne = 0; 289 290 asoc->assoc_id = 0; 291 292 /* Assume that peer would support both address types unless we are 293 * told otherwise. 294 */ 295 asoc->peer.ipv4_address = 1; 296 asoc->peer.ipv6_address = 1; 297 INIT_LIST_HEAD(&asoc->asocs); 298 299 asoc->autoclose = sp->autoclose; 300 301 asoc->default_stream = sp->default_stream; 302 asoc->default_ppid = sp->default_ppid; 303 asoc->default_flags = sp->default_flags; 304 asoc->default_context = sp->default_context; 305 asoc->default_timetolive = sp->default_timetolive; 306 asoc->default_rcv_context = sp->default_rcv_context; 307 308 /* AUTH related initializations */ 309 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 310 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 311 if (err) 312 goto fail_init; 313 314 asoc->active_key_id = ep->active_key_id; 315 asoc->asoc_shared_key = NULL; 316 317 asoc->default_hmac_id = 0; 318 /* Save the hmacs and chunks list into this association */ 319 if (ep->auth_hmacs_list) 320 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 321 ntohs(ep->auth_hmacs_list->param_hdr.length)); 322 if (ep->auth_chunk_list) 323 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 324 ntohs(ep->auth_chunk_list->param_hdr.length)); 325 326 /* Get the AUTH random number for this association */ 327 p = (sctp_paramhdr_t *)asoc->c.auth_random; 328 p->type = SCTP_PARAM_RANDOM; 329 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 330 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 331 332 return asoc; 333 334 fail_init: 335 sctp_endpoint_put(asoc->ep); 336 sock_put(asoc->base.sk); 337 return NULL; 338 } 339 340 /* Allocate and initialize a new association */ 341 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 342 const struct sock *sk, 343 sctp_scope_t scope, 344 gfp_t gfp) 345 { 346 struct sctp_association *asoc; 347 348 asoc = t_new(struct sctp_association, gfp); 349 if (!asoc) 350 goto fail; 351 352 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 353 goto fail_init; 354 355 asoc->base.malloced = 1; 356 SCTP_DBG_OBJCNT_INC(assoc); 357 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 358 359 return asoc; 360 361 fail_init: 362 kfree(asoc); 363 fail: 364 return NULL; 365 } 366 367 /* Free this association if possible. There may still be users, so 368 * the actual deallocation may be delayed. 369 */ 370 void sctp_association_free(struct sctp_association *asoc) 371 { 372 struct sock *sk = asoc->base.sk; 373 struct sctp_transport *transport; 374 struct list_head *pos, *temp; 375 int i; 376 377 /* Only real associations count against the endpoint, so 378 * don't bother for if this is a temporary association. 379 */ 380 if (!asoc->temp) { 381 list_del(&asoc->asocs); 382 383 /* Decrement the backlog value for a TCP-style listening 384 * socket. 385 */ 386 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 387 sk->sk_ack_backlog--; 388 } 389 390 /* Mark as dead, so other users can know this structure is 391 * going away. 392 */ 393 asoc->base.dead = 1; 394 395 /* Dispose of any data lying around in the outqueue. */ 396 sctp_outq_free(&asoc->outqueue); 397 398 /* Dispose of any pending messages for the upper layer. */ 399 sctp_ulpq_free(&asoc->ulpq); 400 401 /* Dispose of any pending chunks on the inqueue. */ 402 sctp_inq_free(&asoc->base.inqueue); 403 404 sctp_tsnmap_free(&asoc->peer.tsn_map); 405 406 /* Free ssnmap storage. */ 407 sctp_ssnmap_free(asoc->ssnmap); 408 409 /* Clean up the bound address list. */ 410 sctp_bind_addr_free(&asoc->base.bind_addr); 411 412 /* Do we need to go through all of our timers and 413 * delete them? To be safe we will try to delete all, but we 414 * should be able to go through and make a guess based 415 * on our state. 416 */ 417 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 418 if (timer_pending(&asoc->timers[i]) && 419 del_timer(&asoc->timers[i])) 420 sctp_association_put(asoc); 421 } 422 423 /* Free peer's cached cookie. */ 424 kfree(asoc->peer.cookie); 425 kfree(asoc->peer.peer_random); 426 kfree(asoc->peer.peer_chunks); 427 kfree(asoc->peer.peer_hmacs); 428 429 /* Release the transport structures. */ 430 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 431 transport = list_entry(pos, struct sctp_transport, transports); 432 list_del(pos); 433 sctp_transport_free(transport); 434 } 435 436 asoc->peer.transport_count = 0; 437 438 /* Free any cached ASCONF_ACK chunk. */ 439 sctp_assoc_free_asconf_acks(asoc); 440 441 /* Free any cached ASCONF chunk. */ 442 if (asoc->addip_last_asconf) 443 sctp_chunk_free(asoc->addip_last_asconf); 444 445 /* AUTH - Free the endpoint shared keys */ 446 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 447 448 /* AUTH - Free the association shared key */ 449 sctp_auth_key_put(asoc->asoc_shared_key); 450 451 sctp_association_put(asoc); 452 } 453 454 /* Cleanup and free up an association. */ 455 static void sctp_association_destroy(struct sctp_association *asoc) 456 { 457 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 458 459 sctp_endpoint_put(asoc->ep); 460 sock_put(asoc->base.sk); 461 462 if (asoc->assoc_id != 0) { 463 spin_lock_bh(&sctp_assocs_id_lock); 464 idr_remove(&sctp_assocs_id, asoc->assoc_id); 465 spin_unlock_bh(&sctp_assocs_id_lock); 466 } 467 468 WARN_ON(atomic_read(&asoc->rmem_alloc)); 469 470 if (asoc->base.malloced) { 471 kfree(asoc); 472 SCTP_DBG_OBJCNT_DEC(assoc); 473 } 474 } 475 476 /* Change the primary destination address for the peer. */ 477 void sctp_assoc_set_primary(struct sctp_association *asoc, 478 struct sctp_transport *transport) 479 { 480 int changeover = 0; 481 482 /* it's a changeover only if we already have a primary path 483 * that we are changing 484 */ 485 if (asoc->peer.primary_path != NULL && 486 asoc->peer.primary_path != transport) 487 changeover = 1 ; 488 489 asoc->peer.primary_path = transport; 490 491 /* Set a default msg_name for events. */ 492 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 493 sizeof(union sctp_addr)); 494 495 /* If the primary path is changing, assume that the 496 * user wants to use this new path. 497 */ 498 if ((transport->state == SCTP_ACTIVE) || 499 (transport->state == SCTP_UNKNOWN)) 500 asoc->peer.active_path = transport; 501 502 /* 503 * SFR-CACC algorithm: 504 * Upon the receipt of a request to change the primary 505 * destination address, on the data structure for the new 506 * primary destination, the sender MUST do the following: 507 * 508 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 509 * to this destination address earlier. The sender MUST set 510 * CYCLING_CHANGEOVER to indicate that this switch is a 511 * double switch to the same destination address. 512 */ 513 if (transport->cacc.changeover_active) 514 transport->cacc.cycling_changeover = changeover; 515 516 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 517 * a changeover has occurred. 518 */ 519 transport->cacc.changeover_active = changeover; 520 521 /* 3) The sender MUST store the next TSN to be sent in 522 * next_tsn_at_change. 523 */ 524 transport->cacc.next_tsn_at_change = asoc->next_tsn; 525 } 526 527 /* Remove a transport from an association. */ 528 void sctp_assoc_rm_peer(struct sctp_association *asoc, 529 struct sctp_transport *peer) 530 { 531 struct list_head *pos; 532 struct sctp_transport *transport; 533 534 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 535 " port: %d\n", 536 asoc, 537 (&peer->ipaddr), 538 ntohs(peer->ipaddr.v4.sin_port)); 539 540 /* If we are to remove the current retran_path, update it 541 * to the next peer before removing this peer from the list. 542 */ 543 if (asoc->peer.retran_path == peer) 544 sctp_assoc_update_retran_path(asoc); 545 546 /* Remove this peer from the list. */ 547 list_del(&peer->transports); 548 549 /* Get the first transport of asoc. */ 550 pos = asoc->peer.transport_addr_list.next; 551 transport = list_entry(pos, struct sctp_transport, transports); 552 553 /* Update any entries that match the peer to be deleted. */ 554 if (asoc->peer.primary_path == peer) 555 sctp_assoc_set_primary(asoc, transport); 556 if (asoc->peer.active_path == peer) 557 asoc->peer.active_path = transport; 558 if (asoc->peer.last_data_from == peer) 559 asoc->peer.last_data_from = transport; 560 561 /* If we remove the transport an INIT was last sent to, set it to 562 * NULL. Combined with the update of the retran path above, this 563 * will cause the next INIT to be sent to the next available 564 * transport, maintaining the cycle. 565 */ 566 if (asoc->init_last_sent_to == peer) 567 asoc->init_last_sent_to = NULL; 568 569 asoc->peer.transport_count--; 570 571 sctp_transport_free(peer); 572 } 573 574 /* Add a transport address to an association. */ 575 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 576 const union sctp_addr *addr, 577 const gfp_t gfp, 578 const int peer_state) 579 { 580 struct sctp_transport *peer; 581 struct sctp_sock *sp; 582 unsigned short port; 583 584 sp = sctp_sk(asoc->base.sk); 585 586 /* AF_INET and AF_INET6 share common port field. */ 587 port = ntohs(addr->v4.sin_port); 588 589 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 590 " port: %d state:%d\n", 591 asoc, 592 addr, 593 port, 594 peer_state); 595 596 /* Set the port if it has not been set yet. */ 597 if (0 == asoc->peer.port) 598 asoc->peer.port = port; 599 600 /* Check to see if this is a duplicate. */ 601 peer = sctp_assoc_lookup_paddr(asoc, addr); 602 if (peer) { 603 /* An UNKNOWN state is only set on transports added by 604 * user in sctp_connectx() call. Such transports should be 605 * considered CONFIRMED per RFC 4960, Section 5.4. 606 */ 607 if (peer->state == SCTP_UNKNOWN) { 608 peer->state = SCTP_ACTIVE; 609 } 610 return peer; 611 } 612 613 peer = sctp_transport_new(addr, gfp); 614 if (!peer) 615 return NULL; 616 617 sctp_transport_set_owner(peer, asoc); 618 619 /* Initialize the peer's heartbeat interval based on the 620 * association configured value. 621 */ 622 peer->hbinterval = asoc->hbinterval; 623 624 /* Set the path max_retrans. */ 625 peer->pathmaxrxt = asoc->pathmaxrxt; 626 627 /* Initialize the peer's SACK delay timeout based on the 628 * association configured value. 629 */ 630 peer->sackdelay = asoc->sackdelay; 631 peer->sackfreq = asoc->sackfreq; 632 633 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 634 * based on association setting. 635 */ 636 peer->param_flags = asoc->param_flags; 637 638 /* Initialize the pmtu of the transport. */ 639 if (peer->param_flags & SPP_PMTUD_ENABLE) 640 sctp_transport_pmtu(peer); 641 else if (asoc->pathmtu) 642 peer->pathmtu = asoc->pathmtu; 643 else 644 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 645 646 /* If this is the first transport addr on this association, 647 * initialize the association PMTU to the peer's PMTU. 648 * If not and the current association PMTU is higher than the new 649 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 650 */ 651 if (asoc->pathmtu) 652 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 653 else 654 asoc->pathmtu = peer->pathmtu; 655 656 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 657 "%d\n", asoc, asoc->pathmtu); 658 peer->pmtu_pending = 0; 659 660 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 661 662 /* The asoc->peer.port might not be meaningful yet, but 663 * initialize the packet structure anyway. 664 */ 665 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 666 asoc->peer.port); 667 668 /* 7.2.1 Slow-Start 669 * 670 * o The initial cwnd before DATA transmission or after a sufficiently 671 * long idle period MUST be set to 672 * min(4*MTU, max(2*MTU, 4380 bytes)) 673 * 674 * o The initial value of ssthresh MAY be arbitrarily high 675 * (for example, implementations MAY use the size of the 676 * receiver advertised window). 677 */ 678 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 679 680 /* At this point, we may not have the receiver's advertised window, 681 * so initialize ssthresh to the default value and it will be set 682 * later when we process the INIT. 683 */ 684 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 685 686 peer->partial_bytes_acked = 0; 687 peer->flight_size = 0; 688 689 /* Set the transport's RTO.initial value */ 690 peer->rto = asoc->rto_initial; 691 692 /* Set the peer's active state. */ 693 peer->state = peer_state; 694 695 /* Attach the remote transport to our asoc. */ 696 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 697 asoc->peer.transport_count++; 698 699 /* If we do not yet have a primary path, set one. */ 700 if (!asoc->peer.primary_path) { 701 sctp_assoc_set_primary(asoc, peer); 702 asoc->peer.retran_path = peer; 703 } 704 705 if (asoc->peer.active_path == asoc->peer.retran_path) { 706 asoc->peer.retran_path = peer; 707 } 708 709 return peer; 710 } 711 712 /* Delete a transport address from an association. */ 713 void sctp_assoc_del_peer(struct sctp_association *asoc, 714 const union sctp_addr *addr) 715 { 716 struct list_head *pos; 717 struct list_head *temp; 718 struct sctp_transport *transport; 719 720 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 721 transport = list_entry(pos, struct sctp_transport, transports); 722 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 723 /* Do book keeping for removing the peer and free it. */ 724 sctp_assoc_rm_peer(asoc, transport); 725 break; 726 } 727 } 728 } 729 730 /* Lookup a transport by address. */ 731 struct sctp_transport *sctp_assoc_lookup_paddr( 732 const struct sctp_association *asoc, 733 const union sctp_addr *address) 734 { 735 struct sctp_transport *t; 736 737 /* Cycle through all transports searching for a peer address. */ 738 739 list_for_each_entry(t, &asoc->peer.transport_addr_list, 740 transports) { 741 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 742 return t; 743 } 744 745 return NULL; 746 } 747 748 /* Remove all transports except a give one */ 749 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 750 struct sctp_transport *primary) 751 { 752 struct sctp_transport *temp; 753 struct sctp_transport *t; 754 755 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 756 transports) { 757 /* if the current transport is not the primary one, delete it */ 758 if (t != primary) 759 sctp_assoc_rm_peer(asoc, t); 760 } 761 762 return; 763 } 764 765 /* Engage in transport control operations. 766 * Mark the transport up or down and send a notification to the user. 767 * Select and update the new active and retran paths. 768 */ 769 void sctp_assoc_control_transport(struct sctp_association *asoc, 770 struct sctp_transport *transport, 771 sctp_transport_cmd_t command, 772 sctp_sn_error_t error) 773 { 774 struct sctp_transport *t = NULL; 775 struct sctp_transport *first; 776 struct sctp_transport *second; 777 struct sctp_ulpevent *event; 778 struct sockaddr_storage addr; 779 int spc_state = 0; 780 781 /* Record the transition on the transport. */ 782 switch (command) { 783 case SCTP_TRANSPORT_UP: 784 /* If we are moving from UNCONFIRMED state due 785 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 786 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 787 */ 788 if (SCTP_UNCONFIRMED == transport->state && 789 SCTP_HEARTBEAT_SUCCESS == error) 790 spc_state = SCTP_ADDR_CONFIRMED; 791 else 792 spc_state = SCTP_ADDR_AVAILABLE; 793 transport->state = SCTP_ACTIVE; 794 break; 795 796 case SCTP_TRANSPORT_DOWN: 797 /* if the transort was never confirmed, do not transition it 798 * to inactive state. 799 */ 800 if (transport->state != SCTP_UNCONFIRMED) 801 transport->state = SCTP_INACTIVE; 802 803 spc_state = SCTP_ADDR_UNREACHABLE; 804 break; 805 806 default: 807 return; 808 } 809 810 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 811 * user. 812 */ 813 memset(&addr, 0, sizeof(struct sockaddr_storage)); 814 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len); 815 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 816 0, spc_state, error, GFP_ATOMIC); 817 if (event) 818 sctp_ulpq_tail_event(&asoc->ulpq, event); 819 820 /* Select new active and retran paths. */ 821 822 /* Look for the two most recently used active transports. 823 * 824 * This code produces the wrong ordering whenever jiffies 825 * rolls over, but we still get usable transports, so we don't 826 * worry about it. 827 */ 828 first = NULL; second = NULL; 829 830 list_for_each_entry(t, &asoc->peer.transport_addr_list, 831 transports) { 832 833 if ((t->state == SCTP_INACTIVE) || 834 (t->state == SCTP_UNCONFIRMED)) 835 continue; 836 if (!first || t->last_time_heard > first->last_time_heard) { 837 second = first; 838 first = t; 839 } 840 if (!second || t->last_time_heard > second->last_time_heard) 841 second = t; 842 } 843 844 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 845 * 846 * By default, an endpoint should always transmit to the 847 * primary path, unless the SCTP user explicitly specifies the 848 * destination transport address (and possibly source 849 * transport address) to use. 850 * 851 * [If the primary is active but not most recent, bump the most 852 * recently used transport.] 853 */ 854 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 855 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 856 first != asoc->peer.primary_path) { 857 second = first; 858 first = asoc->peer.primary_path; 859 } 860 861 /* If we failed to find a usable transport, just camp on the 862 * primary, even if it is inactive. 863 */ 864 if (!first) { 865 first = asoc->peer.primary_path; 866 second = asoc->peer.primary_path; 867 } 868 869 /* Set the active and retran transports. */ 870 asoc->peer.active_path = first; 871 asoc->peer.retran_path = second; 872 } 873 874 /* Hold a reference to an association. */ 875 void sctp_association_hold(struct sctp_association *asoc) 876 { 877 atomic_inc(&asoc->base.refcnt); 878 } 879 880 /* Release a reference to an association and cleanup 881 * if there are no more references. 882 */ 883 void sctp_association_put(struct sctp_association *asoc) 884 { 885 if (atomic_dec_and_test(&asoc->base.refcnt)) 886 sctp_association_destroy(asoc); 887 } 888 889 /* Allocate the next TSN, Transmission Sequence Number, for the given 890 * association. 891 */ 892 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 893 { 894 /* From Section 1.6 Serial Number Arithmetic: 895 * Transmission Sequence Numbers wrap around when they reach 896 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 897 * after transmitting TSN = 2*32 - 1 is TSN = 0. 898 */ 899 __u32 retval = asoc->next_tsn; 900 asoc->next_tsn++; 901 asoc->unack_data++; 902 903 return retval; 904 } 905 906 /* Compare two addresses to see if they match. Wildcard addresses 907 * only match themselves. 908 */ 909 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 910 const union sctp_addr *ss2) 911 { 912 struct sctp_af *af; 913 914 af = sctp_get_af_specific(ss1->sa.sa_family); 915 if (unlikely(!af)) 916 return 0; 917 918 return af->cmp_addr(ss1, ss2); 919 } 920 921 /* Return an ecne chunk to get prepended to a packet. 922 * Note: We are sly and return a shared, prealloced chunk. FIXME: 923 * No we don't, but we could/should. 924 */ 925 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 926 { 927 struct sctp_chunk *chunk; 928 929 /* Send ECNE if needed. 930 * Not being able to allocate a chunk here is not deadly. 931 */ 932 if (asoc->need_ecne) 933 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 934 else 935 chunk = NULL; 936 937 return chunk; 938 } 939 940 /* 941 * Find which transport this TSN was sent on. 942 */ 943 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 944 __u32 tsn) 945 { 946 struct sctp_transport *active; 947 struct sctp_transport *match; 948 struct sctp_transport *transport; 949 struct sctp_chunk *chunk; 950 __be32 key = htonl(tsn); 951 952 match = NULL; 953 954 /* 955 * FIXME: In general, find a more efficient data structure for 956 * searching. 957 */ 958 959 /* 960 * The general strategy is to search each transport's transmitted 961 * list. Return which transport this TSN lives on. 962 * 963 * Let's be hopeful and check the active_path first. 964 * Another optimization would be to know if there is only one 965 * outbound path and not have to look for the TSN at all. 966 * 967 */ 968 969 active = asoc->peer.active_path; 970 971 list_for_each_entry(chunk, &active->transmitted, 972 transmitted_list) { 973 974 if (key == chunk->subh.data_hdr->tsn) { 975 match = active; 976 goto out; 977 } 978 } 979 980 /* If not found, go search all the other transports. */ 981 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 982 transports) { 983 984 if (transport == active) 985 break; 986 list_for_each_entry(chunk, &transport->transmitted, 987 transmitted_list) { 988 if (key == chunk->subh.data_hdr->tsn) { 989 match = transport; 990 goto out; 991 } 992 } 993 } 994 out: 995 return match; 996 } 997 998 /* Is this the association we are looking for? */ 999 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1000 const union sctp_addr *laddr, 1001 const union sctp_addr *paddr) 1002 { 1003 struct sctp_transport *transport; 1004 1005 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1006 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 1007 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1008 if (!transport) 1009 goto out; 1010 1011 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1012 sctp_sk(asoc->base.sk))) 1013 goto out; 1014 } 1015 transport = NULL; 1016 1017 out: 1018 return transport; 1019 } 1020 1021 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1022 static void sctp_assoc_bh_rcv(struct work_struct *work) 1023 { 1024 struct sctp_association *asoc = 1025 container_of(work, struct sctp_association, 1026 base.inqueue.immediate); 1027 struct sctp_endpoint *ep; 1028 struct sctp_chunk *chunk; 1029 struct sock *sk; 1030 struct sctp_inq *inqueue; 1031 int state; 1032 sctp_subtype_t subtype; 1033 int error = 0; 1034 1035 /* The association should be held so we should be safe. */ 1036 ep = asoc->ep; 1037 sk = asoc->base.sk; 1038 1039 inqueue = &asoc->base.inqueue; 1040 sctp_association_hold(asoc); 1041 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1042 state = asoc->state; 1043 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1044 1045 /* SCTP-AUTH, Section 6.3: 1046 * The receiver has a list of chunk types which it expects 1047 * to be received only after an AUTH-chunk. This list has 1048 * been sent to the peer during the association setup. It 1049 * MUST silently discard these chunks if they are not placed 1050 * after an AUTH chunk in the packet. 1051 */ 1052 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1053 continue; 1054 1055 /* Remember where the last DATA chunk came from so we 1056 * know where to send the SACK. 1057 */ 1058 if (sctp_chunk_is_data(chunk)) 1059 asoc->peer.last_data_from = chunk->transport; 1060 else 1061 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 1062 1063 if (chunk->transport) 1064 chunk->transport->last_time_heard = jiffies; 1065 1066 /* Run through the state machine. */ 1067 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 1068 state, ep, asoc, chunk, GFP_ATOMIC); 1069 1070 /* Check to see if the association is freed in response to 1071 * the incoming chunk. If so, get out of the while loop. 1072 */ 1073 if (asoc->base.dead) 1074 break; 1075 1076 /* If there is an error on chunk, discard this packet. */ 1077 if (error && chunk) 1078 chunk->pdiscard = 1; 1079 } 1080 sctp_association_put(asoc); 1081 } 1082 1083 /* This routine moves an association from its old sk to a new sk. */ 1084 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1085 { 1086 struct sctp_sock *newsp = sctp_sk(newsk); 1087 struct sock *oldsk = assoc->base.sk; 1088 1089 /* Delete the association from the old endpoint's list of 1090 * associations. 1091 */ 1092 list_del_init(&assoc->asocs); 1093 1094 /* Decrement the backlog value for a TCP-style socket. */ 1095 if (sctp_style(oldsk, TCP)) 1096 oldsk->sk_ack_backlog--; 1097 1098 /* Release references to the old endpoint and the sock. */ 1099 sctp_endpoint_put(assoc->ep); 1100 sock_put(assoc->base.sk); 1101 1102 /* Get a reference to the new endpoint. */ 1103 assoc->ep = newsp->ep; 1104 sctp_endpoint_hold(assoc->ep); 1105 1106 /* Get a reference to the new sock. */ 1107 assoc->base.sk = newsk; 1108 sock_hold(assoc->base.sk); 1109 1110 /* Add the association to the new endpoint's list of associations. */ 1111 sctp_endpoint_add_asoc(newsp->ep, assoc); 1112 } 1113 1114 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1115 void sctp_assoc_update(struct sctp_association *asoc, 1116 struct sctp_association *new) 1117 { 1118 struct sctp_transport *trans; 1119 struct list_head *pos, *temp; 1120 1121 /* Copy in new parameters of peer. */ 1122 asoc->c = new->c; 1123 asoc->peer.rwnd = new->peer.rwnd; 1124 asoc->peer.sack_needed = new->peer.sack_needed; 1125 asoc->peer.i = new->peer.i; 1126 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1127 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1128 1129 /* Remove any peer addresses not present in the new association. */ 1130 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1131 trans = list_entry(pos, struct sctp_transport, transports); 1132 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) 1133 sctp_assoc_del_peer(asoc, &trans->ipaddr); 1134 1135 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1136 sctp_transport_reset(trans); 1137 } 1138 1139 /* If the case is A (association restart), use 1140 * initial_tsn as next_tsn. If the case is B, use 1141 * current next_tsn in case data sent to peer 1142 * has been discarded and needs retransmission. 1143 */ 1144 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1145 asoc->next_tsn = new->next_tsn; 1146 asoc->ctsn_ack_point = new->ctsn_ack_point; 1147 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1148 1149 /* Reinitialize SSN for both local streams 1150 * and peer's streams. 1151 */ 1152 sctp_ssnmap_clear(asoc->ssnmap); 1153 1154 /* Flush the ULP reassembly and ordered queue. 1155 * Any data there will now be stale and will 1156 * cause problems. 1157 */ 1158 sctp_ulpq_flush(&asoc->ulpq); 1159 1160 /* reset the overall association error count so 1161 * that the restarted association doesn't get torn 1162 * down on the next retransmission timer. 1163 */ 1164 asoc->overall_error_count = 0; 1165 1166 } else { 1167 /* Add any peer addresses from the new association. */ 1168 list_for_each_entry(trans, &new->peer.transport_addr_list, 1169 transports) { 1170 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1171 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1172 GFP_ATOMIC, trans->state); 1173 } 1174 1175 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1176 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1177 if (!asoc->ssnmap) { 1178 /* Move the ssnmap. */ 1179 asoc->ssnmap = new->ssnmap; 1180 new->ssnmap = NULL; 1181 } 1182 1183 if (!asoc->assoc_id) { 1184 /* get a new association id since we don't have one 1185 * yet. 1186 */ 1187 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1188 } 1189 } 1190 1191 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1192 * and also move the association shared keys over 1193 */ 1194 kfree(asoc->peer.peer_random); 1195 asoc->peer.peer_random = new->peer.peer_random; 1196 new->peer.peer_random = NULL; 1197 1198 kfree(asoc->peer.peer_chunks); 1199 asoc->peer.peer_chunks = new->peer.peer_chunks; 1200 new->peer.peer_chunks = NULL; 1201 1202 kfree(asoc->peer.peer_hmacs); 1203 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1204 new->peer.peer_hmacs = NULL; 1205 1206 sctp_auth_key_put(asoc->asoc_shared_key); 1207 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1208 } 1209 1210 /* Update the retran path for sending a retransmitted packet. 1211 * Round-robin through the active transports, else round-robin 1212 * through the inactive transports as this is the next best thing 1213 * we can try. 1214 */ 1215 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1216 { 1217 struct sctp_transport *t, *next; 1218 struct list_head *head = &asoc->peer.transport_addr_list; 1219 struct list_head *pos; 1220 1221 if (asoc->peer.transport_count == 1) 1222 return; 1223 1224 /* Find the next transport in a round-robin fashion. */ 1225 t = asoc->peer.retran_path; 1226 pos = &t->transports; 1227 next = NULL; 1228 1229 while (1) { 1230 /* Skip the head. */ 1231 if (pos->next == head) 1232 pos = head->next; 1233 else 1234 pos = pos->next; 1235 1236 t = list_entry(pos, struct sctp_transport, transports); 1237 1238 /* We have exhausted the list, but didn't find any 1239 * other active transports. If so, use the next 1240 * transport. 1241 */ 1242 if (t == asoc->peer.retran_path) { 1243 t = next; 1244 break; 1245 } 1246 1247 /* Try to find an active transport. */ 1248 1249 if ((t->state == SCTP_ACTIVE) || 1250 (t->state == SCTP_UNKNOWN)) { 1251 break; 1252 } else { 1253 /* Keep track of the next transport in case 1254 * we don't find any active transport. 1255 */ 1256 if (!next) 1257 next = t; 1258 } 1259 } 1260 1261 asoc->peer.retran_path = t; 1262 1263 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1264 " %p addr: ", 1265 " port: %d\n", 1266 asoc, 1267 (&t->ipaddr), 1268 ntohs(t->ipaddr.v4.sin_port)); 1269 } 1270 1271 /* Choose the transport for sending a INIT packet. */ 1272 struct sctp_transport *sctp_assoc_choose_init_transport( 1273 struct sctp_association *asoc) 1274 { 1275 struct sctp_transport *t; 1276 1277 /* Use the retran path. If the last INIT was sent over the 1278 * retran path, update the retran path and use it. 1279 */ 1280 if (!asoc->init_last_sent_to) { 1281 t = asoc->peer.active_path; 1282 } else { 1283 if (asoc->init_last_sent_to == asoc->peer.retran_path) 1284 sctp_assoc_update_retran_path(asoc); 1285 t = asoc->peer.retran_path; 1286 } 1287 1288 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1289 " %p addr: ", 1290 " port: %d\n", 1291 asoc, 1292 (&t->ipaddr), 1293 ntohs(t->ipaddr.v4.sin_port)); 1294 1295 return t; 1296 } 1297 1298 /* Choose the transport for sending a SHUTDOWN packet. */ 1299 struct sctp_transport *sctp_assoc_choose_shutdown_transport( 1300 struct sctp_association *asoc) 1301 { 1302 /* If this is the first time SHUTDOWN is sent, use the active path, 1303 * else use the retran path. If the last SHUTDOWN was sent over the 1304 * retran path, update the retran path and use it. 1305 */ 1306 if (!asoc->shutdown_last_sent_to) 1307 return asoc->peer.active_path; 1308 else { 1309 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path) 1310 sctp_assoc_update_retran_path(asoc); 1311 return asoc->peer.retran_path; 1312 } 1313 1314 } 1315 1316 /* Update the association's pmtu and frag_point by going through all the 1317 * transports. This routine is called when a transport's PMTU has changed. 1318 */ 1319 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1320 { 1321 struct sctp_transport *t; 1322 __u32 pmtu = 0; 1323 1324 if (!asoc) 1325 return; 1326 1327 /* Get the lowest pmtu of all the transports. */ 1328 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1329 transports) { 1330 if (t->pmtu_pending && t->dst) { 1331 sctp_transport_update_pmtu(t, dst_mtu(t->dst)); 1332 t->pmtu_pending = 0; 1333 } 1334 if (!pmtu || (t->pathmtu < pmtu)) 1335 pmtu = t->pathmtu; 1336 } 1337 1338 if (pmtu) { 1339 struct sctp_sock *sp = sctp_sk(asoc->base.sk); 1340 asoc->pathmtu = pmtu; 1341 asoc->frag_point = sctp_frag_point(sp, pmtu); 1342 } 1343 1344 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1345 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1346 } 1347 1348 /* Should we send a SACK to update our peer? */ 1349 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1350 { 1351 switch (asoc->state) { 1352 case SCTP_STATE_ESTABLISHED: 1353 case SCTP_STATE_SHUTDOWN_PENDING: 1354 case SCTP_STATE_SHUTDOWN_RECEIVED: 1355 case SCTP_STATE_SHUTDOWN_SENT: 1356 if ((asoc->rwnd > asoc->a_rwnd) && 1357 ((asoc->rwnd - asoc->a_rwnd) >= 1358 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu))) 1359 return 1; 1360 break; 1361 default: 1362 break; 1363 } 1364 return 0; 1365 } 1366 1367 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1368 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1369 { 1370 struct sctp_chunk *sack; 1371 struct timer_list *timer; 1372 1373 if (asoc->rwnd_over) { 1374 if (asoc->rwnd_over >= len) { 1375 asoc->rwnd_over -= len; 1376 } else { 1377 asoc->rwnd += (len - asoc->rwnd_over); 1378 asoc->rwnd_over = 0; 1379 } 1380 } else { 1381 asoc->rwnd += len; 1382 } 1383 1384 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1385 "- %u\n", __func__, asoc, len, asoc->rwnd, 1386 asoc->rwnd_over, asoc->a_rwnd); 1387 1388 /* Send a window update SACK if the rwnd has increased by at least the 1389 * minimum of the association's PMTU and half of the receive buffer. 1390 * The algorithm used is similar to the one described in 1391 * Section 4.2.3.3 of RFC 1122. 1392 */ 1393 if (sctp_peer_needs_update(asoc)) { 1394 asoc->a_rwnd = asoc->rwnd; 1395 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1396 "rwnd: %u a_rwnd: %u\n", __func__, 1397 asoc, asoc->rwnd, asoc->a_rwnd); 1398 sack = sctp_make_sack(asoc); 1399 if (!sack) 1400 return; 1401 1402 asoc->peer.sack_needed = 0; 1403 1404 sctp_outq_tail(&asoc->outqueue, sack); 1405 1406 /* Stop the SACK timer. */ 1407 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1408 if (timer_pending(timer) && del_timer(timer)) 1409 sctp_association_put(asoc); 1410 } 1411 } 1412 1413 /* Decrease asoc's rwnd by len. */ 1414 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1415 { 1416 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1417 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1418 if (asoc->rwnd >= len) { 1419 asoc->rwnd -= len; 1420 } else { 1421 asoc->rwnd_over = len - asoc->rwnd; 1422 asoc->rwnd = 0; 1423 } 1424 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n", 1425 __func__, asoc, len, asoc->rwnd, 1426 asoc->rwnd_over); 1427 } 1428 1429 /* Build the bind address list for the association based on info from the 1430 * local endpoint and the remote peer. 1431 */ 1432 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1433 gfp_t gfp) 1434 { 1435 sctp_scope_t scope; 1436 int flags; 1437 1438 /* Use scoping rules to determine the subset of addresses from 1439 * the endpoint. 1440 */ 1441 scope = sctp_scope(&asoc->peer.active_path->ipaddr); 1442 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1443 if (asoc->peer.ipv4_address) 1444 flags |= SCTP_ADDR4_PEERSUPP; 1445 if (asoc->peer.ipv6_address) 1446 flags |= SCTP_ADDR6_PEERSUPP; 1447 1448 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1449 &asoc->ep->base.bind_addr, 1450 scope, gfp, flags); 1451 } 1452 1453 /* Build the association's bind address list from the cookie. */ 1454 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1455 struct sctp_cookie *cookie, 1456 gfp_t gfp) 1457 { 1458 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1459 int var_size3 = cookie->raw_addr_list_len; 1460 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1461 1462 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1463 asoc->ep->base.bind_addr.port, gfp); 1464 } 1465 1466 /* Lookup laddr in the bind address list of an association. */ 1467 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1468 const union sctp_addr *laddr) 1469 { 1470 int found = 0; 1471 1472 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1473 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1474 sctp_sk(asoc->base.sk))) 1475 found = 1; 1476 1477 return found; 1478 } 1479 1480 /* Set an association id for a given association */ 1481 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1482 { 1483 int assoc_id; 1484 int error = 0; 1485 retry: 1486 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1487 return -ENOMEM; 1488 1489 spin_lock_bh(&sctp_assocs_id_lock); 1490 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1491 1, &assoc_id); 1492 spin_unlock_bh(&sctp_assocs_id_lock); 1493 if (error == -EAGAIN) 1494 goto retry; 1495 else if (error) 1496 return error; 1497 1498 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1499 return error; 1500 } 1501 1502 /* Free asconf_ack cache */ 1503 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1504 { 1505 struct sctp_chunk *ack; 1506 struct sctp_chunk *tmp; 1507 1508 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1509 transmitted_list) { 1510 list_del_init(&ack->transmitted_list); 1511 sctp_chunk_free(ack); 1512 } 1513 } 1514 1515 /* Clean up the ASCONF_ACK queue */ 1516 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1517 { 1518 struct sctp_chunk *ack; 1519 struct sctp_chunk *tmp; 1520 1521 /* We can remove all the entries from the queue upto 1522 * the "Peer-Sequence-Number". 1523 */ 1524 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1525 transmitted_list) { 1526 if (ack->subh.addip_hdr->serial == 1527 htonl(asoc->peer.addip_serial)) 1528 break; 1529 1530 list_del_init(&ack->transmitted_list); 1531 sctp_chunk_free(ack); 1532 } 1533 } 1534 1535 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1536 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1537 const struct sctp_association *asoc, 1538 __be32 serial) 1539 { 1540 struct sctp_chunk *ack; 1541 1542 /* Walk through the list of cached ASCONF-ACKs and find the 1543 * ack chunk whose serial number matches that of the request. 1544 */ 1545 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1546 if (ack->subh.addip_hdr->serial == serial) { 1547 sctp_chunk_hold(ack); 1548 return ack; 1549 } 1550 } 1551 1552 return NULL; 1553 } 1554