1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/types.h> 54 #include <linux/fcntl.h> 55 #include <linux/poll.h> 56 #include <linux/init.h> 57 58 #include <linux/slab.h> 59 #include <linux/in.h> 60 #include <net/ipv6.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal functions. */ 65 static void sctp_assoc_bh_rcv(struct work_struct *work); 66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 68 69 /* Keep track of the new idr low so that we don't re-use association id 70 * numbers too fast. It is protected by they idr spin lock is in the 71 * range of 1 - INT_MAX. 72 */ 73 static u32 idr_low = 1; 74 75 76 /* 1st Level Abstractions. */ 77 78 /* Initialize a new association from provided memory. */ 79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 80 const struct sctp_endpoint *ep, 81 const struct sock *sk, 82 sctp_scope_t scope, 83 gfp_t gfp) 84 { 85 struct net *net = sock_net(sk); 86 struct sctp_sock *sp; 87 int i; 88 sctp_paramhdr_t *p; 89 int err; 90 91 /* Retrieve the SCTP per socket area. */ 92 sp = sctp_sk((struct sock *)sk); 93 94 /* Discarding const is appropriate here. */ 95 asoc->ep = (struct sctp_endpoint *)ep; 96 sctp_endpoint_hold(asoc->ep); 97 98 /* Hold the sock. */ 99 asoc->base.sk = (struct sock *)sk; 100 sock_hold(asoc->base.sk); 101 102 /* Initialize the common base substructure. */ 103 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 104 105 /* Initialize the object handling fields. */ 106 atomic_set(&asoc->base.refcnt, 1); 107 asoc->base.dead = 0; 108 asoc->base.malloced = 0; 109 110 /* Initialize the bind addr area. */ 111 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 112 113 asoc->state = SCTP_STATE_CLOSED; 114 115 /* Set these values from the socket values, a conversion between 116 * millsecons to seconds/microseconds must also be done. 117 */ 118 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 119 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 120 * 1000; 121 asoc->frag_point = 0; 122 asoc->user_frag = sp->user_frag; 123 124 /* Set the association max_retrans and RTO values from the 125 * socket values. 126 */ 127 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 128 asoc->pf_retrans = net->sctp.pf_retrans; 129 130 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 131 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 132 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 133 134 asoc->overall_error_count = 0; 135 136 /* Initialize the association's heartbeat interval based on the 137 * sock configured value. 138 */ 139 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 140 141 /* Initialize path max retrans value. */ 142 asoc->pathmaxrxt = sp->pathmaxrxt; 143 144 /* Initialize default path MTU. */ 145 asoc->pathmtu = sp->pathmtu; 146 147 /* Set association default SACK delay */ 148 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 149 asoc->sackfreq = sp->sackfreq; 150 151 /* Set the association default flags controlling 152 * Heartbeat, SACK delay, and Path MTU Discovery. 153 */ 154 asoc->param_flags = sp->param_flags; 155 156 /* Initialize the maximum mumber of new data packets that can be sent 157 * in a burst. 158 */ 159 asoc->max_burst = sp->max_burst; 160 161 /* initialize association timers */ 162 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 165 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 166 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 167 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 168 169 /* sctpimpguide Section 2.12.2 170 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 171 * recommended value of 5 times 'RTO.Max'. 172 */ 173 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 174 = 5 * asoc->rto_max; 175 176 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 177 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 178 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 179 min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ; 180 181 /* Initializes the timers */ 182 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 183 setup_timer(&asoc->timers[i], sctp_timer_events[i], 184 (unsigned long)asoc); 185 186 /* Pull default initialization values from the sock options. 187 * Note: This assumes that the values have already been 188 * validated in the sock. 189 */ 190 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 191 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 192 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 193 194 asoc->max_init_timeo = 195 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 196 197 /* Allocate storage for the ssnmap after the inbound and outbound 198 * streams have been negotiated during Init. 199 */ 200 asoc->ssnmap = NULL; 201 202 /* Set the local window size for receive. 203 * This is also the rcvbuf space per association. 204 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 205 * 1500 bytes in one SCTP packet. 206 */ 207 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 208 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 209 else 210 asoc->rwnd = sk->sk_rcvbuf/2; 211 212 asoc->a_rwnd = asoc->rwnd; 213 214 asoc->rwnd_over = 0; 215 asoc->rwnd_press = 0; 216 217 /* Use my own max window until I learn something better. */ 218 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 219 220 /* Set the sndbuf size for transmit. */ 221 asoc->sndbuf_used = 0; 222 223 /* Initialize the receive memory counter */ 224 atomic_set(&asoc->rmem_alloc, 0); 225 226 init_waitqueue_head(&asoc->wait); 227 228 asoc->c.my_vtag = sctp_generate_tag(ep); 229 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 230 asoc->c.peer_vtag = 0; 231 asoc->c.my_ttag = 0; 232 asoc->c.peer_ttag = 0; 233 asoc->c.my_port = ep->base.bind_addr.port; 234 235 asoc->c.initial_tsn = sctp_generate_tsn(ep); 236 237 asoc->next_tsn = asoc->c.initial_tsn; 238 239 asoc->ctsn_ack_point = asoc->next_tsn - 1; 240 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 241 asoc->highest_sacked = asoc->ctsn_ack_point; 242 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 243 asoc->unack_data = 0; 244 245 /* ADDIP Section 4.1 Asconf Chunk Procedures 246 * 247 * When an endpoint has an ASCONF signaled change to be sent to the 248 * remote endpoint it should do the following: 249 * ... 250 * A2) a serial number should be assigned to the chunk. The serial 251 * number SHOULD be a monotonically increasing number. The serial 252 * numbers SHOULD be initialized at the start of the 253 * association to the same value as the initial TSN. 254 */ 255 asoc->addip_serial = asoc->c.initial_tsn; 256 257 INIT_LIST_HEAD(&asoc->addip_chunk_list); 258 INIT_LIST_HEAD(&asoc->asconf_ack_list); 259 260 /* Make an empty list of remote transport addresses. */ 261 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 262 asoc->peer.transport_count = 0; 263 264 /* RFC 2960 5.1 Normal Establishment of an Association 265 * 266 * After the reception of the first data chunk in an 267 * association the endpoint must immediately respond with a 268 * sack to acknowledge the data chunk. Subsequent 269 * acknowledgements should be done as described in Section 270 * 6.2. 271 * 272 * [We implement this by telling a new association that it 273 * already received one packet.] 274 */ 275 asoc->peer.sack_needed = 1; 276 asoc->peer.sack_cnt = 0; 277 asoc->peer.sack_generation = 1; 278 279 /* Assume that the peer will tell us if he recognizes ASCONF 280 * as part of INIT exchange. 281 * The sctp_addip_noauth option is there for backward compatibilty 282 * and will revert old behavior. 283 */ 284 asoc->peer.asconf_capable = 0; 285 if (net->sctp.addip_noauth) 286 asoc->peer.asconf_capable = 1; 287 asoc->asconf_addr_del_pending = NULL; 288 asoc->src_out_of_asoc_ok = 0; 289 asoc->new_transport = NULL; 290 291 /* Create an input queue. */ 292 sctp_inq_init(&asoc->base.inqueue); 293 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 294 295 /* Create an output queue. */ 296 sctp_outq_init(asoc, &asoc->outqueue); 297 298 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 299 goto fail_init; 300 301 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 302 303 asoc->need_ecne = 0; 304 305 asoc->assoc_id = 0; 306 307 /* Assume that peer would support both address types unless we are 308 * told otherwise. 309 */ 310 asoc->peer.ipv4_address = 1; 311 if (asoc->base.sk->sk_family == PF_INET6) 312 asoc->peer.ipv6_address = 1; 313 INIT_LIST_HEAD(&asoc->asocs); 314 315 asoc->autoclose = sp->autoclose; 316 317 asoc->default_stream = sp->default_stream; 318 asoc->default_ppid = sp->default_ppid; 319 asoc->default_flags = sp->default_flags; 320 asoc->default_context = sp->default_context; 321 asoc->default_timetolive = sp->default_timetolive; 322 asoc->default_rcv_context = sp->default_rcv_context; 323 324 /* SCTP_GET_ASSOC_STATS COUNTERS */ 325 memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats)); 326 327 /* AUTH related initializations */ 328 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 329 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 330 if (err) 331 goto fail_init; 332 333 asoc->active_key_id = ep->active_key_id; 334 asoc->asoc_shared_key = NULL; 335 336 asoc->default_hmac_id = 0; 337 /* Save the hmacs and chunks list into this association */ 338 if (ep->auth_hmacs_list) 339 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 340 ntohs(ep->auth_hmacs_list->param_hdr.length)); 341 if (ep->auth_chunk_list) 342 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 343 ntohs(ep->auth_chunk_list->param_hdr.length)); 344 345 /* Get the AUTH random number for this association */ 346 p = (sctp_paramhdr_t *)asoc->c.auth_random; 347 p->type = SCTP_PARAM_RANDOM; 348 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 349 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 350 351 return asoc; 352 353 fail_init: 354 sctp_endpoint_put(asoc->ep); 355 sock_put(asoc->base.sk); 356 return NULL; 357 } 358 359 /* Allocate and initialize a new association */ 360 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 361 const struct sock *sk, 362 sctp_scope_t scope, 363 gfp_t gfp) 364 { 365 struct sctp_association *asoc; 366 367 asoc = t_new(struct sctp_association, gfp); 368 if (!asoc) 369 goto fail; 370 371 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 372 goto fail_init; 373 374 asoc->base.malloced = 1; 375 SCTP_DBG_OBJCNT_INC(assoc); 376 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 377 378 return asoc; 379 380 fail_init: 381 kfree(asoc); 382 fail: 383 return NULL; 384 } 385 386 /* Free this association if possible. There may still be users, so 387 * the actual deallocation may be delayed. 388 */ 389 void sctp_association_free(struct sctp_association *asoc) 390 { 391 struct sock *sk = asoc->base.sk; 392 struct sctp_transport *transport; 393 struct list_head *pos, *temp; 394 int i; 395 396 /* Only real associations count against the endpoint, so 397 * don't bother for if this is a temporary association. 398 */ 399 if (!asoc->temp) { 400 list_del(&asoc->asocs); 401 402 /* Decrement the backlog value for a TCP-style listening 403 * socket. 404 */ 405 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 406 sk->sk_ack_backlog--; 407 } 408 409 /* Mark as dead, so other users can know this structure is 410 * going away. 411 */ 412 asoc->base.dead = 1; 413 414 /* Dispose of any data lying around in the outqueue. */ 415 sctp_outq_free(&asoc->outqueue); 416 417 /* Dispose of any pending messages for the upper layer. */ 418 sctp_ulpq_free(&asoc->ulpq); 419 420 /* Dispose of any pending chunks on the inqueue. */ 421 sctp_inq_free(&asoc->base.inqueue); 422 423 sctp_tsnmap_free(&asoc->peer.tsn_map); 424 425 /* Free ssnmap storage. */ 426 sctp_ssnmap_free(asoc->ssnmap); 427 428 /* Clean up the bound address list. */ 429 sctp_bind_addr_free(&asoc->base.bind_addr); 430 431 /* Do we need to go through all of our timers and 432 * delete them? To be safe we will try to delete all, but we 433 * should be able to go through and make a guess based 434 * on our state. 435 */ 436 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 437 if (timer_pending(&asoc->timers[i]) && 438 del_timer(&asoc->timers[i])) 439 sctp_association_put(asoc); 440 } 441 442 /* Free peer's cached cookie. */ 443 kfree(asoc->peer.cookie); 444 kfree(asoc->peer.peer_random); 445 kfree(asoc->peer.peer_chunks); 446 kfree(asoc->peer.peer_hmacs); 447 448 /* Release the transport structures. */ 449 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 450 transport = list_entry(pos, struct sctp_transport, transports); 451 list_del_rcu(pos); 452 sctp_transport_free(transport); 453 } 454 455 asoc->peer.transport_count = 0; 456 457 sctp_asconf_queue_teardown(asoc); 458 459 /* Free pending address space being deleted */ 460 if (asoc->asconf_addr_del_pending != NULL) 461 kfree(asoc->asconf_addr_del_pending); 462 463 /* AUTH - Free the endpoint shared keys */ 464 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 465 466 /* AUTH - Free the association shared key */ 467 sctp_auth_key_put(asoc->asoc_shared_key); 468 469 sctp_association_put(asoc); 470 } 471 472 /* Cleanup and free up an association. */ 473 static void sctp_association_destroy(struct sctp_association *asoc) 474 { 475 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 476 477 sctp_endpoint_put(asoc->ep); 478 sock_put(asoc->base.sk); 479 480 if (asoc->assoc_id != 0) { 481 spin_lock_bh(&sctp_assocs_id_lock); 482 idr_remove(&sctp_assocs_id, asoc->assoc_id); 483 spin_unlock_bh(&sctp_assocs_id_lock); 484 } 485 486 WARN_ON(atomic_read(&asoc->rmem_alloc)); 487 488 if (asoc->base.malloced) { 489 kfree(asoc); 490 SCTP_DBG_OBJCNT_DEC(assoc); 491 } 492 } 493 494 /* Change the primary destination address for the peer. */ 495 void sctp_assoc_set_primary(struct sctp_association *asoc, 496 struct sctp_transport *transport) 497 { 498 int changeover = 0; 499 500 /* it's a changeover only if we already have a primary path 501 * that we are changing 502 */ 503 if (asoc->peer.primary_path != NULL && 504 asoc->peer.primary_path != transport) 505 changeover = 1 ; 506 507 asoc->peer.primary_path = transport; 508 509 /* Set a default msg_name for events. */ 510 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 511 sizeof(union sctp_addr)); 512 513 /* If the primary path is changing, assume that the 514 * user wants to use this new path. 515 */ 516 if ((transport->state == SCTP_ACTIVE) || 517 (transport->state == SCTP_UNKNOWN)) 518 asoc->peer.active_path = transport; 519 520 /* 521 * SFR-CACC algorithm: 522 * Upon the receipt of a request to change the primary 523 * destination address, on the data structure for the new 524 * primary destination, the sender MUST do the following: 525 * 526 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 527 * to this destination address earlier. The sender MUST set 528 * CYCLING_CHANGEOVER to indicate that this switch is a 529 * double switch to the same destination address. 530 * 531 * Really, only bother is we have data queued or outstanding on 532 * the association. 533 */ 534 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 535 return; 536 537 if (transport->cacc.changeover_active) 538 transport->cacc.cycling_changeover = changeover; 539 540 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 541 * a changeover has occurred. 542 */ 543 transport->cacc.changeover_active = changeover; 544 545 /* 3) The sender MUST store the next TSN to be sent in 546 * next_tsn_at_change. 547 */ 548 transport->cacc.next_tsn_at_change = asoc->next_tsn; 549 } 550 551 /* Remove a transport from an association. */ 552 void sctp_assoc_rm_peer(struct sctp_association *asoc, 553 struct sctp_transport *peer) 554 { 555 struct list_head *pos; 556 struct sctp_transport *transport; 557 558 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 559 " port: %d\n", 560 asoc, 561 (&peer->ipaddr), 562 ntohs(peer->ipaddr.v4.sin_port)); 563 564 /* If we are to remove the current retran_path, update it 565 * to the next peer before removing this peer from the list. 566 */ 567 if (asoc->peer.retran_path == peer) 568 sctp_assoc_update_retran_path(asoc); 569 570 /* Remove this peer from the list. */ 571 list_del_rcu(&peer->transports); 572 573 /* Get the first transport of asoc. */ 574 pos = asoc->peer.transport_addr_list.next; 575 transport = list_entry(pos, struct sctp_transport, transports); 576 577 /* Update any entries that match the peer to be deleted. */ 578 if (asoc->peer.primary_path == peer) 579 sctp_assoc_set_primary(asoc, transport); 580 if (asoc->peer.active_path == peer) 581 asoc->peer.active_path = transport; 582 if (asoc->peer.retran_path == peer) 583 asoc->peer.retran_path = transport; 584 if (asoc->peer.last_data_from == peer) 585 asoc->peer.last_data_from = transport; 586 587 /* If we remove the transport an INIT was last sent to, set it to 588 * NULL. Combined with the update of the retran path above, this 589 * will cause the next INIT to be sent to the next available 590 * transport, maintaining the cycle. 591 */ 592 if (asoc->init_last_sent_to == peer) 593 asoc->init_last_sent_to = NULL; 594 595 /* If we remove the transport an SHUTDOWN was last sent to, set it 596 * to NULL. Combined with the update of the retran path above, this 597 * will cause the next SHUTDOWN to be sent to the next available 598 * transport, maintaining the cycle. 599 */ 600 if (asoc->shutdown_last_sent_to == peer) 601 asoc->shutdown_last_sent_to = NULL; 602 603 /* If we remove the transport an ASCONF was last sent to, set it to 604 * NULL. 605 */ 606 if (asoc->addip_last_asconf && 607 asoc->addip_last_asconf->transport == peer) 608 asoc->addip_last_asconf->transport = NULL; 609 610 /* If we have something on the transmitted list, we have to 611 * save it off. The best place is the active path. 612 */ 613 if (!list_empty(&peer->transmitted)) { 614 struct sctp_transport *active = asoc->peer.active_path; 615 struct sctp_chunk *ch; 616 617 /* Reset the transport of each chunk on this list */ 618 list_for_each_entry(ch, &peer->transmitted, 619 transmitted_list) { 620 ch->transport = NULL; 621 ch->rtt_in_progress = 0; 622 } 623 624 list_splice_tail_init(&peer->transmitted, 625 &active->transmitted); 626 627 /* Start a T3 timer here in case it wasn't running so 628 * that these migrated packets have a chance to get 629 * retrnasmitted. 630 */ 631 if (!timer_pending(&active->T3_rtx_timer)) 632 if (!mod_timer(&active->T3_rtx_timer, 633 jiffies + active->rto)) 634 sctp_transport_hold(active); 635 } 636 637 asoc->peer.transport_count--; 638 639 sctp_transport_free(peer); 640 } 641 642 /* Add a transport address to an association. */ 643 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 644 const union sctp_addr *addr, 645 const gfp_t gfp, 646 const int peer_state) 647 { 648 struct net *net = sock_net(asoc->base.sk); 649 struct sctp_transport *peer; 650 struct sctp_sock *sp; 651 unsigned short port; 652 653 sp = sctp_sk(asoc->base.sk); 654 655 /* AF_INET and AF_INET6 share common port field. */ 656 port = ntohs(addr->v4.sin_port); 657 658 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 659 " port: %d state:%d\n", 660 asoc, 661 addr, 662 port, 663 peer_state); 664 665 /* Set the port if it has not been set yet. */ 666 if (0 == asoc->peer.port) 667 asoc->peer.port = port; 668 669 /* Check to see if this is a duplicate. */ 670 peer = sctp_assoc_lookup_paddr(asoc, addr); 671 if (peer) { 672 /* An UNKNOWN state is only set on transports added by 673 * user in sctp_connectx() call. Such transports should be 674 * considered CONFIRMED per RFC 4960, Section 5.4. 675 */ 676 if (peer->state == SCTP_UNKNOWN) { 677 peer->state = SCTP_ACTIVE; 678 } 679 return peer; 680 } 681 682 peer = sctp_transport_new(net, addr, gfp); 683 if (!peer) 684 return NULL; 685 686 sctp_transport_set_owner(peer, asoc); 687 688 /* Initialize the peer's heartbeat interval based on the 689 * association configured value. 690 */ 691 peer->hbinterval = asoc->hbinterval; 692 693 /* Set the path max_retrans. */ 694 peer->pathmaxrxt = asoc->pathmaxrxt; 695 696 /* And the partial failure retrnas threshold */ 697 peer->pf_retrans = asoc->pf_retrans; 698 699 /* Initialize the peer's SACK delay timeout based on the 700 * association configured value. 701 */ 702 peer->sackdelay = asoc->sackdelay; 703 peer->sackfreq = asoc->sackfreq; 704 705 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 706 * based on association setting. 707 */ 708 peer->param_flags = asoc->param_flags; 709 710 sctp_transport_route(peer, NULL, sp); 711 712 /* Initialize the pmtu of the transport. */ 713 if (peer->param_flags & SPP_PMTUD_DISABLE) { 714 if (asoc->pathmtu) 715 peer->pathmtu = asoc->pathmtu; 716 else 717 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 718 } 719 720 /* If this is the first transport addr on this association, 721 * initialize the association PMTU to the peer's PMTU. 722 * If not and the current association PMTU is higher than the new 723 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 724 */ 725 if (asoc->pathmtu) 726 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 727 else 728 asoc->pathmtu = peer->pathmtu; 729 730 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 731 "%d\n", asoc, asoc->pathmtu); 732 peer->pmtu_pending = 0; 733 734 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 735 736 /* The asoc->peer.port might not be meaningful yet, but 737 * initialize the packet structure anyway. 738 */ 739 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 740 asoc->peer.port); 741 742 /* 7.2.1 Slow-Start 743 * 744 * o The initial cwnd before DATA transmission or after a sufficiently 745 * long idle period MUST be set to 746 * min(4*MTU, max(2*MTU, 4380 bytes)) 747 * 748 * o The initial value of ssthresh MAY be arbitrarily high 749 * (for example, implementations MAY use the size of the 750 * receiver advertised window). 751 */ 752 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 753 754 /* At this point, we may not have the receiver's advertised window, 755 * so initialize ssthresh to the default value and it will be set 756 * later when we process the INIT. 757 */ 758 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 759 760 peer->partial_bytes_acked = 0; 761 peer->flight_size = 0; 762 peer->burst_limited = 0; 763 764 /* Set the transport's RTO.initial value */ 765 peer->rto = asoc->rto_initial; 766 sctp_max_rto(asoc, peer); 767 768 /* Set the peer's active state. */ 769 peer->state = peer_state; 770 771 /* Attach the remote transport to our asoc. */ 772 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 773 asoc->peer.transport_count++; 774 775 /* If we do not yet have a primary path, set one. */ 776 if (!asoc->peer.primary_path) { 777 sctp_assoc_set_primary(asoc, peer); 778 asoc->peer.retran_path = peer; 779 } 780 781 if (asoc->peer.active_path == asoc->peer.retran_path && 782 peer->state != SCTP_UNCONFIRMED) { 783 asoc->peer.retran_path = peer; 784 } 785 786 return peer; 787 } 788 789 /* Delete a transport address from an association. */ 790 void sctp_assoc_del_peer(struct sctp_association *asoc, 791 const union sctp_addr *addr) 792 { 793 struct list_head *pos; 794 struct list_head *temp; 795 struct sctp_transport *transport; 796 797 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 798 transport = list_entry(pos, struct sctp_transport, transports); 799 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 800 /* Do book keeping for removing the peer and free it. */ 801 sctp_assoc_rm_peer(asoc, transport); 802 break; 803 } 804 } 805 } 806 807 /* Lookup a transport by address. */ 808 struct sctp_transport *sctp_assoc_lookup_paddr( 809 const struct sctp_association *asoc, 810 const union sctp_addr *address) 811 { 812 struct sctp_transport *t; 813 814 /* Cycle through all transports searching for a peer address. */ 815 816 list_for_each_entry(t, &asoc->peer.transport_addr_list, 817 transports) { 818 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 819 return t; 820 } 821 822 return NULL; 823 } 824 825 /* Remove all transports except a give one */ 826 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 827 struct sctp_transport *primary) 828 { 829 struct sctp_transport *temp; 830 struct sctp_transport *t; 831 832 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 833 transports) { 834 /* if the current transport is not the primary one, delete it */ 835 if (t != primary) 836 sctp_assoc_rm_peer(asoc, t); 837 } 838 } 839 840 /* Engage in transport control operations. 841 * Mark the transport up or down and send a notification to the user. 842 * Select and update the new active and retran paths. 843 */ 844 void sctp_assoc_control_transport(struct sctp_association *asoc, 845 struct sctp_transport *transport, 846 sctp_transport_cmd_t command, 847 sctp_sn_error_t error) 848 { 849 struct sctp_transport *t = NULL; 850 struct sctp_transport *first; 851 struct sctp_transport *second; 852 struct sctp_ulpevent *event; 853 struct sockaddr_storage addr; 854 int spc_state = 0; 855 bool ulp_notify = true; 856 857 /* Record the transition on the transport. */ 858 switch (command) { 859 case SCTP_TRANSPORT_UP: 860 /* If we are moving from UNCONFIRMED state due 861 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 862 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 863 */ 864 if (SCTP_UNCONFIRMED == transport->state && 865 SCTP_HEARTBEAT_SUCCESS == error) 866 spc_state = SCTP_ADDR_CONFIRMED; 867 else 868 spc_state = SCTP_ADDR_AVAILABLE; 869 /* Don't inform ULP about transition from PF to 870 * active state and set cwnd to 1, see SCTP 871 * Quick failover draft section 5.1, point 5 872 */ 873 if (transport->state == SCTP_PF) { 874 ulp_notify = false; 875 transport->cwnd = 1; 876 } 877 transport->state = SCTP_ACTIVE; 878 break; 879 880 case SCTP_TRANSPORT_DOWN: 881 /* If the transport was never confirmed, do not transition it 882 * to inactive state. Also, release the cached route since 883 * there may be a better route next time. 884 */ 885 if (transport->state != SCTP_UNCONFIRMED) 886 transport->state = SCTP_INACTIVE; 887 else { 888 dst_release(transport->dst); 889 transport->dst = NULL; 890 } 891 892 spc_state = SCTP_ADDR_UNREACHABLE; 893 break; 894 895 case SCTP_TRANSPORT_PF: 896 transport->state = SCTP_PF; 897 ulp_notify = false; 898 break; 899 900 default: 901 return; 902 } 903 904 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 905 * user. 906 */ 907 if (ulp_notify) { 908 memset(&addr, 0, sizeof(struct sockaddr_storage)); 909 memcpy(&addr, &transport->ipaddr, 910 transport->af_specific->sockaddr_len); 911 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 912 0, spc_state, error, GFP_ATOMIC); 913 if (event) 914 sctp_ulpq_tail_event(&asoc->ulpq, event); 915 } 916 917 /* Select new active and retran paths. */ 918 919 /* Look for the two most recently used active transports. 920 * 921 * This code produces the wrong ordering whenever jiffies 922 * rolls over, but we still get usable transports, so we don't 923 * worry about it. 924 */ 925 first = NULL; second = NULL; 926 927 list_for_each_entry(t, &asoc->peer.transport_addr_list, 928 transports) { 929 930 if ((t->state == SCTP_INACTIVE) || 931 (t->state == SCTP_UNCONFIRMED) || 932 (t->state == SCTP_PF)) 933 continue; 934 if (!first || t->last_time_heard > first->last_time_heard) { 935 second = first; 936 first = t; 937 } 938 if (!second || t->last_time_heard > second->last_time_heard) 939 second = t; 940 } 941 942 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 943 * 944 * By default, an endpoint should always transmit to the 945 * primary path, unless the SCTP user explicitly specifies the 946 * destination transport address (and possibly source 947 * transport address) to use. 948 * 949 * [If the primary is active but not most recent, bump the most 950 * recently used transport.] 951 */ 952 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 953 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 954 first != asoc->peer.primary_path) { 955 second = first; 956 first = asoc->peer.primary_path; 957 } 958 959 /* If we failed to find a usable transport, just camp on the 960 * primary, even if it is inactive. 961 */ 962 if (!first) { 963 first = asoc->peer.primary_path; 964 second = asoc->peer.primary_path; 965 } 966 967 /* Set the active and retran transports. */ 968 asoc->peer.active_path = first; 969 asoc->peer.retran_path = second; 970 } 971 972 /* Hold a reference to an association. */ 973 void sctp_association_hold(struct sctp_association *asoc) 974 { 975 atomic_inc(&asoc->base.refcnt); 976 } 977 978 /* Release a reference to an association and cleanup 979 * if there are no more references. 980 */ 981 void sctp_association_put(struct sctp_association *asoc) 982 { 983 if (atomic_dec_and_test(&asoc->base.refcnt)) 984 sctp_association_destroy(asoc); 985 } 986 987 /* Allocate the next TSN, Transmission Sequence Number, for the given 988 * association. 989 */ 990 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 991 { 992 /* From Section 1.6 Serial Number Arithmetic: 993 * Transmission Sequence Numbers wrap around when they reach 994 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 995 * after transmitting TSN = 2*32 - 1 is TSN = 0. 996 */ 997 __u32 retval = asoc->next_tsn; 998 asoc->next_tsn++; 999 asoc->unack_data++; 1000 1001 return retval; 1002 } 1003 1004 /* Compare two addresses to see if they match. Wildcard addresses 1005 * only match themselves. 1006 */ 1007 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 1008 const union sctp_addr *ss2) 1009 { 1010 struct sctp_af *af; 1011 1012 af = sctp_get_af_specific(ss1->sa.sa_family); 1013 if (unlikely(!af)) 1014 return 0; 1015 1016 return af->cmp_addr(ss1, ss2); 1017 } 1018 1019 /* Return an ecne chunk to get prepended to a packet. 1020 * Note: We are sly and return a shared, prealloced chunk. FIXME: 1021 * No we don't, but we could/should. 1022 */ 1023 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 1024 { 1025 struct sctp_chunk *chunk; 1026 1027 /* Send ECNE if needed. 1028 * Not being able to allocate a chunk here is not deadly. 1029 */ 1030 if (asoc->need_ecne) 1031 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 1032 else 1033 chunk = NULL; 1034 1035 return chunk; 1036 } 1037 1038 /* 1039 * Find which transport this TSN was sent on. 1040 */ 1041 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1042 __u32 tsn) 1043 { 1044 struct sctp_transport *active; 1045 struct sctp_transport *match; 1046 struct sctp_transport *transport; 1047 struct sctp_chunk *chunk; 1048 __be32 key = htonl(tsn); 1049 1050 match = NULL; 1051 1052 /* 1053 * FIXME: In general, find a more efficient data structure for 1054 * searching. 1055 */ 1056 1057 /* 1058 * The general strategy is to search each transport's transmitted 1059 * list. Return which transport this TSN lives on. 1060 * 1061 * Let's be hopeful and check the active_path first. 1062 * Another optimization would be to know if there is only one 1063 * outbound path and not have to look for the TSN at all. 1064 * 1065 */ 1066 1067 active = asoc->peer.active_path; 1068 1069 list_for_each_entry(chunk, &active->transmitted, 1070 transmitted_list) { 1071 1072 if (key == chunk->subh.data_hdr->tsn) { 1073 match = active; 1074 goto out; 1075 } 1076 } 1077 1078 /* If not found, go search all the other transports. */ 1079 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1080 transports) { 1081 1082 if (transport == active) 1083 break; 1084 list_for_each_entry(chunk, &transport->transmitted, 1085 transmitted_list) { 1086 if (key == chunk->subh.data_hdr->tsn) { 1087 match = transport; 1088 goto out; 1089 } 1090 } 1091 } 1092 out: 1093 return match; 1094 } 1095 1096 /* Is this the association we are looking for? */ 1097 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1098 struct net *net, 1099 const union sctp_addr *laddr, 1100 const union sctp_addr *paddr) 1101 { 1102 struct sctp_transport *transport; 1103 1104 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1105 (htons(asoc->peer.port) == paddr->v4.sin_port) && 1106 net_eq(sock_net(asoc->base.sk), net)) { 1107 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1108 if (!transport) 1109 goto out; 1110 1111 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1112 sctp_sk(asoc->base.sk))) 1113 goto out; 1114 } 1115 transport = NULL; 1116 1117 out: 1118 return transport; 1119 } 1120 1121 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1122 static void sctp_assoc_bh_rcv(struct work_struct *work) 1123 { 1124 struct sctp_association *asoc = 1125 container_of(work, struct sctp_association, 1126 base.inqueue.immediate); 1127 struct net *net = sock_net(asoc->base.sk); 1128 struct sctp_endpoint *ep; 1129 struct sctp_chunk *chunk; 1130 struct sctp_inq *inqueue; 1131 int state; 1132 sctp_subtype_t subtype; 1133 int error = 0; 1134 1135 /* The association should be held so we should be safe. */ 1136 ep = asoc->ep; 1137 1138 inqueue = &asoc->base.inqueue; 1139 sctp_association_hold(asoc); 1140 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1141 state = asoc->state; 1142 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1143 1144 /* SCTP-AUTH, Section 6.3: 1145 * The receiver has a list of chunk types which it expects 1146 * to be received only after an AUTH-chunk. This list has 1147 * been sent to the peer during the association setup. It 1148 * MUST silently discard these chunks if they are not placed 1149 * after an AUTH chunk in the packet. 1150 */ 1151 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1152 continue; 1153 1154 /* Remember where the last DATA chunk came from so we 1155 * know where to send the SACK. 1156 */ 1157 if (sctp_chunk_is_data(chunk)) 1158 asoc->peer.last_data_from = chunk->transport; 1159 else { 1160 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1161 asoc->stats.ictrlchunks++; 1162 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1163 asoc->stats.isacks++; 1164 } 1165 1166 if (chunk->transport) 1167 chunk->transport->last_time_heard = jiffies; 1168 1169 /* Run through the state machine. */ 1170 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1171 state, ep, asoc, chunk, GFP_ATOMIC); 1172 1173 /* Check to see if the association is freed in response to 1174 * the incoming chunk. If so, get out of the while loop. 1175 */ 1176 if (asoc->base.dead) 1177 break; 1178 1179 /* If there is an error on chunk, discard this packet. */ 1180 if (error && chunk) 1181 chunk->pdiscard = 1; 1182 } 1183 sctp_association_put(asoc); 1184 } 1185 1186 /* This routine moves an association from its old sk to a new sk. */ 1187 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1188 { 1189 struct sctp_sock *newsp = sctp_sk(newsk); 1190 struct sock *oldsk = assoc->base.sk; 1191 1192 /* Delete the association from the old endpoint's list of 1193 * associations. 1194 */ 1195 list_del_init(&assoc->asocs); 1196 1197 /* Decrement the backlog value for a TCP-style socket. */ 1198 if (sctp_style(oldsk, TCP)) 1199 oldsk->sk_ack_backlog--; 1200 1201 /* Release references to the old endpoint and the sock. */ 1202 sctp_endpoint_put(assoc->ep); 1203 sock_put(assoc->base.sk); 1204 1205 /* Get a reference to the new endpoint. */ 1206 assoc->ep = newsp->ep; 1207 sctp_endpoint_hold(assoc->ep); 1208 1209 /* Get a reference to the new sock. */ 1210 assoc->base.sk = newsk; 1211 sock_hold(assoc->base.sk); 1212 1213 /* Add the association to the new endpoint's list of associations. */ 1214 sctp_endpoint_add_asoc(newsp->ep, assoc); 1215 } 1216 1217 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1218 void sctp_assoc_update(struct sctp_association *asoc, 1219 struct sctp_association *new) 1220 { 1221 struct sctp_transport *trans; 1222 struct list_head *pos, *temp; 1223 1224 /* Copy in new parameters of peer. */ 1225 asoc->c = new->c; 1226 asoc->peer.rwnd = new->peer.rwnd; 1227 asoc->peer.sack_needed = new->peer.sack_needed; 1228 asoc->peer.i = new->peer.i; 1229 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1230 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1231 1232 /* Remove any peer addresses not present in the new association. */ 1233 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1234 trans = list_entry(pos, struct sctp_transport, transports); 1235 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1236 sctp_assoc_rm_peer(asoc, trans); 1237 continue; 1238 } 1239 1240 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1241 sctp_transport_reset(trans); 1242 } 1243 1244 /* If the case is A (association restart), use 1245 * initial_tsn as next_tsn. If the case is B, use 1246 * current next_tsn in case data sent to peer 1247 * has been discarded and needs retransmission. 1248 */ 1249 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1250 asoc->next_tsn = new->next_tsn; 1251 asoc->ctsn_ack_point = new->ctsn_ack_point; 1252 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1253 1254 /* Reinitialize SSN for both local streams 1255 * and peer's streams. 1256 */ 1257 sctp_ssnmap_clear(asoc->ssnmap); 1258 1259 /* Flush the ULP reassembly and ordered queue. 1260 * Any data there will now be stale and will 1261 * cause problems. 1262 */ 1263 sctp_ulpq_flush(&asoc->ulpq); 1264 1265 /* reset the overall association error count so 1266 * that the restarted association doesn't get torn 1267 * down on the next retransmission timer. 1268 */ 1269 asoc->overall_error_count = 0; 1270 1271 } else { 1272 /* Add any peer addresses from the new association. */ 1273 list_for_each_entry(trans, &new->peer.transport_addr_list, 1274 transports) { 1275 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1276 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1277 GFP_ATOMIC, trans->state); 1278 } 1279 1280 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1281 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1282 if (!asoc->ssnmap) { 1283 /* Move the ssnmap. */ 1284 asoc->ssnmap = new->ssnmap; 1285 new->ssnmap = NULL; 1286 } 1287 1288 if (!asoc->assoc_id) { 1289 /* get a new association id since we don't have one 1290 * yet. 1291 */ 1292 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1293 } 1294 } 1295 1296 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1297 * and also move the association shared keys over 1298 */ 1299 kfree(asoc->peer.peer_random); 1300 asoc->peer.peer_random = new->peer.peer_random; 1301 new->peer.peer_random = NULL; 1302 1303 kfree(asoc->peer.peer_chunks); 1304 asoc->peer.peer_chunks = new->peer.peer_chunks; 1305 new->peer.peer_chunks = NULL; 1306 1307 kfree(asoc->peer.peer_hmacs); 1308 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1309 new->peer.peer_hmacs = NULL; 1310 1311 sctp_auth_key_put(asoc->asoc_shared_key); 1312 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1313 } 1314 1315 /* Update the retran path for sending a retransmitted packet. 1316 * Round-robin through the active transports, else round-robin 1317 * through the inactive transports as this is the next best thing 1318 * we can try. 1319 */ 1320 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1321 { 1322 struct sctp_transport *t, *next; 1323 struct list_head *head = &asoc->peer.transport_addr_list; 1324 struct list_head *pos; 1325 1326 if (asoc->peer.transport_count == 1) 1327 return; 1328 1329 /* Find the next transport in a round-robin fashion. */ 1330 t = asoc->peer.retran_path; 1331 pos = &t->transports; 1332 next = NULL; 1333 1334 while (1) { 1335 /* Skip the head. */ 1336 if (pos->next == head) 1337 pos = head->next; 1338 else 1339 pos = pos->next; 1340 1341 t = list_entry(pos, struct sctp_transport, transports); 1342 1343 /* We have exhausted the list, but didn't find any 1344 * other active transports. If so, use the next 1345 * transport. 1346 */ 1347 if (t == asoc->peer.retran_path) { 1348 t = next; 1349 break; 1350 } 1351 1352 /* Try to find an active transport. */ 1353 1354 if ((t->state == SCTP_ACTIVE) || 1355 (t->state == SCTP_UNKNOWN)) { 1356 break; 1357 } else { 1358 /* Keep track of the next transport in case 1359 * we don't find any active transport. 1360 */ 1361 if (t->state != SCTP_UNCONFIRMED && !next) 1362 next = t; 1363 } 1364 } 1365 1366 if (t) 1367 asoc->peer.retran_path = t; 1368 else 1369 t = asoc->peer.retran_path; 1370 1371 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1372 " %p addr: ", 1373 " port: %d\n", 1374 asoc, 1375 (&t->ipaddr), 1376 ntohs(t->ipaddr.v4.sin_port)); 1377 } 1378 1379 /* Choose the transport for sending retransmit packet. */ 1380 struct sctp_transport *sctp_assoc_choose_alter_transport( 1381 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1382 { 1383 /* If this is the first time packet is sent, use the active path, 1384 * else use the retran path. If the last packet was sent over the 1385 * retran path, update the retran path and use it. 1386 */ 1387 if (!last_sent_to) 1388 return asoc->peer.active_path; 1389 else { 1390 if (last_sent_to == asoc->peer.retran_path) 1391 sctp_assoc_update_retran_path(asoc); 1392 return asoc->peer.retran_path; 1393 } 1394 } 1395 1396 /* Update the association's pmtu and frag_point by going through all the 1397 * transports. This routine is called when a transport's PMTU has changed. 1398 */ 1399 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1400 { 1401 struct sctp_transport *t; 1402 __u32 pmtu = 0; 1403 1404 if (!asoc) 1405 return; 1406 1407 /* Get the lowest pmtu of all the transports. */ 1408 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1409 transports) { 1410 if (t->pmtu_pending && t->dst) { 1411 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1412 t->pmtu_pending = 0; 1413 } 1414 if (!pmtu || (t->pathmtu < pmtu)) 1415 pmtu = t->pathmtu; 1416 } 1417 1418 if (pmtu) { 1419 asoc->pathmtu = pmtu; 1420 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1421 } 1422 1423 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1424 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1425 } 1426 1427 /* Should we send a SACK to update our peer? */ 1428 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1429 { 1430 struct net *net = sock_net(asoc->base.sk); 1431 switch (asoc->state) { 1432 case SCTP_STATE_ESTABLISHED: 1433 case SCTP_STATE_SHUTDOWN_PENDING: 1434 case SCTP_STATE_SHUTDOWN_RECEIVED: 1435 case SCTP_STATE_SHUTDOWN_SENT: 1436 if ((asoc->rwnd > asoc->a_rwnd) && 1437 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1438 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1439 asoc->pathmtu))) 1440 return 1; 1441 break; 1442 default: 1443 break; 1444 } 1445 return 0; 1446 } 1447 1448 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1449 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1450 { 1451 struct sctp_chunk *sack; 1452 struct timer_list *timer; 1453 1454 if (asoc->rwnd_over) { 1455 if (asoc->rwnd_over >= len) { 1456 asoc->rwnd_over -= len; 1457 } else { 1458 asoc->rwnd += (len - asoc->rwnd_over); 1459 asoc->rwnd_over = 0; 1460 } 1461 } else { 1462 asoc->rwnd += len; 1463 } 1464 1465 /* If we had window pressure, start recovering it 1466 * once our rwnd had reached the accumulated pressure 1467 * threshold. The idea is to recover slowly, but up 1468 * to the initial advertised window. 1469 */ 1470 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1471 int change = min(asoc->pathmtu, asoc->rwnd_press); 1472 asoc->rwnd += change; 1473 asoc->rwnd_press -= change; 1474 } 1475 1476 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1477 "- %u\n", __func__, asoc, len, asoc->rwnd, 1478 asoc->rwnd_over, asoc->a_rwnd); 1479 1480 /* Send a window update SACK if the rwnd has increased by at least the 1481 * minimum of the association's PMTU and half of the receive buffer. 1482 * The algorithm used is similar to the one described in 1483 * Section 4.2.3.3 of RFC 1122. 1484 */ 1485 if (sctp_peer_needs_update(asoc)) { 1486 asoc->a_rwnd = asoc->rwnd; 1487 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1488 "rwnd: %u a_rwnd: %u\n", __func__, 1489 asoc, asoc->rwnd, asoc->a_rwnd); 1490 sack = sctp_make_sack(asoc); 1491 if (!sack) 1492 return; 1493 1494 asoc->peer.sack_needed = 0; 1495 1496 sctp_outq_tail(&asoc->outqueue, sack); 1497 1498 /* Stop the SACK timer. */ 1499 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1500 if (timer_pending(timer) && del_timer(timer)) 1501 sctp_association_put(asoc); 1502 } 1503 } 1504 1505 /* Decrease asoc's rwnd by len. */ 1506 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1507 { 1508 int rx_count; 1509 int over = 0; 1510 1511 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1512 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1513 1514 if (asoc->ep->rcvbuf_policy) 1515 rx_count = atomic_read(&asoc->rmem_alloc); 1516 else 1517 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1518 1519 /* If we've reached or overflowed our receive buffer, announce 1520 * a 0 rwnd if rwnd would still be positive. Store the 1521 * the pottential pressure overflow so that the window can be restored 1522 * back to original value. 1523 */ 1524 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1525 over = 1; 1526 1527 if (asoc->rwnd >= len) { 1528 asoc->rwnd -= len; 1529 if (over) { 1530 asoc->rwnd_press += asoc->rwnd; 1531 asoc->rwnd = 0; 1532 } 1533 } else { 1534 asoc->rwnd_over = len - asoc->rwnd; 1535 asoc->rwnd = 0; 1536 } 1537 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1538 __func__, asoc, len, asoc->rwnd, 1539 asoc->rwnd_over, asoc->rwnd_press); 1540 } 1541 1542 /* Build the bind address list for the association based on info from the 1543 * local endpoint and the remote peer. 1544 */ 1545 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1546 sctp_scope_t scope, gfp_t gfp) 1547 { 1548 int flags; 1549 1550 /* Use scoping rules to determine the subset of addresses from 1551 * the endpoint. 1552 */ 1553 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1554 if (asoc->peer.ipv4_address) 1555 flags |= SCTP_ADDR4_PEERSUPP; 1556 if (asoc->peer.ipv6_address) 1557 flags |= SCTP_ADDR6_PEERSUPP; 1558 1559 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1560 &asoc->base.bind_addr, 1561 &asoc->ep->base.bind_addr, 1562 scope, gfp, flags); 1563 } 1564 1565 /* Build the association's bind address list from the cookie. */ 1566 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1567 struct sctp_cookie *cookie, 1568 gfp_t gfp) 1569 { 1570 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1571 int var_size3 = cookie->raw_addr_list_len; 1572 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1573 1574 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1575 asoc->ep->base.bind_addr.port, gfp); 1576 } 1577 1578 /* Lookup laddr in the bind address list of an association. */ 1579 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1580 const union sctp_addr *laddr) 1581 { 1582 int found = 0; 1583 1584 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1585 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1586 sctp_sk(asoc->base.sk))) 1587 found = 1; 1588 1589 return found; 1590 } 1591 1592 /* Set an association id for a given association */ 1593 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1594 { 1595 int assoc_id; 1596 int error = 0; 1597 1598 /* If the id is already assigned, keep it. */ 1599 if (asoc->assoc_id) 1600 return error; 1601 retry: 1602 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1603 return -ENOMEM; 1604 1605 spin_lock_bh(&sctp_assocs_id_lock); 1606 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1607 idr_low, &assoc_id); 1608 if (!error) { 1609 idr_low = assoc_id + 1; 1610 if (idr_low == INT_MAX) 1611 idr_low = 1; 1612 } 1613 spin_unlock_bh(&sctp_assocs_id_lock); 1614 if (error == -EAGAIN) 1615 goto retry; 1616 else if (error) 1617 return error; 1618 1619 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1620 return error; 1621 } 1622 1623 /* Free the ASCONF queue */ 1624 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1625 { 1626 struct sctp_chunk *asconf; 1627 struct sctp_chunk *tmp; 1628 1629 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1630 list_del_init(&asconf->list); 1631 sctp_chunk_free(asconf); 1632 } 1633 } 1634 1635 /* Free asconf_ack cache */ 1636 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1637 { 1638 struct sctp_chunk *ack; 1639 struct sctp_chunk *tmp; 1640 1641 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1642 transmitted_list) { 1643 list_del_init(&ack->transmitted_list); 1644 sctp_chunk_free(ack); 1645 } 1646 } 1647 1648 /* Clean up the ASCONF_ACK queue */ 1649 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1650 { 1651 struct sctp_chunk *ack; 1652 struct sctp_chunk *tmp; 1653 1654 /* We can remove all the entries from the queue up to 1655 * the "Peer-Sequence-Number". 1656 */ 1657 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1658 transmitted_list) { 1659 if (ack->subh.addip_hdr->serial == 1660 htonl(asoc->peer.addip_serial)) 1661 break; 1662 1663 list_del_init(&ack->transmitted_list); 1664 sctp_chunk_free(ack); 1665 } 1666 } 1667 1668 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1669 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1670 const struct sctp_association *asoc, 1671 __be32 serial) 1672 { 1673 struct sctp_chunk *ack; 1674 1675 /* Walk through the list of cached ASCONF-ACKs and find the 1676 * ack chunk whose serial number matches that of the request. 1677 */ 1678 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1679 if (ack->subh.addip_hdr->serial == serial) { 1680 sctp_chunk_hold(ack); 1681 return ack; 1682 } 1683 } 1684 1685 return NULL; 1686 } 1687 1688 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1689 { 1690 /* Free any cached ASCONF_ACK chunk. */ 1691 sctp_assoc_free_asconf_acks(asoc); 1692 1693 /* Free the ASCONF queue. */ 1694 sctp_assoc_free_asconf_queue(asoc); 1695 1696 /* Free any cached ASCONF chunk. */ 1697 if (asoc->addip_last_asconf) 1698 sctp_chunk_free(asoc->addip_last_asconf); 1699 } 1700