xref: /openbmc/linux/net/sctp/associola.c (revision 81d67439)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57 
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68 
69 /* Keep track of the new idr low so that we don't re-use association id
70  * numbers too fast.  It is protected by they idr spin lock is in the
71  * range of 1 - INT_MAX.
72  */
73 static u32 idr_low = 1;
74 
75 
76 /* 1st Level Abstractions. */
77 
78 /* Initialize a new association from provided memory. */
79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80 					  const struct sctp_endpoint *ep,
81 					  const struct sock *sk,
82 					  sctp_scope_t scope,
83 					  gfp_t gfp)
84 {
85 	struct sctp_sock *sp;
86 	int i;
87 	sctp_paramhdr_t *p;
88 	int err;
89 
90 	/* Retrieve the SCTP per socket area.  */
91 	sp = sctp_sk((struct sock *)sk);
92 
93 	/* Discarding const is appropriate here.  */
94 	asoc->ep = (struct sctp_endpoint *)ep;
95 	sctp_endpoint_hold(asoc->ep);
96 
97 	/* Hold the sock.  */
98 	asoc->base.sk = (struct sock *)sk;
99 	sock_hold(asoc->base.sk);
100 
101 	/* Initialize the common base substructure.  */
102 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
103 
104 	/* Initialize the object handling fields.  */
105 	atomic_set(&asoc->base.refcnt, 1);
106 	asoc->base.dead = 0;
107 	asoc->base.malloced = 0;
108 
109 	/* Initialize the bind addr area.  */
110 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
111 
112 	asoc->state = SCTP_STATE_CLOSED;
113 
114 	/* Set these values from the socket values, a conversion between
115 	 * millsecons to seconds/microseconds must also be done.
116 	 */
117 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
118 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
119 					* 1000;
120 	asoc->frag_point = 0;
121 	asoc->user_frag = sp->user_frag;
122 
123 	/* Set the association max_retrans and RTO values from the
124 	 * socket values.
125 	 */
126 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
127 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
128 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
129 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
130 
131 	asoc->overall_error_count = 0;
132 
133 	/* Initialize the association's heartbeat interval based on the
134 	 * sock configured value.
135 	 */
136 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
137 
138 	/* Initialize path max retrans value. */
139 	asoc->pathmaxrxt = sp->pathmaxrxt;
140 
141 	/* Initialize default path MTU. */
142 	asoc->pathmtu = sp->pathmtu;
143 
144 	/* Set association default SACK delay */
145 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
146 	asoc->sackfreq = sp->sackfreq;
147 
148 	/* Set the association default flags controlling
149 	 * Heartbeat, SACK delay, and Path MTU Discovery.
150 	 */
151 	asoc->param_flags = sp->param_flags;
152 
153 	/* Initialize the maximum mumber of new data packets that can be sent
154 	 * in a burst.
155 	 */
156 	asoc->max_burst = sp->max_burst;
157 
158 	/* initialize association timers */
159 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
160 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
161 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
162 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
163 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
164 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
165 
166 	/* sctpimpguide Section 2.12.2
167 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
168 	 * recommended value of 5 times 'RTO.Max'.
169 	 */
170 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
171 		= 5 * asoc->rto_max;
172 
173 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
174 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
175 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
176 		(unsigned long)sp->autoclose * HZ;
177 
178 	/* Initializes the timers */
179 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
180 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
181 				(unsigned long)asoc);
182 
183 	/* Pull default initialization values from the sock options.
184 	 * Note: This assumes that the values have already been
185 	 * validated in the sock.
186 	 */
187 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
188 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
189 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
190 
191 	asoc->max_init_timeo =
192 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
193 
194 	/* Allocate storage for the ssnmap after the inbound and outbound
195 	 * streams have been negotiated during Init.
196 	 */
197 	asoc->ssnmap = NULL;
198 
199 	/* Set the local window size for receive.
200 	 * This is also the rcvbuf space per association.
201 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
202 	 * 1500 bytes in one SCTP packet.
203 	 */
204 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
205 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
206 	else
207 		asoc->rwnd = sk->sk_rcvbuf/2;
208 
209 	asoc->a_rwnd = asoc->rwnd;
210 
211 	asoc->rwnd_over = 0;
212 	asoc->rwnd_press = 0;
213 
214 	/* Use my own max window until I learn something better.  */
215 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
216 
217 	/* Set the sndbuf size for transmit.  */
218 	asoc->sndbuf_used = 0;
219 
220 	/* Initialize the receive memory counter */
221 	atomic_set(&asoc->rmem_alloc, 0);
222 
223 	init_waitqueue_head(&asoc->wait);
224 
225 	asoc->c.my_vtag = sctp_generate_tag(ep);
226 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
227 	asoc->c.peer_vtag = 0;
228 	asoc->c.my_ttag   = 0;
229 	asoc->c.peer_ttag = 0;
230 	asoc->c.my_port = ep->base.bind_addr.port;
231 
232 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
233 
234 	asoc->next_tsn = asoc->c.initial_tsn;
235 
236 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
237 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
238 	asoc->highest_sacked = asoc->ctsn_ack_point;
239 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
240 	asoc->unack_data = 0;
241 
242 	/* ADDIP Section 4.1 Asconf Chunk Procedures
243 	 *
244 	 * When an endpoint has an ASCONF signaled change to be sent to the
245 	 * remote endpoint it should do the following:
246 	 * ...
247 	 * A2) a serial number should be assigned to the chunk. The serial
248 	 * number SHOULD be a monotonically increasing number. The serial
249 	 * numbers SHOULD be initialized at the start of the
250 	 * association to the same value as the initial TSN.
251 	 */
252 	asoc->addip_serial = asoc->c.initial_tsn;
253 
254 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
255 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
256 
257 	/* Make an empty list of remote transport addresses.  */
258 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
259 	asoc->peer.transport_count = 0;
260 
261 	/* RFC 2960 5.1 Normal Establishment of an Association
262 	 *
263 	 * After the reception of the first data chunk in an
264 	 * association the endpoint must immediately respond with a
265 	 * sack to acknowledge the data chunk.  Subsequent
266 	 * acknowledgements should be done as described in Section
267 	 * 6.2.
268 	 *
269 	 * [We implement this by telling a new association that it
270 	 * already received one packet.]
271 	 */
272 	asoc->peer.sack_needed = 1;
273 	asoc->peer.sack_cnt = 0;
274 
275 	/* Assume that the peer will tell us if he recognizes ASCONF
276 	 * as part of INIT exchange.
277 	 * The sctp_addip_noauth option is there for backward compatibilty
278 	 * and will revert old behavior.
279 	 */
280 	asoc->peer.asconf_capable = 0;
281 	if (sctp_addip_noauth)
282 		asoc->peer.asconf_capable = 1;
283 	asoc->asconf_addr_del_pending = NULL;
284 	asoc->src_out_of_asoc_ok = 0;
285 
286 	/* Create an input queue.  */
287 	sctp_inq_init(&asoc->base.inqueue);
288 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
289 
290 	/* Create an output queue.  */
291 	sctp_outq_init(asoc, &asoc->outqueue);
292 
293 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
294 		goto fail_init;
295 
296 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
297 
298 	asoc->need_ecne = 0;
299 
300 	asoc->assoc_id = 0;
301 
302 	/* Assume that peer would support both address types unless we are
303 	 * told otherwise.
304 	 */
305 	asoc->peer.ipv4_address = 1;
306 	if (asoc->base.sk->sk_family == PF_INET6)
307 		asoc->peer.ipv6_address = 1;
308 	INIT_LIST_HEAD(&asoc->asocs);
309 
310 	asoc->autoclose = sp->autoclose;
311 
312 	asoc->default_stream = sp->default_stream;
313 	asoc->default_ppid = sp->default_ppid;
314 	asoc->default_flags = sp->default_flags;
315 	asoc->default_context = sp->default_context;
316 	asoc->default_timetolive = sp->default_timetolive;
317 	asoc->default_rcv_context = sp->default_rcv_context;
318 
319 	/* AUTH related initializations */
320 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
321 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
322 	if (err)
323 		goto fail_init;
324 
325 	asoc->active_key_id = ep->active_key_id;
326 	asoc->asoc_shared_key = NULL;
327 
328 	asoc->default_hmac_id = 0;
329 	/* Save the hmacs and chunks list into this association */
330 	if (ep->auth_hmacs_list)
331 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
332 			ntohs(ep->auth_hmacs_list->param_hdr.length));
333 	if (ep->auth_chunk_list)
334 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
335 			ntohs(ep->auth_chunk_list->param_hdr.length));
336 
337 	/* Get the AUTH random number for this association */
338 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
339 	p->type = SCTP_PARAM_RANDOM;
340 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
341 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
342 
343 	return asoc;
344 
345 fail_init:
346 	sctp_endpoint_put(asoc->ep);
347 	sock_put(asoc->base.sk);
348 	return NULL;
349 }
350 
351 /* Allocate and initialize a new association */
352 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
353 					 const struct sock *sk,
354 					 sctp_scope_t scope,
355 					 gfp_t gfp)
356 {
357 	struct sctp_association *asoc;
358 
359 	asoc = t_new(struct sctp_association, gfp);
360 	if (!asoc)
361 		goto fail;
362 
363 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
364 		goto fail_init;
365 
366 	asoc->base.malloced = 1;
367 	SCTP_DBG_OBJCNT_INC(assoc);
368 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
369 
370 	return asoc;
371 
372 fail_init:
373 	kfree(asoc);
374 fail:
375 	return NULL;
376 }
377 
378 /* Free this association if possible.  There may still be users, so
379  * the actual deallocation may be delayed.
380  */
381 void sctp_association_free(struct sctp_association *asoc)
382 {
383 	struct sock *sk = asoc->base.sk;
384 	struct sctp_transport *transport;
385 	struct list_head *pos, *temp;
386 	int i;
387 
388 	/* Only real associations count against the endpoint, so
389 	 * don't bother for if this is a temporary association.
390 	 */
391 	if (!asoc->temp) {
392 		list_del(&asoc->asocs);
393 
394 		/* Decrement the backlog value for a TCP-style listening
395 		 * socket.
396 		 */
397 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
398 			sk->sk_ack_backlog--;
399 	}
400 
401 	/* Mark as dead, so other users can know this structure is
402 	 * going away.
403 	 */
404 	asoc->base.dead = 1;
405 
406 	/* Dispose of any data lying around in the outqueue. */
407 	sctp_outq_free(&asoc->outqueue);
408 
409 	/* Dispose of any pending messages for the upper layer. */
410 	sctp_ulpq_free(&asoc->ulpq);
411 
412 	/* Dispose of any pending chunks on the inqueue. */
413 	sctp_inq_free(&asoc->base.inqueue);
414 
415 	sctp_tsnmap_free(&asoc->peer.tsn_map);
416 
417 	/* Free ssnmap storage. */
418 	sctp_ssnmap_free(asoc->ssnmap);
419 
420 	/* Clean up the bound address list. */
421 	sctp_bind_addr_free(&asoc->base.bind_addr);
422 
423 	/* Do we need to go through all of our timers and
424 	 * delete them?   To be safe we will try to delete all, but we
425 	 * should be able to go through and make a guess based
426 	 * on our state.
427 	 */
428 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
429 		if (timer_pending(&asoc->timers[i]) &&
430 		    del_timer(&asoc->timers[i]))
431 			sctp_association_put(asoc);
432 	}
433 
434 	/* Free peer's cached cookie. */
435 	kfree(asoc->peer.cookie);
436 	kfree(asoc->peer.peer_random);
437 	kfree(asoc->peer.peer_chunks);
438 	kfree(asoc->peer.peer_hmacs);
439 
440 	/* Release the transport structures. */
441 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
442 		transport = list_entry(pos, struct sctp_transport, transports);
443 		list_del(pos);
444 		sctp_transport_free(transport);
445 	}
446 
447 	asoc->peer.transport_count = 0;
448 
449 	sctp_asconf_queue_teardown(asoc);
450 
451 	/* Free pending address space being deleted */
452 	if (asoc->asconf_addr_del_pending != NULL)
453 		kfree(asoc->asconf_addr_del_pending);
454 
455 	/* AUTH - Free the endpoint shared keys */
456 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
457 
458 	/* AUTH - Free the association shared key */
459 	sctp_auth_key_put(asoc->asoc_shared_key);
460 
461 	sctp_association_put(asoc);
462 }
463 
464 /* Cleanup and free up an association. */
465 static void sctp_association_destroy(struct sctp_association *asoc)
466 {
467 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
468 
469 	sctp_endpoint_put(asoc->ep);
470 	sock_put(asoc->base.sk);
471 
472 	if (asoc->assoc_id != 0) {
473 		spin_lock_bh(&sctp_assocs_id_lock);
474 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
475 		spin_unlock_bh(&sctp_assocs_id_lock);
476 	}
477 
478 	WARN_ON(atomic_read(&asoc->rmem_alloc));
479 
480 	if (asoc->base.malloced) {
481 		kfree(asoc);
482 		SCTP_DBG_OBJCNT_DEC(assoc);
483 	}
484 }
485 
486 /* Change the primary destination address for the peer. */
487 void sctp_assoc_set_primary(struct sctp_association *asoc,
488 			    struct sctp_transport *transport)
489 {
490 	int changeover = 0;
491 
492 	/* it's a changeover only if we already have a primary path
493 	 * that we are changing
494 	 */
495 	if (asoc->peer.primary_path != NULL &&
496 	    asoc->peer.primary_path != transport)
497 		changeover = 1 ;
498 
499 	asoc->peer.primary_path = transport;
500 
501 	/* Set a default msg_name for events. */
502 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
503 	       sizeof(union sctp_addr));
504 
505 	/* If the primary path is changing, assume that the
506 	 * user wants to use this new path.
507 	 */
508 	if ((transport->state == SCTP_ACTIVE) ||
509 	    (transport->state == SCTP_UNKNOWN))
510 		asoc->peer.active_path = transport;
511 
512 	/*
513 	 * SFR-CACC algorithm:
514 	 * Upon the receipt of a request to change the primary
515 	 * destination address, on the data structure for the new
516 	 * primary destination, the sender MUST do the following:
517 	 *
518 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
519 	 * to this destination address earlier. The sender MUST set
520 	 * CYCLING_CHANGEOVER to indicate that this switch is a
521 	 * double switch to the same destination address.
522 	 *
523 	 * Really, only bother is we have data queued or outstanding on
524 	 * the association.
525 	 */
526 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
527 		return;
528 
529 	if (transport->cacc.changeover_active)
530 		transport->cacc.cycling_changeover = changeover;
531 
532 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
533 	 * a changeover has occurred.
534 	 */
535 	transport->cacc.changeover_active = changeover;
536 
537 	/* 3) The sender MUST store the next TSN to be sent in
538 	 * next_tsn_at_change.
539 	 */
540 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
541 }
542 
543 /* Remove a transport from an association.  */
544 void sctp_assoc_rm_peer(struct sctp_association *asoc,
545 			struct sctp_transport *peer)
546 {
547 	struct list_head	*pos;
548 	struct sctp_transport	*transport;
549 
550 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
551 				 " port: %d\n",
552 				 asoc,
553 				 (&peer->ipaddr),
554 				 ntohs(peer->ipaddr.v4.sin_port));
555 
556 	/* If we are to remove the current retran_path, update it
557 	 * to the next peer before removing this peer from the list.
558 	 */
559 	if (asoc->peer.retran_path == peer)
560 		sctp_assoc_update_retran_path(asoc);
561 
562 	/* Remove this peer from the list. */
563 	list_del(&peer->transports);
564 
565 	/* Get the first transport of asoc. */
566 	pos = asoc->peer.transport_addr_list.next;
567 	transport = list_entry(pos, struct sctp_transport, transports);
568 
569 	/* Update any entries that match the peer to be deleted. */
570 	if (asoc->peer.primary_path == peer)
571 		sctp_assoc_set_primary(asoc, transport);
572 	if (asoc->peer.active_path == peer)
573 		asoc->peer.active_path = transport;
574 	if (asoc->peer.retran_path == peer)
575 		asoc->peer.retran_path = transport;
576 	if (asoc->peer.last_data_from == peer)
577 		asoc->peer.last_data_from = transport;
578 
579 	/* If we remove the transport an INIT was last sent to, set it to
580 	 * NULL. Combined with the update of the retran path above, this
581 	 * will cause the next INIT to be sent to the next available
582 	 * transport, maintaining the cycle.
583 	 */
584 	if (asoc->init_last_sent_to == peer)
585 		asoc->init_last_sent_to = NULL;
586 
587 	/* If we remove the transport an SHUTDOWN was last sent to, set it
588 	 * to NULL. Combined with the update of the retran path above, this
589 	 * will cause the next SHUTDOWN to be sent to the next available
590 	 * transport, maintaining the cycle.
591 	 */
592 	if (asoc->shutdown_last_sent_to == peer)
593 		asoc->shutdown_last_sent_to = NULL;
594 
595 	/* If we remove the transport an ASCONF was last sent to, set it to
596 	 * NULL.
597 	 */
598 	if (asoc->addip_last_asconf &&
599 	    asoc->addip_last_asconf->transport == peer)
600 		asoc->addip_last_asconf->transport = NULL;
601 
602 	/* If we have something on the transmitted list, we have to
603 	 * save it off.  The best place is the active path.
604 	 */
605 	if (!list_empty(&peer->transmitted)) {
606 		struct sctp_transport *active = asoc->peer.active_path;
607 		struct sctp_chunk *ch;
608 
609 		/* Reset the transport of each chunk on this list */
610 		list_for_each_entry(ch, &peer->transmitted,
611 					transmitted_list) {
612 			ch->transport = NULL;
613 			ch->rtt_in_progress = 0;
614 		}
615 
616 		list_splice_tail_init(&peer->transmitted,
617 					&active->transmitted);
618 
619 		/* Start a T3 timer here in case it wasn't running so
620 		 * that these migrated packets have a chance to get
621 		 * retrnasmitted.
622 		 */
623 		if (!timer_pending(&active->T3_rtx_timer))
624 			if (!mod_timer(&active->T3_rtx_timer,
625 					jiffies + active->rto))
626 				sctp_transport_hold(active);
627 	}
628 
629 	asoc->peer.transport_count--;
630 
631 	sctp_transport_free(peer);
632 }
633 
634 /* Add a transport address to an association.  */
635 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
636 					   const union sctp_addr *addr,
637 					   const gfp_t gfp,
638 					   const int peer_state)
639 {
640 	struct sctp_transport *peer;
641 	struct sctp_sock *sp;
642 	unsigned short port;
643 
644 	sp = sctp_sk(asoc->base.sk);
645 
646 	/* AF_INET and AF_INET6 share common port field. */
647 	port = ntohs(addr->v4.sin_port);
648 
649 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
650 				 " port: %d state:%d\n",
651 				 asoc,
652 				 addr,
653 				 port,
654 				 peer_state);
655 
656 	/* Set the port if it has not been set yet.  */
657 	if (0 == asoc->peer.port)
658 		asoc->peer.port = port;
659 
660 	/* Check to see if this is a duplicate. */
661 	peer = sctp_assoc_lookup_paddr(asoc, addr);
662 	if (peer) {
663 		/* An UNKNOWN state is only set on transports added by
664 		 * user in sctp_connectx() call.  Such transports should be
665 		 * considered CONFIRMED per RFC 4960, Section 5.4.
666 		 */
667 		if (peer->state == SCTP_UNKNOWN) {
668 			peer->state = SCTP_ACTIVE;
669 		}
670 		return peer;
671 	}
672 
673 	peer = sctp_transport_new(addr, gfp);
674 	if (!peer)
675 		return NULL;
676 
677 	sctp_transport_set_owner(peer, asoc);
678 
679 	/* Initialize the peer's heartbeat interval based on the
680 	 * association configured value.
681 	 */
682 	peer->hbinterval = asoc->hbinterval;
683 
684 	/* Set the path max_retrans.  */
685 	peer->pathmaxrxt = asoc->pathmaxrxt;
686 
687 	/* Initialize the peer's SACK delay timeout based on the
688 	 * association configured value.
689 	 */
690 	peer->sackdelay = asoc->sackdelay;
691 	peer->sackfreq = asoc->sackfreq;
692 
693 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
694 	 * based on association setting.
695 	 */
696 	peer->param_flags = asoc->param_flags;
697 
698 	sctp_transport_route(peer, NULL, sp);
699 
700 	/* Initialize the pmtu of the transport. */
701 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
702 		if (asoc->pathmtu)
703 			peer->pathmtu = asoc->pathmtu;
704 		else
705 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
706 	}
707 
708 	/* If this is the first transport addr on this association,
709 	 * initialize the association PMTU to the peer's PMTU.
710 	 * If not and the current association PMTU is higher than the new
711 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
712 	 */
713 	if (asoc->pathmtu)
714 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
715 	else
716 		asoc->pathmtu = peer->pathmtu;
717 
718 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
719 			  "%d\n", asoc, asoc->pathmtu);
720 	peer->pmtu_pending = 0;
721 
722 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
723 
724 	/* The asoc->peer.port might not be meaningful yet, but
725 	 * initialize the packet structure anyway.
726 	 */
727 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
728 			 asoc->peer.port);
729 
730 	/* 7.2.1 Slow-Start
731 	 *
732 	 * o The initial cwnd before DATA transmission or after a sufficiently
733 	 *   long idle period MUST be set to
734 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
735 	 *
736 	 * o The initial value of ssthresh MAY be arbitrarily high
737 	 *   (for example, implementations MAY use the size of the
738 	 *   receiver advertised window).
739 	 */
740 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
741 
742 	/* At this point, we may not have the receiver's advertised window,
743 	 * so initialize ssthresh to the default value and it will be set
744 	 * later when we process the INIT.
745 	 */
746 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
747 
748 	peer->partial_bytes_acked = 0;
749 	peer->flight_size = 0;
750 	peer->burst_limited = 0;
751 
752 	/* Set the transport's RTO.initial value */
753 	peer->rto = asoc->rto_initial;
754 
755 	/* Set the peer's active state. */
756 	peer->state = peer_state;
757 
758 	/* Attach the remote transport to our asoc.  */
759 	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
760 	asoc->peer.transport_count++;
761 
762 	/* If we do not yet have a primary path, set one.  */
763 	if (!asoc->peer.primary_path) {
764 		sctp_assoc_set_primary(asoc, peer);
765 		asoc->peer.retran_path = peer;
766 	}
767 
768 	if (asoc->peer.active_path == asoc->peer.retran_path &&
769 	    peer->state != SCTP_UNCONFIRMED) {
770 		asoc->peer.retran_path = peer;
771 	}
772 
773 	return peer;
774 }
775 
776 /* Delete a transport address from an association.  */
777 void sctp_assoc_del_peer(struct sctp_association *asoc,
778 			 const union sctp_addr *addr)
779 {
780 	struct list_head	*pos;
781 	struct list_head	*temp;
782 	struct sctp_transport	*transport;
783 
784 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
785 		transport = list_entry(pos, struct sctp_transport, transports);
786 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
787 			/* Do book keeping for removing the peer and free it. */
788 			sctp_assoc_rm_peer(asoc, transport);
789 			break;
790 		}
791 	}
792 }
793 
794 /* Lookup a transport by address. */
795 struct sctp_transport *sctp_assoc_lookup_paddr(
796 					const struct sctp_association *asoc,
797 					const union sctp_addr *address)
798 {
799 	struct sctp_transport *t;
800 
801 	/* Cycle through all transports searching for a peer address. */
802 
803 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
804 			transports) {
805 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
806 			return t;
807 	}
808 
809 	return NULL;
810 }
811 
812 /* Remove all transports except a give one */
813 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
814 				     struct sctp_transport *primary)
815 {
816 	struct sctp_transport	*temp;
817 	struct sctp_transport	*t;
818 
819 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
820 				 transports) {
821 		/* if the current transport is not the primary one, delete it */
822 		if (t != primary)
823 			sctp_assoc_rm_peer(asoc, t);
824 	}
825 }
826 
827 /* Engage in transport control operations.
828  * Mark the transport up or down and send a notification to the user.
829  * Select and update the new active and retran paths.
830  */
831 void sctp_assoc_control_transport(struct sctp_association *asoc,
832 				  struct sctp_transport *transport,
833 				  sctp_transport_cmd_t command,
834 				  sctp_sn_error_t error)
835 {
836 	struct sctp_transport *t = NULL;
837 	struct sctp_transport *first;
838 	struct sctp_transport *second;
839 	struct sctp_ulpevent *event;
840 	struct sockaddr_storage addr;
841 	int spc_state = 0;
842 
843 	/* Record the transition on the transport.  */
844 	switch (command) {
845 	case SCTP_TRANSPORT_UP:
846 		/* If we are moving from UNCONFIRMED state due
847 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
848 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
849 		 */
850 		if (SCTP_UNCONFIRMED == transport->state &&
851 		    SCTP_HEARTBEAT_SUCCESS == error)
852 			spc_state = SCTP_ADDR_CONFIRMED;
853 		else
854 			spc_state = SCTP_ADDR_AVAILABLE;
855 		transport->state = SCTP_ACTIVE;
856 		break;
857 
858 	case SCTP_TRANSPORT_DOWN:
859 		/* If the transport was never confirmed, do not transition it
860 		 * to inactive state.  Also, release the cached route since
861 		 * there may be a better route next time.
862 		 */
863 		if (transport->state != SCTP_UNCONFIRMED)
864 			transport->state = SCTP_INACTIVE;
865 		else {
866 			dst_release(transport->dst);
867 			transport->dst = NULL;
868 		}
869 
870 		spc_state = SCTP_ADDR_UNREACHABLE;
871 		break;
872 
873 	default:
874 		return;
875 	}
876 
877 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
878 	 * user.
879 	 */
880 	memset(&addr, 0, sizeof(struct sockaddr_storage));
881 	memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
882 	event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
883 				0, spc_state, error, GFP_ATOMIC);
884 	if (event)
885 		sctp_ulpq_tail_event(&asoc->ulpq, event);
886 
887 	/* Select new active and retran paths. */
888 
889 	/* Look for the two most recently used active transports.
890 	 *
891 	 * This code produces the wrong ordering whenever jiffies
892 	 * rolls over, but we still get usable transports, so we don't
893 	 * worry about it.
894 	 */
895 	first = NULL; second = NULL;
896 
897 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
898 			transports) {
899 
900 		if ((t->state == SCTP_INACTIVE) ||
901 		    (t->state == SCTP_UNCONFIRMED))
902 			continue;
903 		if (!first || t->last_time_heard > first->last_time_heard) {
904 			second = first;
905 			first = t;
906 		}
907 		if (!second || t->last_time_heard > second->last_time_heard)
908 			second = t;
909 	}
910 
911 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
912 	 *
913 	 * By default, an endpoint should always transmit to the
914 	 * primary path, unless the SCTP user explicitly specifies the
915 	 * destination transport address (and possibly source
916 	 * transport address) to use.
917 	 *
918 	 * [If the primary is active but not most recent, bump the most
919 	 * recently used transport.]
920 	 */
921 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
922 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
923 	    first != asoc->peer.primary_path) {
924 		second = first;
925 		first = asoc->peer.primary_path;
926 	}
927 
928 	/* If we failed to find a usable transport, just camp on the
929 	 * primary, even if it is inactive.
930 	 */
931 	if (!first) {
932 		first = asoc->peer.primary_path;
933 		second = asoc->peer.primary_path;
934 	}
935 
936 	/* Set the active and retran transports.  */
937 	asoc->peer.active_path = first;
938 	asoc->peer.retran_path = second;
939 }
940 
941 /* Hold a reference to an association. */
942 void sctp_association_hold(struct sctp_association *asoc)
943 {
944 	atomic_inc(&asoc->base.refcnt);
945 }
946 
947 /* Release a reference to an association and cleanup
948  * if there are no more references.
949  */
950 void sctp_association_put(struct sctp_association *asoc)
951 {
952 	if (atomic_dec_and_test(&asoc->base.refcnt))
953 		sctp_association_destroy(asoc);
954 }
955 
956 /* Allocate the next TSN, Transmission Sequence Number, for the given
957  * association.
958  */
959 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
960 {
961 	/* From Section 1.6 Serial Number Arithmetic:
962 	 * Transmission Sequence Numbers wrap around when they reach
963 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
964 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
965 	 */
966 	__u32 retval = asoc->next_tsn;
967 	asoc->next_tsn++;
968 	asoc->unack_data++;
969 
970 	return retval;
971 }
972 
973 /* Compare two addresses to see if they match.  Wildcard addresses
974  * only match themselves.
975  */
976 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
977 			const union sctp_addr *ss2)
978 {
979 	struct sctp_af *af;
980 
981 	af = sctp_get_af_specific(ss1->sa.sa_family);
982 	if (unlikely(!af))
983 		return 0;
984 
985 	return af->cmp_addr(ss1, ss2);
986 }
987 
988 /* Return an ecne chunk to get prepended to a packet.
989  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
990  * No we don't, but we could/should.
991  */
992 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
993 {
994 	struct sctp_chunk *chunk;
995 
996 	/* Send ECNE if needed.
997 	 * Not being able to allocate a chunk here is not deadly.
998 	 */
999 	if (asoc->need_ecne)
1000 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1001 	else
1002 		chunk = NULL;
1003 
1004 	return chunk;
1005 }
1006 
1007 /*
1008  * Find which transport this TSN was sent on.
1009  */
1010 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1011 					     __u32 tsn)
1012 {
1013 	struct sctp_transport *active;
1014 	struct sctp_transport *match;
1015 	struct sctp_transport *transport;
1016 	struct sctp_chunk *chunk;
1017 	__be32 key = htonl(tsn);
1018 
1019 	match = NULL;
1020 
1021 	/*
1022 	 * FIXME: In general, find a more efficient data structure for
1023 	 * searching.
1024 	 */
1025 
1026 	/*
1027 	 * The general strategy is to search each transport's transmitted
1028 	 * list.   Return which transport this TSN lives on.
1029 	 *
1030 	 * Let's be hopeful and check the active_path first.
1031 	 * Another optimization would be to know if there is only one
1032 	 * outbound path and not have to look for the TSN at all.
1033 	 *
1034 	 */
1035 
1036 	active = asoc->peer.active_path;
1037 
1038 	list_for_each_entry(chunk, &active->transmitted,
1039 			transmitted_list) {
1040 
1041 		if (key == chunk->subh.data_hdr->tsn) {
1042 			match = active;
1043 			goto out;
1044 		}
1045 	}
1046 
1047 	/* If not found, go search all the other transports. */
1048 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1049 			transports) {
1050 
1051 		if (transport == active)
1052 			break;
1053 		list_for_each_entry(chunk, &transport->transmitted,
1054 				transmitted_list) {
1055 			if (key == chunk->subh.data_hdr->tsn) {
1056 				match = transport;
1057 				goto out;
1058 			}
1059 		}
1060 	}
1061 out:
1062 	return match;
1063 }
1064 
1065 /* Is this the association we are looking for? */
1066 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1067 					   const union sctp_addr *laddr,
1068 					   const union sctp_addr *paddr)
1069 {
1070 	struct sctp_transport *transport;
1071 
1072 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1073 	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1074 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1075 		if (!transport)
1076 			goto out;
1077 
1078 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1079 					 sctp_sk(asoc->base.sk)))
1080 			goto out;
1081 	}
1082 	transport = NULL;
1083 
1084 out:
1085 	return transport;
1086 }
1087 
1088 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1089 static void sctp_assoc_bh_rcv(struct work_struct *work)
1090 {
1091 	struct sctp_association *asoc =
1092 		container_of(work, struct sctp_association,
1093 			     base.inqueue.immediate);
1094 	struct sctp_endpoint *ep;
1095 	struct sctp_chunk *chunk;
1096 	struct sctp_inq *inqueue;
1097 	int state;
1098 	sctp_subtype_t subtype;
1099 	int error = 0;
1100 
1101 	/* The association should be held so we should be safe. */
1102 	ep = asoc->ep;
1103 
1104 	inqueue = &asoc->base.inqueue;
1105 	sctp_association_hold(asoc);
1106 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1107 		state = asoc->state;
1108 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1109 
1110 		/* SCTP-AUTH, Section 6.3:
1111 		 *    The receiver has a list of chunk types which it expects
1112 		 *    to be received only after an AUTH-chunk.  This list has
1113 		 *    been sent to the peer during the association setup.  It
1114 		 *    MUST silently discard these chunks if they are not placed
1115 		 *    after an AUTH chunk in the packet.
1116 		 */
1117 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1118 			continue;
1119 
1120 		/* Remember where the last DATA chunk came from so we
1121 		 * know where to send the SACK.
1122 		 */
1123 		if (sctp_chunk_is_data(chunk))
1124 			asoc->peer.last_data_from = chunk->transport;
1125 		else
1126 			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1127 
1128 		if (chunk->transport)
1129 			chunk->transport->last_time_heard = jiffies;
1130 
1131 		/* Run through the state machine. */
1132 		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1133 				   state, ep, asoc, chunk, GFP_ATOMIC);
1134 
1135 		/* Check to see if the association is freed in response to
1136 		 * the incoming chunk.  If so, get out of the while loop.
1137 		 */
1138 		if (asoc->base.dead)
1139 			break;
1140 
1141 		/* If there is an error on chunk, discard this packet. */
1142 		if (error && chunk)
1143 			chunk->pdiscard = 1;
1144 	}
1145 	sctp_association_put(asoc);
1146 }
1147 
1148 /* This routine moves an association from its old sk to a new sk.  */
1149 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1150 {
1151 	struct sctp_sock *newsp = sctp_sk(newsk);
1152 	struct sock *oldsk = assoc->base.sk;
1153 
1154 	/* Delete the association from the old endpoint's list of
1155 	 * associations.
1156 	 */
1157 	list_del_init(&assoc->asocs);
1158 
1159 	/* Decrement the backlog value for a TCP-style socket. */
1160 	if (sctp_style(oldsk, TCP))
1161 		oldsk->sk_ack_backlog--;
1162 
1163 	/* Release references to the old endpoint and the sock.  */
1164 	sctp_endpoint_put(assoc->ep);
1165 	sock_put(assoc->base.sk);
1166 
1167 	/* Get a reference to the new endpoint.  */
1168 	assoc->ep = newsp->ep;
1169 	sctp_endpoint_hold(assoc->ep);
1170 
1171 	/* Get a reference to the new sock.  */
1172 	assoc->base.sk = newsk;
1173 	sock_hold(assoc->base.sk);
1174 
1175 	/* Add the association to the new endpoint's list of associations.  */
1176 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1177 }
1178 
1179 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1180 void sctp_assoc_update(struct sctp_association *asoc,
1181 		       struct sctp_association *new)
1182 {
1183 	struct sctp_transport *trans;
1184 	struct list_head *pos, *temp;
1185 
1186 	/* Copy in new parameters of peer. */
1187 	asoc->c = new->c;
1188 	asoc->peer.rwnd = new->peer.rwnd;
1189 	asoc->peer.sack_needed = new->peer.sack_needed;
1190 	asoc->peer.i = new->peer.i;
1191 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1192 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1193 
1194 	/* Remove any peer addresses not present in the new association. */
1195 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1196 		trans = list_entry(pos, struct sctp_transport, transports);
1197 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1198 			sctp_assoc_rm_peer(asoc, trans);
1199 			continue;
1200 		}
1201 
1202 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1203 			sctp_transport_reset(trans);
1204 	}
1205 
1206 	/* If the case is A (association restart), use
1207 	 * initial_tsn as next_tsn. If the case is B, use
1208 	 * current next_tsn in case data sent to peer
1209 	 * has been discarded and needs retransmission.
1210 	 */
1211 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1212 		asoc->next_tsn = new->next_tsn;
1213 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1214 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1215 
1216 		/* Reinitialize SSN for both local streams
1217 		 * and peer's streams.
1218 		 */
1219 		sctp_ssnmap_clear(asoc->ssnmap);
1220 
1221 		/* Flush the ULP reassembly and ordered queue.
1222 		 * Any data there will now be stale and will
1223 		 * cause problems.
1224 		 */
1225 		sctp_ulpq_flush(&asoc->ulpq);
1226 
1227 		/* reset the overall association error count so
1228 		 * that the restarted association doesn't get torn
1229 		 * down on the next retransmission timer.
1230 		 */
1231 		asoc->overall_error_count = 0;
1232 
1233 	} else {
1234 		/* Add any peer addresses from the new association. */
1235 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1236 				transports) {
1237 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1238 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1239 						    GFP_ATOMIC, trans->state);
1240 		}
1241 
1242 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1243 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1244 		if (!asoc->ssnmap) {
1245 			/* Move the ssnmap. */
1246 			asoc->ssnmap = new->ssnmap;
1247 			new->ssnmap = NULL;
1248 		}
1249 
1250 		if (!asoc->assoc_id) {
1251 			/* get a new association id since we don't have one
1252 			 * yet.
1253 			 */
1254 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1255 		}
1256 	}
1257 
1258 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1259 	 * and also move the association shared keys over
1260 	 */
1261 	kfree(asoc->peer.peer_random);
1262 	asoc->peer.peer_random = new->peer.peer_random;
1263 	new->peer.peer_random = NULL;
1264 
1265 	kfree(asoc->peer.peer_chunks);
1266 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1267 	new->peer.peer_chunks = NULL;
1268 
1269 	kfree(asoc->peer.peer_hmacs);
1270 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1271 	new->peer.peer_hmacs = NULL;
1272 
1273 	sctp_auth_key_put(asoc->asoc_shared_key);
1274 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1275 }
1276 
1277 /* Update the retran path for sending a retransmitted packet.
1278  * Round-robin through the active transports, else round-robin
1279  * through the inactive transports as this is the next best thing
1280  * we can try.
1281  */
1282 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1283 {
1284 	struct sctp_transport *t, *next;
1285 	struct list_head *head = &asoc->peer.transport_addr_list;
1286 	struct list_head *pos;
1287 
1288 	if (asoc->peer.transport_count == 1)
1289 		return;
1290 
1291 	/* Find the next transport in a round-robin fashion. */
1292 	t = asoc->peer.retran_path;
1293 	pos = &t->transports;
1294 	next = NULL;
1295 
1296 	while (1) {
1297 		/* Skip the head. */
1298 		if (pos->next == head)
1299 			pos = head->next;
1300 		else
1301 			pos = pos->next;
1302 
1303 		t = list_entry(pos, struct sctp_transport, transports);
1304 
1305 		/* We have exhausted the list, but didn't find any
1306 		 * other active transports.  If so, use the next
1307 		 * transport.
1308 		 */
1309 		if (t == asoc->peer.retran_path) {
1310 			t = next;
1311 			break;
1312 		}
1313 
1314 		/* Try to find an active transport. */
1315 
1316 		if ((t->state == SCTP_ACTIVE) ||
1317 		    (t->state == SCTP_UNKNOWN)) {
1318 			break;
1319 		} else {
1320 			/* Keep track of the next transport in case
1321 			 * we don't find any active transport.
1322 			 */
1323 			if (t->state != SCTP_UNCONFIRMED && !next)
1324 				next = t;
1325 		}
1326 	}
1327 
1328 	if (t)
1329 		asoc->peer.retran_path = t;
1330 	else
1331 		t = asoc->peer.retran_path;
1332 
1333 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1334 				 " %p addr: ",
1335 				 " port: %d\n",
1336 				 asoc,
1337 				 (&t->ipaddr),
1338 				 ntohs(t->ipaddr.v4.sin_port));
1339 }
1340 
1341 /* Choose the transport for sending retransmit packet.  */
1342 struct sctp_transport *sctp_assoc_choose_alter_transport(
1343 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1344 {
1345 	/* If this is the first time packet is sent, use the active path,
1346 	 * else use the retran path. If the last packet was sent over the
1347 	 * retran path, update the retran path and use it.
1348 	 */
1349 	if (!last_sent_to)
1350 		return asoc->peer.active_path;
1351 	else {
1352 		if (last_sent_to == asoc->peer.retran_path)
1353 			sctp_assoc_update_retran_path(asoc);
1354 		return asoc->peer.retran_path;
1355 	}
1356 }
1357 
1358 /* Update the association's pmtu and frag_point by going through all the
1359  * transports. This routine is called when a transport's PMTU has changed.
1360  */
1361 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1362 {
1363 	struct sctp_transport *t;
1364 	__u32 pmtu = 0;
1365 
1366 	if (!asoc)
1367 		return;
1368 
1369 	/* Get the lowest pmtu of all the transports. */
1370 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1371 				transports) {
1372 		if (t->pmtu_pending && t->dst) {
1373 			sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1374 			t->pmtu_pending = 0;
1375 		}
1376 		if (!pmtu || (t->pathmtu < pmtu))
1377 			pmtu = t->pathmtu;
1378 	}
1379 
1380 	if (pmtu) {
1381 		asoc->pathmtu = pmtu;
1382 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1383 	}
1384 
1385 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1386 			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1387 }
1388 
1389 /* Should we send a SACK to update our peer? */
1390 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1391 {
1392 	switch (asoc->state) {
1393 	case SCTP_STATE_ESTABLISHED:
1394 	case SCTP_STATE_SHUTDOWN_PENDING:
1395 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1396 	case SCTP_STATE_SHUTDOWN_SENT:
1397 		if ((asoc->rwnd > asoc->a_rwnd) &&
1398 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1399 			   (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift),
1400 			   asoc->pathmtu)))
1401 			return 1;
1402 		break;
1403 	default:
1404 		break;
1405 	}
1406 	return 0;
1407 }
1408 
1409 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1410 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1411 {
1412 	struct sctp_chunk *sack;
1413 	struct timer_list *timer;
1414 
1415 	if (asoc->rwnd_over) {
1416 		if (asoc->rwnd_over >= len) {
1417 			asoc->rwnd_over -= len;
1418 		} else {
1419 			asoc->rwnd += (len - asoc->rwnd_over);
1420 			asoc->rwnd_over = 0;
1421 		}
1422 	} else {
1423 		asoc->rwnd += len;
1424 	}
1425 
1426 	/* If we had window pressure, start recovering it
1427 	 * once our rwnd had reached the accumulated pressure
1428 	 * threshold.  The idea is to recover slowly, but up
1429 	 * to the initial advertised window.
1430 	 */
1431 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1432 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1433 		asoc->rwnd += change;
1434 		asoc->rwnd_press -= change;
1435 	}
1436 
1437 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1438 			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1439 			  asoc->rwnd_over, asoc->a_rwnd);
1440 
1441 	/* Send a window update SACK if the rwnd has increased by at least the
1442 	 * minimum of the association's PMTU and half of the receive buffer.
1443 	 * The algorithm used is similar to the one described in
1444 	 * Section 4.2.3.3 of RFC 1122.
1445 	 */
1446 	if (sctp_peer_needs_update(asoc)) {
1447 		asoc->a_rwnd = asoc->rwnd;
1448 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1449 				  "rwnd: %u a_rwnd: %u\n", __func__,
1450 				  asoc, asoc->rwnd, asoc->a_rwnd);
1451 		sack = sctp_make_sack(asoc);
1452 		if (!sack)
1453 			return;
1454 
1455 		asoc->peer.sack_needed = 0;
1456 
1457 		sctp_outq_tail(&asoc->outqueue, sack);
1458 
1459 		/* Stop the SACK timer.  */
1460 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1461 		if (timer_pending(timer) && del_timer(timer))
1462 			sctp_association_put(asoc);
1463 	}
1464 }
1465 
1466 /* Decrease asoc's rwnd by len. */
1467 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1468 {
1469 	int rx_count;
1470 	int over = 0;
1471 
1472 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1473 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1474 
1475 	if (asoc->ep->rcvbuf_policy)
1476 		rx_count = atomic_read(&asoc->rmem_alloc);
1477 	else
1478 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1479 
1480 	/* If we've reached or overflowed our receive buffer, announce
1481 	 * a 0 rwnd if rwnd would still be positive.  Store the
1482 	 * the pottential pressure overflow so that the window can be restored
1483 	 * back to original value.
1484 	 */
1485 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1486 		over = 1;
1487 
1488 	if (asoc->rwnd >= len) {
1489 		asoc->rwnd -= len;
1490 		if (over) {
1491 			asoc->rwnd_press += asoc->rwnd;
1492 			asoc->rwnd = 0;
1493 		}
1494 	} else {
1495 		asoc->rwnd_over = len - asoc->rwnd;
1496 		asoc->rwnd = 0;
1497 	}
1498 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1499 			  __func__, asoc, len, asoc->rwnd,
1500 			  asoc->rwnd_over, asoc->rwnd_press);
1501 }
1502 
1503 /* Build the bind address list for the association based on info from the
1504  * local endpoint and the remote peer.
1505  */
1506 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1507 				     sctp_scope_t scope, gfp_t gfp)
1508 {
1509 	int flags;
1510 
1511 	/* Use scoping rules to determine the subset of addresses from
1512 	 * the endpoint.
1513 	 */
1514 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1515 	if (asoc->peer.ipv4_address)
1516 		flags |= SCTP_ADDR4_PEERSUPP;
1517 	if (asoc->peer.ipv6_address)
1518 		flags |= SCTP_ADDR6_PEERSUPP;
1519 
1520 	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1521 				   &asoc->ep->base.bind_addr,
1522 				   scope, gfp, flags);
1523 }
1524 
1525 /* Build the association's bind address list from the cookie.  */
1526 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1527 					 struct sctp_cookie *cookie,
1528 					 gfp_t gfp)
1529 {
1530 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1531 	int var_size3 = cookie->raw_addr_list_len;
1532 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1533 
1534 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1535 				      asoc->ep->base.bind_addr.port, gfp);
1536 }
1537 
1538 /* Lookup laddr in the bind address list of an association. */
1539 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1540 			    const union sctp_addr *laddr)
1541 {
1542 	int found = 0;
1543 
1544 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1545 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1546 				 sctp_sk(asoc->base.sk)))
1547 		found = 1;
1548 
1549 	return found;
1550 }
1551 
1552 /* Set an association id for a given association */
1553 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1554 {
1555 	int assoc_id;
1556 	int error = 0;
1557 
1558 	/* If the id is already assigned, keep it. */
1559 	if (asoc->assoc_id)
1560 		return error;
1561 retry:
1562 	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1563 		return -ENOMEM;
1564 
1565 	spin_lock_bh(&sctp_assocs_id_lock);
1566 	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1567 				    idr_low, &assoc_id);
1568 	if (!error) {
1569 		idr_low = assoc_id + 1;
1570 		if (idr_low == INT_MAX)
1571 			idr_low = 1;
1572 	}
1573 	spin_unlock_bh(&sctp_assocs_id_lock);
1574 	if (error == -EAGAIN)
1575 		goto retry;
1576 	else if (error)
1577 		return error;
1578 
1579 	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1580 	return error;
1581 }
1582 
1583 /* Free the ASCONF queue */
1584 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1585 {
1586 	struct sctp_chunk *asconf;
1587 	struct sctp_chunk *tmp;
1588 
1589 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1590 		list_del_init(&asconf->list);
1591 		sctp_chunk_free(asconf);
1592 	}
1593 }
1594 
1595 /* Free asconf_ack cache */
1596 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1597 {
1598 	struct sctp_chunk *ack;
1599 	struct sctp_chunk *tmp;
1600 
1601 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1602 				transmitted_list) {
1603 		list_del_init(&ack->transmitted_list);
1604 		sctp_chunk_free(ack);
1605 	}
1606 }
1607 
1608 /* Clean up the ASCONF_ACK queue */
1609 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1610 {
1611 	struct sctp_chunk *ack;
1612 	struct sctp_chunk *tmp;
1613 
1614 	/* We can remove all the entries from the queue up to
1615 	 * the "Peer-Sequence-Number".
1616 	 */
1617 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1618 				transmitted_list) {
1619 		if (ack->subh.addip_hdr->serial ==
1620 				htonl(asoc->peer.addip_serial))
1621 			break;
1622 
1623 		list_del_init(&ack->transmitted_list);
1624 		sctp_chunk_free(ack);
1625 	}
1626 }
1627 
1628 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1629 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1630 					const struct sctp_association *asoc,
1631 					__be32 serial)
1632 {
1633 	struct sctp_chunk *ack;
1634 
1635 	/* Walk through the list of cached ASCONF-ACKs and find the
1636 	 * ack chunk whose serial number matches that of the request.
1637 	 */
1638 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1639 		if (ack->subh.addip_hdr->serial == serial) {
1640 			sctp_chunk_hold(ack);
1641 			return ack;
1642 		}
1643 	}
1644 
1645 	return NULL;
1646 }
1647 
1648 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1649 {
1650 	/* Free any cached ASCONF_ACK chunk. */
1651 	sctp_assoc_free_asconf_acks(asoc);
1652 
1653 	/* Free the ASCONF queue. */
1654 	sctp_assoc_free_asconf_queue(asoc);
1655 
1656 	/* Free any cached ASCONF chunk. */
1657 	if (asoc->addip_last_asconf)
1658 		sctp_chunk_free(asoc->addip_last_asconf);
1659 }
1660