1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/types.h> 54 #include <linux/fcntl.h> 55 #include <linux/poll.h> 56 #include <linux/init.h> 57 58 #include <linux/slab.h> 59 #include <linux/in.h> 60 #include <net/ipv6.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal functions. */ 65 static void sctp_assoc_bh_rcv(struct work_struct *work); 66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 68 69 /* Keep track of the new idr low so that we don't re-use association id 70 * numbers too fast. It is protected by they idr spin lock is in the 71 * range of 1 - INT_MAX. 72 */ 73 static u32 idr_low = 1; 74 75 76 /* 1st Level Abstractions. */ 77 78 /* Initialize a new association from provided memory. */ 79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 80 const struct sctp_endpoint *ep, 81 const struct sock *sk, 82 sctp_scope_t scope, 83 gfp_t gfp) 84 { 85 struct sctp_sock *sp; 86 int i; 87 sctp_paramhdr_t *p; 88 int err; 89 90 /* Retrieve the SCTP per socket area. */ 91 sp = sctp_sk((struct sock *)sk); 92 93 /* Discarding const is appropriate here. */ 94 asoc->ep = (struct sctp_endpoint *)ep; 95 sctp_endpoint_hold(asoc->ep); 96 97 /* Hold the sock. */ 98 asoc->base.sk = (struct sock *)sk; 99 sock_hold(asoc->base.sk); 100 101 /* Initialize the common base substructure. */ 102 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 103 104 /* Initialize the object handling fields. */ 105 atomic_set(&asoc->base.refcnt, 1); 106 asoc->base.dead = 0; 107 asoc->base.malloced = 0; 108 109 /* Initialize the bind addr area. */ 110 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 111 112 asoc->state = SCTP_STATE_CLOSED; 113 114 /* Set these values from the socket values, a conversion between 115 * millsecons to seconds/microseconds must also be done. 116 */ 117 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 118 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 119 * 1000; 120 asoc->frag_point = 0; 121 asoc->user_frag = sp->user_frag; 122 123 /* Set the association max_retrans and RTO values from the 124 * socket values. 125 */ 126 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 127 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 128 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 129 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 130 131 asoc->overall_error_count = 0; 132 133 /* Initialize the association's heartbeat interval based on the 134 * sock configured value. 135 */ 136 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 137 138 /* Initialize path max retrans value. */ 139 asoc->pathmaxrxt = sp->pathmaxrxt; 140 141 /* Initialize default path MTU. */ 142 asoc->pathmtu = sp->pathmtu; 143 144 /* Set association default SACK delay */ 145 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 146 asoc->sackfreq = sp->sackfreq; 147 148 /* Set the association default flags controlling 149 * Heartbeat, SACK delay, and Path MTU Discovery. 150 */ 151 asoc->param_flags = sp->param_flags; 152 153 /* Initialize the maximum mumber of new data packets that can be sent 154 * in a burst. 155 */ 156 asoc->max_burst = sp->max_burst; 157 158 /* initialize association timers */ 159 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 162 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 165 166 /* sctpimpguide Section 2.12.2 167 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 168 * recommended value of 5 times 'RTO.Max'. 169 */ 170 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 171 = 5 * asoc->rto_max; 172 173 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 174 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 175 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 176 (unsigned long)sp->autoclose * HZ; 177 178 /* Initializes the timers */ 179 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 180 setup_timer(&asoc->timers[i], sctp_timer_events[i], 181 (unsigned long)asoc); 182 183 /* Pull default initialization values from the sock options. 184 * Note: This assumes that the values have already been 185 * validated in the sock. 186 */ 187 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 188 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 189 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 190 191 asoc->max_init_timeo = 192 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 193 194 /* Allocate storage for the ssnmap after the inbound and outbound 195 * streams have been negotiated during Init. 196 */ 197 asoc->ssnmap = NULL; 198 199 /* Set the local window size for receive. 200 * This is also the rcvbuf space per association. 201 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 202 * 1500 bytes in one SCTP packet. 203 */ 204 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 205 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 206 else 207 asoc->rwnd = sk->sk_rcvbuf/2; 208 209 asoc->a_rwnd = asoc->rwnd; 210 211 asoc->rwnd_over = 0; 212 asoc->rwnd_press = 0; 213 214 /* Use my own max window until I learn something better. */ 215 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 216 217 /* Set the sndbuf size for transmit. */ 218 asoc->sndbuf_used = 0; 219 220 /* Initialize the receive memory counter */ 221 atomic_set(&asoc->rmem_alloc, 0); 222 223 init_waitqueue_head(&asoc->wait); 224 225 asoc->c.my_vtag = sctp_generate_tag(ep); 226 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 227 asoc->c.peer_vtag = 0; 228 asoc->c.my_ttag = 0; 229 asoc->c.peer_ttag = 0; 230 asoc->c.my_port = ep->base.bind_addr.port; 231 232 asoc->c.initial_tsn = sctp_generate_tsn(ep); 233 234 asoc->next_tsn = asoc->c.initial_tsn; 235 236 asoc->ctsn_ack_point = asoc->next_tsn - 1; 237 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 238 asoc->highest_sacked = asoc->ctsn_ack_point; 239 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 240 asoc->unack_data = 0; 241 242 /* ADDIP Section 4.1 Asconf Chunk Procedures 243 * 244 * When an endpoint has an ASCONF signaled change to be sent to the 245 * remote endpoint it should do the following: 246 * ... 247 * A2) a serial number should be assigned to the chunk. The serial 248 * number SHOULD be a monotonically increasing number. The serial 249 * numbers SHOULD be initialized at the start of the 250 * association to the same value as the initial TSN. 251 */ 252 asoc->addip_serial = asoc->c.initial_tsn; 253 254 INIT_LIST_HEAD(&asoc->addip_chunk_list); 255 INIT_LIST_HEAD(&asoc->asconf_ack_list); 256 257 /* Make an empty list of remote transport addresses. */ 258 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 259 asoc->peer.transport_count = 0; 260 261 /* RFC 2960 5.1 Normal Establishment of an Association 262 * 263 * After the reception of the first data chunk in an 264 * association the endpoint must immediately respond with a 265 * sack to acknowledge the data chunk. Subsequent 266 * acknowledgements should be done as described in Section 267 * 6.2. 268 * 269 * [We implement this by telling a new association that it 270 * already received one packet.] 271 */ 272 asoc->peer.sack_needed = 1; 273 asoc->peer.sack_cnt = 0; 274 275 /* Assume that the peer will tell us if he recognizes ASCONF 276 * as part of INIT exchange. 277 * The sctp_addip_noauth option is there for backward compatibilty 278 * and will revert old behavior. 279 */ 280 asoc->peer.asconf_capable = 0; 281 if (sctp_addip_noauth) 282 asoc->peer.asconf_capable = 1; 283 asoc->asconf_addr_del_pending = NULL; 284 asoc->src_out_of_asoc_ok = 0; 285 286 /* Create an input queue. */ 287 sctp_inq_init(&asoc->base.inqueue); 288 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 289 290 /* Create an output queue. */ 291 sctp_outq_init(asoc, &asoc->outqueue); 292 293 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 294 goto fail_init; 295 296 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 297 298 asoc->need_ecne = 0; 299 300 asoc->assoc_id = 0; 301 302 /* Assume that peer would support both address types unless we are 303 * told otherwise. 304 */ 305 asoc->peer.ipv4_address = 1; 306 if (asoc->base.sk->sk_family == PF_INET6) 307 asoc->peer.ipv6_address = 1; 308 INIT_LIST_HEAD(&asoc->asocs); 309 310 asoc->autoclose = sp->autoclose; 311 312 asoc->default_stream = sp->default_stream; 313 asoc->default_ppid = sp->default_ppid; 314 asoc->default_flags = sp->default_flags; 315 asoc->default_context = sp->default_context; 316 asoc->default_timetolive = sp->default_timetolive; 317 asoc->default_rcv_context = sp->default_rcv_context; 318 319 /* AUTH related initializations */ 320 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 321 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 322 if (err) 323 goto fail_init; 324 325 asoc->active_key_id = ep->active_key_id; 326 asoc->asoc_shared_key = NULL; 327 328 asoc->default_hmac_id = 0; 329 /* Save the hmacs and chunks list into this association */ 330 if (ep->auth_hmacs_list) 331 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 332 ntohs(ep->auth_hmacs_list->param_hdr.length)); 333 if (ep->auth_chunk_list) 334 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 335 ntohs(ep->auth_chunk_list->param_hdr.length)); 336 337 /* Get the AUTH random number for this association */ 338 p = (sctp_paramhdr_t *)asoc->c.auth_random; 339 p->type = SCTP_PARAM_RANDOM; 340 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 341 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 342 343 return asoc; 344 345 fail_init: 346 sctp_endpoint_put(asoc->ep); 347 sock_put(asoc->base.sk); 348 return NULL; 349 } 350 351 /* Allocate and initialize a new association */ 352 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 353 const struct sock *sk, 354 sctp_scope_t scope, 355 gfp_t gfp) 356 { 357 struct sctp_association *asoc; 358 359 asoc = t_new(struct sctp_association, gfp); 360 if (!asoc) 361 goto fail; 362 363 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 364 goto fail_init; 365 366 asoc->base.malloced = 1; 367 SCTP_DBG_OBJCNT_INC(assoc); 368 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 369 370 return asoc; 371 372 fail_init: 373 kfree(asoc); 374 fail: 375 return NULL; 376 } 377 378 /* Free this association if possible. There may still be users, so 379 * the actual deallocation may be delayed. 380 */ 381 void sctp_association_free(struct sctp_association *asoc) 382 { 383 struct sock *sk = asoc->base.sk; 384 struct sctp_transport *transport; 385 struct list_head *pos, *temp; 386 int i; 387 388 /* Only real associations count against the endpoint, so 389 * don't bother for if this is a temporary association. 390 */ 391 if (!asoc->temp) { 392 list_del(&asoc->asocs); 393 394 /* Decrement the backlog value for a TCP-style listening 395 * socket. 396 */ 397 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 398 sk->sk_ack_backlog--; 399 } 400 401 /* Mark as dead, so other users can know this structure is 402 * going away. 403 */ 404 asoc->base.dead = 1; 405 406 /* Dispose of any data lying around in the outqueue. */ 407 sctp_outq_free(&asoc->outqueue); 408 409 /* Dispose of any pending messages for the upper layer. */ 410 sctp_ulpq_free(&asoc->ulpq); 411 412 /* Dispose of any pending chunks on the inqueue. */ 413 sctp_inq_free(&asoc->base.inqueue); 414 415 sctp_tsnmap_free(&asoc->peer.tsn_map); 416 417 /* Free ssnmap storage. */ 418 sctp_ssnmap_free(asoc->ssnmap); 419 420 /* Clean up the bound address list. */ 421 sctp_bind_addr_free(&asoc->base.bind_addr); 422 423 /* Do we need to go through all of our timers and 424 * delete them? To be safe we will try to delete all, but we 425 * should be able to go through and make a guess based 426 * on our state. 427 */ 428 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 429 if (timer_pending(&asoc->timers[i]) && 430 del_timer(&asoc->timers[i])) 431 sctp_association_put(asoc); 432 } 433 434 /* Free peer's cached cookie. */ 435 kfree(asoc->peer.cookie); 436 kfree(asoc->peer.peer_random); 437 kfree(asoc->peer.peer_chunks); 438 kfree(asoc->peer.peer_hmacs); 439 440 /* Release the transport structures. */ 441 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 442 transport = list_entry(pos, struct sctp_transport, transports); 443 list_del(pos); 444 sctp_transport_free(transport); 445 } 446 447 asoc->peer.transport_count = 0; 448 449 sctp_asconf_queue_teardown(asoc); 450 451 /* Free pending address space being deleted */ 452 if (asoc->asconf_addr_del_pending != NULL) 453 kfree(asoc->asconf_addr_del_pending); 454 455 /* AUTH - Free the endpoint shared keys */ 456 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 457 458 /* AUTH - Free the association shared key */ 459 sctp_auth_key_put(asoc->asoc_shared_key); 460 461 sctp_association_put(asoc); 462 } 463 464 /* Cleanup and free up an association. */ 465 static void sctp_association_destroy(struct sctp_association *asoc) 466 { 467 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 468 469 sctp_endpoint_put(asoc->ep); 470 sock_put(asoc->base.sk); 471 472 if (asoc->assoc_id != 0) { 473 spin_lock_bh(&sctp_assocs_id_lock); 474 idr_remove(&sctp_assocs_id, asoc->assoc_id); 475 spin_unlock_bh(&sctp_assocs_id_lock); 476 } 477 478 WARN_ON(atomic_read(&asoc->rmem_alloc)); 479 480 if (asoc->base.malloced) { 481 kfree(asoc); 482 SCTP_DBG_OBJCNT_DEC(assoc); 483 } 484 } 485 486 /* Change the primary destination address for the peer. */ 487 void sctp_assoc_set_primary(struct sctp_association *asoc, 488 struct sctp_transport *transport) 489 { 490 int changeover = 0; 491 492 /* it's a changeover only if we already have a primary path 493 * that we are changing 494 */ 495 if (asoc->peer.primary_path != NULL && 496 asoc->peer.primary_path != transport) 497 changeover = 1 ; 498 499 asoc->peer.primary_path = transport; 500 501 /* Set a default msg_name for events. */ 502 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 503 sizeof(union sctp_addr)); 504 505 /* If the primary path is changing, assume that the 506 * user wants to use this new path. 507 */ 508 if ((transport->state == SCTP_ACTIVE) || 509 (transport->state == SCTP_UNKNOWN)) 510 asoc->peer.active_path = transport; 511 512 /* 513 * SFR-CACC algorithm: 514 * Upon the receipt of a request to change the primary 515 * destination address, on the data structure for the new 516 * primary destination, the sender MUST do the following: 517 * 518 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 519 * to this destination address earlier. The sender MUST set 520 * CYCLING_CHANGEOVER to indicate that this switch is a 521 * double switch to the same destination address. 522 * 523 * Really, only bother is we have data queued or outstanding on 524 * the association. 525 */ 526 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 527 return; 528 529 if (transport->cacc.changeover_active) 530 transport->cacc.cycling_changeover = changeover; 531 532 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 533 * a changeover has occurred. 534 */ 535 transport->cacc.changeover_active = changeover; 536 537 /* 3) The sender MUST store the next TSN to be sent in 538 * next_tsn_at_change. 539 */ 540 transport->cacc.next_tsn_at_change = asoc->next_tsn; 541 } 542 543 /* Remove a transport from an association. */ 544 void sctp_assoc_rm_peer(struct sctp_association *asoc, 545 struct sctp_transport *peer) 546 { 547 struct list_head *pos; 548 struct sctp_transport *transport; 549 550 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 551 " port: %d\n", 552 asoc, 553 (&peer->ipaddr), 554 ntohs(peer->ipaddr.v4.sin_port)); 555 556 /* If we are to remove the current retran_path, update it 557 * to the next peer before removing this peer from the list. 558 */ 559 if (asoc->peer.retran_path == peer) 560 sctp_assoc_update_retran_path(asoc); 561 562 /* Remove this peer from the list. */ 563 list_del(&peer->transports); 564 565 /* Get the first transport of asoc. */ 566 pos = asoc->peer.transport_addr_list.next; 567 transport = list_entry(pos, struct sctp_transport, transports); 568 569 /* Update any entries that match the peer to be deleted. */ 570 if (asoc->peer.primary_path == peer) 571 sctp_assoc_set_primary(asoc, transport); 572 if (asoc->peer.active_path == peer) 573 asoc->peer.active_path = transport; 574 if (asoc->peer.retran_path == peer) 575 asoc->peer.retran_path = transport; 576 if (asoc->peer.last_data_from == peer) 577 asoc->peer.last_data_from = transport; 578 579 /* If we remove the transport an INIT was last sent to, set it to 580 * NULL. Combined with the update of the retran path above, this 581 * will cause the next INIT to be sent to the next available 582 * transport, maintaining the cycle. 583 */ 584 if (asoc->init_last_sent_to == peer) 585 asoc->init_last_sent_to = NULL; 586 587 /* If we remove the transport an SHUTDOWN was last sent to, set it 588 * to NULL. Combined with the update of the retran path above, this 589 * will cause the next SHUTDOWN to be sent to the next available 590 * transport, maintaining the cycle. 591 */ 592 if (asoc->shutdown_last_sent_to == peer) 593 asoc->shutdown_last_sent_to = NULL; 594 595 /* If we remove the transport an ASCONF was last sent to, set it to 596 * NULL. 597 */ 598 if (asoc->addip_last_asconf && 599 asoc->addip_last_asconf->transport == peer) 600 asoc->addip_last_asconf->transport = NULL; 601 602 /* If we have something on the transmitted list, we have to 603 * save it off. The best place is the active path. 604 */ 605 if (!list_empty(&peer->transmitted)) { 606 struct sctp_transport *active = asoc->peer.active_path; 607 struct sctp_chunk *ch; 608 609 /* Reset the transport of each chunk on this list */ 610 list_for_each_entry(ch, &peer->transmitted, 611 transmitted_list) { 612 ch->transport = NULL; 613 ch->rtt_in_progress = 0; 614 } 615 616 list_splice_tail_init(&peer->transmitted, 617 &active->transmitted); 618 619 /* Start a T3 timer here in case it wasn't running so 620 * that these migrated packets have a chance to get 621 * retrnasmitted. 622 */ 623 if (!timer_pending(&active->T3_rtx_timer)) 624 if (!mod_timer(&active->T3_rtx_timer, 625 jiffies + active->rto)) 626 sctp_transport_hold(active); 627 } 628 629 asoc->peer.transport_count--; 630 631 sctp_transport_free(peer); 632 } 633 634 /* Add a transport address to an association. */ 635 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 636 const union sctp_addr *addr, 637 const gfp_t gfp, 638 const int peer_state) 639 { 640 struct sctp_transport *peer; 641 struct sctp_sock *sp; 642 unsigned short port; 643 644 sp = sctp_sk(asoc->base.sk); 645 646 /* AF_INET and AF_INET6 share common port field. */ 647 port = ntohs(addr->v4.sin_port); 648 649 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 650 " port: %d state:%d\n", 651 asoc, 652 addr, 653 port, 654 peer_state); 655 656 /* Set the port if it has not been set yet. */ 657 if (0 == asoc->peer.port) 658 asoc->peer.port = port; 659 660 /* Check to see if this is a duplicate. */ 661 peer = sctp_assoc_lookup_paddr(asoc, addr); 662 if (peer) { 663 /* An UNKNOWN state is only set on transports added by 664 * user in sctp_connectx() call. Such transports should be 665 * considered CONFIRMED per RFC 4960, Section 5.4. 666 */ 667 if (peer->state == SCTP_UNKNOWN) { 668 peer->state = SCTP_ACTIVE; 669 } 670 return peer; 671 } 672 673 peer = sctp_transport_new(addr, gfp); 674 if (!peer) 675 return NULL; 676 677 sctp_transport_set_owner(peer, asoc); 678 679 /* Initialize the peer's heartbeat interval based on the 680 * association configured value. 681 */ 682 peer->hbinterval = asoc->hbinterval; 683 684 /* Set the path max_retrans. */ 685 peer->pathmaxrxt = asoc->pathmaxrxt; 686 687 /* Initialize the peer's SACK delay timeout based on the 688 * association configured value. 689 */ 690 peer->sackdelay = asoc->sackdelay; 691 peer->sackfreq = asoc->sackfreq; 692 693 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 694 * based on association setting. 695 */ 696 peer->param_flags = asoc->param_flags; 697 698 sctp_transport_route(peer, NULL, sp); 699 700 /* Initialize the pmtu of the transport. */ 701 if (peer->param_flags & SPP_PMTUD_DISABLE) { 702 if (asoc->pathmtu) 703 peer->pathmtu = asoc->pathmtu; 704 else 705 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 706 } 707 708 /* If this is the first transport addr on this association, 709 * initialize the association PMTU to the peer's PMTU. 710 * If not and the current association PMTU is higher than the new 711 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 712 */ 713 if (asoc->pathmtu) 714 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 715 else 716 asoc->pathmtu = peer->pathmtu; 717 718 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 719 "%d\n", asoc, asoc->pathmtu); 720 peer->pmtu_pending = 0; 721 722 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 723 724 /* The asoc->peer.port might not be meaningful yet, but 725 * initialize the packet structure anyway. 726 */ 727 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 728 asoc->peer.port); 729 730 /* 7.2.1 Slow-Start 731 * 732 * o The initial cwnd before DATA transmission or after a sufficiently 733 * long idle period MUST be set to 734 * min(4*MTU, max(2*MTU, 4380 bytes)) 735 * 736 * o The initial value of ssthresh MAY be arbitrarily high 737 * (for example, implementations MAY use the size of the 738 * receiver advertised window). 739 */ 740 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 741 742 /* At this point, we may not have the receiver's advertised window, 743 * so initialize ssthresh to the default value and it will be set 744 * later when we process the INIT. 745 */ 746 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 747 748 peer->partial_bytes_acked = 0; 749 peer->flight_size = 0; 750 peer->burst_limited = 0; 751 752 /* Set the transport's RTO.initial value */ 753 peer->rto = asoc->rto_initial; 754 755 /* Set the peer's active state. */ 756 peer->state = peer_state; 757 758 /* Attach the remote transport to our asoc. */ 759 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 760 asoc->peer.transport_count++; 761 762 /* If we do not yet have a primary path, set one. */ 763 if (!asoc->peer.primary_path) { 764 sctp_assoc_set_primary(asoc, peer); 765 asoc->peer.retran_path = peer; 766 } 767 768 if (asoc->peer.active_path == asoc->peer.retran_path && 769 peer->state != SCTP_UNCONFIRMED) { 770 asoc->peer.retran_path = peer; 771 } 772 773 return peer; 774 } 775 776 /* Delete a transport address from an association. */ 777 void sctp_assoc_del_peer(struct sctp_association *asoc, 778 const union sctp_addr *addr) 779 { 780 struct list_head *pos; 781 struct list_head *temp; 782 struct sctp_transport *transport; 783 784 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 785 transport = list_entry(pos, struct sctp_transport, transports); 786 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 787 /* Do book keeping for removing the peer and free it. */ 788 sctp_assoc_rm_peer(asoc, transport); 789 break; 790 } 791 } 792 } 793 794 /* Lookup a transport by address. */ 795 struct sctp_transport *sctp_assoc_lookup_paddr( 796 const struct sctp_association *asoc, 797 const union sctp_addr *address) 798 { 799 struct sctp_transport *t; 800 801 /* Cycle through all transports searching for a peer address. */ 802 803 list_for_each_entry(t, &asoc->peer.transport_addr_list, 804 transports) { 805 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 806 return t; 807 } 808 809 return NULL; 810 } 811 812 /* Remove all transports except a give one */ 813 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 814 struct sctp_transport *primary) 815 { 816 struct sctp_transport *temp; 817 struct sctp_transport *t; 818 819 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 820 transports) { 821 /* if the current transport is not the primary one, delete it */ 822 if (t != primary) 823 sctp_assoc_rm_peer(asoc, t); 824 } 825 } 826 827 /* Engage in transport control operations. 828 * Mark the transport up or down and send a notification to the user. 829 * Select and update the new active and retran paths. 830 */ 831 void sctp_assoc_control_transport(struct sctp_association *asoc, 832 struct sctp_transport *transport, 833 sctp_transport_cmd_t command, 834 sctp_sn_error_t error) 835 { 836 struct sctp_transport *t = NULL; 837 struct sctp_transport *first; 838 struct sctp_transport *second; 839 struct sctp_ulpevent *event; 840 struct sockaddr_storage addr; 841 int spc_state = 0; 842 843 /* Record the transition on the transport. */ 844 switch (command) { 845 case SCTP_TRANSPORT_UP: 846 /* If we are moving from UNCONFIRMED state due 847 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 848 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 849 */ 850 if (SCTP_UNCONFIRMED == transport->state && 851 SCTP_HEARTBEAT_SUCCESS == error) 852 spc_state = SCTP_ADDR_CONFIRMED; 853 else 854 spc_state = SCTP_ADDR_AVAILABLE; 855 transport->state = SCTP_ACTIVE; 856 break; 857 858 case SCTP_TRANSPORT_DOWN: 859 /* If the transport was never confirmed, do not transition it 860 * to inactive state. Also, release the cached route since 861 * there may be a better route next time. 862 */ 863 if (transport->state != SCTP_UNCONFIRMED) 864 transport->state = SCTP_INACTIVE; 865 else { 866 dst_release(transport->dst); 867 transport->dst = NULL; 868 } 869 870 spc_state = SCTP_ADDR_UNREACHABLE; 871 break; 872 873 default: 874 return; 875 } 876 877 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 878 * user. 879 */ 880 memset(&addr, 0, sizeof(struct sockaddr_storage)); 881 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len); 882 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 883 0, spc_state, error, GFP_ATOMIC); 884 if (event) 885 sctp_ulpq_tail_event(&asoc->ulpq, event); 886 887 /* Select new active and retran paths. */ 888 889 /* Look for the two most recently used active transports. 890 * 891 * This code produces the wrong ordering whenever jiffies 892 * rolls over, but we still get usable transports, so we don't 893 * worry about it. 894 */ 895 first = NULL; second = NULL; 896 897 list_for_each_entry(t, &asoc->peer.transport_addr_list, 898 transports) { 899 900 if ((t->state == SCTP_INACTIVE) || 901 (t->state == SCTP_UNCONFIRMED)) 902 continue; 903 if (!first || t->last_time_heard > first->last_time_heard) { 904 second = first; 905 first = t; 906 } 907 if (!second || t->last_time_heard > second->last_time_heard) 908 second = t; 909 } 910 911 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 912 * 913 * By default, an endpoint should always transmit to the 914 * primary path, unless the SCTP user explicitly specifies the 915 * destination transport address (and possibly source 916 * transport address) to use. 917 * 918 * [If the primary is active but not most recent, bump the most 919 * recently used transport.] 920 */ 921 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 922 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 923 first != asoc->peer.primary_path) { 924 second = first; 925 first = asoc->peer.primary_path; 926 } 927 928 /* If we failed to find a usable transport, just camp on the 929 * primary, even if it is inactive. 930 */ 931 if (!first) { 932 first = asoc->peer.primary_path; 933 second = asoc->peer.primary_path; 934 } 935 936 /* Set the active and retran transports. */ 937 asoc->peer.active_path = first; 938 asoc->peer.retran_path = second; 939 } 940 941 /* Hold a reference to an association. */ 942 void sctp_association_hold(struct sctp_association *asoc) 943 { 944 atomic_inc(&asoc->base.refcnt); 945 } 946 947 /* Release a reference to an association and cleanup 948 * if there are no more references. 949 */ 950 void sctp_association_put(struct sctp_association *asoc) 951 { 952 if (atomic_dec_and_test(&asoc->base.refcnt)) 953 sctp_association_destroy(asoc); 954 } 955 956 /* Allocate the next TSN, Transmission Sequence Number, for the given 957 * association. 958 */ 959 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 960 { 961 /* From Section 1.6 Serial Number Arithmetic: 962 * Transmission Sequence Numbers wrap around when they reach 963 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 964 * after transmitting TSN = 2*32 - 1 is TSN = 0. 965 */ 966 __u32 retval = asoc->next_tsn; 967 asoc->next_tsn++; 968 asoc->unack_data++; 969 970 return retval; 971 } 972 973 /* Compare two addresses to see if they match. Wildcard addresses 974 * only match themselves. 975 */ 976 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 977 const union sctp_addr *ss2) 978 { 979 struct sctp_af *af; 980 981 af = sctp_get_af_specific(ss1->sa.sa_family); 982 if (unlikely(!af)) 983 return 0; 984 985 return af->cmp_addr(ss1, ss2); 986 } 987 988 /* Return an ecne chunk to get prepended to a packet. 989 * Note: We are sly and return a shared, prealloced chunk. FIXME: 990 * No we don't, but we could/should. 991 */ 992 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 993 { 994 struct sctp_chunk *chunk; 995 996 /* Send ECNE if needed. 997 * Not being able to allocate a chunk here is not deadly. 998 */ 999 if (asoc->need_ecne) 1000 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 1001 else 1002 chunk = NULL; 1003 1004 return chunk; 1005 } 1006 1007 /* 1008 * Find which transport this TSN was sent on. 1009 */ 1010 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1011 __u32 tsn) 1012 { 1013 struct sctp_transport *active; 1014 struct sctp_transport *match; 1015 struct sctp_transport *transport; 1016 struct sctp_chunk *chunk; 1017 __be32 key = htonl(tsn); 1018 1019 match = NULL; 1020 1021 /* 1022 * FIXME: In general, find a more efficient data structure for 1023 * searching. 1024 */ 1025 1026 /* 1027 * The general strategy is to search each transport's transmitted 1028 * list. Return which transport this TSN lives on. 1029 * 1030 * Let's be hopeful and check the active_path first. 1031 * Another optimization would be to know if there is only one 1032 * outbound path and not have to look for the TSN at all. 1033 * 1034 */ 1035 1036 active = asoc->peer.active_path; 1037 1038 list_for_each_entry(chunk, &active->transmitted, 1039 transmitted_list) { 1040 1041 if (key == chunk->subh.data_hdr->tsn) { 1042 match = active; 1043 goto out; 1044 } 1045 } 1046 1047 /* If not found, go search all the other transports. */ 1048 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1049 transports) { 1050 1051 if (transport == active) 1052 break; 1053 list_for_each_entry(chunk, &transport->transmitted, 1054 transmitted_list) { 1055 if (key == chunk->subh.data_hdr->tsn) { 1056 match = transport; 1057 goto out; 1058 } 1059 } 1060 } 1061 out: 1062 return match; 1063 } 1064 1065 /* Is this the association we are looking for? */ 1066 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1067 const union sctp_addr *laddr, 1068 const union sctp_addr *paddr) 1069 { 1070 struct sctp_transport *transport; 1071 1072 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1073 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 1074 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1075 if (!transport) 1076 goto out; 1077 1078 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1079 sctp_sk(asoc->base.sk))) 1080 goto out; 1081 } 1082 transport = NULL; 1083 1084 out: 1085 return transport; 1086 } 1087 1088 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1089 static void sctp_assoc_bh_rcv(struct work_struct *work) 1090 { 1091 struct sctp_association *asoc = 1092 container_of(work, struct sctp_association, 1093 base.inqueue.immediate); 1094 struct sctp_endpoint *ep; 1095 struct sctp_chunk *chunk; 1096 struct sctp_inq *inqueue; 1097 int state; 1098 sctp_subtype_t subtype; 1099 int error = 0; 1100 1101 /* The association should be held so we should be safe. */ 1102 ep = asoc->ep; 1103 1104 inqueue = &asoc->base.inqueue; 1105 sctp_association_hold(asoc); 1106 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1107 state = asoc->state; 1108 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1109 1110 /* SCTP-AUTH, Section 6.3: 1111 * The receiver has a list of chunk types which it expects 1112 * to be received only after an AUTH-chunk. This list has 1113 * been sent to the peer during the association setup. It 1114 * MUST silently discard these chunks if they are not placed 1115 * after an AUTH chunk in the packet. 1116 */ 1117 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1118 continue; 1119 1120 /* Remember where the last DATA chunk came from so we 1121 * know where to send the SACK. 1122 */ 1123 if (sctp_chunk_is_data(chunk)) 1124 asoc->peer.last_data_from = chunk->transport; 1125 else 1126 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 1127 1128 if (chunk->transport) 1129 chunk->transport->last_time_heard = jiffies; 1130 1131 /* Run through the state machine. */ 1132 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 1133 state, ep, asoc, chunk, GFP_ATOMIC); 1134 1135 /* Check to see if the association is freed in response to 1136 * the incoming chunk. If so, get out of the while loop. 1137 */ 1138 if (asoc->base.dead) 1139 break; 1140 1141 /* If there is an error on chunk, discard this packet. */ 1142 if (error && chunk) 1143 chunk->pdiscard = 1; 1144 } 1145 sctp_association_put(asoc); 1146 } 1147 1148 /* This routine moves an association from its old sk to a new sk. */ 1149 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1150 { 1151 struct sctp_sock *newsp = sctp_sk(newsk); 1152 struct sock *oldsk = assoc->base.sk; 1153 1154 /* Delete the association from the old endpoint's list of 1155 * associations. 1156 */ 1157 list_del_init(&assoc->asocs); 1158 1159 /* Decrement the backlog value for a TCP-style socket. */ 1160 if (sctp_style(oldsk, TCP)) 1161 oldsk->sk_ack_backlog--; 1162 1163 /* Release references to the old endpoint and the sock. */ 1164 sctp_endpoint_put(assoc->ep); 1165 sock_put(assoc->base.sk); 1166 1167 /* Get a reference to the new endpoint. */ 1168 assoc->ep = newsp->ep; 1169 sctp_endpoint_hold(assoc->ep); 1170 1171 /* Get a reference to the new sock. */ 1172 assoc->base.sk = newsk; 1173 sock_hold(assoc->base.sk); 1174 1175 /* Add the association to the new endpoint's list of associations. */ 1176 sctp_endpoint_add_asoc(newsp->ep, assoc); 1177 } 1178 1179 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1180 void sctp_assoc_update(struct sctp_association *asoc, 1181 struct sctp_association *new) 1182 { 1183 struct sctp_transport *trans; 1184 struct list_head *pos, *temp; 1185 1186 /* Copy in new parameters of peer. */ 1187 asoc->c = new->c; 1188 asoc->peer.rwnd = new->peer.rwnd; 1189 asoc->peer.sack_needed = new->peer.sack_needed; 1190 asoc->peer.i = new->peer.i; 1191 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1192 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1193 1194 /* Remove any peer addresses not present in the new association. */ 1195 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1196 trans = list_entry(pos, struct sctp_transport, transports); 1197 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1198 sctp_assoc_rm_peer(asoc, trans); 1199 continue; 1200 } 1201 1202 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1203 sctp_transport_reset(trans); 1204 } 1205 1206 /* If the case is A (association restart), use 1207 * initial_tsn as next_tsn. If the case is B, use 1208 * current next_tsn in case data sent to peer 1209 * has been discarded and needs retransmission. 1210 */ 1211 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1212 asoc->next_tsn = new->next_tsn; 1213 asoc->ctsn_ack_point = new->ctsn_ack_point; 1214 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1215 1216 /* Reinitialize SSN for both local streams 1217 * and peer's streams. 1218 */ 1219 sctp_ssnmap_clear(asoc->ssnmap); 1220 1221 /* Flush the ULP reassembly and ordered queue. 1222 * Any data there will now be stale and will 1223 * cause problems. 1224 */ 1225 sctp_ulpq_flush(&asoc->ulpq); 1226 1227 /* reset the overall association error count so 1228 * that the restarted association doesn't get torn 1229 * down on the next retransmission timer. 1230 */ 1231 asoc->overall_error_count = 0; 1232 1233 } else { 1234 /* Add any peer addresses from the new association. */ 1235 list_for_each_entry(trans, &new->peer.transport_addr_list, 1236 transports) { 1237 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1238 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1239 GFP_ATOMIC, trans->state); 1240 } 1241 1242 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1243 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1244 if (!asoc->ssnmap) { 1245 /* Move the ssnmap. */ 1246 asoc->ssnmap = new->ssnmap; 1247 new->ssnmap = NULL; 1248 } 1249 1250 if (!asoc->assoc_id) { 1251 /* get a new association id since we don't have one 1252 * yet. 1253 */ 1254 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1255 } 1256 } 1257 1258 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1259 * and also move the association shared keys over 1260 */ 1261 kfree(asoc->peer.peer_random); 1262 asoc->peer.peer_random = new->peer.peer_random; 1263 new->peer.peer_random = NULL; 1264 1265 kfree(asoc->peer.peer_chunks); 1266 asoc->peer.peer_chunks = new->peer.peer_chunks; 1267 new->peer.peer_chunks = NULL; 1268 1269 kfree(asoc->peer.peer_hmacs); 1270 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1271 new->peer.peer_hmacs = NULL; 1272 1273 sctp_auth_key_put(asoc->asoc_shared_key); 1274 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1275 } 1276 1277 /* Update the retran path for sending a retransmitted packet. 1278 * Round-robin through the active transports, else round-robin 1279 * through the inactive transports as this is the next best thing 1280 * we can try. 1281 */ 1282 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1283 { 1284 struct sctp_transport *t, *next; 1285 struct list_head *head = &asoc->peer.transport_addr_list; 1286 struct list_head *pos; 1287 1288 if (asoc->peer.transport_count == 1) 1289 return; 1290 1291 /* Find the next transport in a round-robin fashion. */ 1292 t = asoc->peer.retran_path; 1293 pos = &t->transports; 1294 next = NULL; 1295 1296 while (1) { 1297 /* Skip the head. */ 1298 if (pos->next == head) 1299 pos = head->next; 1300 else 1301 pos = pos->next; 1302 1303 t = list_entry(pos, struct sctp_transport, transports); 1304 1305 /* We have exhausted the list, but didn't find any 1306 * other active transports. If so, use the next 1307 * transport. 1308 */ 1309 if (t == asoc->peer.retran_path) { 1310 t = next; 1311 break; 1312 } 1313 1314 /* Try to find an active transport. */ 1315 1316 if ((t->state == SCTP_ACTIVE) || 1317 (t->state == SCTP_UNKNOWN)) { 1318 break; 1319 } else { 1320 /* Keep track of the next transport in case 1321 * we don't find any active transport. 1322 */ 1323 if (t->state != SCTP_UNCONFIRMED && !next) 1324 next = t; 1325 } 1326 } 1327 1328 if (t) 1329 asoc->peer.retran_path = t; 1330 else 1331 t = asoc->peer.retran_path; 1332 1333 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1334 " %p addr: ", 1335 " port: %d\n", 1336 asoc, 1337 (&t->ipaddr), 1338 ntohs(t->ipaddr.v4.sin_port)); 1339 } 1340 1341 /* Choose the transport for sending retransmit packet. */ 1342 struct sctp_transport *sctp_assoc_choose_alter_transport( 1343 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1344 { 1345 /* If this is the first time packet is sent, use the active path, 1346 * else use the retran path. If the last packet was sent over the 1347 * retran path, update the retran path and use it. 1348 */ 1349 if (!last_sent_to) 1350 return asoc->peer.active_path; 1351 else { 1352 if (last_sent_to == asoc->peer.retran_path) 1353 sctp_assoc_update_retran_path(asoc); 1354 return asoc->peer.retran_path; 1355 } 1356 } 1357 1358 /* Update the association's pmtu and frag_point by going through all the 1359 * transports. This routine is called when a transport's PMTU has changed. 1360 */ 1361 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1362 { 1363 struct sctp_transport *t; 1364 __u32 pmtu = 0; 1365 1366 if (!asoc) 1367 return; 1368 1369 /* Get the lowest pmtu of all the transports. */ 1370 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1371 transports) { 1372 if (t->pmtu_pending && t->dst) { 1373 sctp_transport_update_pmtu(t, dst_mtu(t->dst)); 1374 t->pmtu_pending = 0; 1375 } 1376 if (!pmtu || (t->pathmtu < pmtu)) 1377 pmtu = t->pathmtu; 1378 } 1379 1380 if (pmtu) { 1381 asoc->pathmtu = pmtu; 1382 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1383 } 1384 1385 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1386 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1387 } 1388 1389 /* Should we send a SACK to update our peer? */ 1390 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1391 { 1392 switch (asoc->state) { 1393 case SCTP_STATE_ESTABLISHED: 1394 case SCTP_STATE_SHUTDOWN_PENDING: 1395 case SCTP_STATE_SHUTDOWN_RECEIVED: 1396 case SCTP_STATE_SHUTDOWN_SENT: 1397 if ((asoc->rwnd > asoc->a_rwnd) && 1398 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1399 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift), 1400 asoc->pathmtu))) 1401 return 1; 1402 break; 1403 default: 1404 break; 1405 } 1406 return 0; 1407 } 1408 1409 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1410 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1411 { 1412 struct sctp_chunk *sack; 1413 struct timer_list *timer; 1414 1415 if (asoc->rwnd_over) { 1416 if (asoc->rwnd_over >= len) { 1417 asoc->rwnd_over -= len; 1418 } else { 1419 asoc->rwnd += (len - asoc->rwnd_over); 1420 asoc->rwnd_over = 0; 1421 } 1422 } else { 1423 asoc->rwnd += len; 1424 } 1425 1426 /* If we had window pressure, start recovering it 1427 * once our rwnd had reached the accumulated pressure 1428 * threshold. The idea is to recover slowly, but up 1429 * to the initial advertised window. 1430 */ 1431 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1432 int change = min(asoc->pathmtu, asoc->rwnd_press); 1433 asoc->rwnd += change; 1434 asoc->rwnd_press -= change; 1435 } 1436 1437 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1438 "- %u\n", __func__, asoc, len, asoc->rwnd, 1439 asoc->rwnd_over, asoc->a_rwnd); 1440 1441 /* Send a window update SACK if the rwnd has increased by at least the 1442 * minimum of the association's PMTU and half of the receive buffer. 1443 * The algorithm used is similar to the one described in 1444 * Section 4.2.3.3 of RFC 1122. 1445 */ 1446 if (sctp_peer_needs_update(asoc)) { 1447 asoc->a_rwnd = asoc->rwnd; 1448 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1449 "rwnd: %u a_rwnd: %u\n", __func__, 1450 asoc, asoc->rwnd, asoc->a_rwnd); 1451 sack = sctp_make_sack(asoc); 1452 if (!sack) 1453 return; 1454 1455 asoc->peer.sack_needed = 0; 1456 1457 sctp_outq_tail(&asoc->outqueue, sack); 1458 1459 /* Stop the SACK timer. */ 1460 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1461 if (timer_pending(timer) && del_timer(timer)) 1462 sctp_association_put(asoc); 1463 } 1464 } 1465 1466 /* Decrease asoc's rwnd by len. */ 1467 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1468 { 1469 int rx_count; 1470 int over = 0; 1471 1472 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1473 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1474 1475 if (asoc->ep->rcvbuf_policy) 1476 rx_count = atomic_read(&asoc->rmem_alloc); 1477 else 1478 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1479 1480 /* If we've reached or overflowed our receive buffer, announce 1481 * a 0 rwnd if rwnd would still be positive. Store the 1482 * the pottential pressure overflow so that the window can be restored 1483 * back to original value. 1484 */ 1485 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1486 over = 1; 1487 1488 if (asoc->rwnd >= len) { 1489 asoc->rwnd -= len; 1490 if (over) { 1491 asoc->rwnd_press += asoc->rwnd; 1492 asoc->rwnd = 0; 1493 } 1494 } else { 1495 asoc->rwnd_over = len - asoc->rwnd; 1496 asoc->rwnd = 0; 1497 } 1498 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1499 __func__, asoc, len, asoc->rwnd, 1500 asoc->rwnd_over, asoc->rwnd_press); 1501 } 1502 1503 /* Build the bind address list for the association based on info from the 1504 * local endpoint and the remote peer. 1505 */ 1506 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1507 sctp_scope_t scope, gfp_t gfp) 1508 { 1509 int flags; 1510 1511 /* Use scoping rules to determine the subset of addresses from 1512 * the endpoint. 1513 */ 1514 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1515 if (asoc->peer.ipv4_address) 1516 flags |= SCTP_ADDR4_PEERSUPP; 1517 if (asoc->peer.ipv6_address) 1518 flags |= SCTP_ADDR6_PEERSUPP; 1519 1520 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1521 &asoc->ep->base.bind_addr, 1522 scope, gfp, flags); 1523 } 1524 1525 /* Build the association's bind address list from the cookie. */ 1526 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1527 struct sctp_cookie *cookie, 1528 gfp_t gfp) 1529 { 1530 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1531 int var_size3 = cookie->raw_addr_list_len; 1532 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1533 1534 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1535 asoc->ep->base.bind_addr.port, gfp); 1536 } 1537 1538 /* Lookup laddr in the bind address list of an association. */ 1539 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1540 const union sctp_addr *laddr) 1541 { 1542 int found = 0; 1543 1544 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1545 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1546 sctp_sk(asoc->base.sk))) 1547 found = 1; 1548 1549 return found; 1550 } 1551 1552 /* Set an association id for a given association */ 1553 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1554 { 1555 int assoc_id; 1556 int error = 0; 1557 1558 /* If the id is already assigned, keep it. */ 1559 if (asoc->assoc_id) 1560 return error; 1561 retry: 1562 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1563 return -ENOMEM; 1564 1565 spin_lock_bh(&sctp_assocs_id_lock); 1566 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1567 idr_low, &assoc_id); 1568 if (!error) { 1569 idr_low = assoc_id + 1; 1570 if (idr_low == INT_MAX) 1571 idr_low = 1; 1572 } 1573 spin_unlock_bh(&sctp_assocs_id_lock); 1574 if (error == -EAGAIN) 1575 goto retry; 1576 else if (error) 1577 return error; 1578 1579 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1580 return error; 1581 } 1582 1583 /* Free the ASCONF queue */ 1584 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1585 { 1586 struct sctp_chunk *asconf; 1587 struct sctp_chunk *tmp; 1588 1589 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1590 list_del_init(&asconf->list); 1591 sctp_chunk_free(asconf); 1592 } 1593 } 1594 1595 /* Free asconf_ack cache */ 1596 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1597 { 1598 struct sctp_chunk *ack; 1599 struct sctp_chunk *tmp; 1600 1601 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1602 transmitted_list) { 1603 list_del_init(&ack->transmitted_list); 1604 sctp_chunk_free(ack); 1605 } 1606 } 1607 1608 /* Clean up the ASCONF_ACK queue */ 1609 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1610 { 1611 struct sctp_chunk *ack; 1612 struct sctp_chunk *tmp; 1613 1614 /* We can remove all the entries from the queue up to 1615 * the "Peer-Sequence-Number". 1616 */ 1617 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1618 transmitted_list) { 1619 if (ack->subh.addip_hdr->serial == 1620 htonl(asoc->peer.addip_serial)) 1621 break; 1622 1623 list_del_init(&ack->transmitted_list); 1624 sctp_chunk_free(ack); 1625 } 1626 } 1627 1628 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1629 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1630 const struct sctp_association *asoc, 1631 __be32 serial) 1632 { 1633 struct sctp_chunk *ack; 1634 1635 /* Walk through the list of cached ASCONF-ACKs and find the 1636 * ack chunk whose serial number matches that of the request. 1637 */ 1638 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1639 if (ack->subh.addip_hdr->serial == serial) { 1640 sctp_chunk_hold(ack); 1641 return ack; 1642 } 1643 } 1644 1645 return NULL; 1646 } 1647 1648 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1649 { 1650 /* Free any cached ASCONF_ACK chunk. */ 1651 sctp_assoc_free_asconf_acks(asoc); 1652 1653 /* Free the ASCONF queue. */ 1654 sctp_assoc_free_asconf_queue(asoc); 1655 1656 /* Free any cached ASCONF chunk. */ 1657 if (asoc->addip_last_asconf) 1658 sctp_chunk_free(asoc->addip_last_asconf); 1659 } 1660