xref: /openbmc/linux/net/sctp/associola.c (revision 7d8ac6b2)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@us.ibm.com>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang             <hui.huang@nokia.com>
38  *    Sridhar Samudrala	    <sri@us.ibm.com>
39  *    Daisy Chang	    <daisyc@us.ibm.com>
40  *    Ryan Layer	    <rmlayer@us.ibm.com>
41  *    Kevin Gao             <kevin.gao@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50 
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56 
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(
67 					struct sctp_association *asoc,
68 					const struct sctp_endpoint *ep,
69 					const struct sock *sk,
70 					enum sctp_scope scope, gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	struct sctp_paramhdr *p;
75 	int i;
76 
77 	/* Retrieve the SCTP per socket area.  */
78 	sp = sctp_sk((struct sock *)sk);
79 
80 	/* Discarding const is appropriate here.  */
81 	asoc->ep = (struct sctp_endpoint *)ep;
82 	asoc->base.sk = (struct sock *)sk;
83 
84 	sctp_endpoint_hold(asoc->ep);
85 	sock_hold(asoc->base.sk);
86 
87 	/* Initialize the common base substructure.  */
88 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
89 
90 	/* Initialize the object handling fields.  */
91 	refcount_set(&asoc->base.refcnt, 1);
92 
93 	/* Initialize the bind addr area.  */
94 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
95 
96 	asoc->state = SCTP_STATE_CLOSED;
97 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 	asoc->user_frag = sp->user_frag;
99 
100 	/* Set the association max_retrans and RTO values from the
101 	 * socket values.
102 	 */
103 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 	asoc->pf_retrans  = sp->pf_retrans;
105 
106 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
109 
110 	/* Initialize the association's heartbeat interval based on the
111 	 * sock configured value.
112 	 */
113 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
114 
115 	/* Initialize path max retrans value. */
116 	asoc->pathmaxrxt = sp->pathmaxrxt;
117 
118 	asoc->flowlabel = sp->flowlabel;
119 	asoc->dscp = sp->dscp;
120 
121 	/* Set association default SACK delay */
122 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
123 	asoc->sackfreq = sp->sackfreq;
124 
125 	/* Set the association default flags controlling
126 	 * Heartbeat, SACK delay, and Path MTU Discovery.
127 	 */
128 	asoc->param_flags = sp->param_flags;
129 
130 	/* Initialize the maximum number of new data packets that can be sent
131 	 * in a burst.
132 	 */
133 	asoc->max_burst = sp->max_burst;
134 
135 	asoc->subscribe = sp->subscribe;
136 
137 	/* initialize association timers */
138 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
139 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
140 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
141 
142 	/* sctpimpguide Section 2.12.2
143 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
144 	 * recommended value of 5 times 'RTO.Max'.
145 	 */
146 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
147 		= 5 * asoc->rto_max;
148 
149 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
150 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
151 
152 	/* Initializes the timers */
153 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
154 		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
155 
156 	/* Pull default initialization values from the sock options.
157 	 * Note: This assumes that the values have already been
158 	 * validated in the sock.
159 	 */
160 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
162 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
163 
164 	asoc->max_init_timeo =
165 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166 
167 	/* Set the local window size for receive.
168 	 * This is also the rcvbuf space per association.
169 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 	 * 1500 bytes in one SCTP packet.
171 	 */
172 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 	else
175 		asoc->rwnd = sk->sk_rcvbuf/2;
176 
177 	asoc->a_rwnd = asoc->rwnd;
178 
179 	/* Use my own max window until I learn something better.  */
180 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181 
182 	/* Initialize the receive memory counter */
183 	atomic_set(&asoc->rmem_alloc, 0);
184 
185 	init_waitqueue_head(&asoc->wait);
186 
187 	asoc->c.my_vtag = sctp_generate_tag(ep);
188 	asoc->c.my_port = ep->base.bind_addr.port;
189 
190 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
191 
192 	asoc->next_tsn = asoc->c.initial_tsn;
193 
194 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 	asoc->highest_sacked = asoc->ctsn_ack_point;
197 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198 
199 	/* ADDIP Section 4.1 Asconf Chunk Procedures
200 	 *
201 	 * When an endpoint has an ASCONF signaled change to be sent to the
202 	 * remote endpoint it should do the following:
203 	 * ...
204 	 * A2) a serial number should be assigned to the chunk. The serial
205 	 * number SHOULD be a monotonically increasing number. The serial
206 	 * numbers SHOULD be initialized at the start of the
207 	 * association to the same value as the initial TSN.
208 	 */
209 	asoc->addip_serial = asoc->c.initial_tsn;
210 	asoc->strreset_outseq = asoc->c.initial_tsn;
211 
212 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
213 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
214 
215 	/* Make an empty list of remote transport addresses.  */
216 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
217 
218 	/* RFC 2960 5.1 Normal Establishment of an Association
219 	 *
220 	 * After the reception of the first data chunk in an
221 	 * association the endpoint must immediately respond with a
222 	 * sack to acknowledge the data chunk.  Subsequent
223 	 * acknowledgements should be done as described in Section
224 	 * 6.2.
225 	 *
226 	 * [We implement this by telling a new association that it
227 	 * already received one packet.]
228 	 */
229 	asoc->peer.sack_needed = 1;
230 	asoc->peer.sack_generation = 1;
231 
232 	/* Assume that the peer will tell us if he recognizes ASCONF
233 	 * as part of INIT exchange.
234 	 * The sctp_addip_noauth option is there for backward compatibility
235 	 * and will revert old behavior.
236 	 */
237 	if (net->sctp.addip_noauth)
238 		asoc->peer.asconf_capable = 1;
239 
240 	/* Create an input queue.  */
241 	sctp_inq_init(&asoc->base.inqueue);
242 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
243 
244 	/* Create an output queue.  */
245 	sctp_outq_init(asoc, &asoc->outqueue);
246 
247 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
248 		goto fail_init;
249 
250 	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
251 			     0, gfp))
252 		goto fail_init;
253 
254 	/* Initialize default path MTU. */
255 	asoc->pathmtu = sp->pathmtu;
256 	sctp_assoc_update_frag_point(asoc);
257 
258 	/* Assume that peer would support both address types unless we are
259 	 * told otherwise.
260 	 */
261 	asoc->peer.ipv4_address = 1;
262 	if (asoc->base.sk->sk_family == PF_INET6)
263 		asoc->peer.ipv6_address = 1;
264 	INIT_LIST_HEAD(&asoc->asocs);
265 
266 	asoc->default_stream = sp->default_stream;
267 	asoc->default_ppid = sp->default_ppid;
268 	asoc->default_flags = sp->default_flags;
269 	asoc->default_context = sp->default_context;
270 	asoc->default_timetolive = sp->default_timetolive;
271 	asoc->default_rcv_context = sp->default_rcv_context;
272 
273 	/* AUTH related initializations */
274 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
275 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
276 		goto stream_free;
277 
278 	asoc->active_key_id = ep->active_key_id;
279 	asoc->prsctp_enable = ep->prsctp_enable;
280 	asoc->reconf_enable = ep->reconf_enable;
281 	asoc->strreset_enable = ep->strreset_enable;
282 
283 	/* Save the hmacs and chunks list into this association */
284 	if (ep->auth_hmacs_list)
285 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
286 			ntohs(ep->auth_hmacs_list->param_hdr.length));
287 	if (ep->auth_chunk_list)
288 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
289 			ntohs(ep->auth_chunk_list->param_hdr.length));
290 
291 	/* Get the AUTH random number for this association */
292 	p = (struct sctp_paramhdr *)asoc->c.auth_random;
293 	p->type = SCTP_PARAM_RANDOM;
294 	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
295 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
296 
297 	return asoc;
298 
299 stream_free:
300 	sctp_stream_free(&asoc->stream);
301 fail_init:
302 	sock_put(asoc->base.sk);
303 	sctp_endpoint_put(asoc->ep);
304 	return NULL;
305 }
306 
307 /* Allocate and initialize a new association */
308 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
309 					      const struct sock *sk,
310 					      enum sctp_scope scope, gfp_t gfp)
311 {
312 	struct sctp_association *asoc;
313 
314 	asoc = kzalloc(sizeof(*asoc), gfp);
315 	if (!asoc)
316 		goto fail;
317 
318 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
319 		goto fail_init;
320 
321 	SCTP_DBG_OBJCNT_INC(assoc);
322 
323 	pr_debug("Created asoc %p\n", asoc);
324 
325 	return asoc;
326 
327 fail_init:
328 	kfree(asoc);
329 fail:
330 	return NULL;
331 }
332 
333 /* Free this association if possible.  There may still be users, so
334  * the actual deallocation may be delayed.
335  */
336 void sctp_association_free(struct sctp_association *asoc)
337 {
338 	struct sock *sk = asoc->base.sk;
339 	struct sctp_transport *transport;
340 	struct list_head *pos, *temp;
341 	int i;
342 
343 	/* Only real associations count against the endpoint, so
344 	 * don't bother for if this is a temporary association.
345 	 */
346 	if (!list_empty(&asoc->asocs)) {
347 		list_del(&asoc->asocs);
348 
349 		/* Decrement the backlog value for a TCP-style listening
350 		 * socket.
351 		 */
352 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
353 			sk->sk_ack_backlog--;
354 	}
355 
356 	/* Mark as dead, so other users can know this structure is
357 	 * going away.
358 	 */
359 	asoc->base.dead = true;
360 
361 	/* Dispose of any data lying around in the outqueue. */
362 	sctp_outq_free(&asoc->outqueue);
363 
364 	/* Dispose of any pending messages for the upper layer. */
365 	sctp_ulpq_free(&asoc->ulpq);
366 
367 	/* Dispose of any pending chunks on the inqueue. */
368 	sctp_inq_free(&asoc->base.inqueue);
369 
370 	sctp_tsnmap_free(&asoc->peer.tsn_map);
371 
372 	/* Free stream information. */
373 	sctp_stream_free(&asoc->stream);
374 
375 	if (asoc->strreset_chunk)
376 		sctp_chunk_free(asoc->strreset_chunk);
377 
378 	/* Clean up the bound address list. */
379 	sctp_bind_addr_free(&asoc->base.bind_addr);
380 
381 	/* Do we need to go through all of our timers and
382 	 * delete them?   To be safe we will try to delete all, but we
383 	 * should be able to go through and make a guess based
384 	 * on our state.
385 	 */
386 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
387 		if (del_timer(&asoc->timers[i]))
388 			sctp_association_put(asoc);
389 	}
390 
391 	/* Free peer's cached cookie. */
392 	kfree(asoc->peer.cookie);
393 	kfree(asoc->peer.peer_random);
394 	kfree(asoc->peer.peer_chunks);
395 	kfree(asoc->peer.peer_hmacs);
396 
397 	/* Release the transport structures. */
398 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
399 		transport = list_entry(pos, struct sctp_transport, transports);
400 		list_del_rcu(pos);
401 		sctp_unhash_transport(transport);
402 		sctp_transport_free(transport);
403 	}
404 
405 	asoc->peer.transport_count = 0;
406 
407 	sctp_asconf_queue_teardown(asoc);
408 
409 	/* Free pending address space being deleted */
410 	kfree(asoc->asconf_addr_del_pending);
411 
412 	/* AUTH - Free the endpoint shared keys */
413 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
414 
415 	/* AUTH - Free the association shared key */
416 	sctp_auth_key_put(asoc->asoc_shared_key);
417 
418 	sctp_association_put(asoc);
419 }
420 
421 /* Cleanup and free up an association. */
422 static void sctp_association_destroy(struct sctp_association *asoc)
423 {
424 	if (unlikely(!asoc->base.dead)) {
425 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
426 		return;
427 	}
428 
429 	sctp_endpoint_put(asoc->ep);
430 	sock_put(asoc->base.sk);
431 
432 	if (asoc->assoc_id != 0) {
433 		spin_lock_bh(&sctp_assocs_id_lock);
434 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
435 		spin_unlock_bh(&sctp_assocs_id_lock);
436 	}
437 
438 	WARN_ON(atomic_read(&asoc->rmem_alloc));
439 
440 	kfree_rcu(asoc, rcu);
441 	SCTP_DBG_OBJCNT_DEC(assoc);
442 }
443 
444 /* Change the primary destination address for the peer. */
445 void sctp_assoc_set_primary(struct sctp_association *asoc,
446 			    struct sctp_transport *transport)
447 {
448 	int changeover = 0;
449 
450 	/* it's a changeover only if we already have a primary path
451 	 * that we are changing
452 	 */
453 	if (asoc->peer.primary_path != NULL &&
454 	    asoc->peer.primary_path != transport)
455 		changeover = 1 ;
456 
457 	asoc->peer.primary_path = transport;
458 
459 	/* Set a default msg_name for events. */
460 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
461 	       sizeof(union sctp_addr));
462 
463 	/* If the primary path is changing, assume that the
464 	 * user wants to use this new path.
465 	 */
466 	if ((transport->state == SCTP_ACTIVE) ||
467 	    (transport->state == SCTP_UNKNOWN))
468 		asoc->peer.active_path = transport;
469 
470 	/*
471 	 * SFR-CACC algorithm:
472 	 * Upon the receipt of a request to change the primary
473 	 * destination address, on the data structure for the new
474 	 * primary destination, the sender MUST do the following:
475 	 *
476 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
477 	 * to this destination address earlier. The sender MUST set
478 	 * CYCLING_CHANGEOVER to indicate that this switch is a
479 	 * double switch to the same destination address.
480 	 *
481 	 * Really, only bother is we have data queued or outstanding on
482 	 * the association.
483 	 */
484 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
485 		return;
486 
487 	if (transport->cacc.changeover_active)
488 		transport->cacc.cycling_changeover = changeover;
489 
490 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
491 	 * a changeover has occurred.
492 	 */
493 	transport->cacc.changeover_active = changeover;
494 
495 	/* 3) The sender MUST store the next TSN to be sent in
496 	 * next_tsn_at_change.
497 	 */
498 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
499 }
500 
501 /* Remove a transport from an association.  */
502 void sctp_assoc_rm_peer(struct sctp_association *asoc,
503 			struct sctp_transport *peer)
504 {
505 	struct sctp_transport *transport;
506 	struct list_head *pos;
507 	struct sctp_chunk *ch;
508 
509 	pr_debug("%s: association:%p addr:%pISpc\n",
510 		 __func__, asoc, &peer->ipaddr.sa);
511 
512 	/* If we are to remove the current retran_path, update it
513 	 * to the next peer before removing this peer from the list.
514 	 */
515 	if (asoc->peer.retran_path == peer)
516 		sctp_assoc_update_retran_path(asoc);
517 
518 	/* Remove this peer from the list. */
519 	list_del_rcu(&peer->transports);
520 	/* Remove this peer from the transport hashtable */
521 	sctp_unhash_transport(peer);
522 
523 	/* Get the first transport of asoc. */
524 	pos = asoc->peer.transport_addr_list.next;
525 	transport = list_entry(pos, struct sctp_transport, transports);
526 
527 	/* Update any entries that match the peer to be deleted. */
528 	if (asoc->peer.primary_path == peer)
529 		sctp_assoc_set_primary(asoc, transport);
530 	if (asoc->peer.active_path == peer)
531 		asoc->peer.active_path = transport;
532 	if (asoc->peer.retran_path == peer)
533 		asoc->peer.retran_path = transport;
534 	if (asoc->peer.last_data_from == peer)
535 		asoc->peer.last_data_from = transport;
536 
537 	if (asoc->strreset_chunk &&
538 	    asoc->strreset_chunk->transport == peer) {
539 		asoc->strreset_chunk->transport = transport;
540 		sctp_transport_reset_reconf_timer(transport);
541 	}
542 
543 	/* If we remove the transport an INIT was last sent to, set it to
544 	 * NULL. Combined with the update of the retran path above, this
545 	 * will cause the next INIT to be sent to the next available
546 	 * transport, maintaining the cycle.
547 	 */
548 	if (asoc->init_last_sent_to == peer)
549 		asoc->init_last_sent_to = NULL;
550 
551 	/* If we remove the transport an SHUTDOWN was last sent to, set it
552 	 * to NULL. Combined with the update of the retran path above, this
553 	 * will cause the next SHUTDOWN to be sent to the next available
554 	 * transport, maintaining the cycle.
555 	 */
556 	if (asoc->shutdown_last_sent_to == peer)
557 		asoc->shutdown_last_sent_to = NULL;
558 
559 	/* If we remove the transport an ASCONF was last sent to, set it to
560 	 * NULL.
561 	 */
562 	if (asoc->addip_last_asconf &&
563 	    asoc->addip_last_asconf->transport == peer)
564 		asoc->addip_last_asconf->transport = NULL;
565 
566 	/* If we have something on the transmitted list, we have to
567 	 * save it off.  The best place is the active path.
568 	 */
569 	if (!list_empty(&peer->transmitted)) {
570 		struct sctp_transport *active = asoc->peer.active_path;
571 
572 		/* Reset the transport of each chunk on this list */
573 		list_for_each_entry(ch, &peer->transmitted,
574 					transmitted_list) {
575 			ch->transport = NULL;
576 			ch->rtt_in_progress = 0;
577 		}
578 
579 		list_splice_tail_init(&peer->transmitted,
580 					&active->transmitted);
581 
582 		/* Start a T3 timer here in case it wasn't running so
583 		 * that these migrated packets have a chance to get
584 		 * retransmitted.
585 		 */
586 		if (!timer_pending(&active->T3_rtx_timer))
587 			if (!mod_timer(&active->T3_rtx_timer,
588 					jiffies + active->rto))
589 				sctp_transport_hold(active);
590 	}
591 
592 	list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
593 		if (ch->transport == peer)
594 			ch->transport = NULL;
595 
596 	asoc->peer.transport_count--;
597 
598 	sctp_transport_free(peer);
599 }
600 
601 /* Add a transport address to an association.  */
602 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
603 					   const union sctp_addr *addr,
604 					   const gfp_t gfp,
605 					   const int peer_state)
606 {
607 	struct net *net = sock_net(asoc->base.sk);
608 	struct sctp_transport *peer;
609 	struct sctp_sock *sp;
610 	unsigned short port;
611 
612 	sp = sctp_sk(asoc->base.sk);
613 
614 	/* AF_INET and AF_INET6 share common port field. */
615 	port = ntohs(addr->v4.sin_port);
616 
617 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
618 		 asoc, &addr->sa, peer_state);
619 
620 	/* Set the port if it has not been set yet.  */
621 	if (0 == asoc->peer.port)
622 		asoc->peer.port = port;
623 
624 	/* Check to see if this is a duplicate. */
625 	peer = sctp_assoc_lookup_paddr(asoc, addr);
626 	if (peer) {
627 		/* An UNKNOWN state is only set on transports added by
628 		 * user in sctp_connectx() call.  Such transports should be
629 		 * considered CONFIRMED per RFC 4960, Section 5.4.
630 		 */
631 		if (peer->state == SCTP_UNKNOWN) {
632 			peer->state = SCTP_ACTIVE;
633 		}
634 		return peer;
635 	}
636 
637 	peer = sctp_transport_new(net, addr, gfp);
638 	if (!peer)
639 		return NULL;
640 
641 	sctp_transport_set_owner(peer, asoc);
642 
643 	/* Initialize the peer's heartbeat interval based on the
644 	 * association configured value.
645 	 */
646 	peer->hbinterval = asoc->hbinterval;
647 
648 	/* Set the path max_retrans.  */
649 	peer->pathmaxrxt = asoc->pathmaxrxt;
650 
651 	/* And the partial failure retrans threshold */
652 	peer->pf_retrans = asoc->pf_retrans;
653 
654 	/* Initialize the peer's SACK delay timeout based on the
655 	 * association configured value.
656 	 */
657 	peer->sackdelay = asoc->sackdelay;
658 	peer->sackfreq = asoc->sackfreq;
659 
660 	if (addr->sa.sa_family == AF_INET6) {
661 		__be32 info = addr->v6.sin6_flowinfo;
662 
663 		if (info) {
664 			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
665 			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
666 		} else {
667 			peer->flowlabel = asoc->flowlabel;
668 		}
669 	}
670 	peer->dscp = asoc->dscp;
671 
672 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
673 	 * based on association setting.
674 	 */
675 	peer->param_flags = asoc->param_flags;
676 
677 	/* Initialize the pmtu of the transport. */
678 	sctp_transport_route(peer, NULL, sp);
679 
680 	/* If this is the first transport addr on this association,
681 	 * initialize the association PMTU to the peer's PMTU.
682 	 * If not and the current association PMTU is higher than the new
683 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
684 	 */
685 	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
686 				  min_t(int, peer->pathmtu, asoc->pathmtu) :
687 				  peer->pathmtu);
688 
689 	peer->pmtu_pending = 0;
690 
691 	/* The asoc->peer.port might not be meaningful yet, but
692 	 * initialize the packet structure anyway.
693 	 */
694 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
695 			 asoc->peer.port);
696 
697 	/* 7.2.1 Slow-Start
698 	 *
699 	 * o The initial cwnd before DATA transmission or after a sufficiently
700 	 *   long idle period MUST be set to
701 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
702 	 *
703 	 * o The initial value of ssthresh MAY be arbitrarily high
704 	 *   (for example, implementations MAY use the size of the
705 	 *   receiver advertised window).
706 	 */
707 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
708 
709 	/* At this point, we may not have the receiver's advertised window,
710 	 * so initialize ssthresh to the default value and it will be set
711 	 * later when we process the INIT.
712 	 */
713 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
714 
715 	peer->partial_bytes_acked = 0;
716 	peer->flight_size = 0;
717 	peer->burst_limited = 0;
718 
719 	/* Set the transport's RTO.initial value */
720 	peer->rto = asoc->rto_initial;
721 	sctp_max_rto(asoc, peer);
722 
723 	/* Set the peer's active state. */
724 	peer->state = peer_state;
725 
726 	/* Add this peer into the transport hashtable */
727 	if (sctp_hash_transport(peer)) {
728 		sctp_transport_free(peer);
729 		return NULL;
730 	}
731 
732 	/* Attach the remote transport to our asoc.  */
733 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
734 	asoc->peer.transport_count++;
735 
736 	/* If we do not yet have a primary path, set one.  */
737 	if (!asoc->peer.primary_path) {
738 		sctp_assoc_set_primary(asoc, peer);
739 		asoc->peer.retran_path = peer;
740 	}
741 
742 	if (asoc->peer.active_path == asoc->peer.retran_path &&
743 	    peer->state != SCTP_UNCONFIRMED) {
744 		asoc->peer.retran_path = peer;
745 	}
746 
747 	return peer;
748 }
749 
750 /* Delete a transport address from an association.  */
751 void sctp_assoc_del_peer(struct sctp_association *asoc,
752 			 const union sctp_addr *addr)
753 {
754 	struct list_head	*pos;
755 	struct list_head	*temp;
756 	struct sctp_transport	*transport;
757 
758 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
759 		transport = list_entry(pos, struct sctp_transport, transports);
760 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
761 			/* Do book keeping for removing the peer and free it. */
762 			sctp_assoc_rm_peer(asoc, transport);
763 			break;
764 		}
765 	}
766 }
767 
768 /* Lookup a transport by address. */
769 struct sctp_transport *sctp_assoc_lookup_paddr(
770 					const struct sctp_association *asoc,
771 					const union sctp_addr *address)
772 {
773 	struct sctp_transport *t;
774 
775 	/* Cycle through all transports searching for a peer address. */
776 
777 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
778 			transports) {
779 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
780 			return t;
781 	}
782 
783 	return NULL;
784 }
785 
786 /* Remove all transports except a give one */
787 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
788 				     struct sctp_transport *primary)
789 {
790 	struct sctp_transport	*temp;
791 	struct sctp_transport	*t;
792 
793 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
794 				 transports) {
795 		/* if the current transport is not the primary one, delete it */
796 		if (t != primary)
797 			sctp_assoc_rm_peer(asoc, t);
798 	}
799 }
800 
801 /* Engage in transport control operations.
802  * Mark the transport up or down and send a notification to the user.
803  * Select and update the new active and retran paths.
804  */
805 void sctp_assoc_control_transport(struct sctp_association *asoc,
806 				  struct sctp_transport *transport,
807 				  enum sctp_transport_cmd command,
808 				  sctp_sn_error_t error)
809 {
810 	struct sctp_ulpevent *event;
811 	struct sockaddr_storage addr;
812 	int spc_state = 0;
813 	bool ulp_notify = true;
814 
815 	/* Record the transition on the transport.  */
816 	switch (command) {
817 	case SCTP_TRANSPORT_UP:
818 		/* If we are moving from UNCONFIRMED state due
819 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
820 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
821 		 */
822 		if (SCTP_UNCONFIRMED == transport->state &&
823 		    SCTP_HEARTBEAT_SUCCESS == error)
824 			spc_state = SCTP_ADDR_CONFIRMED;
825 		else
826 			spc_state = SCTP_ADDR_AVAILABLE;
827 		/* Don't inform ULP about transition from PF to
828 		 * active state and set cwnd to 1 MTU, see SCTP
829 		 * Quick failover draft section 5.1, point 5
830 		 */
831 		if (transport->state == SCTP_PF) {
832 			ulp_notify = false;
833 			transport->cwnd = asoc->pathmtu;
834 		}
835 		transport->state = SCTP_ACTIVE;
836 		break;
837 
838 	case SCTP_TRANSPORT_DOWN:
839 		/* If the transport was never confirmed, do not transition it
840 		 * to inactive state.  Also, release the cached route since
841 		 * there may be a better route next time.
842 		 */
843 		if (transport->state != SCTP_UNCONFIRMED)
844 			transport->state = SCTP_INACTIVE;
845 		else {
846 			sctp_transport_dst_release(transport);
847 			ulp_notify = false;
848 		}
849 
850 		spc_state = SCTP_ADDR_UNREACHABLE;
851 		break;
852 
853 	case SCTP_TRANSPORT_PF:
854 		transport->state = SCTP_PF;
855 		ulp_notify = false;
856 		break;
857 
858 	default:
859 		return;
860 	}
861 
862 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
863 	 * to the user.
864 	 */
865 	if (ulp_notify) {
866 		memset(&addr, 0, sizeof(struct sockaddr_storage));
867 		memcpy(&addr, &transport->ipaddr,
868 		       transport->af_specific->sockaddr_len);
869 
870 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
871 					0, spc_state, error, GFP_ATOMIC);
872 		if (event)
873 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
874 	}
875 
876 	/* Select new active and retran paths. */
877 	sctp_select_active_and_retran_path(asoc);
878 }
879 
880 /* Hold a reference to an association. */
881 void sctp_association_hold(struct sctp_association *asoc)
882 {
883 	refcount_inc(&asoc->base.refcnt);
884 }
885 
886 /* Release a reference to an association and cleanup
887  * if there are no more references.
888  */
889 void sctp_association_put(struct sctp_association *asoc)
890 {
891 	if (refcount_dec_and_test(&asoc->base.refcnt))
892 		sctp_association_destroy(asoc);
893 }
894 
895 /* Allocate the next TSN, Transmission Sequence Number, for the given
896  * association.
897  */
898 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
899 {
900 	/* From Section 1.6 Serial Number Arithmetic:
901 	 * Transmission Sequence Numbers wrap around when they reach
902 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
903 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
904 	 */
905 	__u32 retval = asoc->next_tsn;
906 	asoc->next_tsn++;
907 	asoc->unack_data++;
908 
909 	return retval;
910 }
911 
912 /* Compare two addresses to see if they match.  Wildcard addresses
913  * only match themselves.
914  */
915 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
916 			const union sctp_addr *ss2)
917 {
918 	struct sctp_af *af;
919 
920 	af = sctp_get_af_specific(ss1->sa.sa_family);
921 	if (unlikely(!af))
922 		return 0;
923 
924 	return af->cmp_addr(ss1, ss2);
925 }
926 
927 /* Return an ecne chunk to get prepended to a packet.
928  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
929  * No we don't, but we could/should.
930  */
931 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
932 {
933 	if (!asoc->need_ecne)
934 		return NULL;
935 
936 	/* Send ECNE if needed.
937 	 * Not being able to allocate a chunk here is not deadly.
938 	 */
939 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
940 }
941 
942 /*
943  * Find which transport this TSN was sent on.
944  */
945 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
946 					     __u32 tsn)
947 {
948 	struct sctp_transport *active;
949 	struct sctp_transport *match;
950 	struct sctp_transport *transport;
951 	struct sctp_chunk *chunk;
952 	__be32 key = htonl(tsn);
953 
954 	match = NULL;
955 
956 	/*
957 	 * FIXME: In general, find a more efficient data structure for
958 	 * searching.
959 	 */
960 
961 	/*
962 	 * The general strategy is to search each transport's transmitted
963 	 * list.   Return which transport this TSN lives on.
964 	 *
965 	 * Let's be hopeful and check the active_path first.
966 	 * Another optimization would be to know if there is only one
967 	 * outbound path and not have to look for the TSN at all.
968 	 *
969 	 */
970 
971 	active = asoc->peer.active_path;
972 
973 	list_for_each_entry(chunk, &active->transmitted,
974 			transmitted_list) {
975 
976 		if (key == chunk->subh.data_hdr->tsn) {
977 			match = active;
978 			goto out;
979 		}
980 	}
981 
982 	/* If not found, go search all the other transports. */
983 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
984 			transports) {
985 
986 		if (transport == active)
987 			continue;
988 		list_for_each_entry(chunk, &transport->transmitted,
989 				transmitted_list) {
990 			if (key == chunk->subh.data_hdr->tsn) {
991 				match = transport;
992 				goto out;
993 			}
994 		}
995 	}
996 out:
997 	return match;
998 }
999 
1000 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1001 static void sctp_assoc_bh_rcv(struct work_struct *work)
1002 {
1003 	struct sctp_association *asoc =
1004 		container_of(work, struct sctp_association,
1005 			     base.inqueue.immediate);
1006 	struct net *net = sock_net(asoc->base.sk);
1007 	union sctp_subtype subtype;
1008 	struct sctp_endpoint *ep;
1009 	struct sctp_chunk *chunk;
1010 	struct sctp_inq *inqueue;
1011 	int first_time = 1;	/* is this the first time through the loop */
1012 	int error = 0;
1013 	int state;
1014 
1015 	/* The association should be held so we should be safe. */
1016 	ep = asoc->ep;
1017 
1018 	inqueue = &asoc->base.inqueue;
1019 	sctp_association_hold(asoc);
1020 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1021 		state = asoc->state;
1022 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1023 
1024 		/* If the first chunk in the packet is AUTH, do special
1025 		 * processing specified in Section 6.3 of SCTP-AUTH spec
1026 		 */
1027 		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1028 			struct sctp_chunkhdr *next_hdr;
1029 
1030 			next_hdr = sctp_inq_peek(inqueue);
1031 			if (!next_hdr)
1032 				goto normal;
1033 
1034 			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1035 			 * chunk while saving a pointer to it so we can do
1036 			 * Authentication later (during cookie-echo
1037 			 * processing).
1038 			 */
1039 			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1040 				chunk->auth_chunk = skb_clone(chunk->skb,
1041 							      GFP_ATOMIC);
1042 				chunk->auth = 1;
1043 				continue;
1044 			}
1045 		}
1046 
1047 normal:
1048 		/* SCTP-AUTH, Section 6.3:
1049 		 *    The receiver has a list of chunk types which it expects
1050 		 *    to be received only after an AUTH-chunk.  This list has
1051 		 *    been sent to the peer during the association setup.  It
1052 		 *    MUST silently discard these chunks if they are not placed
1053 		 *    after an AUTH chunk in the packet.
1054 		 */
1055 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1056 			continue;
1057 
1058 		/* Remember where the last DATA chunk came from so we
1059 		 * know where to send the SACK.
1060 		 */
1061 		if (sctp_chunk_is_data(chunk))
1062 			asoc->peer.last_data_from = chunk->transport;
1063 		else {
1064 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1065 			asoc->stats.ictrlchunks++;
1066 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1067 				asoc->stats.isacks++;
1068 		}
1069 
1070 		if (chunk->transport)
1071 			chunk->transport->last_time_heard = ktime_get();
1072 
1073 		/* Run through the state machine. */
1074 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1075 				   state, ep, asoc, chunk, GFP_ATOMIC);
1076 
1077 		/* Check to see if the association is freed in response to
1078 		 * the incoming chunk.  If so, get out of the while loop.
1079 		 */
1080 		if (asoc->base.dead)
1081 			break;
1082 
1083 		/* If there is an error on chunk, discard this packet. */
1084 		if (error && chunk)
1085 			chunk->pdiscard = 1;
1086 
1087 		if (first_time)
1088 			first_time = 0;
1089 	}
1090 	sctp_association_put(asoc);
1091 }
1092 
1093 /* This routine moves an association from its old sk to a new sk.  */
1094 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1095 {
1096 	struct sctp_sock *newsp = sctp_sk(newsk);
1097 	struct sock *oldsk = assoc->base.sk;
1098 
1099 	/* Delete the association from the old endpoint's list of
1100 	 * associations.
1101 	 */
1102 	list_del_init(&assoc->asocs);
1103 
1104 	/* Decrement the backlog value for a TCP-style socket. */
1105 	if (sctp_style(oldsk, TCP))
1106 		oldsk->sk_ack_backlog--;
1107 
1108 	/* Release references to the old endpoint and the sock.  */
1109 	sctp_endpoint_put(assoc->ep);
1110 	sock_put(assoc->base.sk);
1111 
1112 	/* Get a reference to the new endpoint.  */
1113 	assoc->ep = newsp->ep;
1114 	sctp_endpoint_hold(assoc->ep);
1115 
1116 	/* Get a reference to the new sock.  */
1117 	assoc->base.sk = newsk;
1118 	sock_hold(assoc->base.sk);
1119 
1120 	/* Add the association to the new endpoint's list of associations.  */
1121 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1122 }
1123 
1124 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1125 int sctp_assoc_update(struct sctp_association *asoc,
1126 		      struct sctp_association *new)
1127 {
1128 	struct sctp_transport *trans;
1129 	struct list_head *pos, *temp;
1130 
1131 	/* Copy in new parameters of peer. */
1132 	asoc->c = new->c;
1133 	asoc->peer.rwnd = new->peer.rwnd;
1134 	asoc->peer.sack_needed = new->peer.sack_needed;
1135 	asoc->peer.auth_capable = new->peer.auth_capable;
1136 	asoc->peer.i = new->peer.i;
1137 
1138 	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1139 			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1140 		return -ENOMEM;
1141 
1142 	/* Remove any peer addresses not present in the new association. */
1143 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1144 		trans = list_entry(pos, struct sctp_transport, transports);
1145 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1146 			sctp_assoc_rm_peer(asoc, trans);
1147 			continue;
1148 		}
1149 
1150 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1151 			sctp_transport_reset(trans);
1152 	}
1153 
1154 	/* If the case is A (association restart), use
1155 	 * initial_tsn as next_tsn. If the case is B, use
1156 	 * current next_tsn in case data sent to peer
1157 	 * has been discarded and needs retransmission.
1158 	 */
1159 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1160 		asoc->next_tsn = new->next_tsn;
1161 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1162 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1163 
1164 		/* Reinitialize SSN for both local streams
1165 		 * and peer's streams.
1166 		 */
1167 		sctp_stream_clear(&asoc->stream);
1168 
1169 		/* Flush the ULP reassembly and ordered queue.
1170 		 * Any data there will now be stale and will
1171 		 * cause problems.
1172 		 */
1173 		sctp_ulpq_flush(&asoc->ulpq);
1174 
1175 		/* reset the overall association error count so
1176 		 * that the restarted association doesn't get torn
1177 		 * down on the next retransmission timer.
1178 		 */
1179 		asoc->overall_error_count = 0;
1180 
1181 	} else {
1182 		/* Add any peer addresses from the new association. */
1183 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1184 				    transports)
1185 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1186 			    !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1187 						 GFP_ATOMIC, trans->state))
1188 				return -ENOMEM;
1189 
1190 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1191 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1192 
1193 		if (sctp_state(asoc, COOKIE_WAIT))
1194 			sctp_stream_update(&asoc->stream, &new->stream);
1195 
1196 		/* get a new assoc id if we don't have one yet. */
1197 		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1198 			return -ENOMEM;
1199 	}
1200 
1201 	/* SCTP-AUTH: Save the peer parameters from the new associations
1202 	 * and also move the association shared keys over
1203 	 */
1204 	kfree(asoc->peer.peer_random);
1205 	asoc->peer.peer_random = new->peer.peer_random;
1206 	new->peer.peer_random = NULL;
1207 
1208 	kfree(asoc->peer.peer_chunks);
1209 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1210 	new->peer.peer_chunks = NULL;
1211 
1212 	kfree(asoc->peer.peer_hmacs);
1213 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1214 	new->peer.peer_hmacs = NULL;
1215 
1216 	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1217 }
1218 
1219 /* Update the retran path for sending a retransmitted packet.
1220  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1221  *
1222  *   When there is outbound data to send and the primary path
1223  *   becomes inactive (e.g., due to failures), or where the
1224  *   SCTP user explicitly requests to send data to an
1225  *   inactive destination transport address, before reporting
1226  *   an error to its ULP, the SCTP endpoint should try to send
1227  *   the data to an alternate active destination transport
1228  *   address if one exists.
1229  *
1230  *   When retransmitting data that timed out, if the endpoint
1231  *   is multihomed, it should consider each source-destination
1232  *   address pair in its retransmission selection policy.
1233  *   When retransmitting timed-out data, the endpoint should
1234  *   attempt to pick the most divergent source-destination
1235  *   pair from the original source-destination pair to which
1236  *   the packet was transmitted.
1237  *
1238  *   Note: Rules for picking the most divergent source-destination
1239  *   pair are an implementation decision and are not specified
1240  *   within this document.
1241  *
1242  * Our basic strategy is to round-robin transports in priorities
1243  * according to sctp_trans_score() e.g., if no such
1244  * transport with state SCTP_ACTIVE exists, round-robin through
1245  * SCTP_UNKNOWN, etc. You get the picture.
1246  */
1247 static u8 sctp_trans_score(const struct sctp_transport *trans)
1248 {
1249 	switch (trans->state) {
1250 	case SCTP_ACTIVE:
1251 		return 3;	/* best case */
1252 	case SCTP_UNKNOWN:
1253 		return 2;
1254 	case SCTP_PF:
1255 		return 1;
1256 	default: /* case SCTP_INACTIVE */
1257 		return 0;	/* worst case */
1258 	}
1259 }
1260 
1261 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1262 						   struct sctp_transport *trans2)
1263 {
1264 	if (trans1->error_count > trans2->error_count) {
1265 		return trans2;
1266 	} else if (trans1->error_count == trans2->error_count &&
1267 		   ktime_after(trans2->last_time_heard,
1268 			       trans1->last_time_heard)) {
1269 		return trans2;
1270 	} else {
1271 		return trans1;
1272 	}
1273 }
1274 
1275 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1276 						    struct sctp_transport *best)
1277 {
1278 	u8 score_curr, score_best;
1279 
1280 	if (best == NULL || curr == best)
1281 		return curr;
1282 
1283 	score_curr = sctp_trans_score(curr);
1284 	score_best = sctp_trans_score(best);
1285 
1286 	/* First, try a score-based selection if both transport states
1287 	 * differ. If we're in a tie, lets try to make a more clever
1288 	 * decision here based on error counts and last time heard.
1289 	 */
1290 	if (score_curr > score_best)
1291 		return curr;
1292 	else if (score_curr == score_best)
1293 		return sctp_trans_elect_tie(best, curr);
1294 	else
1295 		return best;
1296 }
1297 
1298 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1299 {
1300 	struct sctp_transport *trans = asoc->peer.retran_path;
1301 	struct sctp_transport *trans_next = NULL;
1302 
1303 	/* We're done as we only have the one and only path. */
1304 	if (asoc->peer.transport_count == 1)
1305 		return;
1306 	/* If active_path and retran_path are the same and active,
1307 	 * then this is the only active path. Use it.
1308 	 */
1309 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1310 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1311 		return;
1312 
1313 	/* Iterate from retran_path's successor back to retran_path. */
1314 	for (trans = list_next_entry(trans, transports); 1;
1315 	     trans = list_next_entry(trans, transports)) {
1316 		/* Manually skip the head element. */
1317 		if (&trans->transports == &asoc->peer.transport_addr_list)
1318 			continue;
1319 		if (trans->state == SCTP_UNCONFIRMED)
1320 			continue;
1321 		trans_next = sctp_trans_elect_best(trans, trans_next);
1322 		/* Active is good enough for immediate return. */
1323 		if (trans_next->state == SCTP_ACTIVE)
1324 			break;
1325 		/* We've reached the end, time to update path. */
1326 		if (trans == asoc->peer.retran_path)
1327 			break;
1328 	}
1329 
1330 	asoc->peer.retran_path = trans_next;
1331 
1332 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1333 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1334 }
1335 
1336 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1337 {
1338 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1339 	struct sctp_transport *trans_pf = NULL;
1340 
1341 	/* Look for the two most recently used active transports. */
1342 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1343 			    transports) {
1344 		/* Skip uninteresting transports. */
1345 		if (trans->state == SCTP_INACTIVE ||
1346 		    trans->state == SCTP_UNCONFIRMED)
1347 			continue;
1348 		/* Keep track of the best PF transport from our
1349 		 * list in case we don't find an active one.
1350 		 */
1351 		if (trans->state == SCTP_PF) {
1352 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1353 			continue;
1354 		}
1355 		/* For active transports, pick the most recent ones. */
1356 		if (trans_pri == NULL ||
1357 		    ktime_after(trans->last_time_heard,
1358 				trans_pri->last_time_heard)) {
1359 			trans_sec = trans_pri;
1360 			trans_pri = trans;
1361 		} else if (trans_sec == NULL ||
1362 			   ktime_after(trans->last_time_heard,
1363 				       trans_sec->last_time_heard)) {
1364 			trans_sec = trans;
1365 		}
1366 	}
1367 
1368 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1369 	 *
1370 	 * By default, an endpoint should always transmit to the primary
1371 	 * path, unless the SCTP user explicitly specifies the
1372 	 * destination transport address (and possibly source transport
1373 	 * address) to use. [If the primary is active but not most recent,
1374 	 * bump the most recently used transport.]
1375 	 */
1376 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1377 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1378 	     asoc->peer.primary_path != trans_pri) {
1379 		trans_sec = trans_pri;
1380 		trans_pri = asoc->peer.primary_path;
1381 	}
1382 
1383 	/* We did not find anything useful for a possible retransmission
1384 	 * path; either primary path that we found is the the same as
1385 	 * the current one, or we didn't generally find an active one.
1386 	 */
1387 	if (trans_sec == NULL)
1388 		trans_sec = trans_pri;
1389 
1390 	/* If we failed to find a usable transport, just camp on the
1391 	 * active or pick a PF iff it's the better choice.
1392 	 */
1393 	if (trans_pri == NULL) {
1394 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1395 		trans_sec = trans_pri;
1396 	}
1397 
1398 	/* Set the active and retran transports. */
1399 	asoc->peer.active_path = trans_pri;
1400 	asoc->peer.retran_path = trans_sec;
1401 }
1402 
1403 struct sctp_transport *
1404 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1405 				  struct sctp_transport *last_sent_to)
1406 {
1407 	/* If this is the first time packet is sent, use the active path,
1408 	 * else use the retran path. If the last packet was sent over the
1409 	 * retran path, update the retran path and use it.
1410 	 */
1411 	if (last_sent_to == NULL) {
1412 		return asoc->peer.active_path;
1413 	} else {
1414 		if (last_sent_to == asoc->peer.retran_path)
1415 			sctp_assoc_update_retran_path(asoc);
1416 
1417 		return asoc->peer.retran_path;
1418 	}
1419 }
1420 
1421 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1422 {
1423 	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1424 				    sctp_datachk_len(&asoc->stream));
1425 
1426 	if (asoc->user_frag)
1427 		frag = min_t(int, frag, asoc->user_frag);
1428 
1429 	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1430 				sctp_datachk_len(&asoc->stream));
1431 
1432 	asoc->frag_point = SCTP_TRUNC4(frag);
1433 }
1434 
1435 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1436 {
1437 	if (asoc->pathmtu != pmtu) {
1438 		asoc->pathmtu = pmtu;
1439 		sctp_assoc_update_frag_point(asoc);
1440 	}
1441 
1442 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1443 		 asoc->pathmtu, asoc->frag_point);
1444 }
1445 
1446 /* Update the association's pmtu and frag_point by going through all the
1447  * transports. This routine is called when a transport's PMTU has changed.
1448  */
1449 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1450 {
1451 	struct sctp_transport *t;
1452 	__u32 pmtu = 0;
1453 
1454 	if (!asoc)
1455 		return;
1456 
1457 	/* Get the lowest pmtu of all the transports. */
1458 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1459 		if (t->pmtu_pending && t->dst) {
1460 			sctp_transport_update_pmtu(t,
1461 						   atomic_read(&t->mtu_info));
1462 			t->pmtu_pending = 0;
1463 		}
1464 		if (!pmtu || (t->pathmtu < pmtu))
1465 			pmtu = t->pathmtu;
1466 	}
1467 
1468 	sctp_assoc_set_pmtu(asoc, pmtu);
1469 }
1470 
1471 /* Should we send a SACK to update our peer? */
1472 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1473 {
1474 	struct net *net = sock_net(asoc->base.sk);
1475 	switch (asoc->state) {
1476 	case SCTP_STATE_ESTABLISHED:
1477 	case SCTP_STATE_SHUTDOWN_PENDING:
1478 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1479 	case SCTP_STATE_SHUTDOWN_SENT:
1480 		if ((asoc->rwnd > asoc->a_rwnd) &&
1481 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1482 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1483 			   asoc->pathmtu)))
1484 			return true;
1485 		break;
1486 	default:
1487 		break;
1488 	}
1489 	return false;
1490 }
1491 
1492 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1493 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1494 {
1495 	struct sctp_chunk *sack;
1496 	struct timer_list *timer;
1497 
1498 	if (asoc->rwnd_over) {
1499 		if (asoc->rwnd_over >= len) {
1500 			asoc->rwnd_over -= len;
1501 		} else {
1502 			asoc->rwnd += (len - asoc->rwnd_over);
1503 			asoc->rwnd_over = 0;
1504 		}
1505 	} else {
1506 		asoc->rwnd += len;
1507 	}
1508 
1509 	/* If we had window pressure, start recovering it
1510 	 * once our rwnd had reached the accumulated pressure
1511 	 * threshold.  The idea is to recover slowly, but up
1512 	 * to the initial advertised window.
1513 	 */
1514 	if (asoc->rwnd_press) {
1515 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1516 		asoc->rwnd += change;
1517 		asoc->rwnd_press -= change;
1518 	}
1519 
1520 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1521 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1522 		 asoc->a_rwnd);
1523 
1524 	/* Send a window update SACK if the rwnd has increased by at least the
1525 	 * minimum of the association's PMTU and half of the receive buffer.
1526 	 * The algorithm used is similar to the one described in
1527 	 * Section 4.2.3.3 of RFC 1122.
1528 	 */
1529 	if (sctp_peer_needs_update(asoc)) {
1530 		asoc->a_rwnd = asoc->rwnd;
1531 
1532 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1533 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1534 			 asoc->a_rwnd);
1535 
1536 		sack = sctp_make_sack(asoc);
1537 		if (!sack)
1538 			return;
1539 
1540 		asoc->peer.sack_needed = 0;
1541 
1542 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1543 
1544 		/* Stop the SACK timer.  */
1545 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1546 		if (del_timer(timer))
1547 			sctp_association_put(asoc);
1548 	}
1549 }
1550 
1551 /* Decrease asoc's rwnd by len. */
1552 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1553 {
1554 	int rx_count;
1555 	int over = 0;
1556 
1557 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1558 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1559 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1560 			 asoc->rwnd, asoc->rwnd_over);
1561 
1562 	if (asoc->ep->rcvbuf_policy)
1563 		rx_count = atomic_read(&asoc->rmem_alloc);
1564 	else
1565 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1566 
1567 	/* If we've reached or overflowed our receive buffer, announce
1568 	 * a 0 rwnd if rwnd would still be positive.  Store the
1569 	 * the potential pressure overflow so that the window can be restored
1570 	 * back to original value.
1571 	 */
1572 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1573 		over = 1;
1574 
1575 	if (asoc->rwnd >= len) {
1576 		asoc->rwnd -= len;
1577 		if (over) {
1578 			asoc->rwnd_press += asoc->rwnd;
1579 			asoc->rwnd = 0;
1580 		}
1581 	} else {
1582 		asoc->rwnd_over += len - asoc->rwnd;
1583 		asoc->rwnd = 0;
1584 	}
1585 
1586 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1587 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1588 		 asoc->rwnd_press);
1589 }
1590 
1591 /* Build the bind address list for the association based on info from the
1592  * local endpoint and the remote peer.
1593  */
1594 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1595 				     enum sctp_scope scope, gfp_t gfp)
1596 {
1597 	int flags;
1598 
1599 	/* Use scoping rules to determine the subset of addresses from
1600 	 * the endpoint.
1601 	 */
1602 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1603 	if (asoc->peer.ipv4_address)
1604 		flags |= SCTP_ADDR4_PEERSUPP;
1605 	if (asoc->peer.ipv6_address)
1606 		flags |= SCTP_ADDR6_PEERSUPP;
1607 
1608 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1609 				   &asoc->base.bind_addr,
1610 				   &asoc->ep->base.bind_addr,
1611 				   scope, gfp, flags);
1612 }
1613 
1614 /* Build the association's bind address list from the cookie.  */
1615 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1616 					 struct sctp_cookie *cookie,
1617 					 gfp_t gfp)
1618 {
1619 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1620 	int var_size3 = cookie->raw_addr_list_len;
1621 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1622 
1623 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1624 				      asoc->ep->base.bind_addr.port, gfp);
1625 }
1626 
1627 /* Lookup laddr in the bind address list of an association. */
1628 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1629 			    const union sctp_addr *laddr)
1630 {
1631 	int found = 0;
1632 
1633 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1634 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1635 				 sctp_sk(asoc->base.sk)))
1636 		found = 1;
1637 
1638 	return found;
1639 }
1640 
1641 /* Set an association id for a given association */
1642 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1643 {
1644 	bool preload = gfpflags_allow_blocking(gfp);
1645 	int ret;
1646 
1647 	/* If the id is already assigned, keep it. */
1648 	if (asoc->assoc_id)
1649 		return 0;
1650 
1651 	if (preload)
1652 		idr_preload(gfp);
1653 	spin_lock_bh(&sctp_assocs_id_lock);
1654 	/* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1655 	 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1656 	 */
1657 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1658 			       GFP_NOWAIT);
1659 	spin_unlock_bh(&sctp_assocs_id_lock);
1660 	if (preload)
1661 		idr_preload_end();
1662 	if (ret < 0)
1663 		return ret;
1664 
1665 	asoc->assoc_id = (sctp_assoc_t)ret;
1666 	return 0;
1667 }
1668 
1669 /* Free the ASCONF queue */
1670 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1671 {
1672 	struct sctp_chunk *asconf;
1673 	struct sctp_chunk *tmp;
1674 
1675 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1676 		list_del_init(&asconf->list);
1677 		sctp_chunk_free(asconf);
1678 	}
1679 }
1680 
1681 /* Free asconf_ack cache */
1682 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1683 {
1684 	struct sctp_chunk *ack;
1685 	struct sctp_chunk *tmp;
1686 
1687 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1688 				transmitted_list) {
1689 		list_del_init(&ack->transmitted_list);
1690 		sctp_chunk_free(ack);
1691 	}
1692 }
1693 
1694 /* Clean up the ASCONF_ACK queue */
1695 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1696 {
1697 	struct sctp_chunk *ack;
1698 	struct sctp_chunk *tmp;
1699 
1700 	/* We can remove all the entries from the queue up to
1701 	 * the "Peer-Sequence-Number".
1702 	 */
1703 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1704 				transmitted_list) {
1705 		if (ack->subh.addip_hdr->serial ==
1706 				htonl(asoc->peer.addip_serial))
1707 			break;
1708 
1709 		list_del_init(&ack->transmitted_list);
1710 		sctp_chunk_free(ack);
1711 	}
1712 }
1713 
1714 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1715 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1716 					const struct sctp_association *asoc,
1717 					__be32 serial)
1718 {
1719 	struct sctp_chunk *ack;
1720 
1721 	/* Walk through the list of cached ASCONF-ACKs and find the
1722 	 * ack chunk whose serial number matches that of the request.
1723 	 */
1724 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1725 		if (sctp_chunk_pending(ack))
1726 			continue;
1727 		if (ack->subh.addip_hdr->serial == serial) {
1728 			sctp_chunk_hold(ack);
1729 			return ack;
1730 		}
1731 	}
1732 
1733 	return NULL;
1734 }
1735 
1736 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1737 {
1738 	/* Free any cached ASCONF_ACK chunk. */
1739 	sctp_assoc_free_asconf_acks(asoc);
1740 
1741 	/* Free the ASCONF queue. */
1742 	sctp_assoc_free_asconf_queue(asoc);
1743 
1744 	/* Free any cached ASCONF chunk. */
1745 	if (asoc->addip_last_asconf)
1746 		sctp_chunk_free(asoc->addip_last_asconf);
1747 }
1748