1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <linux-sctp@vger.kernel.org> 32 * 33 * Written or modified by: 34 * La Monte H.P. Yarroll <piggy@acm.org> 35 * Karl Knutson <karl@athena.chicago.il.us> 36 * Jon Grimm <jgrimm@us.ibm.com> 37 * Xingang Guo <xingang.guo@intel.com> 38 * Hui Huang <hui.huang@nokia.com> 39 * Sridhar Samudrala <sri@us.ibm.com> 40 * Daisy Chang <daisyc@us.ibm.com> 41 * Ryan Layer <rmlayer@us.ibm.com> 42 * Kevin Gao <kevin.gao@intel.com> 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/types.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 52 #include <linux/slab.h> 53 #include <linux/in.h> 54 #include <net/ipv6.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 58 /* Forward declarations for internal functions. */ 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 67 const struct sctp_endpoint *ep, 68 const struct sock *sk, 69 sctp_scope_t scope, 70 gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 int i; 75 sctp_paramhdr_t *p; 76 int err; 77 78 /* Retrieve the SCTP per socket area. */ 79 sp = sctp_sk((struct sock *)sk); 80 81 /* Discarding const is appropriate here. */ 82 asoc->ep = (struct sctp_endpoint *)ep; 83 asoc->base.sk = (struct sock *)sk; 84 85 sctp_endpoint_hold(asoc->ep); 86 sock_hold(asoc->base.sk); 87 88 /* Initialize the common base substructure. */ 89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 90 91 /* Initialize the object handling fields. */ 92 atomic_set(&asoc->base.refcnt, 1); 93 asoc->base.dead = false; 94 95 /* Initialize the bind addr area. */ 96 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 97 98 asoc->state = SCTP_STATE_CLOSED; 99 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 100 asoc->frag_point = 0; 101 asoc->user_frag = sp->user_frag; 102 103 /* Set the association max_retrans and RTO values from the 104 * socket values. 105 */ 106 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 107 asoc->pf_retrans = net->sctp.pf_retrans; 108 109 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 110 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 111 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 112 113 asoc->overall_error_count = 0; 114 115 /* Initialize the association's heartbeat interval based on the 116 * sock configured value. 117 */ 118 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 119 120 /* Initialize path max retrans value. */ 121 asoc->pathmaxrxt = sp->pathmaxrxt; 122 123 /* Initialize default path MTU. */ 124 asoc->pathmtu = sp->pathmtu; 125 126 /* Set association default SACK delay */ 127 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 128 asoc->sackfreq = sp->sackfreq; 129 130 /* Set the association default flags controlling 131 * Heartbeat, SACK delay, and Path MTU Discovery. 132 */ 133 asoc->param_flags = sp->param_flags; 134 135 /* Initialize the maximum mumber of new data packets that can be sent 136 * in a burst. 137 */ 138 asoc->max_burst = sp->max_burst; 139 140 /* initialize association timers */ 141 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 142 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 143 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 146 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 147 148 /* sctpimpguide Section 2.12.2 149 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 150 * recommended value of 5 times 'RTO.Max'. 151 */ 152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 153 = 5 * asoc->rto_max; 154 155 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 156 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 157 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 158 min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ; 159 160 /* Initializes the timers */ 161 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 162 setup_timer(&asoc->timers[i], sctp_timer_events[i], 163 (unsigned long)asoc); 164 165 /* Pull default initialization values from the sock options. 166 * Note: This assumes that the values have already been 167 * validated in the sock. 168 */ 169 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 170 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 171 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 172 173 asoc->max_init_timeo = 174 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 175 176 /* Allocate storage for the ssnmap after the inbound and outbound 177 * streams have been negotiated during Init. 178 */ 179 asoc->ssnmap = NULL; 180 181 /* Set the local window size for receive. 182 * This is also the rcvbuf space per association. 183 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 184 * 1500 bytes in one SCTP packet. 185 */ 186 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 187 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 188 else 189 asoc->rwnd = sk->sk_rcvbuf/2; 190 191 asoc->a_rwnd = asoc->rwnd; 192 193 asoc->rwnd_over = 0; 194 asoc->rwnd_press = 0; 195 196 /* Use my own max window until I learn something better. */ 197 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 198 199 /* Set the sndbuf size for transmit. */ 200 asoc->sndbuf_used = 0; 201 202 /* Initialize the receive memory counter */ 203 atomic_set(&asoc->rmem_alloc, 0); 204 205 init_waitqueue_head(&asoc->wait); 206 207 asoc->c.my_vtag = sctp_generate_tag(ep); 208 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 209 asoc->c.peer_vtag = 0; 210 asoc->c.my_ttag = 0; 211 asoc->c.peer_ttag = 0; 212 asoc->c.my_port = ep->base.bind_addr.port; 213 214 asoc->c.initial_tsn = sctp_generate_tsn(ep); 215 216 asoc->next_tsn = asoc->c.initial_tsn; 217 218 asoc->ctsn_ack_point = asoc->next_tsn - 1; 219 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 220 asoc->highest_sacked = asoc->ctsn_ack_point; 221 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 222 asoc->unack_data = 0; 223 224 /* ADDIP Section 4.1 Asconf Chunk Procedures 225 * 226 * When an endpoint has an ASCONF signaled change to be sent to the 227 * remote endpoint it should do the following: 228 * ... 229 * A2) a serial number should be assigned to the chunk. The serial 230 * number SHOULD be a monotonically increasing number. The serial 231 * numbers SHOULD be initialized at the start of the 232 * association to the same value as the initial TSN. 233 */ 234 asoc->addip_serial = asoc->c.initial_tsn; 235 236 INIT_LIST_HEAD(&asoc->addip_chunk_list); 237 INIT_LIST_HEAD(&asoc->asconf_ack_list); 238 239 /* Make an empty list of remote transport addresses. */ 240 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 241 asoc->peer.transport_count = 0; 242 243 /* RFC 2960 5.1 Normal Establishment of an Association 244 * 245 * After the reception of the first data chunk in an 246 * association the endpoint must immediately respond with a 247 * sack to acknowledge the data chunk. Subsequent 248 * acknowledgements should be done as described in Section 249 * 6.2. 250 * 251 * [We implement this by telling a new association that it 252 * already received one packet.] 253 */ 254 asoc->peer.sack_needed = 1; 255 asoc->peer.sack_cnt = 0; 256 asoc->peer.sack_generation = 1; 257 258 /* Assume that the peer will tell us if he recognizes ASCONF 259 * as part of INIT exchange. 260 * The sctp_addip_noauth option is there for backward compatibilty 261 * and will revert old behavior. 262 */ 263 asoc->peer.asconf_capable = 0; 264 if (net->sctp.addip_noauth) 265 asoc->peer.asconf_capable = 1; 266 asoc->asconf_addr_del_pending = NULL; 267 asoc->src_out_of_asoc_ok = 0; 268 asoc->new_transport = NULL; 269 270 /* Create an input queue. */ 271 sctp_inq_init(&asoc->base.inqueue); 272 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 273 274 /* Create an output queue. */ 275 sctp_outq_init(asoc, &asoc->outqueue); 276 277 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 278 goto fail_init; 279 280 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 281 282 asoc->need_ecne = 0; 283 284 asoc->assoc_id = 0; 285 286 /* Assume that peer would support both address types unless we are 287 * told otherwise. 288 */ 289 asoc->peer.ipv4_address = 1; 290 if (asoc->base.sk->sk_family == PF_INET6) 291 asoc->peer.ipv6_address = 1; 292 INIT_LIST_HEAD(&asoc->asocs); 293 294 asoc->autoclose = sp->autoclose; 295 296 asoc->default_stream = sp->default_stream; 297 asoc->default_ppid = sp->default_ppid; 298 asoc->default_flags = sp->default_flags; 299 asoc->default_context = sp->default_context; 300 asoc->default_timetolive = sp->default_timetolive; 301 asoc->default_rcv_context = sp->default_rcv_context; 302 303 /* SCTP_GET_ASSOC_STATS COUNTERS */ 304 memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats)); 305 306 /* AUTH related initializations */ 307 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 308 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 309 if (err) 310 goto fail_init; 311 312 asoc->active_key_id = ep->active_key_id; 313 asoc->asoc_shared_key = NULL; 314 315 asoc->default_hmac_id = 0; 316 /* Save the hmacs and chunks list into this association */ 317 if (ep->auth_hmacs_list) 318 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 319 ntohs(ep->auth_hmacs_list->param_hdr.length)); 320 if (ep->auth_chunk_list) 321 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 322 ntohs(ep->auth_chunk_list->param_hdr.length)); 323 324 /* Get the AUTH random number for this association */ 325 p = (sctp_paramhdr_t *)asoc->c.auth_random; 326 p->type = SCTP_PARAM_RANDOM; 327 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 328 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 329 330 return asoc; 331 332 fail_init: 333 sock_put(asoc->base.sk); 334 sctp_endpoint_put(asoc->ep); 335 return NULL; 336 } 337 338 /* Allocate and initialize a new association */ 339 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 340 const struct sock *sk, 341 sctp_scope_t scope, 342 gfp_t gfp) 343 { 344 struct sctp_association *asoc; 345 346 asoc = kzalloc(sizeof(*asoc), gfp); 347 if (!asoc) 348 goto fail; 349 350 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 351 goto fail_init; 352 353 SCTP_DBG_OBJCNT_INC(assoc); 354 355 pr_debug("Created asoc %p\n", asoc); 356 357 return asoc; 358 359 fail_init: 360 kfree(asoc); 361 fail: 362 return NULL; 363 } 364 365 /* Free this association if possible. There may still be users, so 366 * the actual deallocation may be delayed. 367 */ 368 void sctp_association_free(struct sctp_association *asoc) 369 { 370 struct sock *sk = asoc->base.sk; 371 struct sctp_transport *transport; 372 struct list_head *pos, *temp; 373 int i; 374 375 /* Only real associations count against the endpoint, so 376 * don't bother for if this is a temporary association. 377 */ 378 if (!asoc->temp) { 379 list_del(&asoc->asocs); 380 381 /* Decrement the backlog value for a TCP-style listening 382 * socket. 383 */ 384 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 385 sk->sk_ack_backlog--; 386 } 387 388 /* Mark as dead, so other users can know this structure is 389 * going away. 390 */ 391 asoc->base.dead = true; 392 393 /* Dispose of any data lying around in the outqueue. */ 394 sctp_outq_free(&asoc->outqueue); 395 396 /* Dispose of any pending messages for the upper layer. */ 397 sctp_ulpq_free(&asoc->ulpq); 398 399 /* Dispose of any pending chunks on the inqueue. */ 400 sctp_inq_free(&asoc->base.inqueue); 401 402 sctp_tsnmap_free(&asoc->peer.tsn_map); 403 404 /* Free ssnmap storage. */ 405 sctp_ssnmap_free(asoc->ssnmap); 406 407 /* Clean up the bound address list. */ 408 sctp_bind_addr_free(&asoc->base.bind_addr); 409 410 /* Do we need to go through all of our timers and 411 * delete them? To be safe we will try to delete all, but we 412 * should be able to go through and make a guess based 413 * on our state. 414 */ 415 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 416 if (del_timer(&asoc->timers[i])) 417 sctp_association_put(asoc); 418 } 419 420 /* Free peer's cached cookie. */ 421 kfree(asoc->peer.cookie); 422 kfree(asoc->peer.peer_random); 423 kfree(asoc->peer.peer_chunks); 424 kfree(asoc->peer.peer_hmacs); 425 426 /* Release the transport structures. */ 427 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 428 transport = list_entry(pos, struct sctp_transport, transports); 429 list_del_rcu(pos); 430 sctp_transport_free(transport); 431 } 432 433 asoc->peer.transport_count = 0; 434 435 sctp_asconf_queue_teardown(asoc); 436 437 /* Free pending address space being deleted */ 438 if (asoc->asconf_addr_del_pending != NULL) 439 kfree(asoc->asconf_addr_del_pending); 440 441 /* AUTH - Free the endpoint shared keys */ 442 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 443 444 /* AUTH - Free the association shared key */ 445 sctp_auth_key_put(asoc->asoc_shared_key); 446 447 sctp_association_put(asoc); 448 } 449 450 /* Cleanup and free up an association. */ 451 static void sctp_association_destroy(struct sctp_association *asoc) 452 { 453 if (unlikely(!asoc->base.dead)) { 454 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 455 return; 456 } 457 458 sctp_endpoint_put(asoc->ep); 459 sock_put(asoc->base.sk); 460 461 if (asoc->assoc_id != 0) { 462 spin_lock_bh(&sctp_assocs_id_lock); 463 idr_remove(&sctp_assocs_id, asoc->assoc_id); 464 spin_unlock_bh(&sctp_assocs_id_lock); 465 } 466 467 WARN_ON(atomic_read(&asoc->rmem_alloc)); 468 469 kfree(asoc); 470 SCTP_DBG_OBJCNT_DEC(assoc); 471 } 472 473 /* Change the primary destination address for the peer. */ 474 void sctp_assoc_set_primary(struct sctp_association *asoc, 475 struct sctp_transport *transport) 476 { 477 int changeover = 0; 478 479 /* it's a changeover only if we already have a primary path 480 * that we are changing 481 */ 482 if (asoc->peer.primary_path != NULL && 483 asoc->peer.primary_path != transport) 484 changeover = 1 ; 485 486 asoc->peer.primary_path = transport; 487 488 /* Set a default msg_name for events. */ 489 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 490 sizeof(union sctp_addr)); 491 492 /* If the primary path is changing, assume that the 493 * user wants to use this new path. 494 */ 495 if ((transport->state == SCTP_ACTIVE) || 496 (transport->state == SCTP_UNKNOWN)) 497 asoc->peer.active_path = transport; 498 499 /* 500 * SFR-CACC algorithm: 501 * Upon the receipt of a request to change the primary 502 * destination address, on the data structure for the new 503 * primary destination, the sender MUST do the following: 504 * 505 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 506 * to this destination address earlier. The sender MUST set 507 * CYCLING_CHANGEOVER to indicate that this switch is a 508 * double switch to the same destination address. 509 * 510 * Really, only bother is we have data queued or outstanding on 511 * the association. 512 */ 513 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 514 return; 515 516 if (transport->cacc.changeover_active) 517 transport->cacc.cycling_changeover = changeover; 518 519 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 520 * a changeover has occurred. 521 */ 522 transport->cacc.changeover_active = changeover; 523 524 /* 3) The sender MUST store the next TSN to be sent in 525 * next_tsn_at_change. 526 */ 527 transport->cacc.next_tsn_at_change = asoc->next_tsn; 528 } 529 530 /* Remove a transport from an association. */ 531 void sctp_assoc_rm_peer(struct sctp_association *asoc, 532 struct sctp_transport *peer) 533 { 534 struct list_head *pos; 535 struct sctp_transport *transport; 536 537 pr_debug("%s: association:%p addr:%pISpc\n", 538 __func__, asoc, &peer->ipaddr.sa); 539 540 /* If we are to remove the current retran_path, update it 541 * to the next peer before removing this peer from the list. 542 */ 543 if (asoc->peer.retran_path == peer) 544 sctp_assoc_update_retran_path(asoc); 545 546 /* Remove this peer from the list. */ 547 list_del_rcu(&peer->transports); 548 549 /* Get the first transport of asoc. */ 550 pos = asoc->peer.transport_addr_list.next; 551 transport = list_entry(pos, struct sctp_transport, transports); 552 553 /* Update any entries that match the peer to be deleted. */ 554 if (asoc->peer.primary_path == peer) 555 sctp_assoc_set_primary(asoc, transport); 556 if (asoc->peer.active_path == peer) 557 asoc->peer.active_path = transport; 558 if (asoc->peer.retran_path == peer) 559 asoc->peer.retran_path = transport; 560 if (asoc->peer.last_data_from == peer) 561 asoc->peer.last_data_from = transport; 562 563 /* If we remove the transport an INIT was last sent to, set it to 564 * NULL. Combined with the update of the retran path above, this 565 * will cause the next INIT to be sent to the next available 566 * transport, maintaining the cycle. 567 */ 568 if (asoc->init_last_sent_to == peer) 569 asoc->init_last_sent_to = NULL; 570 571 /* If we remove the transport an SHUTDOWN was last sent to, set it 572 * to NULL. Combined with the update of the retran path above, this 573 * will cause the next SHUTDOWN to be sent to the next available 574 * transport, maintaining the cycle. 575 */ 576 if (asoc->shutdown_last_sent_to == peer) 577 asoc->shutdown_last_sent_to = NULL; 578 579 /* If we remove the transport an ASCONF was last sent to, set it to 580 * NULL. 581 */ 582 if (asoc->addip_last_asconf && 583 asoc->addip_last_asconf->transport == peer) 584 asoc->addip_last_asconf->transport = NULL; 585 586 /* If we have something on the transmitted list, we have to 587 * save it off. The best place is the active path. 588 */ 589 if (!list_empty(&peer->transmitted)) { 590 struct sctp_transport *active = asoc->peer.active_path; 591 struct sctp_chunk *ch; 592 593 /* Reset the transport of each chunk on this list */ 594 list_for_each_entry(ch, &peer->transmitted, 595 transmitted_list) { 596 ch->transport = NULL; 597 ch->rtt_in_progress = 0; 598 } 599 600 list_splice_tail_init(&peer->transmitted, 601 &active->transmitted); 602 603 /* Start a T3 timer here in case it wasn't running so 604 * that these migrated packets have a chance to get 605 * retransmitted. 606 */ 607 if (!timer_pending(&active->T3_rtx_timer)) 608 if (!mod_timer(&active->T3_rtx_timer, 609 jiffies + active->rto)) 610 sctp_transport_hold(active); 611 } 612 613 asoc->peer.transport_count--; 614 615 sctp_transport_free(peer); 616 } 617 618 /* Add a transport address to an association. */ 619 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 620 const union sctp_addr *addr, 621 const gfp_t gfp, 622 const int peer_state) 623 { 624 struct net *net = sock_net(asoc->base.sk); 625 struct sctp_transport *peer; 626 struct sctp_sock *sp; 627 unsigned short port; 628 629 sp = sctp_sk(asoc->base.sk); 630 631 /* AF_INET and AF_INET6 share common port field. */ 632 port = ntohs(addr->v4.sin_port); 633 634 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 635 asoc, &addr->sa, peer_state); 636 637 /* Set the port if it has not been set yet. */ 638 if (0 == asoc->peer.port) 639 asoc->peer.port = port; 640 641 /* Check to see if this is a duplicate. */ 642 peer = sctp_assoc_lookup_paddr(asoc, addr); 643 if (peer) { 644 /* An UNKNOWN state is only set on transports added by 645 * user in sctp_connectx() call. Such transports should be 646 * considered CONFIRMED per RFC 4960, Section 5.4. 647 */ 648 if (peer->state == SCTP_UNKNOWN) { 649 peer->state = SCTP_ACTIVE; 650 } 651 return peer; 652 } 653 654 peer = sctp_transport_new(net, addr, gfp); 655 if (!peer) 656 return NULL; 657 658 sctp_transport_set_owner(peer, asoc); 659 660 /* Initialize the peer's heartbeat interval based on the 661 * association configured value. 662 */ 663 peer->hbinterval = asoc->hbinterval; 664 665 /* Set the path max_retrans. */ 666 peer->pathmaxrxt = asoc->pathmaxrxt; 667 668 /* And the partial failure retrans threshold */ 669 peer->pf_retrans = asoc->pf_retrans; 670 671 /* Initialize the peer's SACK delay timeout based on the 672 * association configured value. 673 */ 674 peer->sackdelay = asoc->sackdelay; 675 peer->sackfreq = asoc->sackfreq; 676 677 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 678 * based on association setting. 679 */ 680 peer->param_flags = asoc->param_flags; 681 682 sctp_transport_route(peer, NULL, sp); 683 684 /* Initialize the pmtu of the transport. */ 685 if (peer->param_flags & SPP_PMTUD_DISABLE) { 686 if (asoc->pathmtu) 687 peer->pathmtu = asoc->pathmtu; 688 else 689 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 690 } 691 692 /* If this is the first transport addr on this association, 693 * initialize the association PMTU to the peer's PMTU. 694 * If not and the current association PMTU is higher than the new 695 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 696 */ 697 if (asoc->pathmtu) 698 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 699 else 700 asoc->pathmtu = peer->pathmtu; 701 702 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 703 asoc->pathmtu); 704 705 peer->pmtu_pending = 0; 706 707 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 708 709 /* The asoc->peer.port might not be meaningful yet, but 710 * initialize the packet structure anyway. 711 */ 712 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 713 asoc->peer.port); 714 715 /* 7.2.1 Slow-Start 716 * 717 * o The initial cwnd before DATA transmission or after a sufficiently 718 * long idle period MUST be set to 719 * min(4*MTU, max(2*MTU, 4380 bytes)) 720 * 721 * o The initial value of ssthresh MAY be arbitrarily high 722 * (for example, implementations MAY use the size of the 723 * receiver advertised window). 724 */ 725 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 726 727 /* At this point, we may not have the receiver's advertised window, 728 * so initialize ssthresh to the default value and it will be set 729 * later when we process the INIT. 730 */ 731 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 732 733 peer->partial_bytes_acked = 0; 734 peer->flight_size = 0; 735 peer->burst_limited = 0; 736 737 /* Set the transport's RTO.initial value */ 738 peer->rto = asoc->rto_initial; 739 sctp_max_rto(asoc, peer); 740 741 /* Set the peer's active state. */ 742 peer->state = peer_state; 743 744 /* Attach the remote transport to our asoc. */ 745 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 746 asoc->peer.transport_count++; 747 748 /* If we do not yet have a primary path, set one. */ 749 if (!asoc->peer.primary_path) { 750 sctp_assoc_set_primary(asoc, peer); 751 asoc->peer.retran_path = peer; 752 } 753 754 if (asoc->peer.active_path == asoc->peer.retran_path && 755 peer->state != SCTP_UNCONFIRMED) { 756 asoc->peer.retran_path = peer; 757 } 758 759 return peer; 760 } 761 762 /* Delete a transport address from an association. */ 763 void sctp_assoc_del_peer(struct sctp_association *asoc, 764 const union sctp_addr *addr) 765 { 766 struct list_head *pos; 767 struct list_head *temp; 768 struct sctp_transport *transport; 769 770 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 771 transport = list_entry(pos, struct sctp_transport, transports); 772 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 773 /* Do book keeping for removing the peer and free it. */ 774 sctp_assoc_rm_peer(asoc, transport); 775 break; 776 } 777 } 778 } 779 780 /* Lookup a transport by address. */ 781 struct sctp_transport *sctp_assoc_lookup_paddr( 782 const struct sctp_association *asoc, 783 const union sctp_addr *address) 784 { 785 struct sctp_transport *t; 786 787 /* Cycle through all transports searching for a peer address. */ 788 789 list_for_each_entry(t, &asoc->peer.transport_addr_list, 790 transports) { 791 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 792 return t; 793 } 794 795 return NULL; 796 } 797 798 /* Remove all transports except a give one */ 799 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 800 struct sctp_transport *primary) 801 { 802 struct sctp_transport *temp; 803 struct sctp_transport *t; 804 805 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 806 transports) { 807 /* if the current transport is not the primary one, delete it */ 808 if (t != primary) 809 sctp_assoc_rm_peer(asoc, t); 810 } 811 } 812 813 /* Engage in transport control operations. 814 * Mark the transport up or down and send a notification to the user. 815 * Select and update the new active and retran paths. 816 */ 817 void sctp_assoc_control_transport(struct sctp_association *asoc, 818 struct sctp_transport *transport, 819 sctp_transport_cmd_t command, 820 sctp_sn_error_t error) 821 { 822 struct sctp_transport *t = NULL; 823 struct sctp_transport *first; 824 struct sctp_transport *second; 825 struct sctp_ulpevent *event; 826 struct sockaddr_storage addr; 827 int spc_state = 0; 828 bool ulp_notify = true; 829 830 /* Record the transition on the transport. */ 831 switch (command) { 832 case SCTP_TRANSPORT_UP: 833 /* If we are moving from UNCONFIRMED state due 834 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 835 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 836 */ 837 if (SCTP_UNCONFIRMED == transport->state && 838 SCTP_HEARTBEAT_SUCCESS == error) 839 spc_state = SCTP_ADDR_CONFIRMED; 840 else 841 spc_state = SCTP_ADDR_AVAILABLE; 842 /* Don't inform ULP about transition from PF to 843 * active state and set cwnd to 1 MTU, see SCTP 844 * Quick failover draft section 5.1, point 5 845 */ 846 if (transport->state == SCTP_PF) { 847 ulp_notify = false; 848 transport->cwnd = asoc->pathmtu; 849 } 850 transport->state = SCTP_ACTIVE; 851 break; 852 853 case SCTP_TRANSPORT_DOWN: 854 /* If the transport was never confirmed, do not transition it 855 * to inactive state. Also, release the cached route since 856 * there may be a better route next time. 857 */ 858 if (transport->state != SCTP_UNCONFIRMED) 859 transport->state = SCTP_INACTIVE; 860 else { 861 dst_release(transport->dst); 862 transport->dst = NULL; 863 } 864 865 spc_state = SCTP_ADDR_UNREACHABLE; 866 break; 867 868 case SCTP_TRANSPORT_PF: 869 transport->state = SCTP_PF; 870 ulp_notify = false; 871 break; 872 873 default: 874 return; 875 } 876 877 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 878 * user. 879 */ 880 if (ulp_notify) { 881 memset(&addr, 0, sizeof(struct sockaddr_storage)); 882 memcpy(&addr, &transport->ipaddr, 883 transport->af_specific->sockaddr_len); 884 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 885 0, spc_state, error, GFP_ATOMIC); 886 if (event) 887 sctp_ulpq_tail_event(&asoc->ulpq, event); 888 } 889 890 /* Select new active and retran paths. */ 891 892 /* Look for the two most recently used active transports. 893 * 894 * This code produces the wrong ordering whenever jiffies 895 * rolls over, but we still get usable transports, so we don't 896 * worry about it. 897 */ 898 first = NULL; second = NULL; 899 900 list_for_each_entry(t, &asoc->peer.transport_addr_list, 901 transports) { 902 903 if ((t->state == SCTP_INACTIVE) || 904 (t->state == SCTP_UNCONFIRMED) || 905 (t->state == SCTP_PF)) 906 continue; 907 if (!first || t->last_time_heard > first->last_time_heard) { 908 second = first; 909 first = t; 910 } else if (!second || 911 t->last_time_heard > second->last_time_heard) 912 second = t; 913 } 914 915 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 916 * 917 * By default, an endpoint should always transmit to the 918 * primary path, unless the SCTP user explicitly specifies the 919 * destination transport address (and possibly source 920 * transport address) to use. 921 * 922 * [If the primary is active but not most recent, bump the most 923 * recently used transport.] 924 */ 925 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 926 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 927 first != asoc->peer.primary_path) { 928 second = first; 929 first = asoc->peer.primary_path; 930 } 931 932 if (!second) 933 second = first; 934 /* If we failed to find a usable transport, just camp on the 935 * primary, even if it is inactive. 936 */ 937 if (!first) { 938 first = asoc->peer.primary_path; 939 second = asoc->peer.primary_path; 940 } 941 942 /* Set the active and retran transports. */ 943 asoc->peer.active_path = first; 944 asoc->peer.retran_path = second; 945 } 946 947 /* Hold a reference to an association. */ 948 void sctp_association_hold(struct sctp_association *asoc) 949 { 950 atomic_inc(&asoc->base.refcnt); 951 } 952 953 /* Release a reference to an association and cleanup 954 * if there are no more references. 955 */ 956 void sctp_association_put(struct sctp_association *asoc) 957 { 958 if (atomic_dec_and_test(&asoc->base.refcnt)) 959 sctp_association_destroy(asoc); 960 } 961 962 /* Allocate the next TSN, Transmission Sequence Number, for the given 963 * association. 964 */ 965 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 966 { 967 /* From Section 1.6 Serial Number Arithmetic: 968 * Transmission Sequence Numbers wrap around when they reach 969 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 970 * after transmitting TSN = 2*32 - 1 is TSN = 0. 971 */ 972 __u32 retval = asoc->next_tsn; 973 asoc->next_tsn++; 974 asoc->unack_data++; 975 976 return retval; 977 } 978 979 /* Compare two addresses to see if they match. Wildcard addresses 980 * only match themselves. 981 */ 982 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 983 const union sctp_addr *ss2) 984 { 985 struct sctp_af *af; 986 987 af = sctp_get_af_specific(ss1->sa.sa_family); 988 if (unlikely(!af)) 989 return 0; 990 991 return af->cmp_addr(ss1, ss2); 992 } 993 994 /* Return an ecne chunk to get prepended to a packet. 995 * Note: We are sly and return a shared, prealloced chunk. FIXME: 996 * No we don't, but we could/should. 997 */ 998 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 999 { 1000 struct sctp_chunk *chunk; 1001 1002 /* Send ECNE if needed. 1003 * Not being able to allocate a chunk here is not deadly. 1004 */ 1005 if (asoc->need_ecne) 1006 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 1007 else 1008 chunk = NULL; 1009 1010 return chunk; 1011 } 1012 1013 /* 1014 * Find which transport this TSN was sent on. 1015 */ 1016 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1017 __u32 tsn) 1018 { 1019 struct sctp_transport *active; 1020 struct sctp_transport *match; 1021 struct sctp_transport *transport; 1022 struct sctp_chunk *chunk; 1023 __be32 key = htonl(tsn); 1024 1025 match = NULL; 1026 1027 /* 1028 * FIXME: In general, find a more efficient data structure for 1029 * searching. 1030 */ 1031 1032 /* 1033 * The general strategy is to search each transport's transmitted 1034 * list. Return which transport this TSN lives on. 1035 * 1036 * Let's be hopeful and check the active_path first. 1037 * Another optimization would be to know if there is only one 1038 * outbound path and not have to look for the TSN at all. 1039 * 1040 */ 1041 1042 active = asoc->peer.active_path; 1043 1044 list_for_each_entry(chunk, &active->transmitted, 1045 transmitted_list) { 1046 1047 if (key == chunk->subh.data_hdr->tsn) { 1048 match = active; 1049 goto out; 1050 } 1051 } 1052 1053 /* If not found, go search all the other transports. */ 1054 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1055 transports) { 1056 1057 if (transport == active) 1058 continue; 1059 list_for_each_entry(chunk, &transport->transmitted, 1060 transmitted_list) { 1061 if (key == chunk->subh.data_hdr->tsn) { 1062 match = transport; 1063 goto out; 1064 } 1065 } 1066 } 1067 out: 1068 return match; 1069 } 1070 1071 /* Is this the association we are looking for? */ 1072 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1073 struct net *net, 1074 const union sctp_addr *laddr, 1075 const union sctp_addr *paddr) 1076 { 1077 struct sctp_transport *transport; 1078 1079 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1080 (htons(asoc->peer.port) == paddr->v4.sin_port) && 1081 net_eq(sock_net(asoc->base.sk), net)) { 1082 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1083 if (!transport) 1084 goto out; 1085 1086 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1087 sctp_sk(asoc->base.sk))) 1088 goto out; 1089 } 1090 transport = NULL; 1091 1092 out: 1093 return transport; 1094 } 1095 1096 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1097 static void sctp_assoc_bh_rcv(struct work_struct *work) 1098 { 1099 struct sctp_association *asoc = 1100 container_of(work, struct sctp_association, 1101 base.inqueue.immediate); 1102 struct net *net = sock_net(asoc->base.sk); 1103 struct sctp_endpoint *ep; 1104 struct sctp_chunk *chunk; 1105 struct sctp_inq *inqueue; 1106 int state; 1107 sctp_subtype_t subtype; 1108 int error = 0; 1109 1110 /* The association should be held so we should be safe. */ 1111 ep = asoc->ep; 1112 1113 inqueue = &asoc->base.inqueue; 1114 sctp_association_hold(asoc); 1115 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1116 state = asoc->state; 1117 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1118 1119 /* SCTP-AUTH, Section 6.3: 1120 * The receiver has a list of chunk types which it expects 1121 * to be received only after an AUTH-chunk. This list has 1122 * been sent to the peer during the association setup. It 1123 * MUST silently discard these chunks if they are not placed 1124 * after an AUTH chunk in the packet. 1125 */ 1126 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1127 continue; 1128 1129 /* Remember where the last DATA chunk came from so we 1130 * know where to send the SACK. 1131 */ 1132 if (sctp_chunk_is_data(chunk)) 1133 asoc->peer.last_data_from = chunk->transport; 1134 else { 1135 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1136 asoc->stats.ictrlchunks++; 1137 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1138 asoc->stats.isacks++; 1139 } 1140 1141 if (chunk->transport) 1142 chunk->transport->last_time_heard = jiffies; 1143 1144 /* Run through the state machine. */ 1145 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1146 state, ep, asoc, chunk, GFP_ATOMIC); 1147 1148 /* Check to see if the association is freed in response to 1149 * the incoming chunk. If so, get out of the while loop. 1150 */ 1151 if (asoc->base.dead) 1152 break; 1153 1154 /* If there is an error on chunk, discard this packet. */ 1155 if (error && chunk) 1156 chunk->pdiscard = 1; 1157 } 1158 sctp_association_put(asoc); 1159 } 1160 1161 /* This routine moves an association from its old sk to a new sk. */ 1162 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1163 { 1164 struct sctp_sock *newsp = sctp_sk(newsk); 1165 struct sock *oldsk = assoc->base.sk; 1166 1167 /* Delete the association from the old endpoint's list of 1168 * associations. 1169 */ 1170 list_del_init(&assoc->asocs); 1171 1172 /* Decrement the backlog value for a TCP-style socket. */ 1173 if (sctp_style(oldsk, TCP)) 1174 oldsk->sk_ack_backlog--; 1175 1176 /* Release references to the old endpoint and the sock. */ 1177 sctp_endpoint_put(assoc->ep); 1178 sock_put(assoc->base.sk); 1179 1180 /* Get a reference to the new endpoint. */ 1181 assoc->ep = newsp->ep; 1182 sctp_endpoint_hold(assoc->ep); 1183 1184 /* Get a reference to the new sock. */ 1185 assoc->base.sk = newsk; 1186 sock_hold(assoc->base.sk); 1187 1188 /* Add the association to the new endpoint's list of associations. */ 1189 sctp_endpoint_add_asoc(newsp->ep, assoc); 1190 } 1191 1192 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1193 void sctp_assoc_update(struct sctp_association *asoc, 1194 struct sctp_association *new) 1195 { 1196 struct sctp_transport *trans; 1197 struct list_head *pos, *temp; 1198 1199 /* Copy in new parameters of peer. */ 1200 asoc->c = new->c; 1201 asoc->peer.rwnd = new->peer.rwnd; 1202 asoc->peer.sack_needed = new->peer.sack_needed; 1203 asoc->peer.i = new->peer.i; 1204 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1205 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1206 1207 /* Remove any peer addresses not present in the new association. */ 1208 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1209 trans = list_entry(pos, struct sctp_transport, transports); 1210 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1211 sctp_assoc_rm_peer(asoc, trans); 1212 continue; 1213 } 1214 1215 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1216 sctp_transport_reset(trans); 1217 } 1218 1219 /* If the case is A (association restart), use 1220 * initial_tsn as next_tsn. If the case is B, use 1221 * current next_tsn in case data sent to peer 1222 * has been discarded and needs retransmission. 1223 */ 1224 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1225 asoc->next_tsn = new->next_tsn; 1226 asoc->ctsn_ack_point = new->ctsn_ack_point; 1227 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1228 1229 /* Reinitialize SSN for both local streams 1230 * and peer's streams. 1231 */ 1232 sctp_ssnmap_clear(asoc->ssnmap); 1233 1234 /* Flush the ULP reassembly and ordered queue. 1235 * Any data there will now be stale and will 1236 * cause problems. 1237 */ 1238 sctp_ulpq_flush(&asoc->ulpq); 1239 1240 /* reset the overall association error count so 1241 * that the restarted association doesn't get torn 1242 * down on the next retransmission timer. 1243 */ 1244 asoc->overall_error_count = 0; 1245 1246 } else { 1247 /* Add any peer addresses from the new association. */ 1248 list_for_each_entry(trans, &new->peer.transport_addr_list, 1249 transports) { 1250 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1251 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1252 GFP_ATOMIC, trans->state); 1253 } 1254 1255 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1256 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1257 if (!asoc->ssnmap) { 1258 /* Move the ssnmap. */ 1259 asoc->ssnmap = new->ssnmap; 1260 new->ssnmap = NULL; 1261 } 1262 1263 if (!asoc->assoc_id) { 1264 /* get a new association id since we don't have one 1265 * yet. 1266 */ 1267 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1268 } 1269 } 1270 1271 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1272 * and also move the association shared keys over 1273 */ 1274 kfree(asoc->peer.peer_random); 1275 asoc->peer.peer_random = new->peer.peer_random; 1276 new->peer.peer_random = NULL; 1277 1278 kfree(asoc->peer.peer_chunks); 1279 asoc->peer.peer_chunks = new->peer.peer_chunks; 1280 new->peer.peer_chunks = NULL; 1281 1282 kfree(asoc->peer.peer_hmacs); 1283 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1284 new->peer.peer_hmacs = NULL; 1285 1286 sctp_auth_key_put(asoc->asoc_shared_key); 1287 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1288 } 1289 1290 /* Update the retran path for sending a retransmitted packet. 1291 * Round-robin through the active transports, else round-robin 1292 * through the inactive transports as this is the next best thing 1293 * we can try. 1294 */ 1295 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1296 { 1297 struct sctp_transport *t, *next; 1298 struct list_head *head = &asoc->peer.transport_addr_list; 1299 struct list_head *pos; 1300 1301 if (asoc->peer.transport_count == 1) 1302 return; 1303 1304 /* Find the next transport in a round-robin fashion. */ 1305 t = asoc->peer.retran_path; 1306 pos = &t->transports; 1307 next = NULL; 1308 1309 while (1) { 1310 /* Skip the head. */ 1311 if (pos->next == head) 1312 pos = head->next; 1313 else 1314 pos = pos->next; 1315 1316 t = list_entry(pos, struct sctp_transport, transports); 1317 1318 /* We have exhausted the list, but didn't find any 1319 * other active transports. If so, use the next 1320 * transport. 1321 */ 1322 if (t == asoc->peer.retran_path) { 1323 t = next; 1324 break; 1325 } 1326 1327 /* Try to find an active transport. */ 1328 1329 if ((t->state == SCTP_ACTIVE) || 1330 (t->state == SCTP_UNKNOWN)) { 1331 break; 1332 } else { 1333 /* Keep track of the next transport in case 1334 * we don't find any active transport. 1335 */ 1336 if (t->state != SCTP_UNCONFIRMED && !next) 1337 next = t; 1338 } 1339 } 1340 1341 if (t) 1342 asoc->peer.retran_path = t; 1343 else 1344 t = asoc->peer.retran_path; 1345 1346 pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc, 1347 &t->ipaddr.sa); 1348 } 1349 1350 /* Choose the transport for sending retransmit packet. */ 1351 struct sctp_transport *sctp_assoc_choose_alter_transport( 1352 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1353 { 1354 /* If this is the first time packet is sent, use the active path, 1355 * else use the retran path. If the last packet was sent over the 1356 * retran path, update the retran path and use it. 1357 */ 1358 if (!last_sent_to) 1359 return asoc->peer.active_path; 1360 else { 1361 if (last_sent_to == asoc->peer.retran_path) 1362 sctp_assoc_update_retran_path(asoc); 1363 return asoc->peer.retran_path; 1364 } 1365 } 1366 1367 /* Update the association's pmtu and frag_point by going through all the 1368 * transports. This routine is called when a transport's PMTU has changed. 1369 */ 1370 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1371 { 1372 struct sctp_transport *t; 1373 __u32 pmtu = 0; 1374 1375 if (!asoc) 1376 return; 1377 1378 /* Get the lowest pmtu of all the transports. */ 1379 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1380 transports) { 1381 if (t->pmtu_pending && t->dst) { 1382 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1383 t->pmtu_pending = 0; 1384 } 1385 if (!pmtu || (t->pathmtu < pmtu)) 1386 pmtu = t->pathmtu; 1387 } 1388 1389 if (pmtu) { 1390 asoc->pathmtu = pmtu; 1391 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1392 } 1393 1394 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1395 asoc->pathmtu, asoc->frag_point); 1396 } 1397 1398 /* Should we send a SACK to update our peer? */ 1399 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1400 { 1401 struct net *net = sock_net(asoc->base.sk); 1402 switch (asoc->state) { 1403 case SCTP_STATE_ESTABLISHED: 1404 case SCTP_STATE_SHUTDOWN_PENDING: 1405 case SCTP_STATE_SHUTDOWN_RECEIVED: 1406 case SCTP_STATE_SHUTDOWN_SENT: 1407 if ((asoc->rwnd > asoc->a_rwnd) && 1408 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1409 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1410 asoc->pathmtu))) 1411 return 1; 1412 break; 1413 default: 1414 break; 1415 } 1416 return 0; 1417 } 1418 1419 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1420 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1421 { 1422 struct sctp_chunk *sack; 1423 struct timer_list *timer; 1424 1425 if (asoc->rwnd_over) { 1426 if (asoc->rwnd_over >= len) { 1427 asoc->rwnd_over -= len; 1428 } else { 1429 asoc->rwnd += (len - asoc->rwnd_over); 1430 asoc->rwnd_over = 0; 1431 } 1432 } else { 1433 asoc->rwnd += len; 1434 } 1435 1436 /* If we had window pressure, start recovering it 1437 * once our rwnd had reached the accumulated pressure 1438 * threshold. The idea is to recover slowly, but up 1439 * to the initial advertised window. 1440 */ 1441 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1442 int change = min(asoc->pathmtu, asoc->rwnd_press); 1443 asoc->rwnd += change; 1444 asoc->rwnd_press -= change; 1445 } 1446 1447 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1448 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1449 asoc->a_rwnd); 1450 1451 /* Send a window update SACK if the rwnd has increased by at least the 1452 * minimum of the association's PMTU and half of the receive buffer. 1453 * The algorithm used is similar to the one described in 1454 * Section 4.2.3.3 of RFC 1122. 1455 */ 1456 if (sctp_peer_needs_update(asoc)) { 1457 asoc->a_rwnd = asoc->rwnd; 1458 1459 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1460 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1461 asoc->a_rwnd); 1462 1463 sack = sctp_make_sack(asoc); 1464 if (!sack) 1465 return; 1466 1467 asoc->peer.sack_needed = 0; 1468 1469 sctp_outq_tail(&asoc->outqueue, sack); 1470 1471 /* Stop the SACK timer. */ 1472 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1473 if (del_timer(timer)) 1474 sctp_association_put(asoc); 1475 } 1476 } 1477 1478 /* Decrease asoc's rwnd by len. */ 1479 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1480 { 1481 int rx_count; 1482 int over = 0; 1483 1484 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1485 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1486 "asoc->rwnd_over:%u!\n", __func__, asoc, 1487 asoc->rwnd, asoc->rwnd_over); 1488 1489 if (asoc->ep->rcvbuf_policy) 1490 rx_count = atomic_read(&asoc->rmem_alloc); 1491 else 1492 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1493 1494 /* If we've reached or overflowed our receive buffer, announce 1495 * a 0 rwnd if rwnd would still be positive. Store the 1496 * the pottential pressure overflow so that the window can be restored 1497 * back to original value. 1498 */ 1499 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1500 over = 1; 1501 1502 if (asoc->rwnd >= len) { 1503 asoc->rwnd -= len; 1504 if (over) { 1505 asoc->rwnd_press += asoc->rwnd; 1506 asoc->rwnd = 0; 1507 } 1508 } else { 1509 asoc->rwnd_over = len - asoc->rwnd; 1510 asoc->rwnd = 0; 1511 } 1512 1513 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1514 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1515 asoc->rwnd_press); 1516 } 1517 1518 /* Build the bind address list for the association based on info from the 1519 * local endpoint and the remote peer. 1520 */ 1521 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1522 sctp_scope_t scope, gfp_t gfp) 1523 { 1524 int flags; 1525 1526 /* Use scoping rules to determine the subset of addresses from 1527 * the endpoint. 1528 */ 1529 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1530 if (asoc->peer.ipv4_address) 1531 flags |= SCTP_ADDR4_PEERSUPP; 1532 if (asoc->peer.ipv6_address) 1533 flags |= SCTP_ADDR6_PEERSUPP; 1534 1535 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1536 &asoc->base.bind_addr, 1537 &asoc->ep->base.bind_addr, 1538 scope, gfp, flags); 1539 } 1540 1541 /* Build the association's bind address list from the cookie. */ 1542 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1543 struct sctp_cookie *cookie, 1544 gfp_t gfp) 1545 { 1546 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1547 int var_size3 = cookie->raw_addr_list_len; 1548 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1549 1550 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1551 asoc->ep->base.bind_addr.port, gfp); 1552 } 1553 1554 /* Lookup laddr in the bind address list of an association. */ 1555 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1556 const union sctp_addr *laddr) 1557 { 1558 int found = 0; 1559 1560 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1561 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1562 sctp_sk(asoc->base.sk))) 1563 found = 1; 1564 1565 return found; 1566 } 1567 1568 /* Set an association id for a given association */ 1569 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1570 { 1571 bool preload = gfp & __GFP_WAIT; 1572 int ret; 1573 1574 /* If the id is already assigned, keep it. */ 1575 if (asoc->assoc_id) 1576 return 0; 1577 1578 if (preload) 1579 idr_preload(gfp); 1580 spin_lock_bh(&sctp_assocs_id_lock); 1581 /* 0 is not a valid assoc_id, must be >= 1 */ 1582 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1583 spin_unlock_bh(&sctp_assocs_id_lock); 1584 if (preload) 1585 idr_preload_end(); 1586 if (ret < 0) 1587 return ret; 1588 1589 asoc->assoc_id = (sctp_assoc_t)ret; 1590 return 0; 1591 } 1592 1593 /* Free the ASCONF queue */ 1594 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1595 { 1596 struct sctp_chunk *asconf; 1597 struct sctp_chunk *tmp; 1598 1599 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1600 list_del_init(&asconf->list); 1601 sctp_chunk_free(asconf); 1602 } 1603 } 1604 1605 /* Free asconf_ack cache */ 1606 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1607 { 1608 struct sctp_chunk *ack; 1609 struct sctp_chunk *tmp; 1610 1611 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1612 transmitted_list) { 1613 list_del_init(&ack->transmitted_list); 1614 sctp_chunk_free(ack); 1615 } 1616 } 1617 1618 /* Clean up the ASCONF_ACK queue */ 1619 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1620 { 1621 struct sctp_chunk *ack; 1622 struct sctp_chunk *tmp; 1623 1624 /* We can remove all the entries from the queue up to 1625 * the "Peer-Sequence-Number". 1626 */ 1627 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1628 transmitted_list) { 1629 if (ack->subh.addip_hdr->serial == 1630 htonl(asoc->peer.addip_serial)) 1631 break; 1632 1633 list_del_init(&ack->transmitted_list); 1634 sctp_chunk_free(ack); 1635 } 1636 } 1637 1638 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1639 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1640 const struct sctp_association *asoc, 1641 __be32 serial) 1642 { 1643 struct sctp_chunk *ack; 1644 1645 /* Walk through the list of cached ASCONF-ACKs and find the 1646 * ack chunk whose serial number matches that of the request. 1647 */ 1648 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1649 if (ack->subh.addip_hdr->serial == serial) { 1650 sctp_chunk_hold(ack); 1651 return ack; 1652 } 1653 } 1654 1655 return NULL; 1656 } 1657 1658 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1659 { 1660 /* Free any cached ASCONF_ACK chunk. */ 1661 sctp_assoc_free_asconf_acks(asoc); 1662 1663 /* Free the ASCONF queue. */ 1664 sctp_assoc_free_asconf_queue(asoc); 1665 1666 /* Free any cached ASCONF chunk. */ 1667 if (asoc->addip_last_asconf) 1668 sctp_chunk_free(asoc->addip_last_asconf); 1669 } 1670