1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <linux-sctp@vger.kernel.org> 32 * 33 * Written or modified by: 34 * La Monte H.P. Yarroll <piggy@acm.org> 35 * Karl Knutson <karl@athena.chicago.il.us> 36 * Jon Grimm <jgrimm@us.ibm.com> 37 * Xingang Guo <xingang.guo@intel.com> 38 * Hui Huang <hui.huang@nokia.com> 39 * Sridhar Samudrala <sri@us.ibm.com> 40 * Daisy Chang <daisyc@us.ibm.com> 41 * Ryan Layer <rmlayer@us.ibm.com> 42 * Kevin Gao <kevin.gao@intel.com> 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/types.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 52 #include <linux/slab.h> 53 #include <linux/in.h> 54 #include <net/ipv6.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 58 /* Forward declarations for internal functions. */ 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 67 const struct sctp_endpoint *ep, 68 const struct sock *sk, 69 sctp_scope_t scope, 70 gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 int i; 75 sctp_paramhdr_t *p; 76 int err; 77 78 /* Retrieve the SCTP per socket area. */ 79 sp = sctp_sk((struct sock *)sk); 80 81 /* Discarding const is appropriate here. */ 82 asoc->ep = (struct sctp_endpoint *)ep; 83 asoc->base.sk = (struct sock *)sk; 84 85 sctp_endpoint_hold(asoc->ep); 86 sock_hold(asoc->base.sk); 87 88 /* Initialize the common base substructure. */ 89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 90 91 /* Initialize the object handling fields. */ 92 atomic_set(&asoc->base.refcnt, 1); 93 asoc->base.dead = false; 94 95 /* Initialize the bind addr area. */ 96 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 97 98 asoc->state = SCTP_STATE_CLOSED; 99 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 100 asoc->frag_point = 0; 101 asoc->user_frag = sp->user_frag; 102 103 /* Set the association max_retrans and RTO values from the 104 * socket values. 105 */ 106 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 107 asoc->pf_retrans = net->sctp.pf_retrans; 108 109 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 110 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 111 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 112 113 asoc->overall_error_count = 0; 114 115 /* Initialize the association's heartbeat interval based on the 116 * sock configured value. 117 */ 118 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 119 120 /* Initialize path max retrans value. */ 121 asoc->pathmaxrxt = sp->pathmaxrxt; 122 123 /* Initialize default path MTU. */ 124 asoc->pathmtu = sp->pathmtu; 125 126 /* Set association default SACK delay */ 127 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 128 asoc->sackfreq = sp->sackfreq; 129 130 /* Set the association default flags controlling 131 * Heartbeat, SACK delay, and Path MTU Discovery. 132 */ 133 asoc->param_flags = sp->param_flags; 134 135 /* Initialize the maximum mumber of new data packets that can be sent 136 * in a burst. 137 */ 138 asoc->max_burst = sp->max_burst; 139 140 /* initialize association timers */ 141 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 142 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 143 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 146 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 147 148 /* sctpimpguide Section 2.12.2 149 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 150 * recommended value of 5 times 'RTO.Max'. 151 */ 152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 153 = 5 * asoc->rto_max; 154 155 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 156 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 157 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 158 159 /* Initializes the timers */ 160 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 161 setup_timer(&asoc->timers[i], sctp_timer_events[i], 162 (unsigned long)asoc); 163 164 /* Pull default initialization values from the sock options. 165 * Note: This assumes that the values have already been 166 * validated in the sock. 167 */ 168 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 169 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 170 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 171 172 asoc->max_init_timeo = 173 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 174 175 /* Allocate storage for the ssnmap after the inbound and outbound 176 * streams have been negotiated during Init. 177 */ 178 asoc->ssnmap = NULL; 179 180 /* Set the local window size for receive. 181 * This is also the rcvbuf space per association. 182 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 183 * 1500 bytes in one SCTP packet. 184 */ 185 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 186 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 187 else 188 asoc->rwnd = sk->sk_rcvbuf/2; 189 190 asoc->a_rwnd = asoc->rwnd; 191 192 asoc->rwnd_over = 0; 193 asoc->rwnd_press = 0; 194 195 /* Use my own max window until I learn something better. */ 196 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 197 198 /* Set the sndbuf size for transmit. */ 199 asoc->sndbuf_used = 0; 200 201 /* Initialize the receive memory counter */ 202 atomic_set(&asoc->rmem_alloc, 0); 203 204 init_waitqueue_head(&asoc->wait); 205 206 asoc->c.my_vtag = sctp_generate_tag(ep); 207 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 208 asoc->c.peer_vtag = 0; 209 asoc->c.my_ttag = 0; 210 asoc->c.peer_ttag = 0; 211 asoc->c.my_port = ep->base.bind_addr.port; 212 213 asoc->c.initial_tsn = sctp_generate_tsn(ep); 214 215 asoc->next_tsn = asoc->c.initial_tsn; 216 217 asoc->ctsn_ack_point = asoc->next_tsn - 1; 218 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 219 asoc->highest_sacked = asoc->ctsn_ack_point; 220 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 221 asoc->unack_data = 0; 222 223 /* ADDIP Section 4.1 Asconf Chunk Procedures 224 * 225 * When an endpoint has an ASCONF signaled change to be sent to the 226 * remote endpoint it should do the following: 227 * ... 228 * A2) a serial number should be assigned to the chunk. The serial 229 * number SHOULD be a monotonically increasing number. The serial 230 * numbers SHOULD be initialized at the start of the 231 * association to the same value as the initial TSN. 232 */ 233 asoc->addip_serial = asoc->c.initial_tsn; 234 235 INIT_LIST_HEAD(&asoc->addip_chunk_list); 236 INIT_LIST_HEAD(&asoc->asconf_ack_list); 237 238 /* Make an empty list of remote transport addresses. */ 239 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 240 asoc->peer.transport_count = 0; 241 242 /* RFC 2960 5.1 Normal Establishment of an Association 243 * 244 * After the reception of the first data chunk in an 245 * association the endpoint must immediately respond with a 246 * sack to acknowledge the data chunk. Subsequent 247 * acknowledgements should be done as described in Section 248 * 6.2. 249 * 250 * [We implement this by telling a new association that it 251 * already received one packet.] 252 */ 253 asoc->peer.sack_needed = 1; 254 asoc->peer.sack_cnt = 0; 255 asoc->peer.sack_generation = 1; 256 257 /* Assume that the peer will tell us if he recognizes ASCONF 258 * as part of INIT exchange. 259 * The sctp_addip_noauth option is there for backward compatibilty 260 * and will revert old behavior. 261 */ 262 asoc->peer.asconf_capable = 0; 263 if (net->sctp.addip_noauth) 264 asoc->peer.asconf_capable = 1; 265 asoc->asconf_addr_del_pending = NULL; 266 asoc->src_out_of_asoc_ok = 0; 267 asoc->new_transport = NULL; 268 269 /* Create an input queue. */ 270 sctp_inq_init(&asoc->base.inqueue); 271 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 272 273 /* Create an output queue. */ 274 sctp_outq_init(asoc, &asoc->outqueue); 275 276 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 277 goto fail_init; 278 279 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 280 281 asoc->need_ecne = 0; 282 283 asoc->assoc_id = 0; 284 285 /* Assume that peer would support both address types unless we are 286 * told otherwise. 287 */ 288 asoc->peer.ipv4_address = 1; 289 if (asoc->base.sk->sk_family == PF_INET6) 290 asoc->peer.ipv6_address = 1; 291 INIT_LIST_HEAD(&asoc->asocs); 292 293 asoc->default_stream = sp->default_stream; 294 asoc->default_ppid = sp->default_ppid; 295 asoc->default_flags = sp->default_flags; 296 asoc->default_context = sp->default_context; 297 asoc->default_timetolive = sp->default_timetolive; 298 asoc->default_rcv_context = sp->default_rcv_context; 299 300 /* SCTP_GET_ASSOC_STATS COUNTERS */ 301 memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats)); 302 303 /* AUTH related initializations */ 304 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 305 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 306 if (err) 307 goto fail_init; 308 309 asoc->active_key_id = ep->active_key_id; 310 asoc->asoc_shared_key = NULL; 311 312 asoc->default_hmac_id = 0; 313 /* Save the hmacs and chunks list into this association */ 314 if (ep->auth_hmacs_list) 315 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 316 ntohs(ep->auth_hmacs_list->param_hdr.length)); 317 if (ep->auth_chunk_list) 318 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 319 ntohs(ep->auth_chunk_list->param_hdr.length)); 320 321 /* Get the AUTH random number for this association */ 322 p = (sctp_paramhdr_t *)asoc->c.auth_random; 323 p->type = SCTP_PARAM_RANDOM; 324 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 325 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 326 327 return asoc; 328 329 fail_init: 330 sock_put(asoc->base.sk); 331 sctp_endpoint_put(asoc->ep); 332 return NULL; 333 } 334 335 /* Allocate and initialize a new association */ 336 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 337 const struct sock *sk, 338 sctp_scope_t scope, 339 gfp_t gfp) 340 { 341 struct sctp_association *asoc; 342 343 asoc = kzalloc(sizeof(*asoc), gfp); 344 if (!asoc) 345 goto fail; 346 347 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 348 goto fail_init; 349 350 SCTP_DBG_OBJCNT_INC(assoc); 351 352 pr_debug("Created asoc %p\n", asoc); 353 354 return asoc; 355 356 fail_init: 357 kfree(asoc); 358 fail: 359 return NULL; 360 } 361 362 /* Free this association if possible. There may still be users, so 363 * the actual deallocation may be delayed. 364 */ 365 void sctp_association_free(struct sctp_association *asoc) 366 { 367 struct sock *sk = asoc->base.sk; 368 struct sctp_transport *transport; 369 struct list_head *pos, *temp; 370 int i; 371 372 /* Only real associations count against the endpoint, so 373 * don't bother for if this is a temporary association. 374 */ 375 if (!asoc->temp) { 376 list_del(&asoc->asocs); 377 378 /* Decrement the backlog value for a TCP-style listening 379 * socket. 380 */ 381 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 382 sk->sk_ack_backlog--; 383 } 384 385 /* Mark as dead, so other users can know this structure is 386 * going away. 387 */ 388 asoc->base.dead = true; 389 390 /* Dispose of any data lying around in the outqueue. */ 391 sctp_outq_free(&asoc->outqueue); 392 393 /* Dispose of any pending messages for the upper layer. */ 394 sctp_ulpq_free(&asoc->ulpq); 395 396 /* Dispose of any pending chunks on the inqueue. */ 397 sctp_inq_free(&asoc->base.inqueue); 398 399 sctp_tsnmap_free(&asoc->peer.tsn_map); 400 401 /* Free ssnmap storage. */ 402 sctp_ssnmap_free(asoc->ssnmap); 403 404 /* Clean up the bound address list. */ 405 sctp_bind_addr_free(&asoc->base.bind_addr); 406 407 /* Do we need to go through all of our timers and 408 * delete them? To be safe we will try to delete all, but we 409 * should be able to go through and make a guess based 410 * on our state. 411 */ 412 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 413 if (del_timer(&asoc->timers[i])) 414 sctp_association_put(asoc); 415 } 416 417 /* Free peer's cached cookie. */ 418 kfree(asoc->peer.cookie); 419 kfree(asoc->peer.peer_random); 420 kfree(asoc->peer.peer_chunks); 421 kfree(asoc->peer.peer_hmacs); 422 423 /* Release the transport structures. */ 424 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 425 transport = list_entry(pos, struct sctp_transport, transports); 426 list_del_rcu(pos); 427 sctp_transport_free(transport); 428 } 429 430 asoc->peer.transport_count = 0; 431 432 sctp_asconf_queue_teardown(asoc); 433 434 /* Free pending address space being deleted */ 435 if (asoc->asconf_addr_del_pending != NULL) 436 kfree(asoc->asconf_addr_del_pending); 437 438 /* AUTH - Free the endpoint shared keys */ 439 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 440 441 /* AUTH - Free the association shared key */ 442 sctp_auth_key_put(asoc->asoc_shared_key); 443 444 sctp_association_put(asoc); 445 } 446 447 /* Cleanup and free up an association. */ 448 static void sctp_association_destroy(struct sctp_association *asoc) 449 { 450 if (unlikely(!asoc->base.dead)) { 451 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 452 return; 453 } 454 455 sctp_endpoint_put(asoc->ep); 456 sock_put(asoc->base.sk); 457 458 if (asoc->assoc_id != 0) { 459 spin_lock_bh(&sctp_assocs_id_lock); 460 idr_remove(&sctp_assocs_id, asoc->assoc_id); 461 spin_unlock_bh(&sctp_assocs_id_lock); 462 } 463 464 WARN_ON(atomic_read(&asoc->rmem_alloc)); 465 466 kfree(asoc); 467 SCTP_DBG_OBJCNT_DEC(assoc); 468 } 469 470 /* Change the primary destination address for the peer. */ 471 void sctp_assoc_set_primary(struct sctp_association *asoc, 472 struct sctp_transport *transport) 473 { 474 int changeover = 0; 475 476 /* it's a changeover only if we already have a primary path 477 * that we are changing 478 */ 479 if (asoc->peer.primary_path != NULL && 480 asoc->peer.primary_path != transport) 481 changeover = 1 ; 482 483 asoc->peer.primary_path = transport; 484 485 /* Set a default msg_name for events. */ 486 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 487 sizeof(union sctp_addr)); 488 489 /* If the primary path is changing, assume that the 490 * user wants to use this new path. 491 */ 492 if ((transport->state == SCTP_ACTIVE) || 493 (transport->state == SCTP_UNKNOWN)) 494 asoc->peer.active_path = transport; 495 496 /* 497 * SFR-CACC algorithm: 498 * Upon the receipt of a request to change the primary 499 * destination address, on the data structure for the new 500 * primary destination, the sender MUST do the following: 501 * 502 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 503 * to this destination address earlier. The sender MUST set 504 * CYCLING_CHANGEOVER to indicate that this switch is a 505 * double switch to the same destination address. 506 * 507 * Really, only bother is we have data queued or outstanding on 508 * the association. 509 */ 510 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 511 return; 512 513 if (transport->cacc.changeover_active) 514 transport->cacc.cycling_changeover = changeover; 515 516 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 517 * a changeover has occurred. 518 */ 519 transport->cacc.changeover_active = changeover; 520 521 /* 3) The sender MUST store the next TSN to be sent in 522 * next_tsn_at_change. 523 */ 524 transport->cacc.next_tsn_at_change = asoc->next_tsn; 525 } 526 527 /* Remove a transport from an association. */ 528 void sctp_assoc_rm_peer(struct sctp_association *asoc, 529 struct sctp_transport *peer) 530 { 531 struct list_head *pos; 532 struct sctp_transport *transport; 533 534 pr_debug("%s: association:%p addr:%pISpc\n", 535 __func__, asoc, &peer->ipaddr.sa); 536 537 /* If we are to remove the current retran_path, update it 538 * to the next peer before removing this peer from the list. 539 */ 540 if (asoc->peer.retran_path == peer) 541 sctp_assoc_update_retran_path(asoc); 542 543 /* Remove this peer from the list. */ 544 list_del_rcu(&peer->transports); 545 546 /* Get the first transport of asoc. */ 547 pos = asoc->peer.transport_addr_list.next; 548 transport = list_entry(pos, struct sctp_transport, transports); 549 550 /* Update any entries that match the peer to be deleted. */ 551 if (asoc->peer.primary_path == peer) 552 sctp_assoc_set_primary(asoc, transport); 553 if (asoc->peer.active_path == peer) 554 asoc->peer.active_path = transport; 555 if (asoc->peer.retran_path == peer) 556 asoc->peer.retran_path = transport; 557 if (asoc->peer.last_data_from == peer) 558 asoc->peer.last_data_from = transport; 559 560 /* If we remove the transport an INIT was last sent to, set it to 561 * NULL. Combined with the update of the retran path above, this 562 * will cause the next INIT to be sent to the next available 563 * transport, maintaining the cycle. 564 */ 565 if (asoc->init_last_sent_to == peer) 566 asoc->init_last_sent_to = NULL; 567 568 /* If we remove the transport an SHUTDOWN was last sent to, set it 569 * to NULL. Combined with the update of the retran path above, this 570 * will cause the next SHUTDOWN to be sent to the next available 571 * transport, maintaining the cycle. 572 */ 573 if (asoc->shutdown_last_sent_to == peer) 574 asoc->shutdown_last_sent_to = NULL; 575 576 /* If we remove the transport an ASCONF was last sent to, set it to 577 * NULL. 578 */ 579 if (asoc->addip_last_asconf && 580 asoc->addip_last_asconf->transport == peer) 581 asoc->addip_last_asconf->transport = NULL; 582 583 /* If we have something on the transmitted list, we have to 584 * save it off. The best place is the active path. 585 */ 586 if (!list_empty(&peer->transmitted)) { 587 struct sctp_transport *active = asoc->peer.active_path; 588 struct sctp_chunk *ch; 589 590 /* Reset the transport of each chunk on this list */ 591 list_for_each_entry(ch, &peer->transmitted, 592 transmitted_list) { 593 ch->transport = NULL; 594 ch->rtt_in_progress = 0; 595 } 596 597 list_splice_tail_init(&peer->transmitted, 598 &active->transmitted); 599 600 /* Start a T3 timer here in case it wasn't running so 601 * that these migrated packets have a chance to get 602 * retransmitted. 603 */ 604 if (!timer_pending(&active->T3_rtx_timer)) 605 if (!mod_timer(&active->T3_rtx_timer, 606 jiffies + active->rto)) 607 sctp_transport_hold(active); 608 } 609 610 asoc->peer.transport_count--; 611 612 sctp_transport_free(peer); 613 } 614 615 /* Add a transport address to an association. */ 616 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 617 const union sctp_addr *addr, 618 const gfp_t gfp, 619 const int peer_state) 620 { 621 struct net *net = sock_net(asoc->base.sk); 622 struct sctp_transport *peer; 623 struct sctp_sock *sp; 624 unsigned short port; 625 626 sp = sctp_sk(asoc->base.sk); 627 628 /* AF_INET and AF_INET6 share common port field. */ 629 port = ntohs(addr->v4.sin_port); 630 631 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 632 asoc, &addr->sa, peer_state); 633 634 /* Set the port if it has not been set yet. */ 635 if (0 == asoc->peer.port) 636 asoc->peer.port = port; 637 638 /* Check to see if this is a duplicate. */ 639 peer = sctp_assoc_lookup_paddr(asoc, addr); 640 if (peer) { 641 /* An UNKNOWN state is only set on transports added by 642 * user in sctp_connectx() call. Such transports should be 643 * considered CONFIRMED per RFC 4960, Section 5.4. 644 */ 645 if (peer->state == SCTP_UNKNOWN) { 646 peer->state = SCTP_ACTIVE; 647 } 648 return peer; 649 } 650 651 peer = sctp_transport_new(net, addr, gfp); 652 if (!peer) 653 return NULL; 654 655 sctp_transport_set_owner(peer, asoc); 656 657 /* Initialize the peer's heartbeat interval based on the 658 * association configured value. 659 */ 660 peer->hbinterval = asoc->hbinterval; 661 662 /* Set the path max_retrans. */ 663 peer->pathmaxrxt = asoc->pathmaxrxt; 664 665 /* And the partial failure retrans threshold */ 666 peer->pf_retrans = asoc->pf_retrans; 667 668 /* Initialize the peer's SACK delay timeout based on the 669 * association configured value. 670 */ 671 peer->sackdelay = asoc->sackdelay; 672 peer->sackfreq = asoc->sackfreq; 673 674 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 675 * based on association setting. 676 */ 677 peer->param_flags = asoc->param_flags; 678 679 sctp_transport_route(peer, NULL, sp); 680 681 /* Initialize the pmtu of the transport. */ 682 if (peer->param_flags & SPP_PMTUD_DISABLE) { 683 if (asoc->pathmtu) 684 peer->pathmtu = asoc->pathmtu; 685 else 686 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 687 } 688 689 /* If this is the first transport addr on this association, 690 * initialize the association PMTU to the peer's PMTU. 691 * If not and the current association PMTU is higher than the new 692 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 693 */ 694 if (asoc->pathmtu) 695 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 696 else 697 asoc->pathmtu = peer->pathmtu; 698 699 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 700 asoc->pathmtu); 701 702 peer->pmtu_pending = 0; 703 704 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 705 706 /* The asoc->peer.port might not be meaningful yet, but 707 * initialize the packet structure anyway. 708 */ 709 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 710 asoc->peer.port); 711 712 /* 7.2.1 Slow-Start 713 * 714 * o The initial cwnd before DATA transmission or after a sufficiently 715 * long idle period MUST be set to 716 * min(4*MTU, max(2*MTU, 4380 bytes)) 717 * 718 * o The initial value of ssthresh MAY be arbitrarily high 719 * (for example, implementations MAY use the size of the 720 * receiver advertised window). 721 */ 722 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 723 724 /* At this point, we may not have the receiver's advertised window, 725 * so initialize ssthresh to the default value and it will be set 726 * later when we process the INIT. 727 */ 728 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 729 730 peer->partial_bytes_acked = 0; 731 peer->flight_size = 0; 732 peer->burst_limited = 0; 733 734 /* Set the transport's RTO.initial value */ 735 peer->rto = asoc->rto_initial; 736 sctp_max_rto(asoc, peer); 737 738 /* Set the peer's active state. */ 739 peer->state = peer_state; 740 741 /* Attach the remote transport to our asoc. */ 742 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 743 asoc->peer.transport_count++; 744 745 /* If we do not yet have a primary path, set one. */ 746 if (!asoc->peer.primary_path) { 747 sctp_assoc_set_primary(asoc, peer); 748 asoc->peer.retran_path = peer; 749 } 750 751 if (asoc->peer.active_path == asoc->peer.retran_path && 752 peer->state != SCTP_UNCONFIRMED) { 753 asoc->peer.retran_path = peer; 754 } 755 756 return peer; 757 } 758 759 /* Delete a transport address from an association. */ 760 void sctp_assoc_del_peer(struct sctp_association *asoc, 761 const union sctp_addr *addr) 762 { 763 struct list_head *pos; 764 struct list_head *temp; 765 struct sctp_transport *transport; 766 767 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 768 transport = list_entry(pos, struct sctp_transport, transports); 769 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 770 /* Do book keeping for removing the peer and free it. */ 771 sctp_assoc_rm_peer(asoc, transport); 772 break; 773 } 774 } 775 } 776 777 /* Lookup a transport by address. */ 778 struct sctp_transport *sctp_assoc_lookup_paddr( 779 const struct sctp_association *asoc, 780 const union sctp_addr *address) 781 { 782 struct sctp_transport *t; 783 784 /* Cycle through all transports searching for a peer address. */ 785 786 list_for_each_entry(t, &asoc->peer.transport_addr_list, 787 transports) { 788 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 789 return t; 790 } 791 792 return NULL; 793 } 794 795 /* Remove all transports except a give one */ 796 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 797 struct sctp_transport *primary) 798 { 799 struct sctp_transport *temp; 800 struct sctp_transport *t; 801 802 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 803 transports) { 804 /* if the current transport is not the primary one, delete it */ 805 if (t != primary) 806 sctp_assoc_rm_peer(asoc, t); 807 } 808 } 809 810 /* Engage in transport control operations. 811 * Mark the transport up or down and send a notification to the user. 812 * Select and update the new active and retran paths. 813 */ 814 void sctp_assoc_control_transport(struct sctp_association *asoc, 815 struct sctp_transport *transport, 816 sctp_transport_cmd_t command, 817 sctp_sn_error_t error) 818 { 819 struct sctp_transport *t = NULL; 820 struct sctp_transport *first; 821 struct sctp_transport *second; 822 struct sctp_ulpevent *event; 823 struct sockaddr_storage addr; 824 int spc_state = 0; 825 bool ulp_notify = true; 826 827 /* Record the transition on the transport. */ 828 switch (command) { 829 case SCTP_TRANSPORT_UP: 830 /* If we are moving from UNCONFIRMED state due 831 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 832 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 833 */ 834 if (SCTP_UNCONFIRMED == transport->state && 835 SCTP_HEARTBEAT_SUCCESS == error) 836 spc_state = SCTP_ADDR_CONFIRMED; 837 else 838 spc_state = SCTP_ADDR_AVAILABLE; 839 /* Don't inform ULP about transition from PF to 840 * active state and set cwnd to 1 MTU, see SCTP 841 * Quick failover draft section 5.1, point 5 842 */ 843 if (transport->state == SCTP_PF) { 844 ulp_notify = false; 845 transport->cwnd = asoc->pathmtu; 846 } 847 transport->state = SCTP_ACTIVE; 848 break; 849 850 case SCTP_TRANSPORT_DOWN: 851 /* If the transport was never confirmed, do not transition it 852 * to inactive state. Also, release the cached route since 853 * there may be a better route next time. 854 */ 855 if (transport->state != SCTP_UNCONFIRMED) 856 transport->state = SCTP_INACTIVE; 857 else { 858 dst_release(transport->dst); 859 transport->dst = NULL; 860 } 861 862 spc_state = SCTP_ADDR_UNREACHABLE; 863 break; 864 865 case SCTP_TRANSPORT_PF: 866 transport->state = SCTP_PF; 867 ulp_notify = false; 868 break; 869 870 default: 871 return; 872 } 873 874 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 875 * user. 876 */ 877 if (ulp_notify) { 878 memset(&addr, 0, sizeof(struct sockaddr_storage)); 879 memcpy(&addr, &transport->ipaddr, 880 transport->af_specific->sockaddr_len); 881 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 882 0, spc_state, error, GFP_ATOMIC); 883 if (event) 884 sctp_ulpq_tail_event(&asoc->ulpq, event); 885 } 886 887 /* Select new active and retran paths. */ 888 889 /* Look for the two most recently used active transports. 890 * 891 * This code produces the wrong ordering whenever jiffies 892 * rolls over, but we still get usable transports, so we don't 893 * worry about it. 894 */ 895 first = NULL; second = NULL; 896 897 list_for_each_entry(t, &asoc->peer.transport_addr_list, 898 transports) { 899 900 if ((t->state == SCTP_INACTIVE) || 901 (t->state == SCTP_UNCONFIRMED) || 902 (t->state == SCTP_PF)) 903 continue; 904 if (!first || t->last_time_heard > first->last_time_heard) { 905 second = first; 906 first = t; 907 } else if (!second || 908 t->last_time_heard > second->last_time_heard) 909 second = t; 910 } 911 912 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 913 * 914 * By default, an endpoint should always transmit to the 915 * primary path, unless the SCTP user explicitly specifies the 916 * destination transport address (and possibly source 917 * transport address) to use. 918 * 919 * [If the primary is active but not most recent, bump the most 920 * recently used transport.] 921 */ 922 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 923 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 924 first != asoc->peer.primary_path) { 925 second = first; 926 first = asoc->peer.primary_path; 927 } 928 929 if (!second) 930 second = first; 931 /* If we failed to find a usable transport, just camp on the 932 * primary, even if it is inactive. 933 */ 934 if (!first) { 935 first = asoc->peer.primary_path; 936 second = asoc->peer.primary_path; 937 } 938 939 /* Set the active and retran transports. */ 940 asoc->peer.active_path = first; 941 asoc->peer.retran_path = second; 942 } 943 944 /* Hold a reference to an association. */ 945 void sctp_association_hold(struct sctp_association *asoc) 946 { 947 atomic_inc(&asoc->base.refcnt); 948 } 949 950 /* Release a reference to an association and cleanup 951 * if there are no more references. 952 */ 953 void sctp_association_put(struct sctp_association *asoc) 954 { 955 if (atomic_dec_and_test(&asoc->base.refcnt)) 956 sctp_association_destroy(asoc); 957 } 958 959 /* Allocate the next TSN, Transmission Sequence Number, for the given 960 * association. 961 */ 962 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 963 { 964 /* From Section 1.6 Serial Number Arithmetic: 965 * Transmission Sequence Numbers wrap around when they reach 966 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 967 * after transmitting TSN = 2*32 - 1 is TSN = 0. 968 */ 969 __u32 retval = asoc->next_tsn; 970 asoc->next_tsn++; 971 asoc->unack_data++; 972 973 return retval; 974 } 975 976 /* Compare two addresses to see if they match. Wildcard addresses 977 * only match themselves. 978 */ 979 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 980 const union sctp_addr *ss2) 981 { 982 struct sctp_af *af; 983 984 af = sctp_get_af_specific(ss1->sa.sa_family); 985 if (unlikely(!af)) 986 return 0; 987 988 return af->cmp_addr(ss1, ss2); 989 } 990 991 /* Return an ecne chunk to get prepended to a packet. 992 * Note: We are sly and return a shared, prealloced chunk. FIXME: 993 * No we don't, but we could/should. 994 */ 995 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 996 { 997 struct sctp_chunk *chunk; 998 999 /* Send ECNE if needed. 1000 * Not being able to allocate a chunk here is not deadly. 1001 */ 1002 if (asoc->need_ecne) 1003 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 1004 else 1005 chunk = NULL; 1006 1007 return chunk; 1008 } 1009 1010 /* 1011 * Find which transport this TSN was sent on. 1012 */ 1013 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1014 __u32 tsn) 1015 { 1016 struct sctp_transport *active; 1017 struct sctp_transport *match; 1018 struct sctp_transport *transport; 1019 struct sctp_chunk *chunk; 1020 __be32 key = htonl(tsn); 1021 1022 match = NULL; 1023 1024 /* 1025 * FIXME: In general, find a more efficient data structure for 1026 * searching. 1027 */ 1028 1029 /* 1030 * The general strategy is to search each transport's transmitted 1031 * list. Return which transport this TSN lives on. 1032 * 1033 * Let's be hopeful and check the active_path first. 1034 * Another optimization would be to know if there is only one 1035 * outbound path and not have to look for the TSN at all. 1036 * 1037 */ 1038 1039 active = asoc->peer.active_path; 1040 1041 list_for_each_entry(chunk, &active->transmitted, 1042 transmitted_list) { 1043 1044 if (key == chunk->subh.data_hdr->tsn) { 1045 match = active; 1046 goto out; 1047 } 1048 } 1049 1050 /* If not found, go search all the other transports. */ 1051 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1052 transports) { 1053 1054 if (transport == active) 1055 continue; 1056 list_for_each_entry(chunk, &transport->transmitted, 1057 transmitted_list) { 1058 if (key == chunk->subh.data_hdr->tsn) { 1059 match = transport; 1060 goto out; 1061 } 1062 } 1063 } 1064 out: 1065 return match; 1066 } 1067 1068 /* Is this the association we are looking for? */ 1069 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1070 struct net *net, 1071 const union sctp_addr *laddr, 1072 const union sctp_addr *paddr) 1073 { 1074 struct sctp_transport *transport; 1075 1076 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1077 (htons(asoc->peer.port) == paddr->v4.sin_port) && 1078 net_eq(sock_net(asoc->base.sk), net)) { 1079 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1080 if (!transport) 1081 goto out; 1082 1083 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1084 sctp_sk(asoc->base.sk))) 1085 goto out; 1086 } 1087 transport = NULL; 1088 1089 out: 1090 return transport; 1091 } 1092 1093 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1094 static void sctp_assoc_bh_rcv(struct work_struct *work) 1095 { 1096 struct sctp_association *asoc = 1097 container_of(work, struct sctp_association, 1098 base.inqueue.immediate); 1099 struct net *net = sock_net(asoc->base.sk); 1100 struct sctp_endpoint *ep; 1101 struct sctp_chunk *chunk; 1102 struct sctp_inq *inqueue; 1103 int state; 1104 sctp_subtype_t subtype; 1105 int error = 0; 1106 1107 /* The association should be held so we should be safe. */ 1108 ep = asoc->ep; 1109 1110 inqueue = &asoc->base.inqueue; 1111 sctp_association_hold(asoc); 1112 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1113 state = asoc->state; 1114 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1115 1116 /* SCTP-AUTH, Section 6.3: 1117 * The receiver has a list of chunk types which it expects 1118 * to be received only after an AUTH-chunk. This list has 1119 * been sent to the peer during the association setup. It 1120 * MUST silently discard these chunks if they are not placed 1121 * after an AUTH chunk in the packet. 1122 */ 1123 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1124 continue; 1125 1126 /* Remember where the last DATA chunk came from so we 1127 * know where to send the SACK. 1128 */ 1129 if (sctp_chunk_is_data(chunk)) 1130 asoc->peer.last_data_from = chunk->transport; 1131 else { 1132 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1133 asoc->stats.ictrlchunks++; 1134 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1135 asoc->stats.isacks++; 1136 } 1137 1138 if (chunk->transport) 1139 chunk->transport->last_time_heard = jiffies; 1140 1141 /* Run through the state machine. */ 1142 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1143 state, ep, asoc, chunk, GFP_ATOMIC); 1144 1145 /* Check to see if the association is freed in response to 1146 * the incoming chunk. If so, get out of the while loop. 1147 */ 1148 if (asoc->base.dead) 1149 break; 1150 1151 /* If there is an error on chunk, discard this packet. */ 1152 if (error && chunk) 1153 chunk->pdiscard = 1; 1154 } 1155 sctp_association_put(asoc); 1156 } 1157 1158 /* This routine moves an association from its old sk to a new sk. */ 1159 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1160 { 1161 struct sctp_sock *newsp = sctp_sk(newsk); 1162 struct sock *oldsk = assoc->base.sk; 1163 1164 /* Delete the association from the old endpoint's list of 1165 * associations. 1166 */ 1167 list_del_init(&assoc->asocs); 1168 1169 /* Decrement the backlog value for a TCP-style socket. */ 1170 if (sctp_style(oldsk, TCP)) 1171 oldsk->sk_ack_backlog--; 1172 1173 /* Release references to the old endpoint and the sock. */ 1174 sctp_endpoint_put(assoc->ep); 1175 sock_put(assoc->base.sk); 1176 1177 /* Get a reference to the new endpoint. */ 1178 assoc->ep = newsp->ep; 1179 sctp_endpoint_hold(assoc->ep); 1180 1181 /* Get a reference to the new sock. */ 1182 assoc->base.sk = newsk; 1183 sock_hold(assoc->base.sk); 1184 1185 /* Add the association to the new endpoint's list of associations. */ 1186 sctp_endpoint_add_asoc(newsp->ep, assoc); 1187 } 1188 1189 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1190 void sctp_assoc_update(struct sctp_association *asoc, 1191 struct sctp_association *new) 1192 { 1193 struct sctp_transport *trans; 1194 struct list_head *pos, *temp; 1195 1196 /* Copy in new parameters of peer. */ 1197 asoc->c = new->c; 1198 asoc->peer.rwnd = new->peer.rwnd; 1199 asoc->peer.sack_needed = new->peer.sack_needed; 1200 asoc->peer.i = new->peer.i; 1201 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1202 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1203 1204 /* Remove any peer addresses not present in the new association. */ 1205 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1206 trans = list_entry(pos, struct sctp_transport, transports); 1207 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1208 sctp_assoc_rm_peer(asoc, trans); 1209 continue; 1210 } 1211 1212 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1213 sctp_transport_reset(trans); 1214 } 1215 1216 /* If the case is A (association restart), use 1217 * initial_tsn as next_tsn. If the case is B, use 1218 * current next_tsn in case data sent to peer 1219 * has been discarded and needs retransmission. 1220 */ 1221 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1222 asoc->next_tsn = new->next_tsn; 1223 asoc->ctsn_ack_point = new->ctsn_ack_point; 1224 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1225 1226 /* Reinitialize SSN for both local streams 1227 * and peer's streams. 1228 */ 1229 sctp_ssnmap_clear(asoc->ssnmap); 1230 1231 /* Flush the ULP reassembly and ordered queue. 1232 * Any data there will now be stale and will 1233 * cause problems. 1234 */ 1235 sctp_ulpq_flush(&asoc->ulpq); 1236 1237 /* reset the overall association error count so 1238 * that the restarted association doesn't get torn 1239 * down on the next retransmission timer. 1240 */ 1241 asoc->overall_error_count = 0; 1242 1243 } else { 1244 /* Add any peer addresses from the new association. */ 1245 list_for_each_entry(trans, &new->peer.transport_addr_list, 1246 transports) { 1247 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1248 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1249 GFP_ATOMIC, trans->state); 1250 } 1251 1252 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1253 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1254 if (!asoc->ssnmap) { 1255 /* Move the ssnmap. */ 1256 asoc->ssnmap = new->ssnmap; 1257 new->ssnmap = NULL; 1258 } 1259 1260 if (!asoc->assoc_id) { 1261 /* get a new association id since we don't have one 1262 * yet. 1263 */ 1264 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1265 } 1266 } 1267 1268 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1269 * and also move the association shared keys over 1270 */ 1271 kfree(asoc->peer.peer_random); 1272 asoc->peer.peer_random = new->peer.peer_random; 1273 new->peer.peer_random = NULL; 1274 1275 kfree(asoc->peer.peer_chunks); 1276 asoc->peer.peer_chunks = new->peer.peer_chunks; 1277 new->peer.peer_chunks = NULL; 1278 1279 kfree(asoc->peer.peer_hmacs); 1280 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1281 new->peer.peer_hmacs = NULL; 1282 1283 sctp_auth_key_put(asoc->asoc_shared_key); 1284 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1285 } 1286 1287 /* Update the retran path for sending a retransmitted packet. 1288 * Round-robin through the active transports, else round-robin 1289 * through the inactive transports as this is the next best thing 1290 * we can try. 1291 */ 1292 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1293 { 1294 struct sctp_transport *t, *next; 1295 struct list_head *head = &asoc->peer.transport_addr_list; 1296 struct list_head *pos; 1297 1298 if (asoc->peer.transport_count == 1) 1299 return; 1300 1301 /* Find the next transport in a round-robin fashion. */ 1302 t = asoc->peer.retran_path; 1303 pos = &t->transports; 1304 next = NULL; 1305 1306 while (1) { 1307 /* Skip the head. */ 1308 if (pos->next == head) 1309 pos = head->next; 1310 else 1311 pos = pos->next; 1312 1313 t = list_entry(pos, struct sctp_transport, transports); 1314 1315 /* We have exhausted the list, but didn't find any 1316 * other active transports. If so, use the next 1317 * transport. 1318 */ 1319 if (t == asoc->peer.retran_path) { 1320 t = next; 1321 break; 1322 } 1323 1324 /* Try to find an active transport. */ 1325 1326 if ((t->state == SCTP_ACTIVE) || 1327 (t->state == SCTP_UNKNOWN)) { 1328 break; 1329 } else { 1330 /* Keep track of the next transport in case 1331 * we don't find any active transport. 1332 */ 1333 if (t->state != SCTP_UNCONFIRMED && !next) 1334 next = t; 1335 } 1336 } 1337 1338 if (t) 1339 asoc->peer.retran_path = t; 1340 else 1341 t = asoc->peer.retran_path; 1342 1343 pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc, 1344 &t->ipaddr.sa); 1345 } 1346 1347 /* Choose the transport for sending retransmit packet. */ 1348 struct sctp_transport *sctp_assoc_choose_alter_transport( 1349 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1350 { 1351 /* If this is the first time packet is sent, use the active path, 1352 * else use the retran path. If the last packet was sent over the 1353 * retran path, update the retran path and use it. 1354 */ 1355 if (!last_sent_to) 1356 return asoc->peer.active_path; 1357 else { 1358 if (last_sent_to == asoc->peer.retran_path) 1359 sctp_assoc_update_retran_path(asoc); 1360 return asoc->peer.retran_path; 1361 } 1362 } 1363 1364 /* Update the association's pmtu and frag_point by going through all the 1365 * transports. This routine is called when a transport's PMTU has changed. 1366 */ 1367 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1368 { 1369 struct sctp_transport *t; 1370 __u32 pmtu = 0; 1371 1372 if (!asoc) 1373 return; 1374 1375 /* Get the lowest pmtu of all the transports. */ 1376 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1377 transports) { 1378 if (t->pmtu_pending && t->dst) { 1379 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1380 t->pmtu_pending = 0; 1381 } 1382 if (!pmtu || (t->pathmtu < pmtu)) 1383 pmtu = t->pathmtu; 1384 } 1385 1386 if (pmtu) { 1387 asoc->pathmtu = pmtu; 1388 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1389 } 1390 1391 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1392 asoc->pathmtu, asoc->frag_point); 1393 } 1394 1395 /* Should we send a SACK to update our peer? */ 1396 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1397 { 1398 struct net *net = sock_net(asoc->base.sk); 1399 switch (asoc->state) { 1400 case SCTP_STATE_ESTABLISHED: 1401 case SCTP_STATE_SHUTDOWN_PENDING: 1402 case SCTP_STATE_SHUTDOWN_RECEIVED: 1403 case SCTP_STATE_SHUTDOWN_SENT: 1404 if ((asoc->rwnd > asoc->a_rwnd) && 1405 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1406 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1407 asoc->pathmtu))) 1408 return 1; 1409 break; 1410 default: 1411 break; 1412 } 1413 return 0; 1414 } 1415 1416 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1417 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1418 { 1419 struct sctp_chunk *sack; 1420 struct timer_list *timer; 1421 1422 if (asoc->rwnd_over) { 1423 if (asoc->rwnd_over >= len) { 1424 asoc->rwnd_over -= len; 1425 } else { 1426 asoc->rwnd += (len - asoc->rwnd_over); 1427 asoc->rwnd_over = 0; 1428 } 1429 } else { 1430 asoc->rwnd += len; 1431 } 1432 1433 /* If we had window pressure, start recovering it 1434 * once our rwnd had reached the accumulated pressure 1435 * threshold. The idea is to recover slowly, but up 1436 * to the initial advertised window. 1437 */ 1438 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1439 int change = min(asoc->pathmtu, asoc->rwnd_press); 1440 asoc->rwnd += change; 1441 asoc->rwnd_press -= change; 1442 } 1443 1444 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1445 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1446 asoc->a_rwnd); 1447 1448 /* Send a window update SACK if the rwnd has increased by at least the 1449 * minimum of the association's PMTU and half of the receive buffer. 1450 * The algorithm used is similar to the one described in 1451 * Section 4.2.3.3 of RFC 1122. 1452 */ 1453 if (sctp_peer_needs_update(asoc)) { 1454 asoc->a_rwnd = asoc->rwnd; 1455 1456 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1457 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1458 asoc->a_rwnd); 1459 1460 sack = sctp_make_sack(asoc); 1461 if (!sack) 1462 return; 1463 1464 asoc->peer.sack_needed = 0; 1465 1466 sctp_outq_tail(&asoc->outqueue, sack); 1467 1468 /* Stop the SACK timer. */ 1469 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1470 if (del_timer(timer)) 1471 sctp_association_put(asoc); 1472 } 1473 } 1474 1475 /* Decrease asoc's rwnd by len. */ 1476 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1477 { 1478 int rx_count; 1479 int over = 0; 1480 1481 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1482 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1483 "asoc->rwnd_over:%u!\n", __func__, asoc, 1484 asoc->rwnd, asoc->rwnd_over); 1485 1486 if (asoc->ep->rcvbuf_policy) 1487 rx_count = atomic_read(&asoc->rmem_alloc); 1488 else 1489 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1490 1491 /* If we've reached or overflowed our receive buffer, announce 1492 * a 0 rwnd if rwnd would still be positive. Store the 1493 * the pottential pressure overflow so that the window can be restored 1494 * back to original value. 1495 */ 1496 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1497 over = 1; 1498 1499 if (asoc->rwnd >= len) { 1500 asoc->rwnd -= len; 1501 if (over) { 1502 asoc->rwnd_press += asoc->rwnd; 1503 asoc->rwnd = 0; 1504 } 1505 } else { 1506 asoc->rwnd_over = len - asoc->rwnd; 1507 asoc->rwnd = 0; 1508 } 1509 1510 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1511 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1512 asoc->rwnd_press); 1513 } 1514 1515 /* Build the bind address list for the association based on info from the 1516 * local endpoint and the remote peer. 1517 */ 1518 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1519 sctp_scope_t scope, gfp_t gfp) 1520 { 1521 int flags; 1522 1523 /* Use scoping rules to determine the subset of addresses from 1524 * the endpoint. 1525 */ 1526 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1527 if (asoc->peer.ipv4_address) 1528 flags |= SCTP_ADDR4_PEERSUPP; 1529 if (asoc->peer.ipv6_address) 1530 flags |= SCTP_ADDR6_PEERSUPP; 1531 1532 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1533 &asoc->base.bind_addr, 1534 &asoc->ep->base.bind_addr, 1535 scope, gfp, flags); 1536 } 1537 1538 /* Build the association's bind address list from the cookie. */ 1539 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1540 struct sctp_cookie *cookie, 1541 gfp_t gfp) 1542 { 1543 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1544 int var_size3 = cookie->raw_addr_list_len; 1545 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1546 1547 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1548 asoc->ep->base.bind_addr.port, gfp); 1549 } 1550 1551 /* Lookup laddr in the bind address list of an association. */ 1552 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1553 const union sctp_addr *laddr) 1554 { 1555 int found = 0; 1556 1557 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1558 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1559 sctp_sk(asoc->base.sk))) 1560 found = 1; 1561 1562 return found; 1563 } 1564 1565 /* Set an association id for a given association */ 1566 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1567 { 1568 bool preload = gfp & __GFP_WAIT; 1569 int ret; 1570 1571 /* If the id is already assigned, keep it. */ 1572 if (asoc->assoc_id) 1573 return 0; 1574 1575 if (preload) 1576 idr_preload(gfp); 1577 spin_lock_bh(&sctp_assocs_id_lock); 1578 /* 0 is not a valid assoc_id, must be >= 1 */ 1579 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1580 spin_unlock_bh(&sctp_assocs_id_lock); 1581 if (preload) 1582 idr_preload_end(); 1583 if (ret < 0) 1584 return ret; 1585 1586 asoc->assoc_id = (sctp_assoc_t)ret; 1587 return 0; 1588 } 1589 1590 /* Free the ASCONF queue */ 1591 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1592 { 1593 struct sctp_chunk *asconf; 1594 struct sctp_chunk *tmp; 1595 1596 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1597 list_del_init(&asconf->list); 1598 sctp_chunk_free(asconf); 1599 } 1600 } 1601 1602 /* Free asconf_ack cache */ 1603 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1604 { 1605 struct sctp_chunk *ack; 1606 struct sctp_chunk *tmp; 1607 1608 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1609 transmitted_list) { 1610 list_del_init(&ack->transmitted_list); 1611 sctp_chunk_free(ack); 1612 } 1613 } 1614 1615 /* Clean up the ASCONF_ACK queue */ 1616 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1617 { 1618 struct sctp_chunk *ack; 1619 struct sctp_chunk *tmp; 1620 1621 /* We can remove all the entries from the queue up to 1622 * the "Peer-Sequence-Number". 1623 */ 1624 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1625 transmitted_list) { 1626 if (ack->subh.addip_hdr->serial == 1627 htonl(asoc->peer.addip_serial)) 1628 break; 1629 1630 list_del_init(&ack->transmitted_list); 1631 sctp_chunk_free(ack); 1632 } 1633 } 1634 1635 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1636 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1637 const struct sctp_association *asoc, 1638 __be32 serial) 1639 { 1640 struct sctp_chunk *ack; 1641 1642 /* Walk through the list of cached ASCONF-ACKs and find the 1643 * ack chunk whose serial number matches that of the request. 1644 */ 1645 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1646 if (ack->subh.addip_hdr->serial == serial) { 1647 sctp_chunk_hold(ack); 1648 return ack; 1649 } 1650 } 1651 1652 return NULL; 1653 } 1654 1655 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1656 { 1657 /* Free any cached ASCONF_ACK chunk. */ 1658 sctp_assoc_free_asconf_acks(asoc); 1659 1660 /* Free the ASCONF queue. */ 1661 sctp_assoc_free_asconf_queue(asoc); 1662 1663 /* Free any cached ASCONF chunk. */ 1664 if (asoc->addip_last_asconf) 1665 sctp_chunk_free(asoc->addip_last_asconf); 1666 } 1667