xref: /openbmc/linux/net/sctp/associola.c (revision 77d84ff8)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson          <karl@athena.chicago.il.us>
36  *    Jon Grimm             <jgrimm@us.ibm.com>
37  *    Xingang Guo           <xingang.guo@intel.com>
38  *    Hui Huang             <hui.huang@nokia.com>
39  *    Sridhar Samudrala	    <sri@us.ibm.com>
40  *    Daisy Chang	    <daisyc@us.ibm.com>
41  *    Ryan Layer	    <rmlayer@us.ibm.com>
42  *    Kevin Gao             <kevin.gao@intel.com>
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/types.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 
52 #include <linux/slab.h>
53 #include <linux/in.h>
54 #include <net/ipv6.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 
58 /* Forward declarations for internal functions. */
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 					  const struct sctp_endpoint *ep,
68 					  const struct sock *sk,
69 					  sctp_scope_t scope,
70 					  gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	int i;
75 	sctp_paramhdr_t *p;
76 	int err;
77 
78 	/* Retrieve the SCTP per socket area.  */
79 	sp = sctp_sk((struct sock *)sk);
80 
81 	/* Discarding const is appropriate here.  */
82 	asoc->ep = (struct sctp_endpoint *)ep;
83 	asoc->base.sk = (struct sock *)sk;
84 
85 	sctp_endpoint_hold(asoc->ep);
86 	sock_hold(asoc->base.sk);
87 
88 	/* Initialize the common base substructure.  */
89 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90 
91 	/* Initialize the object handling fields.  */
92 	atomic_set(&asoc->base.refcnt, 1);
93 	asoc->base.dead = false;
94 
95 	/* Initialize the bind addr area.  */
96 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
97 
98 	asoc->state = SCTP_STATE_CLOSED;
99 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
100 	asoc->frag_point = 0;
101 	asoc->user_frag = sp->user_frag;
102 
103 	/* Set the association max_retrans and RTO values from the
104 	 * socket values.
105 	 */
106 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
107 	asoc->pf_retrans  = net->sctp.pf_retrans;
108 
109 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
110 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
111 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
112 
113 	asoc->overall_error_count = 0;
114 
115 	/* Initialize the association's heartbeat interval based on the
116 	 * sock configured value.
117 	 */
118 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
119 
120 	/* Initialize path max retrans value. */
121 	asoc->pathmaxrxt = sp->pathmaxrxt;
122 
123 	/* Initialize default path MTU. */
124 	asoc->pathmtu = sp->pathmtu;
125 
126 	/* Set association default SACK delay */
127 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
128 	asoc->sackfreq = sp->sackfreq;
129 
130 	/* Set the association default flags controlling
131 	 * Heartbeat, SACK delay, and Path MTU Discovery.
132 	 */
133 	asoc->param_flags = sp->param_flags;
134 
135 	/* Initialize the maximum mumber of new data packets that can be sent
136 	 * in a burst.
137 	 */
138 	asoc->max_burst = sp->max_burst;
139 
140 	/* initialize association timers */
141 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
142 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
143 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
144 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
145 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
146 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
147 
148 	/* sctpimpguide Section 2.12.2
149 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
150 	 * recommended value of 5 times 'RTO.Max'.
151 	 */
152 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
153 		= 5 * asoc->rto_max;
154 
155 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
156 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
157 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
158 
159 	/* Initializes the timers */
160 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
161 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
162 				(unsigned long)asoc);
163 
164 	/* Pull default initialization values from the sock options.
165 	 * Note: This assumes that the values have already been
166 	 * validated in the sock.
167 	 */
168 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
169 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
170 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
171 
172 	asoc->max_init_timeo =
173 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
174 
175 	/* Allocate storage for the ssnmap after the inbound and outbound
176 	 * streams have been negotiated during Init.
177 	 */
178 	asoc->ssnmap = NULL;
179 
180 	/* Set the local window size for receive.
181 	 * This is also the rcvbuf space per association.
182 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
183 	 * 1500 bytes in one SCTP packet.
184 	 */
185 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
186 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
187 	else
188 		asoc->rwnd = sk->sk_rcvbuf/2;
189 
190 	asoc->a_rwnd = asoc->rwnd;
191 
192 	asoc->rwnd_over = 0;
193 	asoc->rwnd_press = 0;
194 
195 	/* Use my own max window until I learn something better.  */
196 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
197 
198 	/* Set the sndbuf size for transmit.  */
199 	asoc->sndbuf_used = 0;
200 
201 	/* Initialize the receive memory counter */
202 	atomic_set(&asoc->rmem_alloc, 0);
203 
204 	init_waitqueue_head(&asoc->wait);
205 
206 	asoc->c.my_vtag = sctp_generate_tag(ep);
207 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
208 	asoc->c.peer_vtag = 0;
209 	asoc->c.my_ttag   = 0;
210 	asoc->c.peer_ttag = 0;
211 	asoc->c.my_port = ep->base.bind_addr.port;
212 
213 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
214 
215 	asoc->next_tsn = asoc->c.initial_tsn;
216 
217 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
218 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
219 	asoc->highest_sacked = asoc->ctsn_ack_point;
220 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
221 	asoc->unack_data = 0;
222 
223 	/* ADDIP Section 4.1 Asconf Chunk Procedures
224 	 *
225 	 * When an endpoint has an ASCONF signaled change to be sent to the
226 	 * remote endpoint it should do the following:
227 	 * ...
228 	 * A2) a serial number should be assigned to the chunk. The serial
229 	 * number SHOULD be a monotonically increasing number. The serial
230 	 * numbers SHOULD be initialized at the start of the
231 	 * association to the same value as the initial TSN.
232 	 */
233 	asoc->addip_serial = asoc->c.initial_tsn;
234 
235 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
236 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
237 
238 	/* Make an empty list of remote transport addresses.  */
239 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
240 	asoc->peer.transport_count = 0;
241 
242 	/* RFC 2960 5.1 Normal Establishment of an Association
243 	 *
244 	 * After the reception of the first data chunk in an
245 	 * association the endpoint must immediately respond with a
246 	 * sack to acknowledge the data chunk.  Subsequent
247 	 * acknowledgements should be done as described in Section
248 	 * 6.2.
249 	 *
250 	 * [We implement this by telling a new association that it
251 	 * already received one packet.]
252 	 */
253 	asoc->peer.sack_needed = 1;
254 	asoc->peer.sack_cnt = 0;
255 	asoc->peer.sack_generation = 1;
256 
257 	/* Assume that the peer will tell us if he recognizes ASCONF
258 	 * as part of INIT exchange.
259 	 * The sctp_addip_noauth option is there for backward compatibilty
260 	 * and will revert old behavior.
261 	 */
262 	asoc->peer.asconf_capable = 0;
263 	if (net->sctp.addip_noauth)
264 		asoc->peer.asconf_capable = 1;
265 	asoc->asconf_addr_del_pending = NULL;
266 	asoc->src_out_of_asoc_ok = 0;
267 	asoc->new_transport = NULL;
268 
269 	/* Create an input queue.  */
270 	sctp_inq_init(&asoc->base.inqueue);
271 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
272 
273 	/* Create an output queue.  */
274 	sctp_outq_init(asoc, &asoc->outqueue);
275 
276 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
277 		goto fail_init;
278 
279 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
280 
281 	asoc->need_ecne = 0;
282 
283 	asoc->assoc_id = 0;
284 
285 	/* Assume that peer would support both address types unless we are
286 	 * told otherwise.
287 	 */
288 	asoc->peer.ipv4_address = 1;
289 	if (asoc->base.sk->sk_family == PF_INET6)
290 		asoc->peer.ipv6_address = 1;
291 	INIT_LIST_HEAD(&asoc->asocs);
292 
293 	asoc->default_stream = sp->default_stream;
294 	asoc->default_ppid = sp->default_ppid;
295 	asoc->default_flags = sp->default_flags;
296 	asoc->default_context = sp->default_context;
297 	asoc->default_timetolive = sp->default_timetolive;
298 	asoc->default_rcv_context = sp->default_rcv_context;
299 
300 	/* SCTP_GET_ASSOC_STATS COUNTERS */
301 	memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats));
302 
303 	/* AUTH related initializations */
304 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
305 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
306 	if (err)
307 		goto fail_init;
308 
309 	asoc->active_key_id = ep->active_key_id;
310 	asoc->asoc_shared_key = NULL;
311 
312 	asoc->default_hmac_id = 0;
313 	/* Save the hmacs and chunks list into this association */
314 	if (ep->auth_hmacs_list)
315 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
316 			ntohs(ep->auth_hmacs_list->param_hdr.length));
317 	if (ep->auth_chunk_list)
318 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
319 			ntohs(ep->auth_chunk_list->param_hdr.length));
320 
321 	/* Get the AUTH random number for this association */
322 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
323 	p->type = SCTP_PARAM_RANDOM;
324 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
325 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
326 
327 	return asoc;
328 
329 fail_init:
330 	sock_put(asoc->base.sk);
331 	sctp_endpoint_put(asoc->ep);
332 	return NULL;
333 }
334 
335 /* Allocate and initialize a new association */
336 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
337 					 const struct sock *sk,
338 					 sctp_scope_t scope,
339 					 gfp_t gfp)
340 {
341 	struct sctp_association *asoc;
342 
343 	asoc = kzalloc(sizeof(*asoc), gfp);
344 	if (!asoc)
345 		goto fail;
346 
347 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
348 		goto fail_init;
349 
350 	SCTP_DBG_OBJCNT_INC(assoc);
351 
352 	pr_debug("Created asoc %p\n", asoc);
353 
354 	return asoc;
355 
356 fail_init:
357 	kfree(asoc);
358 fail:
359 	return NULL;
360 }
361 
362 /* Free this association if possible.  There may still be users, so
363  * the actual deallocation may be delayed.
364  */
365 void sctp_association_free(struct sctp_association *asoc)
366 {
367 	struct sock *sk = asoc->base.sk;
368 	struct sctp_transport *transport;
369 	struct list_head *pos, *temp;
370 	int i;
371 
372 	/* Only real associations count against the endpoint, so
373 	 * don't bother for if this is a temporary association.
374 	 */
375 	if (!asoc->temp) {
376 		list_del(&asoc->asocs);
377 
378 		/* Decrement the backlog value for a TCP-style listening
379 		 * socket.
380 		 */
381 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
382 			sk->sk_ack_backlog--;
383 	}
384 
385 	/* Mark as dead, so other users can know this structure is
386 	 * going away.
387 	 */
388 	asoc->base.dead = true;
389 
390 	/* Dispose of any data lying around in the outqueue. */
391 	sctp_outq_free(&asoc->outqueue);
392 
393 	/* Dispose of any pending messages for the upper layer. */
394 	sctp_ulpq_free(&asoc->ulpq);
395 
396 	/* Dispose of any pending chunks on the inqueue. */
397 	sctp_inq_free(&asoc->base.inqueue);
398 
399 	sctp_tsnmap_free(&asoc->peer.tsn_map);
400 
401 	/* Free ssnmap storage. */
402 	sctp_ssnmap_free(asoc->ssnmap);
403 
404 	/* Clean up the bound address list. */
405 	sctp_bind_addr_free(&asoc->base.bind_addr);
406 
407 	/* Do we need to go through all of our timers and
408 	 * delete them?   To be safe we will try to delete all, but we
409 	 * should be able to go through and make a guess based
410 	 * on our state.
411 	 */
412 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
413 		if (del_timer(&asoc->timers[i]))
414 			sctp_association_put(asoc);
415 	}
416 
417 	/* Free peer's cached cookie. */
418 	kfree(asoc->peer.cookie);
419 	kfree(asoc->peer.peer_random);
420 	kfree(asoc->peer.peer_chunks);
421 	kfree(asoc->peer.peer_hmacs);
422 
423 	/* Release the transport structures. */
424 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
425 		transport = list_entry(pos, struct sctp_transport, transports);
426 		list_del_rcu(pos);
427 		sctp_transport_free(transport);
428 	}
429 
430 	asoc->peer.transport_count = 0;
431 
432 	sctp_asconf_queue_teardown(asoc);
433 
434 	/* Free pending address space being deleted */
435 	if (asoc->asconf_addr_del_pending != NULL)
436 		kfree(asoc->asconf_addr_del_pending);
437 
438 	/* AUTH - Free the endpoint shared keys */
439 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
440 
441 	/* AUTH - Free the association shared key */
442 	sctp_auth_key_put(asoc->asoc_shared_key);
443 
444 	sctp_association_put(asoc);
445 }
446 
447 /* Cleanup and free up an association. */
448 static void sctp_association_destroy(struct sctp_association *asoc)
449 {
450 	if (unlikely(!asoc->base.dead)) {
451 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
452 		return;
453 	}
454 
455 	sctp_endpoint_put(asoc->ep);
456 	sock_put(asoc->base.sk);
457 
458 	if (asoc->assoc_id != 0) {
459 		spin_lock_bh(&sctp_assocs_id_lock);
460 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
461 		spin_unlock_bh(&sctp_assocs_id_lock);
462 	}
463 
464 	WARN_ON(atomic_read(&asoc->rmem_alloc));
465 
466 	kfree(asoc);
467 	SCTP_DBG_OBJCNT_DEC(assoc);
468 }
469 
470 /* Change the primary destination address for the peer. */
471 void sctp_assoc_set_primary(struct sctp_association *asoc,
472 			    struct sctp_transport *transport)
473 {
474 	int changeover = 0;
475 
476 	/* it's a changeover only if we already have a primary path
477 	 * that we are changing
478 	 */
479 	if (asoc->peer.primary_path != NULL &&
480 	    asoc->peer.primary_path != transport)
481 		changeover = 1 ;
482 
483 	asoc->peer.primary_path = transport;
484 
485 	/* Set a default msg_name for events. */
486 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
487 	       sizeof(union sctp_addr));
488 
489 	/* If the primary path is changing, assume that the
490 	 * user wants to use this new path.
491 	 */
492 	if ((transport->state == SCTP_ACTIVE) ||
493 	    (transport->state == SCTP_UNKNOWN))
494 		asoc->peer.active_path = transport;
495 
496 	/*
497 	 * SFR-CACC algorithm:
498 	 * Upon the receipt of a request to change the primary
499 	 * destination address, on the data structure for the new
500 	 * primary destination, the sender MUST do the following:
501 	 *
502 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
503 	 * to this destination address earlier. The sender MUST set
504 	 * CYCLING_CHANGEOVER to indicate that this switch is a
505 	 * double switch to the same destination address.
506 	 *
507 	 * Really, only bother is we have data queued or outstanding on
508 	 * the association.
509 	 */
510 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
511 		return;
512 
513 	if (transport->cacc.changeover_active)
514 		transport->cacc.cycling_changeover = changeover;
515 
516 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
517 	 * a changeover has occurred.
518 	 */
519 	transport->cacc.changeover_active = changeover;
520 
521 	/* 3) The sender MUST store the next TSN to be sent in
522 	 * next_tsn_at_change.
523 	 */
524 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
525 }
526 
527 /* Remove a transport from an association.  */
528 void sctp_assoc_rm_peer(struct sctp_association *asoc,
529 			struct sctp_transport *peer)
530 {
531 	struct list_head	*pos;
532 	struct sctp_transport	*transport;
533 
534 	pr_debug("%s: association:%p addr:%pISpc\n",
535 		 __func__, asoc, &peer->ipaddr.sa);
536 
537 	/* If we are to remove the current retran_path, update it
538 	 * to the next peer before removing this peer from the list.
539 	 */
540 	if (asoc->peer.retran_path == peer)
541 		sctp_assoc_update_retran_path(asoc);
542 
543 	/* Remove this peer from the list. */
544 	list_del_rcu(&peer->transports);
545 
546 	/* Get the first transport of asoc. */
547 	pos = asoc->peer.transport_addr_list.next;
548 	transport = list_entry(pos, struct sctp_transport, transports);
549 
550 	/* Update any entries that match the peer to be deleted. */
551 	if (asoc->peer.primary_path == peer)
552 		sctp_assoc_set_primary(asoc, transport);
553 	if (asoc->peer.active_path == peer)
554 		asoc->peer.active_path = transport;
555 	if (asoc->peer.retran_path == peer)
556 		asoc->peer.retran_path = transport;
557 	if (asoc->peer.last_data_from == peer)
558 		asoc->peer.last_data_from = transport;
559 
560 	/* If we remove the transport an INIT was last sent to, set it to
561 	 * NULL. Combined with the update of the retran path above, this
562 	 * will cause the next INIT to be sent to the next available
563 	 * transport, maintaining the cycle.
564 	 */
565 	if (asoc->init_last_sent_to == peer)
566 		asoc->init_last_sent_to = NULL;
567 
568 	/* If we remove the transport an SHUTDOWN was last sent to, set it
569 	 * to NULL. Combined with the update of the retran path above, this
570 	 * will cause the next SHUTDOWN to be sent to the next available
571 	 * transport, maintaining the cycle.
572 	 */
573 	if (asoc->shutdown_last_sent_to == peer)
574 		asoc->shutdown_last_sent_to = NULL;
575 
576 	/* If we remove the transport an ASCONF was last sent to, set it to
577 	 * NULL.
578 	 */
579 	if (asoc->addip_last_asconf &&
580 	    asoc->addip_last_asconf->transport == peer)
581 		asoc->addip_last_asconf->transport = NULL;
582 
583 	/* If we have something on the transmitted list, we have to
584 	 * save it off.  The best place is the active path.
585 	 */
586 	if (!list_empty(&peer->transmitted)) {
587 		struct sctp_transport *active = asoc->peer.active_path;
588 		struct sctp_chunk *ch;
589 
590 		/* Reset the transport of each chunk on this list */
591 		list_for_each_entry(ch, &peer->transmitted,
592 					transmitted_list) {
593 			ch->transport = NULL;
594 			ch->rtt_in_progress = 0;
595 		}
596 
597 		list_splice_tail_init(&peer->transmitted,
598 					&active->transmitted);
599 
600 		/* Start a T3 timer here in case it wasn't running so
601 		 * that these migrated packets have a chance to get
602 		 * retransmitted.
603 		 */
604 		if (!timer_pending(&active->T3_rtx_timer))
605 			if (!mod_timer(&active->T3_rtx_timer,
606 					jiffies + active->rto))
607 				sctp_transport_hold(active);
608 	}
609 
610 	asoc->peer.transport_count--;
611 
612 	sctp_transport_free(peer);
613 }
614 
615 /* Add a transport address to an association.  */
616 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
617 					   const union sctp_addr *addr,
618 					   const gfp_t gfp,
619 					   const int peer_state)
620 {
621 	struct net *net = sock_net(asoc->base.sk);
622 	struct sctp_transport *peer;
623 	struct sctp_sock *sp;
624 	unsigned short port;
625 
626 	sp = sctp_sk(asoc->base.sk);
627 
628 	/* AF_INET and AF_INET6 share common port field. */
629 	port = ntohs(addr->v4.sin_port);
630 
631 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
632 		 asoc, &addr->sa, peer_state);
633 
634 	/* Set the port if it has not been set yet.  */
635 	if (0 == asoc->peer.port)
636 		asoc->peer.port = port;
637 
638 	/* Check to see if this is a duplicate. */
639 	peer = sctp_assoc_lookup_paddr(asoc, addr);
640 	if (peer) {
641 		/* An UNKNOWN state is only set on transports added by
642 		 * user in sctp_connectx() call.  Such transports should be
643 		 * considered CONFIRMED per RFC 4960, Section 5.4.
644 		 */
645 		if (peer->state == SCTP_UNKNOWN) {
646 			peer->state = SCTP_ACTIVE;
647 		}
648 		return peer;
649 	}
650 
651 	peer = sctp_transport_new(net, addr, gfp);
652 	if (!peer)
653 		return NULL;
654 
655 	sctp_transport_set_owner(peer, asoc);
656 
657 	/* Initialize the peer's heartbeat interval based on the
658 	 * association configured value.
659 	 */
660 	peer->hbinterval = asoc->hbinterval;
661 
662 	/* Set the path max_retrans.  */
663 	peer->pathmaxrxt = asoc->pathmaxrxt;
664 
665 	/* And the partial failure retrans threshold */
666 	peer->pf_retrans = asoc->pf_retrans;
667 
668 	/* Initialize the peer's SACK delay timeout based on the
669 	 * association configured value.
670 	 */
671 	peer->sackdelay = asoc->sackdelay;
672 	peer->sackfreq = asoc->sackfreq;
673 
674 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
675 	 * based on association setting.
676 	 */
677 	peer->param_flags = asoc->param_flags;
678 
679 	sctp_transport_route(peer, NULL, sp);
680 
681 	/* Initialize the pmtu of the transport. */
682 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
683 		if (asoc->pathmtu)
684 			peer->pathmtu = asoc->pathmtu;
685 		else
686 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
687 	}
688 
689 	/* If this is the first transport addr on this association,
690 	 * initialize the association PMTU to the peer's PMTU.
691 	 * If not and the current association PMTU is higher than the new
692 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
693 	 */
694 	if (asoc->pathmtu)
695 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
696 	else
697 		asoc->pathmtu = peer->pathmtu;
698 
699 	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
700 		 asoc->pathmtu);
701 
702 	peer->pmtu_pending = 0;
703 
704 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
705 
706 	/* The asoc->peer.port might not be meaningful yet, but
707 	 * initialize the packet structure anyway.
708 	 */
709 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
710 			 asoc->peer.port);
711 
712 	/* 7.2.1 Slow-Start
713 	 *
714 	 * o The initial cwnd before DATA transmission or after a sufficiently
715 	 *   long idle period MUST be set to
716 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
717 	 *
718 	 * o The initial value of ssthresh MAY be arbitrarily high
719 	 *   (for example, implementations MAY use the size of the
720 	 *   receiver advertised window).
721 	 */
722 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
723 
724 	/* At this point, we may not have the receiver's advertised window,
725 	 * so initialize ssthresh to the default value and it will be set
726 	 * later when we process the INIT.
727 	 */
728 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
729 
730 	peer->partial_bytes_acked = 0;
731 	peer->flight_size = 0;
732 	peer->burst_limited = 0;
733 
734 	/* Set the transport's RTO.initial value */
735 	peer->rto = asoc->rto_initial;
736 	sctp_max_rto(asoc, peer);
737 
738 	/* Set the peer's active state. */
739 	peer->state = peer_state;
740 
741 	/* Attach the remote transport to our asoc.  */
742 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
743 	asoc->peer.transport_count++;
744 
745 	/* If we do not yet have a primary path, set one.  */
746 	if (!asoc->peer.primary_path) {
747 		sctp_assoc_set_primary(asoc, peer);
748 		asoc->peer.retran_path = peer;
749 	}
750 
751 	if (asoc->peer.active_path == asoc->peer.retran_path &&
752 	    peer->state != SCTP_UNCONFIRMED) {
753 		asoc->peer.retran_path = peer;
754 	}
755 
756 	return peer;
757 }
758 
759 /* Delete a transport address from an association.  */
760 void sctp_assoc_del_peer(struct sctp_association *asoc,
761 			 const union sctp_addr *addr)
762 {
763 	struct list_head	*pos;
764 	struct list_head	*temp;
765 	struct sctp_transport	*transport;
766 
767 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
768 		transport = list_entry(pos, struct sctp_transport, transports);
769 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
770 			/* Do book keeping for removing the peer and free it. */
771 			sctp_assoc_rm_peer(asoc, transport);
772 			break;
773 		}
774 	}
775 }
776 
777 /* Lookup a transport by address. */
778 struct sctp_transport *sctp_assoc_lookup_paddr(
779 					const struct sctp_association *asoc,
780 					const union sctp_addr *address)
781 {
782 	struct sctp_transport *t;
783 
784 	/* Cycle through all transports searching for a peer address. */
785 
786 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
787 			transports) {
788 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
789 			return t;
790 	}
791 
792 	return NULL;
793 }
794 
795 /* Remove all transports except a give one */
796 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
797 				     struct sctp_transport *primary)
798 {
799 	struct sctp_transport	*temp;
800 	struct sctp_transport	*t;
801 
802 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
803 				 transports) {
804 		/* if the current transport is not the primary one, delete it */
805 		if (t != primary)
806 			sctp_assoc_rm_peer(asoc, t);
807 	}
808 }
809 
810 /* Engage in transport control operations.
811  * Mark the transport up or down and send a notification to the user.
812  * Select and update the new active and retran paths.
813  */
814 void sctp_assoc_control_transport(struct sctp_association *asoc,
815 				  struct sctp_transport *transport,
816 				  sctp_transport_cmd_t command,
817 				  sctp_sn_error_t error)
818 {
819 	struct sctp_transport *t = NULL;
820 	struct sctp_transport *first;
821 	struct sctp_transport *second;
822 	struct sctp_ulpevent *event;
823 	struct sockaddr_storage addr;
824 	int spc_state = 0;
825 	bool ulp_notify = true;
826 
827 	/* Record the transition on the transport.  */
828 	switch (command) {
829 	case SCTP_TRANSPORT_UP:
830 		/* If we are moving from UNCONFIRMED state due
831 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
832 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
833 		 */
834 		if (SCTP_UNCONFIRMED == transport->state &&
835 		    SCTP_HEARTBEAT_SUCCESS == error)
836 			spc_state = SCTP_ADDR_CONFIRMED;
837 		else
838 			spc_state = SCTP_ADDR_AVAILABLE;
839 		/* Don't inform ULP about transition from PF to
840 		 * active state and set cwnd to 1 MTU, see SCTP
841 		 * Quick failover draft section 5.1, point 5
842 		 */
843 		if (transport->state == SCTP_PF) {
844 			ulp_notify = false;
845 			transport->cwnd = asoc->pathmtu;
846 		}
847 		transport->state = SCTP_ACTIVE;
848 		break;
849 
850 	case SCTP_TRANSPORT_DOWN:
851 		/* If the transport was never confirmed, do not transition it
852 		 * to inactive state.  Also, release the cached route since
853 		 * there may be a better route next time.
854 		 */
855 		if (transport->state != SCTP_UNCONFIRMED)
856 			transport->state = SCTP_INACTIVE;
857 		else {
858 			dst_release(transport->dst);
859 			transport->dst = NULL;
860 		}
861 
862 		spc_state = SCTP_ADDR_UNREACHABLE;
863 		break;
864 
865 	case SCTP_TRANSPORT_PF:
866 		transport->state = SCTP_PF;
867 		ulp_notify = false;
868 		break;
869 
870 	default:
871 		return;
872 	}
873 
874 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
875 	 * user.
876 	 */
877 	if (ulp_notify) {
878 		memset(&addr, 0, sizeof(struct sockaddr_storage));
879 		memcpy(&addr, &transport->ipaddr,
880 		       transport->af_specific->sockaddr_len);
881 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
882 					0, spc_state, error, GFP_ATOMIC);
883 		if (event)
884 			sctp_ulpq_tail_event(&asoc->ulpq, event);
885 	}
886 
887 	/* Select new active and retran paths. */
888 
889 	/* Look for the two most recently used active transports.
890 	 *
891 	 * This code produces the wrong ordering whenever jiffies
892 	 * rolls over, but we still get usable transports, so we don't
893 	 * worry about it.
894 	 */
895 	first = NULL; second = NULL;
896 
897 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
898 			transports) {
899 
900 		if ((t->state == SCTP_INACTIVE) ||
901 		    (t->state == SCTP_UNCONFIRMED) ||
902 		    (t->state == SCTP_PF))
903 			continue;
904 		if (!first || t->last_time_heard > first->last_time_heard) {
905 			second = first;
906 			first = t;
907 		} else if (!second ||
908 			   t->last_time_heard > second->last_time_heard)
909 			second = t;
910 	}
911 
912 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
913 	 *
914 	 * By default, an endpoint should always transmit to the
915 	 * primary path, unless the SCTP user explicitly specifies the
916 	 * destination transport address (and possibly source
917 	 * transport address) to use.
918 	 *
919 	 * [If the primary is active but not most recent, bump the most
920 	 * recently used transport.]
921 	 */
922 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
923 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
924 	    first != asoc->peer.primary_path) {
925 		second = first;
926 		first = asoc->peer.primary_path;
927 	}
928 
929 	if (!second)
930 		second = first;
931 	/* If we failed to find a usable transport, just camp on the
932 	 * primary, even if it is inactive.
933 	 */
934 	if (!first) {
935 		first = asoc->peer.primary_path;
936 		second = asoc->peer.primary_path;
937 	}
938 
939 	/* Set the active and retran transports.  */
940 	asoc->peer.active_path = first;
941 	asoc->peer.retran_path = second;
942 }
943 
944 /* Hold a reference to an association. */
945 void sctp_association_hold(struct sctp_association *asoc)
946 {
947 	atomic_inc(&asoc->base.refcnt);
948 }
949 
950 /* Release a reference to an association and cleanup
951  * if there are no more references.
952  */
953 void sctp_association_put(struct sctp_association *asoc)
954 {
955 	if (atomic_dec_and_test(&asoc->base.refcnt))
956 		sctp_association_destroy(asoc);
957 }
958 
959 /* Allocate the next TSN, Transmission Sequence Number, for the given
960  * association.
961  */
962 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
963 {
964 	/* From Section 1.6 Serial Number Arithmetic:
965 	 * Transmission Sequence Numbers wrap around when they reach
966 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
967 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
968 	 */
969 	__u32 retval = asoc->next_tsn;
970 	asoc->next_tsn++;
971 	asoc->unack_data++;
972 
973 	return retval;
974 }
975 
976 /* Compare two addresses to see if they match.  Wildcard addresses
977  * only match themselves.
978  */
979 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
980 			const union sctp_addr *ss2)
981 {
982 	struct sctp_af *af;
983 
984 	af = sctp_get_af_specific(ss1->sa.sa_family);
985 	if (unlikely(!af))
986 		return 0;
987 
988 	return af->cmp_addr(ss1, ss2);
989 }
990 
991 /* Return an ecne chunk to get prepended to a packet.
992  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
993  * No we don't, but we could/should.
994  */
995 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
996 {
997 	struct sctp_chunk *chunk;
998 
999 	/* Send ECNE if needed.
1000 	 * Not being able to allocate a chunk here is not deadly.
1001 	 */
1002 	if (asoc->need_ecne)
1003 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1004 	else
1005 		chunk = NULL;
1006 
1007 	return chunk;
1008 }
1009 
1010 /*
1011  * Find which transport this TSN was sent on.
1012  */
1013 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1014 					     __u32 tsn)
1015 {
1016 	struct sctp_transport *active;
1017 	struct sctp_transport *match;
1018 	struct sctp_transport *transport;
1019 	struct sctp_chunk *chunk;
1020 	__be32 key = htonl(tsn);
1021 
1022 	match = NULL;
1023 
1024 	/*
1025 	 * FIXME: In general, find a more efficient data structure for
1026 	 * searching.
1027 	 */
1028 
1029 	/*
1030 	 * The general strategy is to search each transport's transmitted
1031 	 * list.   Return which transport this TSN lives on.
1032 	 *
1033 	 * Let's be hopeful and check the active_path first.
1034 	 * Another optimization would be to know if there is only one
1035 	 * outbound path and not have to look for the TSN at all.
1036 	 *
1037 	 */
1038 
1039 	active = asoc->peer.active_path;
1040 
1041 	list_for_each_entry(chunk, &active->transmitted,
1042 			transmitted_list) {
1043 
1044 		if (key == chunk->subh.data_hdr->tsn) {
1045 			match = active;
1046 			goto out;
1047 		}
1048 	}
1049 
1050 	/* If not found, go search all the other transports. */
1051 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1052 			transports) {
1053 
1054 		if (transport == active)
1055 			continue;
1056 		list_for_each_entry(chunk, &transport->transmitted,
1057 				transmitted_list) {
1058 			if (key == chunk->subh.data_hdr->tsn) {
1059 				match = transport;
1060 				goto out;
1061 			}
1062 		}
1063 	}
1064 out:
1065 	return match;
1066 }
1067 
1068 /* Is this the association we are looking for? */
1069 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1070 					   struct net *net,
1071 					   const union sctp_addr *laddr,
1072 					   const union sctp_addr *paddr)
1073 {
1074 	struct sctp_transport *transport;
1075 
1076 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1077 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1078 	    net_eq(sock_net(asoc->base.sk), net)) {
1079 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1080 		if (!transport)
1081 			goto out;
1082 
1083 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1084 					 sctp_sk(asoc->base.sk)))
1085 			goto out;
1086 	}
1087 	transport = NULL;
1088 
1089 out:
1090 	return transport;
1091 }
1092 
1093 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1094 static void sctp_assoc_bh_rcv(struct work_struct *work)
1095 {
1096 	struct sctp_association *asoc =
1097 		container_of(work, struct sctp_association,
1098 			     base.inqueue.immediate);
1099 	struct net *net = sock_net(asoc->base.sk);
1100 	struct sctp_endpoint *ep;
1101 	struct sctp_chunk *chunk;
1102 	struct sctp_inq *inqueue;
1103 	int state;
1104 	sctp_subtype_t subtype;
1105 	int error = 0;
1106 
1107 	/* The association should be held so we should be safe. */
1108 	ep = asoc->ep;
1109 
1110 	inqueue = &asoc->base.inqueue;
1111 	sctp_association_hold(asoc);
1112 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1113 		state = asoc->state;
1114 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1115 
1116 		/* SCTP-AUTH, Section 6.3:
1117 		 *    The receiver has a list of chunk types which it expects
1118 		 *    to be received only after an AUTH-chunk.  This list has
1119 		 *    been sent to the peer during the association setup.  It
1120 		 *    MUST silently discard these chunks if they are not placed
1121 		 *    after an AUTH chunk in the packet.
1122 		 */
1123 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1124 			continue;
1125 
1126 		/* Remember where the last DATA chunk came from so we
1127 		 * know where to send the SACK.
1128 		 */
1129 		if (sctp_chunk_is_data(chunk))
1130 			asoc->peer.last_data_from = chunk->transport;
1131 		else {
1132 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1133 			asoc->stats.ictrlchunks++;
1134 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1135 				asoc->stats.isacks++;
1136 		}
1137 
1138 		if (chunk->transport)
1139 			chunk->transport->last_time_heard = jiffies;
1140 
1141 		/* Run through the state machine. */
1142 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1143 				   state, ep, asoc, chunk, GFP_ATOMIC);
1144 
1145 		/* Check to see if the association is freed in response to
1146 		 * the incoming chunk.  If so, get out of the while loop.
1147 		 */
1148 		if (asoc->base.dead)
1149 			break;
1150 
1151 		/* If there is an error on chunk, discard this packet. */
1152 		if (error && chunk)
1153 			chunk->pdiscard = 1;
1154 	}
1155 	sctp_association_put(asoc);
1156 }
1157 
1158 /* This routine moves an association from its old sk to a new sk.  */
1159 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1160 {
1161 	struct sctp_sock *newsp = sctp_sk(newsk);
1162 	struct sock *oldsk = assoc->base.sk;
1163 
1164 	/* Delete the association from the old endpoint's list of
1165 	 * associations.
1166 	 */
1167 	list_del_init(&assoc->asocs);
1168 
1169 	/* Decrement the backlog value for a TCP-style socket. */
1170 	if (sctp_style(oldsk, TCP))
1171 		oldsk->sk_ack_backlog--;
1172 
1173 	/* Release references to the old endpoint and the sock.  */
1174 	sctp_endpoint_put(assoc->ep);
1175 	sock_put(assoc->base.sk);
1176 
1177 	/* Get a reference to the new endpoint.  */
1178 	assoc->ep = newsp->ep;
1179 	sctp_endpoint_hold(assoc->ep);
1180 
1181 	/* Get a reference to the new sock.  */
1182 	assoc->base.sk = newsk;
1183 	sock_hold(assoc->base.sk);
1184 
1185 	/* Add the association to the new endpoint's list of associations.  */
1186 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1187 }
1188 
1189 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1190 void sctp_assoc_update(struct sctp_association *asoc,
1191 		       struct sctp_association *new)
1192 {
1193 	struct sctp_transport *trans;
1194 	struct list_head *pos, *temp;
1195 
1196 	/* Copy in new parameters of peer. */
1197 	asoc->c = new->c;
1198 	asoc->peer.rwnd = new->peer.rwnd;
1199 	asoc->peer.sack_needed = new->peer.sack_needed;
1200 	asoc->peer.i = new->peer.i;
1201 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1202 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1203 
1204 	/* Remove any peer addresses not present in the new association. */
1205 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1206 		trans = list_entry(pos, struct sctp_transport, transports);
1207 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1208 			sctp_assoc_rm_peer(asoc, trans);
1209 			continue;
1210 		}
1211 
1212 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1213 			sctp_transport_reset(trans);
1214 	}
1215 
1216 	/* If the case is A (association restart), use
1217 	 * initial_tsn as next_tsn. If the case is B, use
1218 	 * current next_tsn in case data sent to peer
1219 	 * has been discarded and needs retransmission.
1220 	 */
1221 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1222 		asoc->next_tsn = new->next_tsn;
1223 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1224 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1225 
1226 		/* Reinitialize SSN for both local streams
1227 		 * and peer's streams.
1228 		 */
1229 		sctp_ssnmap_clear(asoc->ssnmap);
1230 
1231 		/* Flush the ULP reassembly and ordered queue.
1232 		 * Any data there will now be stale and will
1233 		 * cause problems.
1234 		 */
1235 		sctp_ulpq_flush(&asoc->ulpq);
1236 
1237 		/* reset the overall association error count so
1238 		 * that the restarted association doesn't get torn
1239 		 * down on the next retransmission timer.
1240 		 */
1241 		asoc->overall_error_count = 0;
1242 
1243 	} else {
1244 		/* Add any peer addresses from the new association. */
1245 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1246 				transports) {
1247 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1248 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1249 						    GFP_ATOMIC, trans->state);
1250 		}
1251 
1252 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1253 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1254 		if (!asoc->ssnmap) {
1255 			/* Move the ssnmap. */
1256 			asoc->ssnmap = new->ssnmap;
1257 			new->ssnmap = NULL;
1258 		}
1259 
1260 		if (!asoc->assoc_id) {
1261 			/* get a new association id since we don't have one
1262 			 * yet.
1263 			 */
1264 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1265 		}
1266 	}
1267 
1268 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1269 	 * and also move the association shared keys over
1270 	 */
1271 	kfree(asoc->peer.peer_random);
1272 	asoc->peer.peer_random = new->peer.peer_random;
1273 	new->peer.peer_random = NULL;
1274 
1275 	kfree(asoc->peer.peer_chunks);
1276 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1277 	new->peer.peer_chunks = NULL;
1278 
1279 	kfree(asoc->peer.peer_hmacs);
1280 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1281 	new->peer.peer_hmacs = NULL;
1282 
1283 	sctp_auth_key_put(asoc->asoc_shared_key);
1284 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1285 }
1286 
1287 /* Update the retran path for sending a retransmitted packet.
1288  * Round-robin through the active transports, else round-robin
1289  * through the inactive transports as this is the next best thing
1290  * we can try.
1291  */
1292 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1293 {
1294 	struct sctp_transport *t, *next;
1295 	struct list_head *head = &asoc->peer.transport_addr_list;
1296 	struct list_head *pos;
1297 
1298 	if (asoc->peer.transport_count == 1)
1299 		return;
1300 
1301 	/* Find the next transport in a round-robin fashion. */
1302 	t = asoc->peer.retran_path;
1303 	pos = &t->transports;
1304 	next = NULL;
1305 
1306 	while (1) {
1307 		/* Skip the head. */
1308 		if (pos->next == head)
1309 			pos = head->next;
1310 		else
1311 			pos = pos->next;
1312 
1313 		t = list_entry(pos, struct sctp_transport, transports);
1314 
1315 		/* We have exhausted the list, but didn't find any
1316 		 * other active transports.  If so, use the next
1317 		 * transport.
1318 		 */
1319 		if (t == asoc->peer.retran_path) {
1320 			t = next;
1321 			break;
1322 		}
1323 
1324 		/* Try to find an active transport. */
1325 
1326 		if ((t->state == SCTP_ACTIVE) ||
1327 		    (t->state == SCTP_UNKNOWN)) {
1328 			break;
1329 		} else {
1330 			/* Keep track of the next transport in case
1331 			 * we don't find any active transport.
1332 			 */
1333 			if (t->state != SCTP_UNCONFIRMED && !next)
1334 				next = t;
1335 		}
1336 	}
1337 
1338 	if (t)
1339 		asoc->peer.retran_path = t;
1340 	else
1341 		t = asoc->peer.retran_path;
1342 
1343 	pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc,
1344 		 &t->ipaddr.sa);
1345 }
1346 
1347 /* Choose the transport for sending retransmit packet.  */
1348 struct sctp_transport *sctp_assoc_choose_alter_transport(
1349 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1350 {
1351 	/* If this is the first time packet is sent, use the active path,
1352 	 * else use the retran path. If the last packet was sent over the
1353 	 * retran path, update the retran path and use it.
1354 	 */
1355 	if (!last_sent_to)
1356 		return asoc->peer.active_path;
1357 	else {
1358 		if (last_sent_to == asoc->peer.retran_path)
1359 			sctp_assoc_update_retran_path(asoc);
1360 		return asoc->peer.retran_path;
1361 	}
1362 }
1363 
1364 /* Update the association's pmtu and frag_point by going through all the
1365  * transports. This routine is called when a transport's PMTU has changed.
1366  */
1367 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1368 {
1369 	struct sctp_transport *t;
1370 	__u32 pmtu = 0;
1371 
1372 	if (!asoc)
1373 		return;
1374 
1375 	/* Get the lowest pmtu of all the transports. */
1376 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1377 				transports) {
1378 		if (t->pmtu_pending && t->dst) {
1379 			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1380 			t->pmtu_pending = 0;
1381 		}
1382 		if (!pmtu || (t->pathmtu < pmtu))
1383 			pmtu = t->pathmtu;
1384 	}
1385 
1386 	if (pmtu) {
1387 		asoc->pathmtu = pmtu;
1388 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1389 	}
1390 
1391 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1392 		 asoc->pathmtu, asoc->frag_point);
1393 }
1394 
1395 /* Should we send a SACK to update our peer? */
1396 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1397 {
1398 	struct net *net = sock_net(asoc->base.sk);
1399 	switch (asoc->state) {
1400 	case SCTP_STATE_ESTABLISHED:
1401 	case SCTP_STATE_SHUTDOWN_PENDING:
1402 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1403 	case SCTP_STATE_SHUTDOWN_SENT:
1404 		if ((asoc->rwnd > asoc->a_rwnd) &&
1405 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1406 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1407 			   asoc->pathmtu)))
1408 			return 1;
1409 		break;
1410 	default:
1411 		break;
1412 	}
1413 	return 0;
1414 }
1415 
1416 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1417 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1418 {
1419 	struct sctp_chunk *sack;
1420 	struct timer_list *timer;
1421 
1422 	if (asoc->rwnd_over) {
1423 		if (asoc->rwnd_over >= len) {
1424 			asoc->rwnd_over -= len;
1425 		} else {
1426 			asoc->rwnd += (len - asoc->rwnd_over);
1427 			asoc->rwnd_over = 0;
1428 		}
1429 	} else {
1430 		asoc->rwnd += len;
1431 	}
1432 
1433 	/* If we had window pressure, start recovering it
1434 	 * once our rwnd had reached the accumulated pressure
1435 	 * threshold.  The idea is to recover slowly, but up
1436 	 * to the initial advertised window.
1437 	 */
1438 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1439 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1440 		asoc->rwnd += change;
1441 		asoc->rwnd_press -= change;
1442 	}
1443 
1444 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1445 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1446 		 asoc->a_rwnd);
1447 
1448 	/* Send a window update SACK if the rwnd has increased by at least the
1449 	 * minimum of the association's PMTU and half of the receive buffer.
1450 	 * The algorithm used is similar to the one described in
1451 	 * Section 4.2.3.3 of RFC 1122.
1452 	 */
1453 	if (sctp_peer_needs_update(asoc)) {
1454 		asoc->a_rwnd = asoc->rwnd;
1455 
1456 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1457 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1458 			 asoc->a_rwnd);
1459 
1460 		sack = sctp_make_sack(asoc);
1461 		if (!sack)
1462 			return;
1463 
1464 		asoc->peer.sack_needed = 0;
1465 
1466 		sctp_outq_tail(&asoc->outqueue, sack);
1467 
1468 		/* Stop the SACK timer.  */
1469 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1470 		if (del_timer(timer))
1471 			sctp_association_put(asoc);
1472 	}
1473 }
1474 
1475 /* Decrease asoc's rwnd by len. */
1476 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1477 {
1478 	int rx_count;
1479 	int over = 0;
1480 
1481 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1482 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1483 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1484 			 asoc->rwnd, asoc->rwnd_over);
1485 
1486 	if (asoc->ep->rcvbuf_policy)
1487 		rx_count = atomic_read(&asoc->rmem_alloc);
1488 	else
1489 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1490 
1491 	/* If we've reached or overflowed our receive buffer, announce
1492 	 * a 0 rwnd if rwnd would still be positive.  Store the
1493 	 * the pottential pressure overflow so that the window can be restored
1494 	 * back to original value.
1495 	 */
1496 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1497 		over = 1;
1498 
1499 	if (asoc->rwnd >= len) {
1500 		asoc->rwnd -= len;
1501 		if (over) {
1502 			asoc->rwnd_press += asoc->rwnd;
1503 			asoc->rwnd = 0;
1504 		}
1505 	} else {
1506 		asoc->rwnd_over = len - asoc->rwnd;
1507 		asoc->rwnd = 0;
1508 	}
1509 
1510 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1511 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1512 		 asoc->rwnd_press);
1513 }
1514 
1515 /* Build the bind address list for the association based on info from the
1516  * local endpoint and the remote peer.
1517  */
1518 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1519 				     sctp_scope_t scope, gfp_t gfp)
1520 {
1521 	int flags;
1522 
1523 	/* Use scoping rules to determine the subset of addresses from
1524 	 * the endpoint.
1525 	 */
1526 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1527 	if (asoc->peer.ipv4_address)
1528 		flags |= SCTP_ADDR4_PEERSUPP;
1529 	if (asoc->peer.ipv6_address)
1530 		flags |= SCTP_ADDR6_PEERSUPP;
1531 
1532 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1533 				   &asoc->base.bind_addr,
1534 				   &asoc->ep->base.bind_addr,
1535 				   scope, gfp, flags);
1536 }
1537 
1538 /* Build the association's bind address list from the cookie.  */
1539 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1540 					 struct sctp_cookie *cookie,
1541 					 gfp_t gfp)
1542 {
1543 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1544 	int var_size3 = cookie->raw_addr_list_len;
1545 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1546 
1547 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1548 				      asoc->ep->base.bind_addr.port, gfp);
1549 }
1550 
1551 /* Lookup laddr in the bind address list of an association. */
1552 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1553 			    const union sctp_addr *laddr)
1554 {
1555 	int found = 0;
1556 
1557 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1558 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1559 				 sctp_sk(asoc->base.sk)))
1560 		found = 1;
1561 
1562 	return found;
1563 }
1564 
1565 /* Set an association id for a given association */
1566 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1567 {
1568 	bool preload = gfp & __GFP_WAIT;
1569 	int ret;
1570 
1571 	/* If the id is already assigned, keep it. */
1572 	if (asoc->assoc_id)
1573 		return 0;
1574 
1575 	if (preload)
1576 		idr_preload(gfp);
1577 	spin_lock_bh(&sctp_assocs_id_lock);
1578 	/* 0 is not a valid assoc_id, must be >= 1 */
1579 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1580 	spin_unlock_bh(&sctp_assocs_id_lock);
1581 	if (preload)
1582 		idr_preload_end();
1583 	if (ret < 0)
1584 		return ret;
1585 
1586 	asoc->assoc_id = (sctp_assoc_t)ret;
1587 	return 0;
1588 }
1589 
1590 /* Free the ASCONF queue */
1591 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1592 {
1593 	struct sctp_chunk *asconf;
1594 	struct sctp_chunk *tmp;
1595 
1596 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1597 		list_del_init(&asconf->list);
1598 		sctp_chunk_free(asconf);
1599 	}
1600 }
1601 
1602 /* Free asconf_ack cache */
1603 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1604 {
1605 	struct sctp_chunk *ack;
1606 	struct sctp_chunk *tmp;
1607 
1608 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1609 				transmitted_list) {
1610 		list_del_init(&ack->transmitted_list);
1611 		sctp_chunk_free(ack);
1612 	}
1613 }
1614 
1615 /* Clean up the ASCONF_ACK queue */
1616 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1617 {
1618 	struct sctp_chunk *ack;
1619 	struct sctp_chunk *tmp;
1620 
1621 	/* We can remove all the entries from the queue up to
1622 	 * the "Peer-Sequence-Number".
1623 	 */
1624 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1625 				transmitted_list) {
1626 		if (ack->subh.addip_hdr->serial ==
1627 				htonl(asoc->peer.addip_serial))
1628 			break;
1629 
1630 		list_del_init(&ack->transmitted_list);
1631 		sctp_chunk_free(ack);
1632 	}
1633 }
1634 
1635 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1636 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1637 					const struct sctp_association *asoc,
1638 					__be32 serial)
1639 {
1640 	struct sctp_chunk *ack;
1641 
1642 	/* Walk through the list of cached ASCONF-ACKs and find the
1643 	 * ack chunk whose serial number matches that of the request.
1644 	 */
1645 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1646 		if (ack->subh.addip_hdr->serial == serial) {
1647 			sctp_chunk_hold(ack);
1648 			return ack;
1649 		}
1650 	}
1651 
1652 	return NULL;
1653 }
1654 
1655 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1656 {
1657 	/* Free any cached ASCONF_ACK chunk. */
1658 	sctp_assoc_free_asconf_acks(asoc);
1659 
1660 	/* Free the ASCONF queue. */
1661 	sctp_assoc_free_asconf_queue(asoc);
1662 
1663 	/* Free any cached ASCONF chunk. */
1664 	if (asoc->addip_last_asconf)
1665 		sctp_chunk_free(asoc->addip_last_asconf);
1666 }
1667