1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 67 const struct sctp_endpoint *ep, 68 const struct sock *sk, 69 sctp_scope_t scope, 70 gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 int i; 75 sctp_paramhdr_t *p; 76 int err; 77 78 /* Retrieve the SCTP per socket area. */ 79 sp = sctp_sk((struct sock *)sk); 80 81 /* Discarding const is appropriate here. */ 82 asoc->ep = (struct sctp_endpoint *)ep; 83 asoc->base.sk = (struct sock *)sk; 84 85 sctp_endpoint_hold(asoc->ep); 86 sock_hold(asoc->base.sk); 87 88 /* Initialize the common base substructure. */ 89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 90 91 /* Initialize the object handling fields. */ 92 atomic_set(&asoc->base.refcnt, 1); 93 94 /* Initialize the bind addr area. */ 95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 96 97 asoc->state = SCTP_STATE_CLOSED; 98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 99 asoc->user_frag = sp->user_frag; 100 101 /* Set the association max_retrans and RTO values from the 102 * socket values. 103 */ 104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 105 asoc->pf_retrans = net->sctp.pf_retrans; 106 107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 110 111 /* Initialize the association's heartbeat interval based on the 112 * sock configured value. 113 */ 114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 115 116 /* Initialize path max retrans value. */ 117 asoc->pathmaxrxt = sp->pathmaxrxt; 118 119 /* Initialize default path MTU. */ 120 asoc->pathmtu = sp->pathmtu; 121 122 /* Set association default SACK delay */ 123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 124 asoc->sackfreq = sp->sackfreq; 125 126 /* Set the association default flags controlling 127 * Heartbeat, SACK delay, and Path MTU Discovery. 128 */ 129 asoc->param_flags = sp->param_flags; 130 131 /* Initialize the maximum number of new data packets that can be sent 132 * in a burst. 133 */ 134 asoc->max_burst = sp->max_burst; 135 136 /* initialize association timers */ 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 140 141 /* sctpimpguide Section 2.12.2 142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 143 * recommended value of 5 times 'RTO.Max'. 144 */ 145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 146 = 5 * asoc->rto_max; 147 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 150 151 /* Initializes the timers */ 152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 153 setup_timer(&asoc->timers[i], sctp_timer_events[i], 154 (unsigned long)asoc); 155 156 /* Pull default initialization values from the sock options. 157 * Note: This assumes that the values have already been 158 * validated in the sock. 159 */ 160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 163 164 asoc->max_init_timeo = 165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 166 167 /* Set the local window size for receive. 168 * This is also the rcvbuf space per association. 169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 170 * 1500 bytes in one SCTP packet. 171 */ 172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 174 else 175 asoc->rwnd = sk->sk_rcvbuf/2; 176 177 asoc->a_rwnd = asoc->rwnd; 178 179 /* Use my own max window until I learn something better. */ 180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 181 182 /* Initialize the receive memory counter */ 183 atomic_set(&asoc->rmem_alloc, 0); 184 185 init_waitqueue_head(&asoc->wait); 186 187 asoc->c.my_vtag = sctp_generate_tag(ep); 188 asoc->c.my_port = ep->base.bind_addr.port; 189 190 asoc->c.initial_tsn = sctp_generate_tsn(ep); 191 192 asoc->next_tsn = asoc->c.initial_tsn; 193 194 asoc->ctsn_ack_point = asoc->next_tsn - 1; 195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 196 asoc->highest_sacked = asoc->ctsn_ack_point; 197 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 198 199 /* ADDIP Section 4.1 Asconf Chunk Procedures 200 * 201 * When an endpoint has an ASCONF signaled change to be sent to the 202 * remote endpoint it should do the following: 203 * ... 204 * A2) a serial number should be assigned to the chunk. The serial 205 * number SHOULD be a monotonically increasing number. The serial 206 * numbers SHOULD be initialized at the start of the 207 * association to the same value as the initial TSN. 208 */ 209 asoc->addip_serial = asoc->c.initial_tsn; 210 211 INIT_LIST_HEAD(&asoc->addip_chunk_list); 212 INIT_LIST_HEAD(&asoc->asconf_ack_list); 213 214 /* Make an empty list of remote transport addresses. */ 215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 216 217 /* RFC 2960 5.1 Normal Establishment of an Association 218 * 219 * After the reception of the first data chunk in an 220 * association the endpoint must immediately respond with a 221 * sack to acknowledge the data chunk. Subsequent 222 * acknowledgements should be done as described in Section 223 * 6.2. 224 * 225 * [We implement this by telling a new association that it 226 * already received one packet.] 227 */ 228 asoc->peer.sack_needed = 1; 229 asoc->peer.sack_generation = 1; 230 231 /* Assume that the peer will tell us if he recognizes ASCONF 232 * as part of INIT exchange. 233 * The sctp_addip_noauth option is there for backward compatibility 234 * and will revert old behavior. 235 */ 236 if (net->sctp.addip_noauth) 237 asoc->peer.asconf_capable = 1; 238 239 /* Create an input queue. */ 240 sctp_inq_init(&asoc->base.inqueue); 241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 242 243 /* Create an output queue. */ 244 sctp_outq_init(asoc, &asoc->outqueue); 245 246 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 247 goto fail_init; 248 249 /* Assume that peer would support both address types unless we are 250 * told otherwise. 251 */ 252 asoc->peer.ipv4_address = 1; 253 if (asoc->base.sk->sk_family == PF_INET6) 254 asoc->peer.ipv6_address = 1; 255 INIT_LIST_HEAD(&asoc->asocs); 256 257 asoc->default_stream = sp->default_stream; 258 asoc->default_ppid = sp->default_ppid; 259 asoc->default_flags = sp->default_flags; 260 asoc->default_context = sp->default_context; 261 asoc->default_timetolive = sp->default_timetolive; 262 asoc->default_rcv_context = sp->default_rcv_context; 263 264 /* AUTH related initializations */ 265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 267 if (err) 268 goto fail_init; 269 270 asoc->active_key_id = ep->active_key_id; 271 272 /* Save the hmacs and chunks list into this association */ 273 if (ep->auth_hmacs_list) 274 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 275 ntohs(ep->auth_hmacs_list->param_hdr.length)); 276 if (ep->auth_chunk_list) 277 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 278 ntohs(ep->auth_chunk_list->param_hdr.length)); 279 280 /* Get the AUTH random number for this association */ 281 p = (sctp_paramhdr_t *)asoc->c.auth_random; 282 p->type = SCTP_PARAM_RANDOM; 283 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 284 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 285 286 return asoc; 287 288 fail_init: 289 sock_put(asoc->base.sk); 290 sctp_endpoint_put(asoc->ep); 291 return NULL; 292 } 293 294 /* Allocate and initialize a new association */ 295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 296 const struct sock *sk, 297 sctp_scope_t scope, 298 gfp_t gfp) 299 { 300 struct sctp_association *asoc; 301 302 asoc = kzalloc(sizeof(*asoc), gfp); 303 if (!asoc) 304 goto fail; 305 306 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 307 goto fail_init; 308 309 SCTP_DBG_OBJCNT_INC(assoc); 310 311 pr_debug("Created asoc %p\n", asoc); 312 313 return asoc; 314 315 fail_init: 316 kfree(asoc); 317 fail: 318 return NULL; 319 } 320 321 /* Free this association if possible. There may still be users, so 322 * the actual deallocation may be delayed. 323 */ 324 void sctp_association_free(struct sctp_association *asoc) 325 { 326 struct sock *sk = asoc->base.sk; 327 struct sctp_transport *transport; 328 struct list_head *pos, *temp; 329 int i; 330 331 /* Only real associations count against the endpoint, so 332 * don't bother for if this is a temporary association. 333 */ 334 if (!list_empty(&asoc->asocs)) { 335 list_del(&asoc->asocs); 336 337 /* Decrement the backlog value for a TCP-style listening 338 * socket. 339 */ 340 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 341 sk->sk_ack_backlog--; 342 } 343 344 /* Mark as dead, so other users can know this structure is 345 * going away. 346 */ 347 asoc->base.dead = true; 348 349 /* Dispose of any data lying around in the outqueue. */ 350 sctp_outq_free(&asoc->outqueue); 351 352 /* Dispose of any pending messages for the upper layer. */ 353 sctp_ulpq_free(&asoc->ulpq); 354 355 /* Dispose of any pending chunks on the inqueue. */ 356 sctp_inq_free(&asoc->base.inqueue); 357 358 sctp_tsnmap_free(&asoc->peer.tsn_map); 359 360 /* Free ssnmap storage. */ 361 sctp_ssnmap_free(asoc->ssnmap); 362 363 /* Clean up the bound address list. */ 364 sctp_bind_addr_free(&asoc->base.bind_addr); 365 366 /* Do we need to go through all of our timers and 367 * delete them? To be safe we will try to delete all, but we 368 * should be able to go through and make a guess based 369 * on our state. 370 */ 371 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 372 if (del_timer(&asoc->timers[i])) 373 sctp_association_put(asoc); 374 } 375 376 /* Free peer's cached cookie. */ 377 kfree(asoc->peer.cookie); 378 kfree(asoc->peer.peer_random); 379 kfree(asoc->peer.peer_chunks); 380 kfree(asoc->peer.peer_hmacs); 381 382 /* Release the transport structures. */ 383 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 384 transport = list_entry(pos, struct sctp_transport, transports); 385 list_del_rcu(pos); 386 sctp_unhash_transport(transport); 387 sctp_transport_free(transport); 388 } 389 390 asoc->peer.transport_count = 0; 391 392 sctp_asconf_queue_teardown(asoc); 393 394 /* Free pending address space being deleted */ 395 kfree(asoc->asconf_addr_del_pending); 396 397 /* AUTH - Free the endpoint shared keys */ 398 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 399 400 /* AUTH - Free the association shared key */ 401 sctp_auth_key_put(asoc->asoc_shared_key); 402 403 sctp_association_put(asoc); 404 } 405 406 /* Cleanup and free up an association. */ 407 static void sctp_association_destroy(struct sctp_association *asoc) 408 { 409 if (unlikely(!asoc->base.dead)) { 410 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 411 return; 412 } 413 414 sctp_endpoint_put(asoc->ep); 415 sock_put(asoc->base.sk); 416 417 if (asoc->assoc_id != 0) { 418 spin_lock_bh(&sctp_assocs_id_lock); 419 idr_remove(&sctp_assocs_id, asoc->assoc_id); 420 spin_unlock_bh(&sctp_assocs_id_lock); 421 } 422 423 WARN_ON(atomic_read(&asoc->rmem_alloc)); 424 425 kfree(asoc); 426 SCTP_DBG_OBJCNT_DEC(assoc); 427 } 428 429 /* Change the primary destination address for the peer. */ 430 void sctp_assoc_set_primary(struct sctp_association *asoc, 431 struct sctp_transport *transport) 432 { 433 int changeover = 0; 434 435 /* it's a changeover only if we already have a primary path 436 * that we are changing 437 */ 438 if (asoc->peer.primary_path != NULL && 439 asoc->peer.primary_path != transport) 440 changeover = 1 ; 441 442 asoc->peer.primary_path = transport; 443 444 /* Set a default msg_name for events. */ 445 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 446 sizeof(union sctp_addr)); 447 448 /* If the primary path is changing, assume that the 449 * user wants to use this new path. 450 */ 451 if ((transport->state == SCTP_ACTIVE) || 452 (transport->state == SCTP_UNKNOWN)) 453 asoc->peer.active_path = transport; 454 455 /* 456 * SFR-CACC algorithm: 457 * Upon the receipt of a request to change the primary 458 * destination address, on the data structure for the new 459 * primary destination, the sender MUST do the following: 460 * 461 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 462 * to this destination address earlier. The sender MUST set 463 * CYCLING_CHANGEOVER to indicate that this switch is a 464 * double switch to the same destination address. 465 * 466 * Really, only bother is we have data queued or outstanding on 467 * the association. 468 */ 469 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 470 return; 471 472 if (transport->cacc.changeover_active) 473 transport->cacc.cycling_changeover = changeover; 474 475 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 476 * a changeover has occurred. 477 */ 478 transport->cacc.changeover_active = changeover; 479 480 /* 3) The sender MUST store the next TSN to be sent in 481 * next_tsn_at_change. 482 */ 483 transport->cacc.next_tsn_at_change = asoc->next_tsn; 484 } 485 486 /* Remove a transport from an association. */ 487 void sctp_assoc_rm_peer(struct sctp_association *asoc, 488 struct sctp_transport *peer) 489 { 490 struct list_head *pos; 491 struct sctp_transport *transport; 492 493 pr_debug("%s: association:%p addr:%pISpc\n", 494 __func__, asoc, &peer->ipaddr.sa); 495 496 /* If we are to remove the current retran_path, update it 497 * to the next peer before removing this peer from the list. 498 */ 499 if (asoc->peer.retran_path == peer) 500 sctp_assoc_update_retran_path(asoc); 501 502 /* Remove this peer from the list. */ 503 list_del_rcu(&peer->transports); 504 /* Remove this peer from the transport hashtable */ 505 sctp_unhash_transport(peer); 506 507 /* Get the first transport of asoc. */ 508 pos = asoc->peer.transport_addr_list.next; 509 transport = list_entry(pos, struct sctp_transport, transports); 510 511 /* Update any entries that match the peer to be deleted. */ 512 if (asoc->peer.primary_path == peer) 513 sctp_assoc_set_primary(asoc, transport); 514 if (asoc->peer.active_path == peer) 515 asoc->peer.active_path = transport; 516 if (asoc->peer.retran_path == peer) 517 asoc->peer.retran_path = transport; 518 if (asoc->peer.last_data_from == peer) 519 asoc->peer.last_data_from = transport; 520 521 /* If we remove the transport an INIT was last sent to, set it to 522 * NULL. Combined with the update of the retran path above, this 523 * will cause the next INIT to be sent to the next available 524 * transport, maintaining the cycle. 525 */ 526 if (asoc->init_last_sent_to == peer) 527 asoc->init_last_sent_to = NULL; 528 529 /* If we remove the transport an SHUTDOWN was last sent to, set it 530 * to NULL. Combined with the update of the retran path above, this 531 * will cause the next SHUTDOWN to be sent to the next available 532 * transport, maintaining the cycle. 533 */ 534 if (asoc->shutdown_last_sent_to == peer) 535 asoc->shutdown_last_sent_to = NULL; 536 537 /* If we remove the transport an ASCONF was last sent to, set it to 538 * NULL. 539 */ 540 if (asoc->addip_last_asconf && 541 asoc->addip_last_asconf->transport == peer) 542 asoc->addip_last_asconf->transport = NULL; 543 544 /* If we have something on the transmitted list, we have to 545 * save it off. The best place is the active path. 546 */ 547 if (!list_empty(&peer->transmitted)) { 548 struct sctp_transport *active = asoc->peer.active_path; 549 struct sctp_chunk *ch; 550 551 /* Reset the transport of each chunk on this list */ 552 list_for_each_entry(ch, &peer->transmitted, 553 transmitted_list) { 554 ch->transport = NULL; 555 ch->rtt_in_progress = 0; 556 } 557 558 list_splice_tail_init(&peer->transmitted, 559 &active->transmitted); 560 561 /* Start a T3 timer here in case it wasn't running so 562 * that these migrated packets have a chance to get 563 * retransmitted. 564 */ 565 if (!timer_pending(&active->T3_rtx_timer)) 566 if (!mod_timer(&active->T3_rtx_timer, 567 jiffies + active->rto)) 568 sctp_transport_hold(active); 569 } 570 571 asoc->peer.transport_count--; 572 573 sctp_transport_free(peer); 574 } 575 576 /* Add a transport address to an association. */ 577 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 578 const union sctp_addr *addr, 579 const gfp_t gfp, 580 const int peer_state) 581 { 582 struct net *net = sock_net(asoc->base.sk); 583 struct sctp_transport *peer; 584 struct sctp_sock *sp; 585 unsigned short port; 586 587 sp = sctp_sk(asoc->base.sk); 588 589 /* AF_INET and AF_INET6 share common port field. */ 590 port = ntohs(addr->v4.sin_port); 591 592 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 593 asoc, &addr->sa, peer_state); 594 595 /* Set the port if it has not been set yet. */ 596 if (0 == asoc->peer.port) 597 asoc->peer.port = port; 598 599 /* Check to see if this is a duplicate. */ 600 peer = sctp_assoc_lookup_paddr(asoc, addr); 601 if (peer) { 602 /* An UNKNOWN state is only set on transports added by 603 * user in sctp_connectx() call. Such transports should be 604 * considered CONFIRMED per RFC 4960, Section 5.4. 605 */ 606 if (peer->state == SCTP_UNKNOWN) { 607 peer->state = SCTP_ACTIVE; 608 } 609 return peer; 610 } 611 612 peer = sctp_transport_new(net, addr, gfp); 613 if (!peer) 614 return NULL; 615 616 sctp_transport_set_owner(peer, asoc); 617 618 /* Initialize the peer's heartbeat interval based on the 619 * association configured value. 620 */ 621 peer->hbinterval = asoc->hbinterval; 622 623 /* Set the path max_retrans. */ 624 peer->pathmaxrxt = asoc->pathmaxrxt; 625 626 /* And the partial failure retrans threshold */ 627 peer->pf_retrans = asoc->pf_retrans; 628 629 /* Initialize the peer's SACK delay timeout based on the 630 * association configured value. 631 */ 632 peer->sackdelay = asoc->sackdelay; 633 peer->sackfreq = asoc->sackfreq; 634 635 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 636 * based on association setting. 637 */ 638 peer->param_flags = asoc->param_flags; 639 640 sctp_transport_route(peer, NULL, sp); 641 642 /* Initialize the pmtu of the transport. */ 643 if (peer->param_flags & SPP_PMTUD_DISABLE) { 644 if (asoc->pathmtu) 645 peer->pathmtu = asoc->pathmtu; 646 else 647 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 648 } 649 650 /* If this is the first transport addr on this association, 651 * initialize the association PMTU to the peer's PMTU. 652 * If not and the current association PMTU is higher than the new 653 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 654 */ 655 if (asoc->pathmtu) 656 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 657 else 658 asoc->pathmtu = peer->pathmtu; 659 660 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 661 asoc->pathmtu); 662 663 peer->pmtu_pending = 0; 664 665 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 666 667 /* The asoc->peer.port might not be meaningful yet, but 668 * initialize the packet structure anyway. 669 */ 670 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 671 asoc->peer.port); 672 673 /* 7.2.1 Slow-Start 674 * 675 * o The initial cwnd before DATA transmission or after a sufficiently 676 * long idle period MUST be set to 677 * min(4*MTU, max(2*MTU, 4380 bytes)) 678 * 679 * o The initial value of ssthresh MAY be arbitrarily high 680 * (for example, implementations MAY use the size of the 681 * receiver advertised window). 682 */ 683 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 684 685 /* At this point, we may not have the receiver's advertised window, 686 * so initialize ssthresh to the default value and it will be set 687 * later when we process the INIT. 688 */ 689 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 690 691 peer->partial_bytes_acked = 0; 692 peer->flight_size = 0; 693 peer->burst_limited = 0; 694 695 /* Set the transport's RTO.initial value */ 696 peer->rto = asoc->rto_initial; 697 sctp_max_rto(asoc, peer); 698 699 /* Set the peer's active state. */ 700 peer->state = peer_state; 701 702 /* Attach the remote transport to our asoc. */ 703 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 704 asoc->peer.transport_count++; 705 /* Add this peer into the transport hashtable */ 706 sctp_hash_transport(peer); 707 708 /* If we do not yet have a primary path, set one. */ 709 if (!asoc->peer.primary_path) { 710 sctp_assoc_set_primary(asoc, peer); 711 asoc->peer.retran_path = peer; 712 } 713 714 if (asoc->peer.active_path == asoc->peer.retran_path && 715 peer->state != SCTP_UNCONFIRMED) { 716 asoc->peer.retran_path = peer; 717 } 718 719 return peer; 720 } 721 722 /* Delete a transport address from an association. */ 723 void sctp_assoc_del_peer(struct sctp_association *asoc, 724 const union sctp_addr *addr) 725 { 726 struct list_head *pos; 727 struct list_head *temp; 728 struct sctp_transport *transport; 729 730 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 731 transport = list_entry(pos, struct sctp_transport, transports); 732 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 733 /* Do book keeping for removing the peer and free it. */ 734 sctp_assoc_rm_peer(asoc, transport); 735 break; 736 } 737 } 738 } 739 740 /* Lookup a transport by address. */ 741 struct sctp_transport *sctp_assoc_lookup_paddr( 742 const struct sctp_association *asoc, 743 const union sctp_addr *address) 744 { 745 struct sctp_transport *t; 746 747 /* Cycle through all transports searching for a peer address. */ 748 749 list_for_each_entry(t, &asoc->peer.transport_addr_list, 750 transports) { 751 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 752 return t; 753 } 754 755 return NULL; 756 } 757 758 /* Remove all transports except a give one */ 759 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 760 struct sctp_transport *primary) 761 { 762 struct sctp_transport *temp; 763 struct sctp_transport *t; 764 765 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 766 transports) { 767 /* if the current transport is not the primary one, delete it */ 768 if (t != primary) 769 sctp_assoc_rm_peer(asoc, t); 770 } 771 } 772 773 /* Engage in transport control operations. 774 * Mark the transport up or down and send a notification to the user. 775 * Select and update the new active and retran paths. 776 */ 777 void sctp_assoc_control_transport(struct sctp_association *asoc, 778 struct sctp_transport *transport, 779 sctp_transport_cmd_t command, 780 sctp_sn_error_t error) 781 { 782 struct sctp_ulpevent *event; 783 struct sockaddr_storage addr; 784 int spc_state = 0; 785 bool ulp_notify = true; 786 787 /* Record the transition on the transport. */ 788 switch (command) { 789 case SCTP_TRANSPORT_UP: 790 /* If we are moving from UNCONFIRMED state due 791 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 792 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 793 */ 794 if (SCTP_UNCONFIRMED == transport->state && 795 SCTP_HEARTBEAT_SUCCESS == error) 796 spc_state = SCTP_ADDR_CONFIRMED; 797 else 798 spc_state = SCTP_ADDR_AVAILABLE; 799 /* Don't inform ULP about transition from PF to 800 * active state and set cwnd to 1 MTU, see SCTP 801 * Quick failover draft section 5.1, point 5 802 */ 803 if (transport->state == SCTP_PF) { 804 ulp_notify = false; 805 transport->cwnd = asoc->pathmtu; 806 } 807 transport->state = SCTP_ACTIVE; 808 break; 809 810 case SCTP_TRANSPORT_DOWN: 811 /* If the transport was never confirmed, do not transition it 812 * to inactive state. Also, release the cached route since 813 * there may be a better route next time. 814 */ 815 if (transport->state != SCTP_UNCONFIRMED) 816 transport->state = SCTP_INACTIVE; 817 else { 818 dst_release(transport->dst); 819 transport->dst = NULL; 820 ulp_notify = false; 821 } 822 823 spc_state = SCTP_ADDR_UNREACHABLE; 824 break; 825 826 case SCTP_TRANSPORT_PF: 827 transport->state = SCTP_PF; 828 ulp_notify = false; 829 break; 830 831 default: 832 return; 833 } 834 835 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 836 * to the user. 837 */ 838 if (ulp_notify) { 839 memset(&addr, 0, sizeof(struct sockaddr_storage)); 840 memcpy(&addr, &transport->ipaddr, 841 transport->af_specific->sockaddr_len); 842 843 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 844 0, spc_state, error, GFP_ATOMIC); 845 if (event) 846 sctp_ulpq_tail_event(&asoc->ulpq, event); 847 } 848 849 /* Select new active and retran paths. */ 850 sctp_select_active_and_retran_path(asoc); 851 } 852 853 /* Hold a reference to an association. */ 854 void sctp_association_hold(struct sctp_association *asoc) 855 { 856 atomic_inc(&asoc->base.refcnt); 857 } 858 859 /* Release a reference to an association and cleanup 860 * if there are no more references. 861 */ 862 void sctp_association_put(struct sctp_association *asoc) 863 { 864 if (atomic_dec_and_test(&asoc->base.refcnt)) 865 sctp_association_destroy(asoc); 866 } 867 868 /* Allocate the next TSN, Transmission Sequence Number, for the given 869 * association. 870 */ 871 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 872 { 873 /* From Section 1.6 Serial Number Arithmetic: 874 * Transmission Sequence Numbers wrap around when they reach 875 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 876 * after transmitting TSN = 2*32 - 1 is TSN = 0. 877 */ 878 __u32 retval = asoc->next_tsn; 879 asoc->next_tsn++; 880 asoc->unack_data++; 881 882 return retval; 883 } 884 885 /* Compare two addresses to see if they match. Wildcard addresses 886 * only match themselves. 887 */ 888 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 889 const union sctp_addr *ss2) 890 { 891 struct sctp_af *af; 892 893 af = sctp_get_af_specific(ss1->sa.sa_family); 894 if (unlikely(!af)) 895 return 0; 896 897 return af->cmp_addr(ss1, ss2); 898 } 899 900 /* Return an ecne chunk to get prepended to a packet. 901 * Note: We are sly and return a shared, prealloced chunk. FIXME: 902 * No we don't, but we could/should. 903 */ 904 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 905 { 906 if (!asoc->need_ecne) 907 return NULL; 908 909 /* Send ECNE if needed. 910 * Not being able to allocate a chunk here is not deadly. 911 */ 912 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 913 } 914 915 /* 916 * Find which transport this TSN was sent on. 917 */ 918 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 919 __u32 tsn) 920 { 921 struct sctp_transport *active; 922 struct sctp_transport *match; 923 struct sctp_transport *transport; 924 struct sctp_chunk *chunk; 925 __be32 key = htonl(tsn); 926 927 match = NULL; 928 929 /* 930 * FIXME: In general, find a more efficient data structure for 931 * searching. 932 */ 933 934 /* 935 * The general strategy is to search each transport's transmitted 936 * list. Return which transport this TSN lives on. 937 * 938 * Let's be hopeful and check the active_path first. 939 * Another optimization would be to know if there is only one 940 * outbound path and not have to look for the TSN at all. 941 * 942 */ 943 944 active = asoc->peer.active_path; 945 946 list_for_each_entry(chunk, &active->transmitted, 947 transmitted_list) { 948 949 if (key == chunk->subh.data_hdr->tsn) { 950 match = active; 951 goto out; 952 } 953 } 954 955 /* If not found, go search all the other transports. */ 956 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 957 transports) { 958 959 if (transport == active) 960 continue; 961 list_for_each_entry(chunk, &transport->transmitted, 962 transmitted_list) { 963 if (key == chunk->subh.data_hdr->tsn) { 964 match = transport; 965 goto out; 966 } 967 } 968 } 969 out: 970 return match; 971 } 972 973 /* Is this the association we are looking for? */ 974 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 975 struct net *net, 976 const union sctp_addr *laddr, 977 const union sctp_addr *paddr) 978 { 979 struct sctp_transport *transport; 980 981 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 982 (htons(asoc->peer.port) == paddr->v4.sin_port) && 983 net_eq(sock_net(asoc->base.sk), net)) { 984 transport = sctp_assoc_lookup_paddr(asoc, paddr); 985 if (!transport) 986 goto out; 987 988 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 989 sctp_sk(asoc->base.sk))) 990 goto out; 991 } 992 transport = NULL; 993 994 out: 995 return transport; 996 } 997 998 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 999 static void sctp_assoc_bh_rcv(struct work_struct *work) 1000 { 1001 struct sctp_association *asoc = 1002 container_of(work, struct sctp_association, 1003 base.inqueue.immediate); 1004 struct net *net = sock_net(asoc->base.sk); 1005 struct sctp_endpoint *ep; 1006 struct sctp_chunk *chunk; 1007 struct sctp_inq *inqueue; 1008 int state; 1009 sctp_subtype_t subtype; 1010 int error = 0; 1011 1012 /* The association should be held so we should be safe. */ 1013 ep = asoc->ep; 1014 1015 inqueue = &asoc->base.inqueue; 1016 sctp_association_hold(asoc); 1017 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1018 state = asoc->state; 1019 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1020 1021 /* SCTP-AUTH, Section 6.3: 1022 * The receiver has a list of chunk types which it expects 1023 * to be received only after an AUTH-chunk. This list has 1024 * been sent to the peer during the association setup. It 1025 * MUST silently discard these chunks if they are not placed 1026 * after an AUTH chunk in the packet. 1027 */ 1028 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1029 continue; 1030 1031 /* Remember where the last DATA chunk came from so we 1032 * know where to send the SACK. 1033 */ 1034 if (sctp_chunk_is_data(chunk)) 1035 asoc->peer.last_data_from = chunk->transport; 1036 else { 1037 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1038 asoc->stats.ictrlchunks++; 1039 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1040 asoc->stats.isacks++; 1041 } 1042 1043 if (chunk->transport) 1044 chunk->transport->last_time_heard = ktime_get(); 1045 1046 /* Run through the state machine. */ 1047 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1048 state, ep, asoc, chunk, GFP_ATOMIC); 1049 1050 /* Check to see if the association is freed in response to 1051 * the incoming chunk. If so, get out of the while loop. 1052 */ 1053 if (asoc->base.dead) 1054 break; 1055 1056 /* If there is an error on chunk, discard this packet. */ 1057 if (error && chunk) 1058 chunk->pdiscard = 1; 1059 } 1060 sctp_association_put(asoc); 1061 } 1062 1063 /* This routine moves an association from its old sk to a new sk. */ 1064 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1065 { 1066 struct sctp_sock *newsp = sctp_sk(newsk); 1067 struct sock *oldsk = assoc->base.sk; 1068 1069 /* Delete the association from the old endpoint's list of 1070 * associations. 1071 */ 1072 list_del_init(&assoc->asocs); 1073 1074 /* Decrement the backlog value for a TCP-style socket. */ 1075 if (sctp_style(oldsk, TCP)) 1076 oldsk->sk_ack_backlog--; 1077 1078 /* Release references to the old endpoint and the sock. */ 1079 sctp_endpoint_put(assoc->ep); 1080 sock_put(assoc->base.sk); 1081 1082 /* Get a reference to the new endpoint. */ 1083 assoc->ep = newsp->ep; 1084 sctp_endpoint_hold(assoc->ep); 1085 1086 /* Get a reference to the new sock. */ 1087 assoc->base.sk = newsk; 1088 sock_hold(assoc->base.sk); 1089 1090 /* Add the association to the new endpoint's list of associations. */ 1091 sctp_endpoint_add_asoc(newsp->ep, assoc); 1092 } 1093 1094 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1095 void sctp_assoc_update(struct sctp_association *asoc, 1096 struct sctp_association *new) 1097 { 1098 struct sctp_transport *trans; 1099 struct list_head *pos, *temp; 1100 1101 /* Copy in new parameters of peer. */ 1102 asoc->c = new->c; 1103 asoc->peer.rwnd = new->peer.rwnd; 1104 asoc->peer.sack_needed = new->peer.sack_needed; 1105 asoc->peer.auth_capable = new->peer.auth_capable; 1106 asoc->peer.i = new->peer.i; 1107 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1108 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1109 1110 /* Remove any peer addresses not present in the new association. */ 1111 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1112 trans = list_entry(pos, struct sctp_transport, transports); 1113 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1114 sctp_assoc_rm_peer(asoc, trans); 1115 continue; 1116 } 1117 1118 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1119 sctp_transport_reset(trans); 1120 } 1121 1122 /* If the case is A (association restart), use 1123 * initial_tsn as next_tsn. If the case is B, use 1124 * current next_tsn in case data sent to peer 1125 * has been discarded and needs retransmission. 1126 */ 1127 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1128 asoc->next_tsn = new->next_tsn; 1129 asoc->ctsn_ack_point = new->ctsn_ack_point; 1130 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1131 1132 /* Reinitialize SSN for both local streams 1133 * and peer's streams. 1134 */ 1135 sctp_ssnmap_clear(asoc->ssnmap); 1136 1137 /* Flush the ULP reassembly and ordered queue. 1138 * Any data there will now be stale and will 1139 * cause problems. 1140 */ 1141 sctp_ulpq_flush(&asoc->ulpq); 1142 1143 /* reset the overall association error count so 1144 * that the restarted association doesn't get torn 1145 * down on the next retransmission timer. 1146 */ 1147 asoc->overall_error_count = 0; 1148 1149 } else { 1150 /* Add any peer addresses from the new association. */ 1151 list_for_each_entry(trans, &new->peer.transport_addr_list, 1152 transports) { 1153 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1154 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1155 GFP_ATOMIC, trans->state); 1156 } 1157 1158 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1159 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1160 if (!asoc->ssnmap) { 1161 /* Move the ssnmap. */ 1162 asoc->ssnmap = new->ssnmap; 1163 new->ssnmap = NULL; 1164 } 1165 1166 if (!asoc->assoc_id) { 1167 /* get a new association id since we don't have one 1168 * yet. 1169 */ 1170 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1171 } 1172 } 1173 1174 /* SCTP-AUTH: Save the peer parameters from the new associations 1175 * and also move the association shared keys over 1176 */ 1177 kfree(asoc->peer.peer_random); 1178 asoc->peer.peer_random = new->peer.peer_random; 1179 new->peer.peer_random = NULL; 1180 1181 kfree(asoc->peer.peer_chunks); 1182 asoc->peer.peer_chunks = new->peer.peer_chunks; 1183 new->peer.peer_chunks = NULL; 1184 1185 kfree(asoc->peer.peer_hmacs); 1186 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1187 new->peer.peer_hmacs = NULL; 1188 1189 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1190 } 1191 1192 /* Update the retran path for sending a retransmitted packet. 1193 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1194 * 1195 * When there is outbound data to send and the primary path 1196 * becomes inactive (e.g., due to failures), or where the 1197 * SCTP user explicitly requests to send data to an 1198 * inactive destination transport address, before reporting 1199 * an error to its ULP, the SCTP endpoint should try to send 1200 * the data to an alternate active destination transport 1201 * address if one exists. 1202 * 1203 * When retransmitting data that timed out, if the endpoint 1204 * is multihomed, it should consider each source-destination 1205 * address pair in its retransmission selection policy. 1206 * When retransmitting timed-out data, the endpoint should 1207 * attempt to pick the most divergent source-destination 1208 * pair from the original source-destination pair to which 1209 * the packet was transmitted. 1210 * 1211 * Note: Rules for picking the most divergent source-destination 1212 * pair are an implementation decision and are not specified 1213 * within this document. 1214 * 1215 * Our basic strategy is to round-robin transports in priorities 1216 * according to sctp_trans_score() e.g., if no such 1217 * transport with state SCTP_ACTIVE exists, round-robin through 1218 * SCTP_UNKNOWN, etc. You get the picture. 1219 */ 1220 static u8 sctp_trans_score(const struct sctp_transport *trans) 1221 { 1222 switch (trans->state) { 1223 case SCTP_ACTIVE: 1224 return 3; /* best case */ 1225 case SCTP_UNKNOWN: 1226 return 2; 1227 case SCTP_PF: 1228 return 1; 1229 default: /* case SCTP_INACTIVE */ 1230 return 0; /* worst case */ 1231 } 1232 } 1233 1234 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1235 struct sctp_transport *trans2) 1236 { 1237 if (trans1->error_count > trans2->error_count) { 1238 return trans2; 1239 } else if (trans1->error_count == trans2->error_count && 1240 ktime_after(trans2->last_time_heard, 1241 trans1->last_time_heard)) { 1242 return trans2; 1243 } else { 1244 return trans1; 1245 } 1246 } 1247 1248 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1249 struct sctp_transport *best) 1250 { 1251 u8 score_curr, score_best; 1252 1253 if (best == NULL || curr == best) 1254 return curr; 1255 1256 score_curr = sctp_trans_score(curr); 1257 score_best = sctp_trans_score(best); 1258 1259 /* First, try a score-based selection if both transport states 1260 * differ. If we're in a tie, lets try to make a more clever 1261 * decision here based on error counts and last time heard. 1262 */ 1263 if (score_curr > score_best) 1264 return curr; 1265 else if (score_curr == score_best) 1266 return sctp_trans_elect_tie(best, curr); 1267 else 1268 return best; 1269 } 1270 1271 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1272 { 1273 struct sctp_transport *trans = asoc->peer.retran_path; 1274 struct sctp_transport *trans_next = NULL; 1275 1276 /* We're done as we only have the one and only path. */ 1277 if (asoc->peer.transport_count == 1) 1278 return; 1279 /* If active_path and retran_path are the same and active, 1280 * then this is the only active path. Use it. 1281 */ 1282 if (asoc->peer.active_path == asoc->peer.retran_path && 1283 asoc->peer.active_path->state == SCTP_ACTIVE) 1284 return; 1285 1286 /* Iterate from retran_path's successor back to retran_path. */ 1287 for (trans = list_next_entry(trans, transports); 1; 1288 trans = list_next_entry(trans, transports)) { 1289 /* Manually skip the head element. */ 1290 if (&trans->transports == &asoc->peer.transport_addr_list) 1291 continue; 1292 if (trans->state == SCTP_UNCONFIRMED) 1293 continue; 1294 trans_next = sctp_trans_elect_best(trans, trans_next); 1295 /* Active is good enough for immediate return. */ 1296 if (trans_next->state == SCTP_ACTIVE) 1297 break; 1298 /* We've reached the end, time to update path. */ 1299 if (trans == asoc->peer.retran_path) 1300 break; 1301 } 1302 1303 asoc->peer.retran_path = trans_next; 1304 1305 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1306 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1307 } 1308 1309 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1310 { 1311 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1312 struct sctp_transport *trans_pf = NULL; 1313 1314 /* Look for the two most recently used active transports. */ 1315 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1316 transports) { 1317 /* Skip uninteresting transports. */ 1318 if (trans->state == SCTP_INACTIVE || 1319 trans->state == SCTP_UNCONFIRMED) 1320 continue; 1321 /* Keep track of the best PF transport from our 1322 * list in case we don't find an active one. 1323 */ 1324 if (trans->state == SCTP_PF) { 1325 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1326 continue; 1327 } 1328 /* For active transports, pick the most recent ones. */ 1329 if (trans_pri == NULL || 1330 ktime_after(trans->last_time_heard, 1331 trans_pri->last_time_heard)) { 1332 trans_sec = trans_pri; 1333 trans_pri = trans; 1334 } else if (trans_sec == NULL || 1335 ktime_after(trans->last_time_heard, 1336 trans_sec->last_time_heard)) { 1337 trans_sec = trans; 1338 } 1339 } 1340 1341 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1342 * 1343 * By default, an endpoint should always transmit to the primary 1344 * path, unless the SCTP user explicitly specifies the 1345 * destination transport address (and possibly source transport 1346 * address) to use. [If the primary is active but not most recent, 1347 * bump the most recently used transport.] 1348 */ 1349 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1350 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1351 asoc->peer.primary_path != trans_pri) { 1352 trans_sec = trans_pri; 1353 trans_pri = asoc->peer.primary_path; 1354 } 1355 1356 /* We did not find anything useful for a possible retransmission 1357 * path; either primary path that we found is the the same as 1358 * the current one, or we didn't generally find an active one. 1359 */ 1360 if (trans_sec == NULL) 1361 trans_sec = trans_pri; 1362 1363 /* If we failed to find a usable transport, just camp on the 1364 * active or pick a PF iff it's the better choice. 1365 */ 1366 if (trans_pri == NULL) { 1367 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1368 trans_sec = trans_pri; 1369 } 1370 1371 /* Set the active and retran transports. */ 1372 asoc->peer.active_path = trans_pri; 1373 asoc->peer.retran_path = trans_sec; 1374 } 1375 1376 struct sctp_transport * 1377 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1378 struct sctp_transport *last_sent_to) 1379 { 1380 /* If this is the first time packet is sent, use the active path, 1381 * else use the retran path. If the last packet was sent over the 1382 * retran path, update the retran path and use it. 1383 */ 1384 if (last_sent_to == NULL) { 1385 return asoc->peer.active_path; 1386 } else { 1387 if (last_sent_to == asoc->peer.retran_path) 1388 sctp_assoc_update_retran_path(asoc); 1389 1390 return asoc->peer.retran_path; 1391 } 1392 } 1393 1394 /* Update the association's pmtu and frag_point by going through all the 1395 * transports. This routine is called when a transport's PMTU has changed. 1396 */ 1397 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1398 { 1399 struct sctp_transport *t; 1400 __u32 pmtu = 0; 1401 1402 if (!asoc) 1403 return; 1404 1405 /* Get the lowest pmtu of all the transports. */ 1406 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1407 transports) { 1408 if (t->pmtu_pending && t->dst) { 1409 sctp_transport_update_pmtu(sk, t, 1410 WORD_TRUNC(dst_mtu(t->dst))); 1411 t->pmtu_pending = 0; 1412 } 1413 if (!pmtu || (t->pathmtu < pmtu)) 1414 pmtu = t->pathmtu; 1415 } 1416 1417 if (pmtu) { 1418 asoc->pathmtu = pmtu; 1419 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1420 } 1421 1422 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1423 asoc->pathmtu, asoc->frag_point); 1424 } 1425 1426 /* Should we send a SACK to update our peer? */ 1427 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1428 { 1429 struct net *net = sock_net(asoc->base.sk); 1430 switch (asoc->state) { 1431 case SCTP_STATE_ESTABLISHED: 1432 case SCTP_STATE_SHUTDOWN_PENDING: 1433 case SCTP_STATE_SHUTDOWN_RECEIVED: 1434 case SCTP_STATE_SHUTDOWN_SENT: 1435 if ((asoc->rwnd > asoc->a_rwnd) && 1436 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1437 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1438 asoc->pathmtu))) 1439 return true; 1440 break; 1441 default: 1442 break; 1443 } 1444 return false; 1445 } 1446 1447 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1448 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1449 { 1450 struct sctp_chunk *sack; 1451 struct timer_list *timer; 1452 1453 if (asoc->rwnd_over) { 1454 if (asoc->rwnd_over >= len) { 1455 asoc->rwnd_over -= len; 1456 } else { 1457 asoc->rwnd += (len - asoc->rwnd_over); 1458 asoc->rwnd_over = 0; 1459 } 1460 } else { 1461 asoc->rwnd += len; 1462 } 1463 1464 /* If we had window pressure, start recovering it 1465 * once our rwnd had reached the accumulated pressure 1466 * threshold. The idea is to recover slowly, but up 1467 * to the initial advertised window. 1468 */ 1469 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1470 int change = min(asoc->pathmtu, asoc->rwnd_press); 1471 asoc->rwnd += change; 1472 asoc->rwnd_press -= change; 1473 } 1474 1475 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1476 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1477 asoc->a_rwnd); 1478 1479 /* Send a window update SACK if the rwnd has increased by at least the 1480 * minimum of the association's PMTU and half of the receive buffer. 1481 * The algorithm used is similar to the one described in 1482 * Section 4.2.3.3 of RFC 1122. 1483 */ 1484 if (sctp_peer_needs_update(asoc)) { 1485 asoc->a_rwnd = asoc->rwnd; 1486 1487 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1488 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1489 asoc->a_rwnd); 1490 1491 sack = sctp_make_sack(asoc); 1492 if (!sack) 1493 return; 1494 1495 asoc->peer.sack_needed = 0; 1496 1497 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1498 1499 /* Stop the SACK timer. */ 1500 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1501 if (del_timer(timer)) 1502 sctp_association_put(asoc); 1503 } 1504 } 1505 1506 /* Decrease asoc's rwnd by len. */ 1507 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1508 { 1509 int rx_count; 1510 int over = 0; 1511 1512 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1513 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1514 "asoc->rwnd_over:%u!\n", __func__, asoc, 1515 asoc->rwnd, asoc->rwnd_over); 1516 1517 if (asoc->ep->rcvbuf_policy) 1518 rx_count = atomic_read(&asoc->rmem_alloc); 1519 else 1520 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1521 1522 /* If we've reached or overflowed our receive buffer, announce 1523 * a 0 rwnd if rwnd would still be positive. Store the 1524 * the potential pressure overflow so that the window can be restored 1525 * back to original value. 1526 */ 1527 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1528 over = 1; 1529 1530 if (asoc->rwnd >= len) { 1531 asoc->rwnd -= len; 1532 if (over) { 1533 asoc->rwnd_press += asoc->rwnd; 1534 asoc->rwnd = 0; 1535 } 1536 } else { 1537 asoc->rwnd_over = len - asoc->rwnd; 1538 asoc->rwnd = 0; 1539 } 1540 1541 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1542 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1543 asoc->rwnd_press); 1544 } 1545 1546 /* Build the bind address list for the association based on info from the 1547 * local endpoint and the remote peer. 1548 */ 1549 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1550 sctp_scope_t scope, gfp_t gfp) 1551 { 1552 int flags; 1553 1554 /* Use scoping rules to determine the subset of addresses from 1555 * the endpoint. 1556 */ 1557 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1558 if (asoc->peer.ipv4_address) 1559 flags |= SCTP_ADDR4_PEERSUPP; 1560 if (asoc->peer.ipv6_address) 1561 flags |= SCTP_ADDR6_PEERSUPP; 1562 1563 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1564 &asoc->base.bind_addr, 1565 &asoc->ep->base.bind_addr, 1566 scope, gfp, flags); 1567 } 1568 1569 /* Build the association's bind address list from the cookie. */ 1570 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1571 struct sctp_cookie *cookie, 1572 gfp_t gfp) 1573 { 1574 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1575 int var_size3 = cookie->raw_addr_list_len; 1576 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1577 1578 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1579 asoc->ep->base.bind_addr.port, gfp); 1580 } 1581 1582 /* Lookup laddr in the bind address list of an association. */ 1583 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1584 const union sctp_addr *laddr) 1585 { 1586 int found = 0; 1587 1588 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1589 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1590 sctp_sk(asoc->base.sk))) 1591 found = 1; 1592 1593 return found; 1594 } 1595 1596 /* Set an association id for a given association */ 1597 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1598 { 1599 bool preload = gfpflags_allow_blocking(gfp); 1600 int ret; 1601 1602 /* If the id is already assigned, keep it. */ 1603 if (asoc->assoc_id) 1604 return 0; 1605 1606 if (preload) 1607 idr_preload(gfp); 1608 spin_lock_bh(&sctp_assocs_id_lock); 1609 /* 0 is not a valid assoc_id, must be >= 1 */ 1610 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1611 spin_unlock_bh(&sctp_assocs_id_lock); 1612 if (preload) 1613 idr_preload_end(); 1614 if (ret < 0) 1615 return ret; 1616 1617 asoc->assoc_id = (sctp_assoc_t)ret; 1618 return 0; 1619 } 1620 1621 /* Free the ASCONF queue */ 1622 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1623 { 1624 struct sctp_chunk *asconf; 1625 struct sctp_chunk *tmp; 1626 1627 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1628 list_del_init(&asconf->list); 1629 sctp_chunk_free(asconf); 1630 } 1631 } 1632 1633 /* Free asconf_ack cache */ 1634 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1635 { 1636 struct sctp_chunk *ack; 1637 struct sctp_chunk *tmp; 1638 1639 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1640 transmitted_list) { 1641 list_del_init(&ack->transmitted_list); 1642 sctp_chunk_free(ack); 1643 } 1644 } 1645 1646 /* Clean up the ASCONF_ACK queue */ 1647 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1648 { 1649 struct sctp_chunk *ack; 1650 struct sctp_chunk *tmp; 1651 1652 /* We can remove all the entries from the queue up to 1653 * the "Peer-Sequence-Number". 1654 */ 1655 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1656 transmitted_list) { 1657 if (ack->subh.addip_hdr->serial == 1658 htonl(asoc->peer.addip_serial)) 1659 break; 1660 1661 list_del_init(&ack->transmitted_list); 1662 sctp_chunk_free(ack); 1663 } 1664 } 1665 1666 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1667 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1668 const struct sctp_association *asoc, 1669 __be32 serial) 1670 { 1671 struct sctp_chunk *ack; 1672 1673 /* Walk through the list of cached ASCONF-ACKs and find the 1674 * ack chunk whose serial number matches that of the request. 1675 */ 1676 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1677 if (sctp_chunk_pending(ack)) 1678 continue; 1679 if (ack->subh.addip_hdr->serial == serial) { 1680 sctp_chunk_hold(ack); 1681 return ack; 1682 } 1683 } 1684 1685 return NULL; 1686 } 1687 1688 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1689 { 1690 /* Free any cached ASCONF_ACK chunk. */ 1691 sctp_assoc_free_asconf_acks(asoc); 1692 1693 /* Free the ASCONF queue. */ 1694 sctp_assoc_free_asconf_queue(asoc); 1695 1696 /* Free any cached ASCONF chunk. */ 1697 if (asoc->addip_last_asconf) 1698 sctp_chunk_free(asoc->addip_last_asconf); 1699 } 1700