xref: /openbmc/linux/net/sctp/associola.c (revision 6d99a79c)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@us.ibm.com>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang             <hui.huang@nokia.com>
38  *    Sridhar Samudrala	    <sri@us.ibm.com>
39  *    Daisy Chang	    <daisyc@us.ibm.com>
40  *    Ryan Layer	    <rmlayer@us.ibm.com>
41  *    Kevin Gao             <kevin.gao@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50 
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56 
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(
67 					struct sctp_association *asoc,
68 					const struct sctp_endpoint *ep,
69 					const struct sock *sk,
70 					enum sctp_scope scope, gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	struct sctp_paramhdr *p;
75 	int i;
76 
77 	/* Retrieve the SCTP per socket area.  */
78 	sp = sctp_sk((struct sock *)sk);
79 
80 	/* Discarding const is appropriate here.  */
81 	asoc->ep = (struct sctp_endpoint *)ep;
82 	asoc->base.sk = (struct sock *)sk;
83 
84 	sctp_endpoint_hold(asoc->ep);
85 	sock_hold(asoc->base.sk);
86 
87 	/* Initialize the common base substructure.  */
88 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
89 
90 	/* Initialize the object handling fields.  */
91 	refcount_set(&asoc->base.refcnt, 1);
92 
93 	/* Initialize the bind addr area.  */
94 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
95 
96 	asoc->state = SCTP_STATE_CLOSED;
97 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 	asoc->user_frag = sp->user_frag;
99 
100 	/* Set the association max_retrans and RTO values from the
101 	 * socket values.
102 	 */
103 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 	asoc->pf_retrans  = net->sctp.pf_retrans;
105 
106 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
109 
110 	/* Initialize the association's heartbeat interval based on the
111 	 * sock configured value.
112 	 */
113 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
114 
115 	/* Initialize path max retrans value. */
116 	asoc->pathmaxrxt = sp->pathmaxrxt;
117 
118 	asoc->flowlabel = sp->flowlabel;
119 	asoc->dscp = sp->dscp;
120 
121 	/* Initialize default path MTU. */
122 	asoc->pathmtu = sp->pathmtu;
123 
124 	/* Set association default SACK delay */
125 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
126 	asoc->sackfreq = sp->sackfreq;
127 
128 	/* Set the association default flags controlling
129 	 * Heartbeat, SACK delay, and Path MTU Discovery.
130 	 */
131 	asoc->param_flags = sp->param_flags;
132 
133 	/* Initialize the maximum number of new data packets that can be sent
134 	 * in a burst.
135 	 */
136 	asoc->max_burst = sp->max_burst;
137 
138 	/* initialize association timers */
139 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
140 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
141 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
142 
143 	/* sctpimpguide Section 2.12.2
144 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
145 	 * recommended value of 5 times 'RTO.Max'.
146 	 */
147 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
148 		= 5 * asoc->rto_max;
149 
150 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
151 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
152 
153 	/* Initializes the timers */
154 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
155 		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
156 
157 	/* Pull default initialization values from the sock options.
158 	 * Note: This assumes that the values have already been
159 	 * validated in the sock.
160 	 */
161 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
162 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
163 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
164 
165 	asoc->max_init_timeo =
166 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
167 
168 	/* Set the local window size for receive.
169 	 * This is also the rcvbuf space per association.
170 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
171 	 * 1500 bytes in one SCTP packet.
172 	 */
173 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
174 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
175 	else
176 		asoc->rwnd = sk->sk_rcvbuf/2;
177 
178 	asoc->a_rwnd = asoc->rwnd;
179 
180 	/* Use my own max window until I learn something better.  */
181 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
182 
183 	/* Initialize the receive memory counter */
184 	atomic_set(&asoc->rmem_alloc, 0);
185 
186 	init_waitqueue_head(&asoc->wait);
187 
188 	asoc->c.my_vtag = sctp_generate_tag(ep);
189 	asoc->c.my_port = ep->base.bind_addr.port;
190 
191 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
192 
193 	asoc->next_tsn = asoc->c.initial_tsn;
194 
195 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
196 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
197 	asoc->highest_sacked = asoc->ctsn_ack_point;
198 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
199 
200 	/* ADDIP Section 4.1 Asconf Chunk Procedures
201 	 *
202 	 * When an endpoint has an ASCONF signaled change to be sent to the
203 	 * remote endpoint it should do the following:
204 	 * ...
205 	 * A2) a serial number should be assigned to the chunk. The serial
206 	 * number SHOULD be a monotonically increasing number. The serial
207 	 * numbers SHOULD be initialized at the start of the
208 	 * association to the same value as the initial TSN.
209 	 */
210 	asoc->addip_serial = asoc->c.initial_tsn;
211 	asoc->strreset_outseq = asoc->c.initial_tsn;
212 
213 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
214 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
215 
216 	/* Make an empty list of remote transport addresses.  */
217 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
218 
219 	/* RFC 2960 5.1 Normal Establishment of an Association
220 	 *
221 	 * After the reception of the first data chunk in an
222 	 * association the endpoint must immediately respond with a
223 	 * sack to acknowledge the data chunk.  Subsequent
224 	 * acknowledgements should be done as described in Section
225 	 * 6.2.
226 	 *
227 	 * [We implement this by telling a new association that it
228 	 * already received one packet.]
229 	 */
230 	asoc->peer.sack_needed = 1;
231 	asoc->peer.sack_generation = 1;
232 
233 	/* Assume that the peer will tell us if he recognizes ASCONF
234 	 * as part of INIT exchange.
235 	 * The sctp_addip_noauth option is there for backward compatibility
236 	 * and will revert old behavior.
237 	 */
238 	if (net->sctp.addip_noauth)
239 		asoc->peer.asconf_capable = 1;
240 
241 	/* Create an input queue.  */
242 	sctp_inq_init(&asoc->base.inqueue);
243 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
244 
245 	/* Create an output queue.  */
246 	sctp_outq_init(asoc, &asoc->outqueue);
247 
248 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
249 		goto fail_init;
250 
251 	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
252 			     0, gfp))
253 		goto fail_init;
254 
255 	/* Assume that peer would support both address types unless we are
256 	 * told otherwise.
257 	 */
258 	asoc->peer.ipv4_address = 1;
259 	if (asoc->base.sk->sk_family == PF_INET6)
260 		asoc->peer.ipv6_address = 1;
261 	INIT_LIST_HEAD(&asoc->asocs);
262 
263 	asoc->default_stream = sp->default_stream;
264 	asoc->default_ppid = sp->default_ppid;
265 	asoc->default_flags = sp->default_flags;
266 	asoc->default_context = sp->default_context;
267 	asoc->default_timetolive = sp->default_timetolive;
268 	asoc->default_rcv_context = sp->default_rcv_context;
269 
270 	/* AUTH related initializations */
271 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
272 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
273 		goto stream_free;
274 
275 	asoc->active_key_id = ep->active_key_id;
276 	asoc->prsctp_enable = ep->prsctp_enable;
277 	asoc->reconf_enable = ep->reconf_enable;
278 	asoc->strreset_enable = ep->strreset_enable;
279 
280 	/* Save the hmacs and chunks list into this association */
281 	if (ep->auth_hmacs_list)
282 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
283 			ntohs(ep->auth_hmacs_list->param_hdr.length));
284 	if (ep->auth_chunk_list)
285 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
286 			ntohs(ep->auth_chunk_list->param_hdr.length));
287 
288 	/* Get the AUTH random number for this association */
289 	p = (struct sctp_paramhdr *)asoc->c.auth_random;
290 	p->type = SCTP_PARAM_RANDOM;
291 	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
292 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
293 
294 	return asoc;
295 
296 stream_free:
297 	sctp_stream_free(&asoc->stream);
298 fail_init:
299 	sock_put(asoc->base.sk);
300 	sctp_endpoint_put(asoc->ep);
301 	return NULL;
302 }
303 
304 /* Allocate and initialize a new association */
305 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
306 					      const struct sock *sk,
307 					      enum sctp_scope scope, gfp_t gfp)
308 {
309 	struct sctp_association *asoc;
310 
311 	asoc = kzalloc(sizeof(*asoc), gfp);
312 	if (!asoc)
313 		goto fail;
314 
315 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
316 		goto fail_init;
317 
318 	SCTP_DBG_OBJCNT_INC(assoc);
319 
320 	pr_debug("Created asoc %p\n", asoc);
321 
322 	return asoc;
323 
324 fail_init:
325 	kfree(asoc);
326 fail:
327 	return NULL;
328 }
329 
330 /* Free this association if possible.  There may still be users, so
331  * the actual deallocation may be delayed.
332  */
333 void sctp_association_free(struct sctp_association *asoc)
334 {
335 	struct sock *sk = asoc->base.sk;
336 	struct sctp_transport *transport;
337 	struct list_head *pos, *temp;
338 	int i;
339 
340 	/* Only real associations count against the endpoint, so
341 	 * don't bother for if this is a temporary association.
342 	 */
343 	if (!list_empty(&asoc->asocs)) {
344 		list_del(&asoc->asocs);
345 
346 		/* Decrement the backlog value for a TCP-style listening
347 		 * socket.
348 		 */
349 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
350 			sk->sk_ack_backlog--;
351 	}
352 
353 	/* Mark as dead, so other users can know this structure is
354 	 * going away.
355 	 */
356 	asoc->base.dead = true;
357 
358 	/* Dispose of any data lying around in the outqueue. */
359 	sctp_outq_free(&asoc->outqueue);
360 
361 	/* Dispose of any pending messages for the upper layer. */
362 	sctp_ulpq_free(&asoc->ulpq);
363 
364 	/* Dispose of any pending chunks on the inqueue. */
365 	sctp_inq_free(&asoc->base.inqueue);
366 
367 	sctp_tsnmap_free(&asoc->peer.tsn_map);
368 
369 	/* Free stream information. */
370 	sctp_stream_free(&asoc->stream);
371 
372 	if (asoc->strreset_chunk)
373 		sctp_chunk_free(asoc->strreset_chunk);
374 
375 	/* Clean up the bound address list. */
376 	sctp_bind_addr_free(&asoc->base.bind_addr);
377 
378 	/* Do we need to go through all of our timers and
379 	 * delete them?   To be safe we will try to delete all, but we
380 	 * should be able to go through and make a guess based
381 	 * on our state.
382 	 */
383 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
384 		if (del_timer(&asoc->timers[i]))
385 			sctp_association_put(asoc);
386 	}
387 
388 	/* Free peer's cached cookie. */
389 	kfree(asoc->peer.cookie);
390 	kfree(asoc->peer.peer_random);
391 	kfree(asoc->peer.peer_chunks);
392 	kfree(asoc->peer.peer_hmacs);
393 
394 	/* Release the transport structures. */
395 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
396 		transport = list_entry(pos, struct sctp_transport, transports);
397 		list_del_rcu(pos);
398 		sctp_unhash_transport(transport);
399 		sctp_transport_free(transport);
400 	}
401 
402 	asoc->peer.transport_count = 0;
403 
404 	sctp_asconf_queue_teardown(asoc);
405 
406 	/* Free pending address space being deleted */
407 	kfree(asoc->asconf_addr_del_pending);
408 
409 	/* AUTH - Free the endpoint shared keys */
410 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
411 
412 	/* AUTH - Free the association shared key */
413 	sctp_auth_key_put(asoc->asoc_shared_key);
414 
415 	sctp_association_put(asoc);
416 }
417 
418 /* Cleanup and free up an association. */
419 static void sctp_association_destroy(struct sctp_association *asoc)
420 {
421 	if (unlikely(!asoc->base.dead)) {
422 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
423 		return;
424 	}
425 
426 	sctp_endpoint_put(asoc->ep);
427 	sock_put(asoc->base.sk);
428 
429 	if (asoc->assoc_id != 0) {
430 		spin_lock_bh(&sctp_assocs_id_lock);
431 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
432 		spin_unlock_bh(&sctp_assocs_id_lock);
433 	}
434 
435 	WARN_ON(atomic_read(&asoc->rmem_alloc));
436 
437 	kfree(asoc);
438 	SCTP_DBG_OBJCNT_DEC(assoc);
439 }
440 
441 /* Change the primary destination address for the peer. */
442 void sctp_assoc_set_primary(struct sctp_association *asoc,
443 			    struct sctp_transport *transport)
444 {
445 	int changeover = 0;
446 
447 	/* it's a changeover only if we already have a primary path
448 	 * that we are changing
449 	 */
450 	if (asoc->peer.primary_path != NULL &&
451 	    asoc->peer.primary_path != transport)
452 		changeover = 1 ;
453 
454 	asoc->peer.primary_path = transport;
455 
456 	/* Set a default msg_name for events. */
457 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
458 	       sizeof(union sctp_addr));
459 
460 	/* If the primary path is changing, assume that the
461 	 * user wants to use this new path.
462 	 */
463 	if ((transport->state == SCTP_ACTIVE) ||
464 	    (transport->state == SCTP_UNKNOWN))
465 		asoc->peer.active_path = transport;
466 
467 	/*
468 	 * SFR-CACC algorithm:
469 	 * Upon the receipt of a request to change the primary
470 	 * destination address, on the data structure for the new
471 	 * primary destination, the sender MUST do the following:
472 	 *
473 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
474 	 * to this destination address earlier. The sender MUST set
475 	 * CYCLING_CHANGEOVER to indicate that this switch is a
476 	 * double switch to the same destination address.
477 	 *
478 	 * Really, only bother is we have data queued or outstanding on
479 	 * the association.
480 	 */
481 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
482 		return;
483 
484 	if (transport->cacc.changeover_active)
485 		transport->cacc.cycling_changeover = changeover;
486 
487 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
488 	 * a changeover has occurred.
489 	 */
490 	transport->cacc.changeover_active = changeover;
491 
492 	/* 3) The sender MUST store the next TSN to be sent in
493 	 * next_tsn_at_change.
494 	 */
495 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
496 }
497 
498 /* Remove a transport from an association.  */
499 void sctp_assoc_rm_peer(struct sctp_association *asoc,
500 			struct sctp_transport *peer)
501 {
502 	struct sctp_transport *transport;
503 	struct list_head *pos;
504 	struct sctp_chunk *ch;
505 
506 	pr_debug("%s: association:%p addr:%pISpc\n",
507 		 __func__, asoc, &peer->ipaddr.sa);
508 
509 	/* If we are to remove the current retran_path, update it
510 	 * to the next peer before removing this peer from the list.
511 	 */
512 	if (asoc->peer.retran_path == peer)
513 		sctp_assoc_update_retran_path(asoc);
514 
515 	/* Remove this peer from the list. */
516 	list_del_rcu(&peer->transports);
517 	/* Remove this peer from the transport hashtable */
518 	sctp_unhash_transport(peer);
519 
520 	/* Get the first transport of asoc. */
521 	pos = asoc->peer.transport_addr_list.next;
522 	transport = list_entry(pos, struct sctp_transport, transports);
523 
524 	/* Update any entries that match the peer to be deleted. */
525 	if (asoc->peer.primary_path == peer)
526 		sctp_assoc_set_primary(asoc, transport);
527 	if (asoc->peer.active_path == peer)
528 		asoc->peer.active_path = transport;
529 	if (asoc->peer.retran_path == peer)
530 		asoc->peer.retran_path = transport;
531 	if (asoc->peer.last_data_from == peer)
532 		asoc->peer.last_data_from = transport;
533 
534 	if (asoc->strreset_chunk &&
535 	    asoc->strreset_chunk->transport == peer) {
536 		asoc->strreset_chunk->transport = transport;
537 		sctp_transport_reset_reconf_timer(transport);
538 	}
539 
540 	/* If we remove the transport an INIT was last sent to, set it to
541 	 * NULL. Combined with the update of the retran path above, this
542 	 * will cause the next INIT to be sent to the next available
543 	 * transport, maintaining the cycle.
544 	 */
545 	if (asoc->init_last_sent_to == peer)
546 		asoc->init_last_sent_to = NULL;
547 
548 	/* If we remove the transport an SHUTDOWN was last sent to, set it
549 	 * to NULL. Combined with the update of the retran path above, this
550 	 * will cause the next SHUTDOWN to be sent to the next available
551 	 * transport, maintaining the cycle.
552 	 */
553 	if (asoc->shutdown_last_sent_to == peer)
554 		asoc->shutdown_last_sent_to = NULL;
555 
556 	/* If we remove the transport an ASCONF was last sent to, set it to
557 	 * NULL.
558 	 */
559 	if (asoc->addip_last_asconf &&
560 	    asoc->addip_last_asconf->transport == peer)
561 		asoc->addip_last_asconf->transport = NULL;
562 
563 	/* If we have something on the transmitted list, we have to
564 	 * save it off.  The best place is the active path.
565 	 */
566 	if (!list_empty(&peer->transmitted)) {
567 		struct sctp_transport *active = asoc->peer.active_path;
568 
569 		/* Reset the transport of each chunk on this list */
570 		list_for_each_entry(ch, &peer->transmitted,
571 					transmitted_list) {
572 			ch->transport = NULL;
573 			ch->rtt_in_progress = 0;
574 		}
575 
576 		list_splice_tail_init(&peer->transmitted,
577 					&active->transmitted);
578 
579 		/* Start a T3 timer here in case it wasn't running so
580 		 * that these migrated packets have a chance to get
581 		 * retransmitted.
582 		 */
583 		if (!timer_pending(&active->T3_rtx_timer))
584 			if (!mod_timer(&active->T3_rtx_timer,
585 					jiffies + active->rto))
586 				sctp_transport_hold(active);
587 	}
588 
589 	list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
590 		if (ch->transport == peer)
591 			ch->transport = NULL;
592 
593 	asoc->peer.transport_count--;
594 
595 	sctp_transport_free(peer);
596 }
597 
598 /* Add a transport address to an association.  */
599 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
600 					   const union sctp_addr *addr,
601 					   const gfp_t gfp,
602 					   const int peer_state)
603 {
604 	struct net *net = sock_net(asoc->base.sk);
605 	struct sctp_transport *peer;
606 	struct sctp_sock *sp;
607 	unsigned short port;
608 
609 	sp = sctp_sk(asoc->base.sk);
610 
611 	/* AF_INET and AF_INET6 share common port field. */
612 	port = ntohs(addr->v4.sin_port);
613 
614 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
615 		 asoc, &addr->sa, peer_state);
616 
617 	/* Set the port if it has not been set yet.  */
618 	if (0 == asoc->peer.port)
619 		asoc->peer.port = port;
620 
621 	/* Check to see if this is a duplicate. */
622 	peer = sctp_assoc_lookup_paddr(asoc, addr);
623 	if (peer) {
624 		/* An UNKNOWN state is only set on transports added by
625 		 * user in sctp_connectx() call.  Such transports should be
626 		 * considered CONFIRMED per RFC 4960, Section 5.4.
627 		 */
628 		if (peer->state == SCTP_UNKNOWN) {
629 			peer->state = SCTP_ACTIVE;
630 		}
631 		return peer;
632 	}
633 
634 	peer = sctp_transport_new(net, addr, gfp);
635 	if (!peer)
636 		return NULL;
637 
638 	sctp_transport_set_owner(peer, asoc);
639 
640 	/* Initialize the peer's heartbeat interval based on the
641 	 * association configured value.
642 	 */
643 	peer->hbinterval = asoc->hbinterval;
644 
645 	/* Set the path max_retrans.  */
646 	peer->pathmaxrxt = asoc->pathmaxrxt;
647 
648 	/* And the partial failure retrans threshold */
649 	peer->pf_retrans = asoc->pf_retrans;
650 
651 	/* Initialize the peer's SACK delay timeout based on the
652 	 * association configured value.
653 	 */
654 	peer->sackdelay = asoc->sackdelay;
655 	peer->sackfreq = asoc->sackfreq;
656 
657 	if (addr->sa.sa_family == AF_INET6) {
658 		__be32 info = addr->v6.sin6_flowinfo;
659 
660 		if (info) {
661 			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
662 			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
663 		} else {
664 			peer->flowlabel = asoc->flowlabel;
665 		}
666 	}
667 	peer->dscp = asoc->dscp;
668 
669 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
670 	 * based on association setting.
671 	 */
672 	peer->param_flags = asoc->param_flags;
673 
674 	/* Initialize the pmtu of the transport. */
675 	sctp_transport_route(peer, NULL, sp);
676 
677 	/* If this is the first transport addr on this association,
678 	 * initialize the association PMTU to the peer's PMTU.
679 	 * If not and the current association PMTU is higher than the new
680 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
681 	 */
682 	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
683 				  min_t(int, peer->pathmtu, asoc->pathmtu) :
684 				  peer->pathmtu);
685 
686 	peer->pmtu_pending = 0;
687 
688 	/* The asoc->peer.port might not be meaningful yet, but
689 	 * initialize the packet structure anyway.
690 	 */
691 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
692 			 asoc->peer.port);
693 
694 	/* 7.2.1 Slow-Start
695 	 *
696 	 * o The initial cwnd before DATA transmission or after a sufficiently
697 	 *   long idle period MUST be set to
698 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
699 	 *
700 	 * o The initial value of ssthresh MAY be arbitrarily high
701 	 *   (for example, implementations MAY use the size of the
702 	 *   receiver advertised window).
703 	 */
704 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
705 
706 	/* At this point, we may not have the receiver's advertised window,
707 	 * so initialize ssthresh to the default value and it will be set
708 	 * later when we process the INIT.
709 	 */
710 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
711 
712 	peer->partial_bytes_acked = 0;
713 	peer->flight_size = 0;
714 	peer->burst_limited = 0;
715 
716 	/* Set the transport's RTO.initial value */
717 	peer->rto = asoc->rto_initial;
718 	sctp_max_rto(asoc, peer);
719 
720 	/* Set the peer's active state. */
721 	peer->state = peer_state;
722 
723 	/* Add this peer into the transport hashtable */
724 	if (sctp_hash_transport(peer)) {
725 		sctp_transport_free(peer);
726 		return NULL;
727 	}
728 
729 	/* Attach the remote transport to our asoc.  */
730 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
731 	asoc->peer.transport_count++;
732 
733 	/* If we do not yet have a primary path, set one.  */
734 	if (!asoc->peer.primary_path) {
735 		sctp_assoc_set_primary(asoc, peer);
736 		asoc->peer.retran_path = peer;
737 	}
738 
739 	if (asoc->peer.active_path == asoc->peer.retran_path &&
740 	    peer->state != SCTP_UNCONFIRMED) {
741 		asoc->peer.retran_path = peer;
742 	}
743 
744 	return peer;
745 }
746 
747 /* Delete a transport address from an association.  */
748 void sctp_assoc_del_peer(struct sctp_association *asoc,
749 			 const union sctp_addr *addr)
750 {
751 	struct list_head	*pos;
752 	struct list_head	*temp;
753 	struct sctp_transport	*transport;
754 
755 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
756 		transport = list_entry(pos, struct sctp_transport, transports);
757 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
758 			/* Do book keeping for removing the peer and free it. */
759 			sctp_assoc_rm_peer(asoc, transport);
760 			break;
761 		}
762 	}
763 }
764 
765 /* Lookup a transport by address. */
766 struct sctp_transport *sctp_assoc_lookup_paddr(
767 					const struct sctp_association *asoc,
768 					const union sctp_addr *address)
769 {
770 	struct sctp_transport *t;
771 
772 	/* Cycle through all transports searching for a peer address. */
773 
774 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
775 			transports) {
776 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
777 			return t;
778 	}
779 
780 	return NULL;
781 }
782 
783 /* Remove all transports except a give one */
784 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
785 				     struct sctp_transport *primary)
786 {
787 	struct sctp_transport	*temp;
788 	struct sctp_transport	*t;
789 
790 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
791 				 transports) {
792 		/* if the current transport is not the primary one, delete it */
793 		if (t != primary)
794 			sctp_assoc_rm_peer(asoc, t);
795 	}
796 }
797 
798 /* Engage in transport control operations.
799  * Mark the transport up or down and send a notification to the user.
800  * Select and update the new active and retran paths.
801  */
802 void sctp_assoc_control_transport(struct sctp_association *asoc,
803 				  struct sctp_transport *transport,
804 				  enum sctp_transport_cmd command,
805 				  sctp_sn_error_t error)
806 {
807 	struct sctp_ulpevent *event;
808 	struct sockaddr_storage addr;
809 	int spc_state = 0;
810 	bool ulp_notify = true;
811 
812 	/* Record the transition on the transport.  */
813 	switch (command) {
814 	case SCTP_TRANSPORT_UP:
815 		/* If we are moving from UNCONFIRMED state due
816 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
817 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
818 		 */
819 		if (SCTP_UNCONFIRMED == transport->state &&
820 		    SCTP_HEARTBEAT_SUCCESS == error)
821 			spc_state = SCTP_ADDR_CONFIRMED;
822 		else
823 			spc_state = SCTP_ADDR_AVAILABLE;
824 		/* Don't inform ULP about transition from PF to
825 		 * active state and set cwnd to 1 MTU, see SCTP
826 		 * Quick failover draft section 5.1, point 5
827 		 */
828 		if (transport->state == SCTP_PF) {
829 			ulp_notify = false;
830 			transport->cwnd = asoc->pathmtu;
831 		}
832 		transport->state = SCTP_ACTIVE;
833 		break;
834 
835 	case SCTP_TRANSPORT_DOWN:
836 		/* If the transport was never confirmed, do not transition it
837 		 * to inactive state.  Also, release the cached route since
838 		 * there may be a better route next time.
839 		 */
840 		if (transport->state != SCTP_UNCONFIRMED)
841 			transport->state = SCTP_INACTIVE;
842 		else {
843 			sctp_transport_dst_release(transport);
844 			ulp_notify = false;
845 		}
846 
847 		spc_state = SCTP_ADDR_UNREACHABLE;
848 		break;
849 
850 	case SCTP_TRANSPORT_PF:
851 		transport->state = SCTP_PF;
852 		ulp_notify = false;
853 		break;
854 
855 	default:
856 		return;
857 	}
858 
859 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
860 	 * to the user.
861 	 */
862 	if (ulp_notify) {
863 		memset(&addr, 0, sizeof(struct sockaddr_storage));
864 		memcpy(&addr, &transport->ipaddr,
865 		       transport->af_specific->sockaddr_len);
866 
867 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
868 					0, spc_state, error, GFP_ATOMIC);
869 		if (event)
870 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
871 	}
872 
873 	/* Select new active and retran paths. */
874 	sctp_select_active_and_retran_path(asoc);
875 }
876 
877 /* Hold a reference to an association. */
878 void sctp_association_hold(struct sctp_association *asoc)
879 {
880 	refcount_inc(&asoc->base.refcnt);
881 }
882 
883 /* Release a reference to an association and cleanup
884  * if there are no more references.
885  */
886 void sctp_association_put(struct sctp_association *asoc)
887 {
888 	if (refcount_dec_and_test(&asoc->base.refcnt))
889 		sctp_association_destroy(asoc);
890 }
891 
892 /* Allocate the next TSN, Transmission Sequence Number, for the given
893  * association.
894  */
895 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
896 {
897 	/* From Section 1.6 Serial Number Arithmetic:
898 	 * Transmission Sequence Numbers wrap around when they reach
899 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
900 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
901 	 */
902 	__u32 retval = asoc->next_tsn;
903 	asoc->next_tsn++;
904 	asoc->unack_data++;
905 
906 	return retval;
907 }
908 
909 /* Compare two addresses to see if they match.  Wildcard addresses
910  * only match themselves.
911  */
912 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
913 			const union sctp_addr *ss2)
914 {
915 	struct sctp_af *af;
916 
917 	af = sctp_get_af_specific(ss1->sa.sa_family);
918 	if (unlikely(!af))
919 		return 0;
920 
921 	return af->cmp_addr(ss1, ss2);
922 }
923 
924 /* Return an ecne chunk to get prepended to a packet.
925  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
926  * No we don't, but we could/should.
927  */
928 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
929 {
930 	if (!asoc->need_ecne)
931 		return NULL;
932 
933 	/* Send ECNE if needed.
934 	 * Not being able to allocate a chunk here is not deadly.
935 	 */
936 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
937 }
938 
939 /*
940  * Find which transport this TSN was sent on.
941  */
942 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
943 					     __u32 tsn)
944 {
945 	struct sctp_transport *active;
946 	struct sctp_transport *match;
947 	struct sctp_transport *transport;
948 	struct sctp_chunk *chunk;
949 	__be32 key = htonl(tsn);
950 
951 	match = NULL;
952 
953 	/*
954 	 * FIXME: In general, find a more efficient data structure for
955 	 * searching.
956 	 */
957 
958 	/*
959 	 * The general strategy is to search each transport's transmitted
960 	 * list.   Return which transport this TSN lives on.
961 	 *
962 	 * Let's be hopeful and check the active_path first.
963 	 * Another optimization would be to know if there is only one
964 	 * outbound path and not have to look for the TSN at all.
965 	 *
966 	 */
967 
968 	active = asoc->peer.active_path;
969 
970 	list_for_each_entry(chunk, &active->transmitted,
971 			transmitted_list) {
972 
973 		if (key == chunk->subh.data_hdr->tsn) {
974 			match = active;
975 			goto out;
976 		}
977 	}
978 
979 	/* If not found, go search all the other transports. */
980 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
981 			transports) {
982 
983 		if (transport == active)
984 			continue;
985 		list_for_each_entry(chunk, &transport->transmitted,
986 				transmitted_list) {
987 			if (key == chunk->subh.data_hdr->tsn) {
988 				match = transport;
989 				goto out;
990 			}
991 		}
992 	}
993 out:
994 	return match;
995 }
996 
997 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
998 static void sctp_assoc_bh_rcv(struct work_struct *work)
999 {
1000 	struct sctp_association *asoc =
1001 		container_of(work, struct sctp_association,
1002 			     base.inqueue.immediate);
1003 	struct net *net = sock_net(asoc->base.sk);
1004 	union sctp_subtype subtype;
1005 	struct sctp_endpoint *ep;
1006 	struct sctp_chunk *chunk;
1007 	struct sctp_inq *inqueue;
1008 	int first_time = 1;	/* is this the first time through the loop */
1009 	int error = 0;
1010 	int state;
1011 
1012 	/* The association should be held so we should be safe. */
1013 	ep = asoc->ep;
1014 
1015 	inqueue = &asoc->base.inqueue;
1016 	sctp_association_hold(asoc);
1017 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1018 		state = asoc->state;
1019 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1020 
1021 		/* If the first chunk in the packet is AUTH, do special
1022 		 * processing specified in Section 6.3 of SCTP-AUTH spec
1023 		 */
1024 		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1025 			struct sctp_chunkhdr *next_hdr;
1026 
1027 			next_hdr = sctp_inq_peek(inqueue);
1028 			if (!next_hdr)
1029 				goto normal;
1030 
1031 			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1032 			 * chunk while saving a pointer to it so we can do
1033 			 * Authentication later (during cookie-echo
1034 			 * processing).
1035 			 */
1036 			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1037 				chunk->auth_chunk = skb_clone(chunk->skb,
1038 							      GFP_ATOMIC);
1039 				chunk->auth = 1;
1040 				continue;
1041 			}
1042 		}
1043 
1044 normal:
1045 		/* SCTP-AUTH, Section 6.3:
1046 		 *    The receiver has a list of chunk types which it expects
1047 		 *    to be received only after an AUTH-chunk.  This list has
1048 		 *    been sent to the peer during the association setup.  It
1049 		 *    MUST silently discard these chunks if they are not placed
1050 		 *    after an AUTH chunk in the packet.
1051 		 */
1052 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1053 			continue;
1054 
1055 		/* Remember where the last DATA chunk came from so we
1056 		 * know where to send the SACK.
1057 		 */
1058 		if (sctp_chunk_is_data(chunk))
1059 			asoc->peer.last_data_from = chunk->transport;
1060 		else {
1061 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1062 			asoc->stats.ictrlchunks++;
1063 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1064 				asoc->stats.isacks++;
1065 		}
1066 
1067 		if (chunk->transport)
1068 			chunk->transport->last_time_heard = ktime_get();
1069 
1070 		/* Run through the state machine. */
1071 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1072 				   state, ep, asoc, chunk, GFP_ATOMIC);
1073 
1074 		/* Check to see if the association is freed in response to
1075 		 * the incoming chunk.  If so, get out of the while loop.
1076 		 */
1077 		if (asoc->base.dead)
1078 			break;
1079 
1080 		/* If there is an error on chunk, discard this packet. */
1081 		if (error && chunk)
1082 			chunk->pdiscard = 1;
1083 
1084 		if (first_time)
1085 			first_time = 0;
1086 	}
1087 	sctp_association_put(asoc);
1088 }
1089 
1090 /* This routine moves an association from its old sk to a new sk.  */
1091 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1092 {
1093 	struct sctp_sock *newsp = sctp_sk(newsk);
1094 	struct sock *oldsk = assoc->base.sk;
1095 
1096 	/* Delete the association from the old endpoint's list of
1097 	 * associations.
1098 	 */
1099 	list_del_init(&assoc->asocs);
1100 
1101 	/* Decrement the backlog value for a TCP-style socket. */
1102 	if (sctp_style(oldsk, TCP))
1103 		oldsk->sk_ack_backlog--;
1104 
1105 	/* Release references to the old endpoint and the sock.  */
1106 	sctp_endpoint_put(assoc->ep);
1107 	sock_put(assoc->base.sk);
1108 
1109 	/* Get a reference to the new endpoint.  */
1110 	assoc->ep = newsp->ep;
1111 	sctp_endpoint_hold(assoc->ep);
1112 
1113 	/* Get a reference to the new sock.  */
1114 	assoc->base.sk = newsk;
1115 	sock_hold(assoc->base.sk);
1116 
1117 	/* Add the association to the new endpoint's list of associations.  */
1118 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1119 }
1120 
1121 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1122 int sctp_assoc_update(struct sctp_association *asoc,
1123 		      struct sctp_association *new)
1124 {
1125 	struct sctp_transport *trans;
1126 	struct list_head *pos, *temp;
1127 
1128 	/* Copy in new parameters of peer. */
1129 	asoc->c = new->c;
1130 	asoc->peer.rwnd = new->peer.rwnd;
1131 	asoc->peer.sack_needed = new->peer.sack_needed;
1132 	asoc->peer.auth_capable = new->peer.auth_capable;
1133 	asoc->peer.i = new->peer.i;
1134 
1135 	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1136 			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1137 		return -ENOMEM;
1138 
1139 	/* Remove any peer addresses not present in the new association. */
1140 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1141 		trans = list_entry(pos, struct sctp_transport, transports);
1142 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1143 			sctp_assoc_rm_peer(asoc, trans);
1144 			continue;
1145 		}
1146 
1147 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1148 			sctp_transport_reset(trans);
1149 	}
1150 
1151 	/* If the case is A (association restart), use
1152 	 * initial_tsn as next_tsn. If the case is B, use
1153 	 * current next_tsn in case data sent to peer
1154 	 * has been discarded and needs retransmission.
1155 	 */
1156 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1157 		asoc->next_tsn = new->next_tsn;
1158 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1159 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1160 
1161 		/* Reinitialize SSN for both local streams
1162 		 * and peer's streams.
1163 		 */
1164 		sctp_stream_clear(&asoc->stream);
1165 
1166 		/* Flush the ULP reassembly and ordered queue.
1167 		 * Any data there will now be stale and will
1168 		 * cause problems.
1169 		 */
1170 		sctp_ulpq_flush(&asoc->ulpq);
1171 
1172 		/* reset the overall association error count so
1173 		 * that the restarted association doesn't get torn
1174 		 * down on the next retransmission timer.
1175 		 */
1176 		asoc->overall_error_count = 0;
1177 
1178 	} else {
1179 		/* Add any peer addresses from the new association. */
1180 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1181 				    transports)
1182 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1183 			    !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1184 						 GFP_ATOMIC, trans->state))
1185 				return -ENOMEM;
1186 
1187 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1188 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1189 
1190 		if (sctp_state(asoc, COOKIE_WAIT))
1191 			sctp_stream_update(&asoc->stream, &new->stream);
1192 
1193 		/* get a new assoc id if we don't have one yet. */
1194 		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1195 			return -ENOMEM;
1196 	}
1197 
1198 	/* SCTP-AUTH: Save the peer parameters from the new associations
1199 	 * and also move the association shared keys over
1200 	 */
1201 	kfree(asoc->peer.peer_random);
1202 	asoc->peer.peer_random = new->peer.peer_random;
1203 	new->peer.peer_random = NULL;
1204 
1205 	kfree(asoc->peer.peer_chunks);
1206 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1207 	new->peer.peer_chunks = NULL;
1208 
1209 	kfree(asoc->peer.peer_hmacs);
1210 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1211 	new->peer.peer_hmacs = NULL;
1212 
1213 	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1214 }
1215 
1216 /* Update the retran path for sending a retransmitted packet.
1217  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1218  *
1219  *   When there is outbound data to send and the primary path
1220  *   becomes inactive (e.g., due to failures), or where the
1221  *   SCTP user explicitly requests to send data to an
1222  *   inactive destination transport address, before reporting
1223  *   an error to its ULP, the SCTP endpoint should try to send
1224  *   the data to an alternate active destination transport
1225  *   address if one exists.
1226  *
1227  *   When retransmitting data that timed out, if the endpoint
1228  *   is multihomed, it should consider each source-destination
1229  *   address pair in its retransmission selection policy.
1230  *   When retransmitting timed-out data, the endpoint should
1231  *   attempt to pick the most divergent source-destination
1232  *   pair from the original source-destination pair to which
1233  *   the packet was transmitted.
1234  *
1235  *   Note: Rules for picking the most divergent source-destination
1236  *   pair are an implementation decision and are not specified
1237  *   within this document.
1238  *
1239  * Our basic strategy is to round-robin transports in priorities
1240  * according to sctp_trans_score() e.g., if no such
1241  * transport with state SCTP_ACTIVE exists, round-robin through
1242  * SCTP_UNKNOWN, etc. You get the picture.
1243  */
1244 static u8 sctp_trans_score(const struct sctp_transport *trans)
1245 {
1246 	switch (trans->state) {
1247 	case SCTP_ACTIVE:
1248 		return 3;	/* best case */
1249 	case SCTP_UNKNOWN:
1250 		return 2;
1251 	case SCTP_PF:
1252 		return 1;
1253 	default: /* case SCTP_INACTIVE */
1254 		return 0;	/* worst case */
1255 	}
1256 }
1257 
1258 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1259 						   struct sctp_transport *trans2)
1260 {
1261 	if (trans1->error_count > trans2->error_count) {
1262 		return trans2;
1263 	} else if (trans1->error_count == trans2->error_count &&
1264 		   ktime_after(trans2->last_time_heard,
1265 			       trans1->last_time_heard)) {
1266 		return trans2;
1267 	} else {
1268 		return trans1;
1269 	}
1270 }
1271 
1272 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1273 						    struct sctp_transport *best)
1274 {
1275 	u8 score_curr, score_best;
1276 
1277 	if (best == NULL || curr == best)
1278 		return curr;
1279 
1280 	score_curr = sctp_trans_score(curr);
1281 	score_best = sctp_trans_score(best);
1282 
1283 	/* First, try a score-based selection if both transport states
1284 	 * differ. If we're in a tie, lets try to make a more clever
1285 	 * decision here based on error counts and last time heard.
1286 	 */
1287 	if (score_curr > score_best)
1288 		return curr;
1289 	else if (score_curr == score_best)
1290 		return sctp_trans_elect_tie(best, curr);
1291 	else
1292 		return best;
1293 }
1294 
1295 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1296 {
1297 	struct sctp_transport *trans = asoc->peer.retran_path;
1298 	struct sctp_transport *trans_next = NULL;
1299 
1300 	/* We're done as we only have the one and only path. */
1301 	if (asoc->peer.transport_count == 1)
1302 		return;
1303 	/* If active_path and retran_path are the same and active,
1304 	 * then this is the only active path. Use it.
1305 	 */
1306 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1307 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1308 		return;
1309 
1310 	/* Iterate from retran_path's successor back to retran_path. */
1311 	for (trans = list_next_entry(trans, transports); 1;
1312 	     trans = list_next_entry(trans, transports)) {
1313 		/* Manually skip the head element. */
1314 		if (&trans->transports == &asoc->peer.transport_addr_list)
1315 			continue;
1316 		if (trans->state == SCTP_UNCONFIRMED)
1317 			continue;
1318 		trans_next = sctp_trans_elect_best(trans, trans_next);
1319 		/* Active is good enough for immediate return. */
1320 		if (trans_next->state == SCTP_ACTIVE)
1321 			break;
1322 		/* We've reached the end, time to update path. */
1323 		if (trans == asoc->peer.retran_path)
1324 			break;
1325 	}
1326 
1327 	asoc->peer.retran_path = trans_next;
1328 
1329 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1330 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1331 }
1332 
1333 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1334 {
1335 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1336 	struct sctp_transport *trans_pf = NULL;
1337 
1338 	/* Look for the two most recently used active transports. */
1339 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1340 			    transports) {
1341 		/* Skip uninteresting transports. */
1342 		if (trans->state == SCTP_INACTIVE ||
1343 		    trans->state == SCTP_UNCONFIRMED)
1344 			continue;
1345 		/* Keep track of the best PF transport from our
1346 		 * list in case we don't find an active one.
1347 		 */
1348 		if (trans->state == SCTP_PF) {
1349 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1350 			continue;
1351 		}
1352 		/* For active transports, pick the most recent ones. */
1353 		if (trans_pri == NULL ||
1354 		    ktime_after(trans->last_time_heard,
1355 				trans_pri->last_time_heard)) {
1356 			trans_sec = trans_pri;
1357 			trans_pri = trans;
1358 		} else if (trans_sec == NULL ||
1359 			   ktime_after(trans->last_time_heard,
1360 				       trans_sec->last_time_heard)) {
1361 			trans_sec = trans;
1362 		}
1363 	}
1364 
1365 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1366 	 *
1367 	 * By default, an endpoint should always transmit to the primary
1368 	 * path, unless the SCTP user explicitly specifies the
1369 	 * destination transport address (and possibly source transport
1370 	 * address) to use. [If the primary is active but not most recent,
1371 	 * bump the most recently used transport.]
1372 	 */
1373 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1374 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1375 	     asoc->peer.primary_path != trans_pri) {
1376 		trans_sec = trans_pri;
1377 		trans_pri = asoc->peer.primary_path;
1378 	}
1379 
1380 	/* We did not find anything useful for a possible retransmission
1381 	 * path; either primary path that we found is the the same as
1382 	 * the current one, or we didn't generally find an active one.
1383 	 */
1384 	if (trans_sec == NULL)
1385 		trans_sec = trans_pri;
1386 
1387 	/* If we failed to find a usable transport, just camp on the
1388 	 * active or pick a PF iff it's the better choice.
1389 	 */
1390 	if (trans_pri == NULL) {
1391 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1392 		trans_sec = trans_pri;
1393 	}
1394 
1395 	/* Set the active and retran transports. */
1396 	asoc->peer.active_path = trans_pri;
1397 	asoc->peer.retran_path = trans_sec;
1398 }
1399 
1400 struct sctp_transport *
1401 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1402 				  struct sctp_transport *last_sent_to)
1403 {
1404 	/* If this is the first time packet is sent, use the active path,
1405 	 * else use the retran path. If the last packet was sent over the
1406 	 * retran path, update the retran path and use it.
1407 	 */
1408 	if (last_sent_to == NULL) {
1409 		return asoc->peer.active_path;
1410 	} else {
1411 		if (last_sent_to == asoc->peer.retran_path)
1412 			sctp_assoc_update_retran_path(asoc);
1413 
1414 		return asoc->peer.retran_path;
1415 	}
1416 }
1417 
1418 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1419 {
1420 	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1421 				    sctp_datachk_len(&asoc->stream));
1422 
1423 	if (asoc->user_frag)
1424 		frag = min_t(int, frag, asoc->user_frag);
1425 
1426 	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1427 				sctp_datachk_len(&asoc->stream));
1428 
1429 	asoc->frag_point = SCTP_TRUNC4(frag);
1430 }
1431 
1432 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1433 {
1434 	if (asoc->pathmtu != pmtu) {
1435 		asoc->pathmtu = pmtu;
1436 		sctp_assoc_update_frag_point(asoc);
1437 	}
1438 
1439 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1440 		 asoc->pathmtu, asoc->frag_point);
1441 }
1442 
1443 /* Update the association's pmtu and frag_point by going through all the
1444  * transports. This routine is called when a transport's PMTU has changed.
1445  */
1446 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1447 {
1448 	struct sctp_transport *t;
1449 	__u32 pmtu = 0;
1450 
1451 	if (!asoc)
1452 		return;
1453 
1454 	/* Get the lowest pmtu of all the transports. */
1455 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1456 		if (t->pmtu_pending && t->dst) {
1457 			sctp_transport_update_pmtu(t,
1458 						   atomic_read(&t->mtu_info));
1459 			t->pmtu_pending = 0;
1460 		}
1461 		if (!pmtu || (t->pathmtu < pmtu))
1462 			pmtu = t->pathmtu;
1463 	}
1464 
1465 	sctp_assoc_set_pmtu(asoc, pmtu);
1466 }
1467 
1468 /* Should we send a SACK to update our peer? */
1469 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1470 {
1471 	struct net *net = sock_net(asoc->base.sk);
1472 	switch (asoc->state) {
1473 	case SCTP_STATE_ESTABLISHED:
1474 	case SCTP_STATE_SHUTDOWN_PENDING:
1475 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1476 	case SCTP_STATE_SHUTDOWN_SENT:
1477 		if ((asoc->rwnd > asoc->a_rwnd) &&
1478 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1479 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1480 			   asoc->pathmtu)))
1481 			return true;
1482 		break;
1483 	default:
1484 		break;
1485 	}
1486 	return false;
1487 }
1488 
1489 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1490 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1491 {
1492 	struct sctp_chunk *sack;
1493 	struct timer_list *timer;
1494 
1495 	if (asoc->rwnd_over) {
1496 		if (asoc->rwnd_over >= len) {
1497 			asoc->rwnd_over -= len;
1498 		} else {
1499 			asoc->rwnd += (len - asoc->rwnd_over);
1500 			asoc->rwnd_over = 0;
1501 		}
1502 	} else {
1503 		asoc->rwnd += len;
1504 	}
1505 
1506 	/* If we had window pressure, start recovering it
1507 	 * once our rwnd had reached the accumulated pressure
1508 	 * threshold.  The idea is to recover slowly, but up
1509 	 * to the initial advertised window.
1510 	 */
1511 	if (asoc->rwnd_press) {
1512 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1513 		asoc->rwnd += change;
1514 		asoc->rwnd_press -= change;
1515 	}
1516 
1517 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1518 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1519 		 asoc->a_rwnd);
1520 
1521 	/* Send a window update SACK if the rwnd has increased by at least the
1522 	 * minimum of the association's PMTU and half of the receive buffer.
1523 	 * The algorithm used is similar to the one described in
1524 	 * Section 4.2.3.3 of RFC 1122.
1525 	 */
1526 	if (sctp_peer_needs_update(asoc)) {
1527 		asoc->a_rwnd = asoc->rwnd;
1528 
1529 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1530 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1531 			 asoc->a_rwnd);
1532 
1533 		sack = sctp_make_sack(asoc);
1534 		if (!sack)
1535 			return;
1536 
1537 		asoc->peer.sack_needed = 0;
1538 
1539 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1540 
1541 		/* Stop the SACK timer.  */
1542 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1543 		if (del_timer(timer))
1544 			sctp_association_put(asoc);
1545 	}
1546 }
1547 
1548 /* Decrease asoc's rwnd by len. */
1549 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1550 {
1551 	int rx_count;
1552 	int over = 0;
1553 
1554 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1555 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1556 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1557 			 asoc->rwnd, asoc->rwnd_over);
1558 
1559 	if (asoc->ep->rcvbuf_policy)
1560 		rx_count = atomic_read(&asoc->rmem_alloc);
1561 	else
1562 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1563 
1564 	/* If we've reached or overflowed our receive buffer, announce
1565 	 * a 0 rwnd if rwnd would still be positive.  Store the
1566 	 * the potential pressure overflow so that the window can be restored
1567 	 * back to original value.
1568 	 */
1569 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1570 		over = 1;
1571 
1572 	if (asoc->rwnd >= len) {
1573 		asoc->rwnd -= len;
1574 		if (over) {
1575 			asoc->rwnd_press += asoc->rwnd;
1576 			asoc->rwnd = 0;
1577 		}
1578 	} else {
1579 		asoc->rwnd_over += len - asoc->rwnd;
1580 		asoc->rwnd = 0;
1581 	}
1582 
1583 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1584 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1585 		 asoc->rwnd_press);
1586 }
1587 
1588 /* Build the bind address list for the association based on info from the
1589  * local endpoint and the remote peer.
1590  */
1591 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1592 				     enum sctp_scope scope, gfp_t gfp)
1593 {
1594 	int flags;
1595 
1596 	/* Use scoping rules to determine the subset of addresses from
1597 	 * the endpoint.
1598 	 */
1599 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1600 	if (asoc->peer.ipv4_address)
1601 		flags |= SCTP_ADDR4_PEERSUPP;
1602 	if (asoc->peer.ipv6_address)
1603 		flags |= SCTP_ADDR6_PEERSUPP;
1604 
1605 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1606 				   &asoc->base.bind_addr,
1607 				   &asoc->ep->base.bind_addr,
1608 				   scope, gfp, flags);
1609 }
1610 
1611 /* Build the association's bind address list from the cookie.  */
1612 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1613 					 struct sctp_cookie *cookie,
1614 					 gfp_t gfp)
1615 {
1616 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1617 	int var_size3 = cookie->raw_addr_list_len;
1618 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1619 
1620 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1621 				      asoc->ep->base.bind_addr.port, gfp);
1622 }
1623 
1624 /* Lookup laddr in the bind address list of an association. */
1625 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1626 			    const union sctp_addr *laddr)
1627 {
1628 	int found = 0;
1629 
1630 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1631 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1632 				 sctp_sk(asoc->base.sk)))
1633 		found = 1;
1634 
1635 	return found;
1636 }
1637 
1638 /* Set an association id for a given association */
1639 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1640 {
1641 	bool preload = gfpflags_allow_blocking(gfp);
1642 	int ret;
1643 
1644 	/* If the id is already assigned, keep it. */
1645 	if (asoc->assoc_id)
1646 		return 0;
1647 
1648 	if (preload)
1649 		idr_preload(gfp);
1650 	spin_lock_bh(&sctp_assocs_id_lock);
1651 	/* 0 is not a valid assoc_id, must be >= 1 */
1652 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1653 	spin_unlock_bh(&sctp_assocs_id_lock);
1654 	if (preload)
1655 		idr_preload_end();
1656 	if (ret < 0)
1657 		return ret;
1658 
1659 	asoc->assoc_id = (sctp_assoc_t)ret;
1660 	return 0;
1661 }
1662 
1663 /* Free the ASCONF queue */
1664 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1665 {
1666 	struct sctp_chunk *asconf;
1667 	struct sctp_chunk *tmp;
1668 
1669 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1670 		list_del_init(&asconf->list);
1671 		sctp_chunk_free(asconf);
1672 	}
1673 }
1674 
1675 /* Free asconf_ack cache */
1676 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1677 {
1678 	struct sctp_chunk *ack;
1679 	struct sctp_chunk *tmp;
1680 
1681 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1682 				transmitted_list) {
1683 		list_del_init(&ack->transmitted_list);
1684 		sctp_chunk_free(ack);
1685 	}
1686 }
1687 
1688 /* Clean up the ASCONF_ACK queue */
1689 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1690 {
1691 	struct sctp_chunk *ack;
1692 	struct sctp_chunk *tmp;
1693 
1694 	/* We can remove all the entries from the queue up to
1695 	 * the "Peer-Sequence-Number".
1696 	 */
1697 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1698 				transmitted_list) {
1699 		if (ack->subh.addip_hdr->serial ==
1700 				htonl(asoc->peer.addip_serial))
1701 			break;
1702 
1703 		list_del_init(&ack->transmitted_list);
1704 		sctp_chunk_free(ack);
1705 	}
1706 }
1707 
1708 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1709 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1710 					const struct sctp_association *asoc,
1711 					__be32 serial)
1712 {
1713 	struct sctp_chunk *ack;
1714 
1715 	/* Walk through the list of cached ASCONF-ACKs and find the
1716 	 * ack chunk whose serial number matches that of the request.
1717 	 */
1718 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1719 		if (sctp_chunk_pending(ack))
1720 			continue;
1721 		if (ack->subh.addip_hdr->serial == serial) {
1722 			sctp_chunk_hold(ack);
1723 			return ack;
1724 		}
1725 	}
1726 
1727 	return NULL;
1728 }
1729 
1730 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1731 {
1732 	/* Free any cached ASCONF_ACK chunk. */
1733 	sctp_assoc_free_asconf_acks(asoc);
1734 
1735 	/* Free the ASCONF queue. */
1736 	sctp_assoc_free_asconf_queue(asoc);
1737 
1738 	/* Free any cached ASCONF chunk. */
1739 	if (asoc->addip_last_asconf)
1740 		sctp_chunk_free(asoc->addip_last_asconf);
1741 }
1742