1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init( 67 struct sctp_association *asoc, 68 const struct sctp_endpoint *ep, 69 const struct sock *sk, 70 enum sctp_scope scope, gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 struct sctp_paramhdr *p; 75 int i; 76 77 /* Retrieve the SCTP per socket area. */ 78 sp = sctp_sk((struct sock *)sk); 79 80 /* Discarding const is appropriate here. */ 81 asoc->ep = (struct sctp_endpoint *)ep; 82 asoc->base.sk = (struct sock *)sk; 83 84 sctp_endpoint_hold(asoc->ep); 85 sock_hold(asoc->base.sk); 86 87 /* Initialize the common base substructure. */ 88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 89 90 /* Initialize the object handling fields. */ 91 refcount_set(&asoc->base.refcnt, 1); 92 93 /* Initialize the bind addr area. */ 94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 95 96 asoc->state = SCTP_STATE_CLOSED; 97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 98 asoc->user_frag = sp->user_frag; 99 100 /* Set the association max_retrans and RTO values from the 101 * socket values. 102 */ 103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 104 asoc->pf_retrans = net->sctp.pf_retrans; 105 106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 109 110 /* Initialize the association's heartbeat interval based on the 111 * sock configured value. 112 */ 113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 114 115 /* Initialize path max retrans value. */ 116 asoc->pathmaxrxt = sp->pathmaxrxt; 117 118 asoc->flowlabel = sp->flowlabel; 119 asoc->dscp = sp->dscp; 120 121 /* Initialize default path MTU. */ 122 asoc->pathmtu = sp->pathmtu; 123 124 /* Set association default SACK delay */ 125 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 126 asoc->sackfreq = sp->sackfreq; 127 128 /* Set the association default flags controlling 129 * Heartbeat, SACK delay, and Path MTU Discovery. 130 */ 131 asoc->param_flags = sp->param_flags; 132 133 /* Initialize the maximum number of new data packets that can be sent 134 * in a burst. 135 */ 136 asoc->max_burst = sp->max_burst; 137 138 /* initialize association timers */ 139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 140 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 141 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 142 143 /* sctpimpguide Section 2.12.2 144 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 145 * recommended value of 5 times 'RTO.Max'. 146 */ 147 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 148 = 5 * asoc->rto_max; 149 150 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 151 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 152 153 /* Initializes the timers */ 154 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 155 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0); 156 157 /* Pull default initialization values from the sock options. 158 * Note: This assumes that the values have already been 159 * validated in the sock. 160 */ 161 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 162 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 163 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 164 165 asoc->max_init_timeo = 166 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 167 168 /* Set the local window size for receive. 169 * This is also the rcvbuf space per association. 170 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 171 * 1500 bytes in one SCTP packet. 172 */ 173 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 174 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 175 else 176 asoc->rwnd = sk->sk_rcvbuf/2; 177 178 asoc->a_rwnd = asoc->rwnd; 179 180 /* Use my own max window until I learn something better. */ 181 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 182 183 /* Initialize the receive memory counter */ 184 atomic_set(&asoc->rmem_alloc, 0); 185 186 init_waitqueue_head(&asoc->wait); 187 188 asoc->c.my_vtag = sctp_generate_tag(ep); 189 asoc->c.my_port = ep->base.bind_addr.port; 190 191 asoc->c.initial_tsn = sctp_generate_tsn(ep); 192 193 asoc->next_tsn = asoc->c.initial_tsn; 194 195 asoc->ctsn_ack_point = asoc->next_tsn - 1; 196 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 197 asoc->highest_sacked = asoc->ctsn_ack_point; 198 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 199 200 /* ADDIP Section 4.1 Asconf Chunk Procedures 201 * 202 * When an endpoint has an ASCONF signaled change to be sent to the 203 * remote endpoint it should do the following: 204 * ... 205 * A2) a serial number should be assigned to the chunk. The serial 206 * number SHOULD be a monotonically increasing number. The serial 207 * numbers SHOULD be initialized at the start of the 208 * association to the same value as the initial TSN. 209 */ 210 asoc->addip_serial = asoc->c.initial_tsn; 211 asoc->strreset_outseq = asoc->c.initial_tsn; 212 213 INIT_LIST_HEAD(&asoc->addip_chunk_list); 214 INIT_LIST_HEAD(&asoc->asconf_ack_list); 215 216 /* Make an empty list of remote transport addresses. */ 217 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 218 219 /* RFC 2960 5.1 Normal Establishment of an Association 220 * 221 * After the reception of the first data chunk in an 222 * association the endpoint must immediately respond with a 223 * sack to acknowledge the data chunk. Subsequent 224 * acknowledgements should be done as described in Section 225 * 6.2. 226 * 227 * [We implement this by telling a new association that it 228 * already received one packet.] 229 */ 230 asoc->peer.sack_needed = 1; 231 asoc->peer.sack_generation = 1; 232 233 /* Assume that the peer will tell us if he recognizes ASCONF 234 * as part of INIT exchange. 235 * The sctp_addip_noauth option is there for backward compatibility 236 * and will revert old behavior. 237 */ 238 if (net->sctp.addip_noauth) 239 asoc->peer.asconf_capable = 1; 240 241 /* Create an input queue. */ 242 sctp_inq_init(&asoc->base.inqueue); 243 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 244 245 /* Create an output queue. */ 246 sctp_outq_init(asoc, &asoc->outqueue); 247 248 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 249 goto fail_init; 250 251 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 252 0, gfp)) 253 goto fail_init; 254 255 /* Assume that peer would support both address types unless we are 256 * told otherwise. 257 */ 258 asoc->peer.ipv4_address = 1; 259 if (asoc->base.sk->sk_family == PF_INET6) 260 asoc->peer.ipv6_address = 1; 261 INIT_LIST_HEAD(&asoc->asocs); 262 263 asoc->default_stream = sp->default_stream; 264 asoc->default_ppid = sp->default_ppid; 265 asoc->default_flags = sp->default_flags; 266 asoc->default_context = sp->default_context; 267 asoc->default_timetolive = sp->default_timetolive; 268 asoc->default_rcv_context = sp->default_rcv_context; 269 270 /* AUTH related initializations */ 271 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 272 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) 273 goto stream_free; 274 275 asoc->active_key_id = ep->active_key_id; 276 asoc->prsctp_enable = ep->prsctp_enable; 277 asoc->reconf_enable = ep->reconf_enable; 278 asoc->strreset_enable = ep->strreset_enable; 279 280 /* Save the hmacs and chunks list into this association */ 281 if (ep->auth_hmacs_list) 282 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 283 ntohs(ep->auth_hmacs_list->param_hdr.length)); 284 if (ep->auth_chunk_list) 285 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 286 ntohs(ep->auth_chunk_list->param_hdr.length)); 287 288 /* Get the AUTH random number for this association */ 289 p = (struct sctp_paramhdr *)asoc->c.auth_random; 290 p->type = SCTP_PARAM_RANDOM; 291 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH); 292 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 293 294 return asoc; 295 296 stream_free: 297 sctp_stream_free(&asoc->stream); 298 fail_init: 299 sock_put(asoc->base.sk); 300 sctp_endpoint_put(asoc->ep); 301 return NULL; 302 } 303 304 /* Allocate and initialize a new association */ 305 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 306 const struct sock *sk, 307 enum sctp_scope scope, gfp_t gfp) 308 { 309 struct sctp_association *asoc; 310 311 asoc = kzalloc(sizeof(*asoc), gfp); 312 if (!asoc) 313 goto fail; 314 315 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 316 goto fail_init; 317 318 SCTP_DBG_OBJCNT_INC(assoc); 319 320 pr_debug("Created asoc %p\n", asoc); 321 322 return asoc; 323 324 fail_init: 325 kfree(asoc); 326 fail: 327 return NULL; 328 } 329 330 /* Free this association if possible. There may still be users, so 331 * the actual deallocation may be delayed. 332 */ 333 void sctp_association_free(struct sctp_association *asoc) 334 { 335 struct sock *sk = asoc->base.sk; 336 struct sctp_transport *transport; 337 struct list_head *pos, *temp; 338 int i; 339 340 /* Only real associations count against the endpoint, so 341 * don't bother for if this is a temporary association. 342 */ 343 if (!list_empty(&asoc->asocs)) { 344 list_del(&asoc->asocs); 345 346 /* Decrement the backlog value for a TCP-style listening 347 * socket. 348 */ 349 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 350 sk->sk_ack_backlog--; 351 } 352 353 /* Mark as dead, so other users can know this structure is 354 * going away. 355 */ 356 asoc->base.dead = true; 357 358 /* Dispose of any data lying around in the outqueue. */ 359 sctp_outq_free(&asoc->outqueue); 360 361 /* Dispose of any pending messages for the upper layer. */ 362 sctp_ulpq_free(&asoc->ulpq); 363 364 /* Dispose of any pending chunks on the inqueue. */ 365 sctp_inq_free(&asoc->base.inqueue); 366 367 sctp_tsnmap_free(&asoc->peer.tsn_map); 368 369 /* Free stream information. */ 370 sctp_stream_free(&asoc->stream); 371 372 if (asoc->strreset_chunk) 373 sctp_chunk_free(asoc->strreset_chunk); 374 375 /* Clean up the bound address list. */ 376 sctp_bind_addr_free(&asoc->base.bind_addr); 377 378 /* Do we need to go through all of our timers and 379 * delete them? To be safe we will try to delete all, but we 380 * should be able to go through and make a guess based 381 * on our state. 382 */ 383 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 384 if (del_timer(&asoc->timers[i])) 385 sctp_association_put(asoc); 386 } 387 388 /* Free peer's cached cookie. */ 389 kfree(asoc->peer.cookie); 390 kfree(asoc->peer.peer_random); 391 kfree(asoc->peer.peer_chunks); 392 kfree(asoc->peer.peer_hmacs); 393 394 /* Release the transport structures. */ 395 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 396 transport = list_entry(pos, struct sctp_transport, transports); 397 list_del_rcu(pos); 398 sctp_unhash_transport(transport); 399 sctp_transport_free(transport); 400 } 401 402 asoc->peer.transport_count = 0; 403 404 sctp_asconf_queue_teardown(asoc); 405 406 /* Free pending address space being deleted */ 407 kfree(asoc->asconf_addr_del_pending); 408 409 /* AUTH - Free the endpoint shared keys */ 410 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 411 412 /* AUTH - Free the association shared key */ 413 sctp_auth_key_put(asoc->asoc_shared_key); 414 415 sctp_association_put(asoc); 416 } 417 418 /* Cleanup and free up an association. */ 419 static void sctp_association_destroy(struct sctp_association *asoc) 420 { 421 if (unlikely(!asoc->base.dead)) { 422 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 423 return; 424 } 425 426 sctp_endpoint_put(asoc->ep); 427 sock_put(asoc->base.sk); 428 429 if (asoc->assoc_id != 0) { 430 spin_lock_bh(&sctp_assocs_id_lock); 431 idr_remove(&sctp_assocs_id, asoc->assoc_id); 432 spin_unlock_bh(&sctp_assocs_id_lock); 433 } 434 435 WARN_ON(atomic_read(&asoc->rmem_alloc)); 436 437 kfree(asoc); 438 SCTP_DBG_OBJCNT_DEC(assoc); 439 } 440 441 /* Change the primary destination address for the peer. */ 442 void sctp_assoc_set_primary(struct sctp_association *asoc, 443 struct sctp_transport *transport) 444 { 445 int changeover = 0; 446 447 /* it's a changeover only if we already have a primary path 448 * that we are changing 449 */ 450 if (asoc->peer.primary_path != NULL && 451 asoc->peer.primary_path != transport) 452 changeover = 1 ; 453 454 asoc->peer.primary_path = transport; 455 456 /* Set a default msg_name for events. */ 457 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 458 sizeof(union sctp_addr)); 459 460 /* If the primary path is changing, assume that the 461 * user wants to use this new path. 462 */ 463 if ((transport->state == SCTP_ACTIVE) || 464 (transport->state == SCTP_UNKNOWN)) 465 asoc->peer.active_path = transport; 466 467 /* 468 * SFR-CACC algorithm: 469 * Upon the receipt of a request to change the primary 470 * destination address, on the data structure for the new 471 * primary destination, the sender MUST do the following: 472 * 473 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 474 * to this destination address earlier. The sender MUST set 475 * CYCLING_CHANGEOVER to indicate that this switch is a 476 * double switch to the same destination address. 477 * 478 * Really, only bother is we have data queued or outstanding on 479 * the association. 480 */ 481 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 482 return; 483 484 if (transport->cacc.changeover_active) 485 transport->cacc.cycling_changeover = changeover; 486 487 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 488 * a changeover has occurred. 489 */ 490 transport->cacc.changeover_active = changeover; 491 492 /* 3) The sender MUST store the next TSN to be sent in 493 * next_tsn_at_change. 494 */ 495 transport->cacc.next_tsn_at_change = asoc->next_tsn; 496 } 497 498 /* Remove a transport from an association. */ 499 void sctp_assoc_rm_peer(struct sctp_association *asoc, 500 struct sctp_transport *peer) 501 { 502 struct sctp_transport *transport; 503 struct list_head *pos; 504 struct sctp_chunk *ch; 505 506 pr_debug("%s: association:%p addr:%pISpc\n", 507 __func__, asoc, &peer->ipaddr.sa); 508 509 /* If we are to remove the current retran_path, update it 510 * to the next peer before removing this peer from the list. 511 */ 512 if (asoc->peer.retran_path == peer) 513 sctp_assoc_update_retran_path(asoc); 514 515 /* Remove this peer from the list. */ 516 list_del_rcu(&peer->transports); 517 /* Remove this peer from the transport hashtable */ 518 sctp_unhash_transport(peer); 519 520 /* Get the first transport of asoc. */ 521 pos = asoc->peer.transport_addr_list.next; 522 transport = list_entry(pos, struct sctp_transport, transports); 523 524 /* Update any entries that match the peer to be deleted. */ 525 if (asoc->peer.primary_path == peer) 526 sctp_assoc_set_primary(asoc, transport); 527 if (asoc->peer.active_path == peer) 528 asoc->peer.active_path = transport; 529 if (asoc->peer.retran_path == peer) 530 asoc->peer.retran_path = transport; 531 if (asoc->peer.last_data_from == peer) 532 asoc->peer.last_data_from = transport; 533 534 if (asoc->strreset_chunk && 535 asoc->strreset_chunk->transport == peer) { 536 asoc->strreset_chunk->transport = transport; 537 sctp_transport_reset_reconf_timer(transport); 538 } 539 540 /* If we remove the transport an INIT was last sent to, set it to 541 * NULL. Combined with the update of the retran path above, this 542 * will cause the next INIT to be sent to the next available 543 * transport, maintaining the cycle. 544 */ 545 if (asoc->init_last_sent_to == peer) 546 asoc->init_last_sent_to = NULL; 547 548 /* If we remove the transport an SHUTDOWN was last sent to, set it 549 * to NULL. Combined with the update of the retran path above, this 550 * will cause the next SHUTDOWN to be sent to the next available 551 * transport, maintaining the cycle. 552 */ 553 if (asoc->shutdown_last_sent_to == peer) 554 asoc->shutdown_last_sent_to = NULL; 555 556 /* If we remove the transport an ASCONF was last sent to, set it to 557 * NULL. 558 */ 559 if (asoc->addip_last_asconf && 560 asoc->addip_last_asconf->transport == peer) 561 asoc->addip_last_asconf->transport = NULL; 562 563 /* If we have something on the transmitted list, we have to 564 * save it off. The best place is the active path. 565 */ 566 if (!list_empty(&peer->transmitted)) { 567 struct sctp_transport *active = asoc->peer.active_path; 568 569 /* Reset the transport of each chunk on this list */ 570 list_for_each_entry(ch, &peer->transmitted, 571 transmitted_list) { 572 ch->transport = NULL; 573 ch->rtt_in_progress = 0; 574 } 575 576 list_splice_tail_init(&peer->transmitted, 577 &active->transmitted); 578 579 /* Start a T3 timer here in case it wasn't running so 580 * that these migrated packets have a chance to get 581 * retransmitted. 582 */ 583 if (!timer_pending(&active->T3_rtx_timer)) 584 if (!mod_timer(&active->T3_rtx_timer, 585 jiffies + active->rto)) 586 sctp_transport_hold(active); 587 } 588 589 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list) 590 if (ch->transport == peer) 591 ch->transport = NULL; 592 593 asoc->peer.transport_count--; 594 595 sctp_transport_free(peer); 596 } 597 598 /* Add a transport address to an association. */ 599 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 600 const union sctp_addr *addr, 601 const gfp_t gfp, 602 const int peer_state) 603 { 604 struct net *net = sock_net(asoc->base.sk); 605 struct sctp_transport *peer; 606 struct sctp_sock *sp; 607 unsigned short port; 608 609 sp = sctp_sk(asoc->base.sk); 610 611 /* AF_INET and AF_INET6 share common port field. */ 612 port = ntohs(addr->v4.sin_port); 613 614 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 615 asoc, &addr->sa, peer_state); 616 617 /* Set the port if it has not been set yet. */ 618 if (0 == asoc->peer.port) 619 asoc->peer.port = port; 620 621 /* Check to see if this is a duplicate. */ 622 peer = sctp_assoc_lookup_paddr(asoc, addr); 623 if (peer) { 624 /* An UNKNOWN state is only set on transports added by 625 * user in sctp_connectx() call. Such transports should be 626 * considered CONFIRMED per RFC 4960, Section 5.4. 627 */ 628 if (peer->state == SCTP_UNKNOWN) { 629 peer->state = SCTP_ACTIVE; 630 } 631 return peer; 632 } 633 634 peer = sctp_transport_new(net, addr, gfp); 635 if (!peer) 636 return NULL; 637 638 sctp_transport_set_owner(peer, asoc); 639 640 /* Initialize the peer's heartbeat interval based on the 641 * association configured value. 642 */ 643 peer->hbinterval = asoc->hbinterval; 644 645 /* Set the path max_retrans. */ 646 peer->pathmaxrxt = asoc->pathmaxrxt; 647 648 /* And the partial failure retrans threshold */ 649 peer->pf_retrans = asoc->pf_retrans; 650 651 /* Initialize the peer's SACK delay timeout based on the 652 * association configured value. 653 */ 654 peer->sackdelay = asoc->sackdelay; 655 peer->sackfreq = asoc->sackfreq; 656 657 if (addr->sa.sa_family == AF_INET6) { 658 __be32 info = addr->v6.sin6_flowinfo; 659 660 if (info) { 661 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK); 662 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 663 } else { 664 peer->flowlabel = asoc->flowlabel; 665 } 666 } 667 peer->dscp = asoc->dscp; 668 669 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 670 * based on association setting. 671 */ 672 peer->param_flags = asoc->param_flags; 673 674 /* Initialize the pmtu of the transport. */ 675 sctp_transport_route(peer, NULL, sp); 676 677 /* If this is the first transport addr on this association, 678 * initialize the association PMTU to the peer's PMTU. 679 * If not and the current association PMTU is higher than the new 680 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 681 */ 682 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ? 683 min_t(int, peer->pathmtu, asoc->pathmtu) : 684 peer->pathmtu); 685 686 peer->pmtu_pending = 0; 687 688 /* The asoc->peer.port might not be meaningful yet, but 689 * initialize the packet structure anyway. 690 */ 691 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 692 asoc->peer.port); 693 694 /* 7.2.1 Slow-Start 695 * 696 * o The initial cwnd before DATA transmission or after a sufficiently 697 * long idle period MUST be set to 698 * min(4*MTU, max(2*MTU, 4380 bytes)) 699 * 700 * o The initial value of ssthresh MAY be arbitrarily high 701 * (for example, implementations MAY use the size of the 702 * receiver advertised window). 703 */ 704 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 705 706 /* At this point, we may not have the receiver's advertised window, 707 * so initialize ssthresh to the default value and it will be set 708 * later when we process the INIT. 709 */ 710 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 711 712 peer->partial_bytes_acked = 0; 713 peer->flight_size = 0; 714 peer->burst_limited = 0; 715 716 /* Set the transport's RTO.initial value */ 717 peer->rto = asoc->rto_initial; 718 sctp_max_rto(asoc, peer); 719 720 /* Set the peer's active state. */ 721 peer->state = peer_state; 722 723 /* Add this peer into the transport hashtable */ 724 if (sctp_hash_transport(peer)) { 725 sctp_transport_free(peer); 726 return NULL; 727 } 728 729 /* Attach the remote transport to our asoc. */ 730 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 731 asoc->peer.transport_count++; 732 733 /* If we do not yet have a primary path, set one. */ 734 if (!asoc->peer.primary_path) { 735 sctp_assoc_set_primary(asoc, peer); 736 asoc->peer.retran_path = peer; 737 } 738 739 if (asoc->peer.active_path == asoc->peer.retran_path && 740 peer->state != SCTP_UNCONFIRMED) { 741 asoc->peer.retran_path = peer; 742 } 743 744 return peer; 745 } 746 747 /* Delete a transport address from an association. */ 748 void sctp_assoc_del_peer(struct sctp_association *asoc, 749 const union sctp_addr *addr) 750 { 751 struct list_head *pos; 752 struct list_head *temp; 753 struct sctp_transport *transport; 754 755 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 756 transport = list_entry(pos, struct sctp_transport, transports); 757 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 758 /* Do book keeping for removing the peer and free it. */ 759 sctp_assoc_rm_peer(asoc, transport); 760 break; 761 } 762 } 763 } 764 765 /* Lookup a transport by address. */ 766 struct sctp_transport *sctp_assoc_lookup_paddr( 767 const struct sctp_association *asoc, 768 const union sctp_addr *address) 769 { 770 struct sctp_transport *t; 771 772 /* Cycle through all transports searching for a peer address. */ 773 774 list_for_each_entry(t, &asoc->peer.transport_addr_list, 775 transports) { 776 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 777 return t; 778 } 779 780 return NULL; 781 } 782 783 /* Remove all transports except a give one */ 784 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 785 struct sctp_transport *primary) 786 { 787 struct sctp_transport *temp; 788 struct sctp_transport *t; 789 790 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 791 transports) { 792 /* if the current transport is not the primary one, delete it */ 793 if (t != primary) 794 sctp_assoc_rm_peer(asoc, t); 795 } 796 } 797 798 /* Engage in transport control operations. 799 * Mark the transport up or down and send a notification to the user. 800 * Select and update the new active and retran paths. 801 */ 802 void sctp_assoc_control_transport(struct sctp_association *asoc, 803 struct sctp_transport *transport, 804 enum sctp_transport_cmd command, 805 sctp_sn_error_t error) 806 { 807 struct sctp_ulpevent *event; 808 struct sockaddr_storage addr; 809 int spc_state = 0; 810 bool ulp_notify = true; 811 812 /* Record the transition on the transport. */ 813 switch (command) { 814 case SCTP_TRANSPORT_UP: 815 /* If we are moving from UNCONFIRMED state due 816 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 817 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 818 */ 819 if (SCTP_UNCONFIRMED == transport->state && 820 SCTP_HEARTBEAT_SUCCESS == error) 821 spc_state = SCTP_ADDR_CONFIRMED; 822 else 823 spc_state = SCTP_ADDR_AVAILABLE; 824 /* Don't inform ULP about transition from PF to 825 * active state and set cwnd to 1 MTU, see SCTP 826 * Quick failover draft section 5.1, point 5 827 */ 828 if (transport->state == SCTP_PF) { 829 ulp_notify = false; 830 transport->cwnd = asoc->pathmtu; 831 } 832 transport->state = SCTP_ACTIVE; 833 break; 834 835 case SCTP_TRANSPORT_DOWN: 836 /* If the transport was never confirmed, do not transition it 837 * to inactive state. Also, release the cached route since 838 * there may be a better route next time. 839 */ 840 if (transport->state != SCTP_UNCONFIRMED) 841 transport->state = SCTP_INACTIVE; 842 else { 843 sctp_transport_dst_release(transport); 844 ulp_notify = false; 845 } 846 847 spc_state = SCTP_ADDR_UNREACHABLE; 848 break; 849 850 case SCTP_TRANSPORT_PF: 851 transport->state = SCTP_PF; 852 ulp_notify = false; 853 break; 854 855 default: 856 return; 857 } 858 859 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 860 * to the user. 861 */ 862 if (ulp_notify) { 863 memset(&addr, 0, sizeof(struct sockaddr_storage)); 864 memcpy(&addr, &transport->ipaddr, 865 transport->af_specific->sockaddr_len); 866 867 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 868 0, spc_state, error, GFP_ATOMIC); 869 if (event) 870 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 871 } 872 873 /* Select new active and retran paths. */ 874 sctp_select_active_and_retran_path(asoc); 875 } 876 877 /* Hold a reference to an association. */ 878 void sctp_association_hold(struct sctp_association *asoc) 879 { 880 refcount_inc(&asoc->base.refcnt); 881 } 882 883 /* Release a reference to an association and cleanup 884 * if there are no more references. 885 */ 886 void sctp_association_put(struct sctp_association *asoc) 887 { 888 if (refcount_dec_and_test(&asoc->base.refcnt)) 889 sctp_association_destroy(asoc); 890 } 891 892 /* Allocate the next TSN, Transmission Sequence Number, for the given 893 * association. 894 */ 895 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 896 { 897 /* From Section 1.6 Serial Number Arithmetic: 898 * Transmission Sequence Numbers wrap around when they reach 899 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 900 * after transmitting TSN = 2*32 - 1 is TSN = 0. 901 */ 902 __u32 retval = asoc->next_tsn; 903 asoc->next_tsn++; 904 asoc->unack_data++; 905 906 return retval; 907 } 908 909 /* Compare two addresses to see if they match. Wildcard addresses 910 * only match themselves. 911 */ 912 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 913 const union sctp_addr *ss2) 914 { 915 struct sctp_af *af; 916 917 af = sctp_get_af_specific(ss1->sa.sa_family); 918 if (unlikely(!af)) 919 return 0; 920 921 return af->cmp_addr(ss1, ss2); 922 } 923 924 /* Return an ecne chunk to get prepended to a packet. 925 * Note: We are sly and return a shared, prealloced chunk. FIXME: 926 * No we don't, but we could/should. 927 */ 928 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 929 { 930 if (!asoc->need_ecne) 931 return NULL; 932 933 /* Send ECNE if needed. 934 * Not being able to allocate a chunk here is not deadly. 935 */ 936 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 937 } 938 939 /* 940 * Find which transport this TSN was sent on. 941 */ 942 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 943 __u32 tsn) 944 { 945 struct sctp_transport *active; 946 struct sctp_transport *match; 947 struct sctp_transport *transport; 948 struct sctp_chunk *chunk; 949 __be32 key = htonl(tsn); 950 951 match = NULL; 952 953 /* 954 * FIXME: In general, find a more efficient data structure for 955 * searching. 956 */ 957 958 /* 959 * The general strategy is to search each transport's transmitted 960 * list. Return which transport this TSN lives on. 961 * 962 * Let's be hopeful and check the active_path first. 963 * Another optimization would be to know if there is only one 964 * outbound path and not have to look for the TSN at all. 965 * 966 */ 967 968 active = asoc->peer.active_path; 969 970 list_for_each_entry(chunk, &active->transmitted, 971 transmitted_list) { 972 973 if (key == chunk->subh.data_hdr->tsn) { 974 match = active; 975 goto out; 976 } 977 } 978 979 /* If not found, go search all the other transports. */ 980 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 981 transports) { 982 983 if (transport == active) 984 continue; 985 list_for_each_entry(chunk, &transport->transmitted, 986 transmitted_list) { 987 if (key == chunk->subh.data_hdr->tsn) { 988 match = transport; 989 goto out; 990 } 991 } 992 } 993 out: 994 return match; 995 } 996 997 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 998 static void sctp_assoc_bh_rcv(struct work_struct *work) 999 { 1000 struct sctp_association *asoc = 1001 container_of(work, struct sctp_association, 1002 base.inqueue.immediate); 1003 struct net *net = sock_net(asoc->base.sk); 1004 union sctp_subtype subtype; 1005 struct sctp_endpoint *ep; 1006 struct sctp_chunk *chunk; 1007 struct sctp_inq *inqueue; 1008 int first_time = 1; /* is this the first time through the loop */ 1009 int error = 0; 1010 int state; 1011 1012 /* The association should be held so we should be safe. */ 1013 ep = asoc->ep; 1014 1015 inqueue = &asoc->base.inqueue; 1016 sctp_association_hold(asoc); 1017 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1018 state = asoc->state; 1019 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1020 1021 /* If the first chunk in the packet is AUTH, do special 1022 * processing specified in Section 6.3 of SCTP-AUTH spec 1023 */ 1024 if (first_time && subtype.chunk == SCTP_CID_AUTH) { 1025 struct sctp_chunkhdr *next_hdr; 1026 1027 next_hdr = sctp_inq_peek(inqueue); 1028 if (!next_hdr) 1029 goto normal; 1030 1031 /* If the next chunk is COOKIE-ECHO, skip the AUTH 1032 * chunk while saving a pointer to it so we can do 1033 * Authentication later (during cookie-echo 1034 * processing). 1035 */ 1036 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) { 1037 chunk->auth_chunk = skb_clone(chunk->skb, 1038 GFP_ATOMIC); 1039 chunk->auth = 1; 1040 continue; 1041 } 1042 } 1043 1044 normal: 1045 /* SCTP-AUTH, Section 6.3: 1046 * The receiver has a list of chunk types which it expects 1047 * to be received only after an AUTH-chunk. This list has 1048 * been sent to the peer during the association setup. It 1049 * MUST silently discard these chunks if they are not placed 1050 * after an AUTH chunk in the packet. 1051 */ 1052 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1053 continue; 1054 1055 /* Remember where the last DATA chunk came from so we 1056 * know where to send the SACK. 1057 */ 1058 if (sctp_chunk_is_data(chunk)) 1059 asoc->peer.last_data_from = chunk->transport; 1060 else { 1061 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1062 asoc->stats.ictrlchunks++; 1063 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1064 asoc->stats.isacks++; 1065 } 1066 1067 if (chunk->transport) 1068 chunk->transport->last_time_heard = ktime_get(); 1069 1070 /* Run through the state machine. */ 1071 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1072 state, ep, asoc, chunk, GFP_ATOMIC); 1073 1074 /* Check to see if the association is freed in response to 1075 * the incoming chunk. If so, get out of the while loop. 1076 */ 1077 if (asoc->base.dead) 1078 break; 1079 1080 /* If there is an error on chunk, discard this packet. */ 1081 if (error && chunk) 1082 chunk->pdiscard = 1; 1083 1084 if (first_time) 1085 first_time = 0; 1086 } 1087 sctp_association_put(asoc); 1088 } 1089 1090 /* This routine moves an association from its old sk to a new sk. */ 1091 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1092 { 1093 struct sctp_sock *newsp = sctp_sk(newsk); 1094 struct sock *oldsk = assoc->base.sk; 1095 1096 /* Delete the association from the old endpoint's list of 1097 * associations. 1098 */ 1099 list_del_init(&assoc->asocs); 1100 1101 /* Decrement the backlog value for a TCP-style socket. */ 1102 if (sctp_style(oldsk, TCP)) 1103 oldsk->sk_ack_backlog--; 1104 1105 /* Release references to the old endpoint and the sock. */ 1106 sctp_endpoint_put(assoc->ep); 1107 sock_put(assoc->base.sk); 1108 1109 /* Get a reference to the new endpoint. */ 1110 assoc->ep = newsp->ep; 1111 sctp_endpoint_hold(assoc->ep); 1112 1113 /* Get a reference to the new sock. */ 1114 assoc->base.sk = newsk; 1115 sock_hold(assoc->base.sk); 1116 1117 /* Add the association to the new endpoint's list of associations. */ 1118 sctp_endpoint_add_asoc(newsp->ep, assoc); 1119 } 1120 1121 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1122 int sctp_assoc_update(struct sctp_association *asoc, 1123 struct sctp_association *new) 1124 { 1125 struct sctp_transport *trans; 1126 struct list_head *pos, *temp; 1127 1128 /* Copy in new parameters of peer. */ 1129 asoc->c = new->c; 1130 asoc->peer.rwnd = new->peer.rwnd; 1131 asoc->peer.sack_needed = new->peer.sack_needed; 1132 asoc->peer.auth_capable = new->peer.auth_capable; 1133 asoc->peer.i = new->peer.i; 1134 1135 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1136 asoc->peer.i.initial_tsn, GFP_ATOMIC)) 1137 return -ENOMEM; 1138 1139 /* Remove any peer addresses not present in the new association. */ 1140 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1141 trans = list_entry(pos, struct sctp_transport, transports); 1142 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1143 sctp_assoc_rm_peer(asoc, trans); 1144 continue; 1145 } 1146 1147 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1148 sctp_transport_reset(trans); 1149 } 1150 1151 /* If the case is A (association restart), use 1152 * initial_tsn as next_tsn. If the case is B, use 1153 * current next_tsn in case data sent to peer 1154 * has been discarded and needs retransmission. 1155 */ 1156 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1157 asoc->next_tsn = new->next_tsn; 1158 asoc->ctsn_ack_point = new->ctsn_ack_point; 1159 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1160 1161 /* Reinitialize SSN for both local streams 1162 * and peer's streams. 1163 */ 1164 sctp_stream_clear(&asoc->stream); 1165 1166 /* Flush the ULP reassembly and ordered queue. 1167 * Any data there will now be stale and will 1168 * cause problems. 1169 */ 1170 sctp_ulpq_flush(&asoc->ulpq); 1171 1172 /* reset the overall association error count so 1173 * that the restarted association doesn't get torn 1174 * down on the next retransmission timer. 1175 */ 1176 asoc->overall_error_count = 0; 1177 1178 } else { 1179 /* Add any peer addresses from the new association. */ 1180 list_for_each_entry(trans, &new->peer.transport_addr_list, 1181 transports) 1182 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) && 1183 !sctp_assoc_add_peer(asoc, &trans->ipaddr, 1184 GFP_ATOMIC, trans->state)) 1185 return -ENOMEM; 1186 1187 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1188 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1189 1190 if (sctp_state(asoc, COOKIE_WAIT)) 1191 sctp_stream_update(&asoc->stream, &new->stream); 1192 1193 /* get a new assoc id if we don't have one yet. */ 1194 if (sctp_assoc_set_id(asoc, GFP_ATOMIC)) 1195 return -ENOMEM; 1196 } 1197 1198 /* SCTP-AUTH: Save the peer parameters from the new associations 1199 * and also move the association shared keys over 1200 */ 1201 kfree(asoc->peer.peer_random); 1202 asoc->peer.peer_random = new->peer.peer_random; 1203 new->peer.peer_random = NULL; 1204 1205 kfree(asoc->peer.peer_chunks); 1206 asoc->peer.peer_chunks = new->peer.peer_chunks; 1207 new->peer.peer_chunks = NULL; 1208 1209 kfree(asoc->peer.peer_hmacs); 1210 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1211 new->peer.peer_hmacs = NULL; 1212 1213 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1214 } 1215 1216 /* Update the retran path for sending a retransmitted packet. 1217 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1218 * 1219 * When there is outbound data to send and the primary path 1220 * becomes inactive (e.g., due to failures), or where the 1221 * SCTP user explicitly requests to send data to an 1222 * inactive destination transport address, before reporting 1223 * an error to its ULP, the SCTP endpoint should try to send 1224 * the data to an alternate active destination transport 1225 * address if one exists. 1226 * 1227 * When retransmitting data that timed out, if the endpoint 1228 * is multihomed, it should consider each source-destination 1229 * address pair in its retransmission selection policy. 1230 * When retransmitting timed-out data, the endpoint should 1231 * attempt to pick the most divergent source-destination 1232 * pair from the original source-destination pair to which 1233 * the packet was transmitted. 1234 * 1235 * Note: Rules for picking the most divergent source-destination 1236 * pair are an implementation decision and are not specified 1237 * within this document. 1238 * 1239 * Our basic strategy is to round-robin transports in priorities 1240 * according to sctp_trans_score() e.g., if no such 1241 * transport with state SCTP_ACTIVE exists, round-robin through 1242 * SCTP_UNKNOWN, etc. You get the picture. 1243 */ 1244 static u8 sctp_trans_score(const struct sctp_transport *trans) 1245 { 1246 switch (trans->state) { 1247 case SCTP_ACTIVE: 1248 return 3; /* best case */ 1249 case SCTP_UNKNOWN: 1250 return 2; 1251 case SCTP_PF: 1252 return 1; 1253 default: /* case SCTP_INACTIVE */ 1254 return 0; /* worst case */ 1255 } 1256 } 1257 1258 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1259 struct sctp_transport *trans2) 1260 { 1261 if (trans1->error_count > trans2->error_count) { 1262 return trans2; 1263 } else if (trans1->error_count == trans2->error_count && 1264 ktime_after(trans2->last_time_heard, 1265 trans1->last_time_heard)) { 1266 return trans2; 1267 } else { 1268 return trans1; 1269 } 1270 } 1271 1272 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1273 struct sctp_transport *best) 1274 { 1275 u8 score_curr, score_best; 1276 1277 if (best == NULL || curr == best) 1278 return curr; 1279 1280 score_curr = sctp_trans_score(curr); 1281 score_best = sctp_trans_score(best); 1282 1283 /* First, try a score-based selection if both transport states 1284 * differ. If we're in a tie, lets try to make a more clever 1285 * decision here based on error counts and last time heard. 1286 */ 1287 if (score_curr > score_best) 1288 return curr; 1289 else if (score_curr == score_best) 1290 return sctp_trans_elect_tie(best, curr); 1291 else 1292 return best; 1293 } 1294 1295 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1296 { 1297 struct sctp_transport *trans = asoc->peer.retran_path; 1298 struct sctp_transport *trans_next = NULL; 1299 1300 /* We're done as we only have the one and only path. */ 1301 if (asoc->peer.transport_count == 1) 1302 return; 1303 /* If active_path and retran_path are the same and active, 1304 * then this is the only active path. Use it. 1305 */ 1306 if (asoc->peer.active_path == asoc->peer.retran_path && 1307 asoc->peer.active_path->state == SCTP_ACTIVE) 1308 return; 1309 1310 /* Iterate from retran_path's successor back to retran_path. */ 1311 for (trans = list_next_entry(trans, transports); 1; 1312 trans = list_next_entry(trans, transports)) { 1313 /* Manually skip the head element. */ 1314 if (&trans->transports == &asoc->peer.transport_addr_list) 1315 continue; 1316 if (trans->state == SCTP_UNCONFIRMED) 1317 continue; 1318 trans_next = sctp_trans_elect_best(trans, trans_next); 1319 /* Active is good enough for immediate return. */ 1320 if (trans_next->state == SCTP_ACTIVE) 1321 break; 1322 /* We've reached the end, time to update path. */ 1323 if (trans == asoc->peer.retran_path) 1324 break; 1325 } 1326 1327 asoc->peer.retran_path = trans_next; 1328 1329 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1330 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1331 } 1332 1333 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1334 { 1335 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1336 struct sctp_transport *trans_pf = NULL; 1337 1338 /* Look for the two most recently used active transports. */ 1339 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1340 transports) { 1341 /* Skip uninteresting transports. */ 1342 if (trans->state == SCTP_INACTIVE || 1343 trans->state == SCTP_UNCONFIRMED) 1344 continue; 1345 /* Keep track of the best PF transport from our 1346 * list in case we don't find an active one. 1347 */ 1348 if (trans->state == SCTP_PF) { 1349 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1350 continue; 1351 } 1352 /* For active transports, pick the most recent ones. */ 1353 if (trans_pri == NULL || 1354 ktime_after(trans->last_time_heard, 1355 trans_pri->last_time_heard)) { 1356 trans_sec = trans_pri; 1357 trans_pri = trans; 1358 } else if (trans_sec == NULL || 1359 ktime_after(trans->last_time_heard, 1360 trans_sec->last_time_heard)) { 1361 trans_sec = trans; 1362 } 1363 } 1364 1365 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1366 * 1367 * By default, an endpoint should always transmit to the primary 1368 * path, unless the SCTP user explicitly specifies the 1369 * destination transport address (and possibly source transport 1370 * address) to use. [If the primary is active but not most recent, 1371 * bump the most recently used transport.] 1372 */ 1373 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1374 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1375 asoc->peer.primary_path != trans_pri) { 1376 trans_sec = trans_pri; 1377 trans_pri = asoc->peer.primary_path; 1378 } 1379 1380 /* We did not find anything useful for a possible retransmission 1381 * path; either primary path that we found is the the same as 1382 * the current one, or we didn't generally find an active one. 1383 */ 1384 if (trans_sec == NULL) 1385 trans_sec = trans_pri; 1386 1387 /* If we failed to find a usable transport, just camp on the 1388 * active or pick a PF iff it's the better choice. 1389 */ 1390 if (trans_pri == NULL) { 1391 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1392 trans_sec = trans_pri; 1393 } 1394 1395 /* Set the active and retran transports. */ 1396 asoc->peer.active_path = trans_pri; 1397 asoc->peer.retran_path = trans_sec; 1398 } 1399 1400 struct sctp_transport * 1401 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1402 struct sctp_transport *last_sent_to) 1403 { 1404 /* If this is the first time packet is sent, use the active path, 1405 * else use the retran path. If the last packet was sent over the 1406 * retran path, update the retran path and use it. 1407 */ 1408 if (last_sent_to == NULL) { 1409 return asoc->peer.active_path; 1410 } else { 1411 if (last_sent_to == asoc->peer.retran_path) 1412 sctp_assoc_update_retran_path(asoc); 1413 1414 return asoc->peer.retran_path; 1415 } 1416 } 1417 1418 void sctp_assoc_update_frag_point(struct sctp_association *asoc) 1419 { 1420 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu, 1421 sctp_datachk_len(&asoc->stream)); 1422 1423 if (asoc->user_frag) 1424 frag = min_t(int, frag, asoc->user_frag); 1425 1426 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN - 1427 sctp_datachk_len(&asoc->stream)); 1428 1429 asoc->frag_point = SCTP_TRUNC4(frag); 1430 } 1431 1432 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu) 1433 { 1434 if (asoc->pathmtu != pmtu) { 1435 asoc->pathmtu = pmtu; 1436 sctp_assoc_update_frag_point(asoc); 1437 } 1438 1439 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1440 asoc->pathmtu, asoc->frag_point); 1441 } 1442 1443 /* Update the association's pmtu and frag_point by going through all the 1444 * transports. This routine is called when a transport's PMTU has changed. 1445 */ 1446 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1447 { 1448 struct sctp_transport *t; 1449 __u32 pmtu = 0; 1450 1451 if (!asoc) 1452 return; 1453 1454 /* Get the lowest pmtu of all the transports. */ 1455 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 1456 if (t->pmtu_pending && t->dst) { 1457 sctp_transport_update_pmtu(t, 1458 atomic_read(&t->mtu_info)); 1459 t->pmtu_pending = 0; 1460 } 1461 if (!pmtu || (t->pathmtu < pmtu)) 1462 pmtu = t->pathmtu; 1463 } 1464 1465 sctp_assoc_set_pmtu(asoc, pmtu); 1466 } 1467 1468 /* Should we send a SACK to update our peer? */ 1469 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1470 { 1471 struct net *net = sock_net(asoc->base.sk); 1472 switch (asoc->state) { 1473 case SCTP_STATE_ESTABLISHED: 1474 case SCTP_STATE_SHUTDOWN_PENDING: 1475 case SCTP_STATE_SHUTDOWN_RECEIVED: 1476 case SCTP_STATE_SHUTDOWN_SENT: 1477 if ((asoc->rwnd > asoc->a_rwnd) && 1478 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1479 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1480 asoc->pathmtu))) 1481 return true; 1482 break; 1483 default: 1484 break; 1485 } 1486 return false; 1487 } 1488 1489 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1490 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1491 { 1492 struct sctp_chunk *sack; 1493 struct timer_list *timer; 1494 1495 if (asoc->rwnd_over) { 1496 if (asoc->rwnd_over >= len) { 1497 asoc->rwnd_over -= len; 1498 } else { 1499 asoc->rwnd += (len - asoc->rwnd_over); 1500 asoc->rwnd_over = 0; 1501 } 1502 } else { 1503 asoc->rwnd += len; 1504 } 1505 1506 /* If we had window pressure, start recovering it 1507 * once our rwnd had reached the accumulated pressure 1508 * threshold. The idea is to recover slowly, but up 1509 * to the initial advertised window. 1510 */ 1511 if (asoc->rwnd_press) { 1512 int change = min(asoc->pathmtu, asoc->rwnd_press); 1513 asoc->rwnd += change; 1514 asoc->rwnd_press -= change; 1515 } 1516 1517 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1518 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1519 asoc->a_rwnd); 1520 1521 /* Send a window update SACK if the rwnd has increased by at least the 1522 * minimum of the association's PMTU and half of the receive buffer. 1523 * The algorithm used is similar to the one described in 1524 * Section 4.2.3.3 of RFC 1122. 1525 */ 1526 if (sctp_peer_needs_update(asoc)) { 1527 asoc->a_rwnd = asoc->rwnd; 1528 1529 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1530 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1531 asoc->a_rwnd); 1532 1533 sack = sctp_make_sack(asoc); 1534 if (!sack) 1535 return; 1536 1537 asoc->peer.sack_needed = 0; 1538 1539 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1540 1541 /* Stop the SACK timer. */ 1542 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1543 if (del_timer(timer)) 1544 sctp_association_put(asoc); 1545 } 1546 } 1547 1548 /* Decrease asoc's rwnd by len. */ 1549 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1550 { 1551 int rx_count; 1552 int over = 0; 1553 1554 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1555 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1556 "asoc->rwnd_over:%u!\n", __func__, asoc, 1557 asoc->rwnd, asoc->rwnd_over); 1558 1559 if (asoc->ep->rcvbuf_policy) 1560 rx_count = atomic_read(&asoc->rmem_alloc); 1561 else 1562 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1563 1564 /* If we've reached or overflowed our receive buffer, announce 1565 * a 0 rwnd if rwnd would still be positive. Store the 1566 * the potential pressure overflow so that the window can be restored 1567 * back to original value. 1568 */ 1569 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1570 over = 1; 1571 1572 if (asoc->rwnd >= len) { 1573 asoc->rwnd -= len; 1574 if (over) { 1575 asoc->rwnd_press += asoc->rwnd; 1576 asoc->rwnd = 0; 1577 } 1578 } else { 1579 asoc->rwnd_over += len - asoc->rwnd; 1580 asoc->rwnd = 0; 1581 } 1582 1583 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1584 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1585 asoc->rwnd_press); 1586 } 1587 1588 /* Build the bind address list for the association based on info from the 1589 * local endpoint and the remote peer. 1590 */ 1591 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1592 enum sctp_scope scope, gfp_t gfp) 1593 { 1594 int flags; 1595 1596 /* Use scoping rules to determine the subset of addresses from 1597 * the endpoint. 1598 */ 1599 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1600 if (asoc->peer.ipv4_address) 1601 flags |= SCTP_ADDR4_PEERSUPP; 1602 if (asoc->peer.ipv6_address) 1603 flags |= SCTP_ADDR6_PEERSUPP; 1604 1605 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1606 &asoc->base.bind_addr, 1607 &asoc->ep->base.bind_addr, 1608 scope, gfp, flags); 1609 } 1610 1611 /* Build the association's bind address list from the cookie. */ 1612 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1613 struct sctp_cookie *cookie, 1614 gfp_t gfp) 1615 { 1616 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1617 int var_size3 = cookie->raw_addr_list_len; 1618 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1619 1620 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1621 asoc->ep->base.bind_addr.port, gfp); 1622 } 1623 1624 /* Lookup laddr in the bind address list of an association. */ 1625 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1626 const union sctp_addr *laddr) 1627 { 1628 int found = 0; 1629 1630 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1631 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1632 sctp_sk(asoc->base.sk))) 1633 found = 1; 1634 1635 return found; 1636 } 1637 1638 /* Set an association id for a given association */ 1639 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1640 { 1641 bool preload = gfpflags_allow_blocking(gfp); 1642 int ret; 1643 1644 /* If the id is already assigned, keep it. */ 1645 if (asoc->assoc_id) 1646 return 0; 1647 1648 if (preload) 1649 idr_preload(gfp); 1650 spin_lock_bh(&sctp_assocs_id_lock); 1651 /* 0 is not a valid assoc_id, must be >= 1 */ 1652 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1653 spin_unlock_bh(&sctp_assocs_id_lock); 1654 if (preload) 1655 idr_preload_end(); 1656 if (ret < 0) 1657 return ret; 1658 1659 asoc->assoc_id = (sctp_assoc_t)ret; 1660 return 0; 1661 } 1662 1663 /* Free the ASCONF queue */ 1664 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1665 { 1666 struct sctp_chunk *asconf; 1667 struct sctp_chunk *tmp; 1668 1669 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1670 list_del_init(&asconf->list); 1671 sctp_chunk_free(asconf); 1672 } 1673 } 1674 1675 /* Free asconf_ack cache */ 1676 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1677 { 1678 struct sctp_chunk *ack; 1679 struct sctp_chunk *tmp; 1680 1681 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1682 transmitted_list) { 1683 list_del_init(&ack->transmitted_list); 1684 sctp_chunk_free(ack); 1685 } 1686 } 1687 1688 /* Clean up the ASCONF_ACK queue */ 1689 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1690 { 1691 struct sctp_chunk *ack; 1692 struct sctp_chunk *tmp; 1693 1694 /* We can remove all the entries from the queue up to 1695 * the "Peer-Sequence-Number". 1696 */ 1697 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1698 transmitted_list) { 1699 if (ack->subh.addip_hdr->serial == 1700 htonl(asoc->peer.addip_serial)) 1701 break; 1702 1703 list_del_init(&ack->transmitted_list); 1704 sctp_chunk_free(ack); 1705 } 1706 } 1707 1708 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1709 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1710 const struct sctp_association *asoc, 1711 __be32 serial) 1712 { 1713 struct sctp_chunk *ack; 1714 1715 /* Walk through the list of cached ASCONF-ACKs and find the 1716 * ack chunk whose serial number matches that of the request. 1717 */ 1718 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1719 if (sctp_chunk_pending(ack)) 1720 continue; 1721 if (ack->subh.addip_hdr->serial == serial) { 1722 sctp_chunk_hold(ack); 1723 return ack; 1724 } 1725 } 1726 1727 return NULL; 1728 } 1729 1730 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1731 { 1732 /* Free any cached ASCONF_ACK chunk. */ 1733 sctp_assoc_free_asconf_acks(asoc); 1734 1735 /* Free the ASCONF queue. */ 1736 sctp_assoc_free_asconf_queue(asoc); 1737 1738 /* Free any cached ASCONF chunk. */ 1739 if (asoc->addip_last_asconf) 1740 sctp_chunk_free(asoc->addip_last_asconf); 1741 } 1742