xref: /openbmc/linux/net/sctp/associola.c (revision 4b2a108c)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/poll.h>
54 #include <linux/init.h>
55 
56 #include <linux/slab.h>
57 #include <linux/in.h>
58 #include <net/ipv6.h>
59 #include <net/sctp/sctp.h>
60 #include <net/sctp/sm.h>
61 
62 /* Forward declarations for internal functions. */
63 static void sctp_assoc_bh_rcv(struct work_struct *work);
64 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
65 
66 
67 /* 1st Level Abstractions. */
68 
69 /* Initialize a new association from provided memory. */
70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
71 					  const struct sctp_endpoint *ep,
72 					  const struct sock *sk,
73 					  sctp_scope_t scope,
74 					  gfp_t gfp)
75 {
76 	struct sctp_sock *sp;
77 	int i;
78 	sctp_paramhdr_t *p;
79 	int err;
80 
81 	/* Retrieve the SCTP per socket area.  */
82 	sp = sctp_sk((struct sock *)sk);
83 
84 	/* Init all variables to a known value.  */
85 	memset(asoc, 0, sizeof(struct sctp_association));
86 
87 	/* Discarding const is appropriate here.  */
88 	asoc->ep = (struct sctp_endpoint *)ep;
89 	sctp_endpoint_hold(asoc->ep);
90 
91 	/* Hold the sock.  */
92 	asoc->base.sk = (struct sock *)sk;
93 	sock_hold(asoc->base.sk);
94 
95 	/* Initialize the common base substructure.  */
96 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
97 
98 	/* Initialize the object handling fields.  */
99 	atomic_set(&asoc->base.refcnt, 1);
100 	asoc->base.dead = 0;
101 	asoc->base.malloced = 0;
102 
103 	/* Initialize the bind addr area.  */
104 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
105 
106 	asoc->state = SCTP_STATE_CLOSED;
107 
108 	/* Set these values from the socket values, a conversion between
109 	 * millsecons to seconds/microseconds must also be done.
110 	 */
111 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
112 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
113 					* 1000;
114 	asoc->frag_point = 0;
115 
116 	/* Set the association max_retrans and RTO values from the
117 	 * socket values.
118 	 */
119 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
120 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
121 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
122 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
123 
124 	asoc->overall_error_count = 0;
125 
126 	/* Initialize the association's heartbeat interval based on the
127 	 * sock configured value.
128 	 */
129 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
130 
131 	/* Initialize path max retrans value. */
132 	asoc->pathmaxrxt = sp->pathmaxrxt;
133 
134 	/* Initialize default path MTU. */
135 	asoc->pathmtu = sp->pathmtu;
136 
137 	/* Set association default SACK delay */
138 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
139 	asoc->sackfreq = sp->sackfreq;
140 
141 	/* Set the association default flags controlling
142 	 * Heartbeat, SACK delay, and Path MTU Discovery.
143 	 */
144 	asoc->param_flags = sp->param_flags;
145 
146 	/* Initialize the maximum mumber of new data packets that can be sent
147 	 * in a burst.
148 	 */
149 	asoc->max_burst = sp->max_burst;
150 
151 	/* initialize association timers */
152 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
153 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
154 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
155 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
156 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
157 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
158 
159 	/* sctpimpguide Section 2.12.2
160 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
161 	 * recommended value of 5 times 'RTO.Max'.
162 	 */
163 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
164 		= 5 * asoc->rto_max;
165 
166 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
167 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
168 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
169 		sp->autoclose * HZ;
170 
171 	/* Initilizes the timers */
172 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
173 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
174 				(unsigned long)asoc);
175 
176 	/* Pull default initialization values from the sock options.
177 	 * Note: This assumes that the values have already been
178 	 * validated in the sock.
179 	 */
180 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
181 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
182 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
183 
184 	asoc->max_init_timeo =
185 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
186 
187 	/* Allocate storage for the ssnmap after the inbound and outbound
188 	 * streams have been negotiated during Init.
189 	 */
190 	asoc->ssnmap = NULL;
191 
192 	/* Set the local window size for receive.
193 	 * This is also the rcvbuf space per association.
194 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
195 	 * 1500 bytes in one SCTP packet.
196 	 */
197 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
198 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
199 	else
200 		asoc->rwnd = sk->sk_rcvbuf/2;
201 
202 	asoc->a_rwnd = asoc->rwnd;
203 
204 	asoc->rwnd_over = 0;
205 
206 	/* Use my own max window until I learn something better.  */
207 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
208 
209 	/* Set the sndbuf size for transmit.  */
210 	asoc->sndbuf_used = 0;
211 
212 	/* Initialize the receive memory counter */
213 	atomic_set(&asoc->rmem_alloc, 0);
214 
215 	init_waitqueue_head(&asoc->wait);
216 
217 	asoc->c.my_vtag = sctp_generate_tag(ep);
218 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
219 	asoc->c.peer_vtag = 0;
220 	asoc->c.my_ttag   = 0;
221 	asoc->c.peer_ttag = 0;
222 	asoc->c.my_port = ep->base.bind_addr.port;
223 
224 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
225 
226 	asoc->next_tsn = asoc->c.initial_tsn;
227 
228 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
229 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
230 	asoc->highest_sacked = asoc->ctsn_ack_point;
231 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
232 	asoc->unack_data = 0;
233 
234 	/* ADDIP Section 4.1 Asconf Chunk Procedures
235 	 *
236 	 * When an endpoint has an ASCONF signaled change to be sent to the
237 	 * remote endpoint it should do the following:
238 	 * ...
239 	 * A2) a serial number should be assigned to the chunk. The serial
240 	 * number SHOULD be a monotonically increasing number. The serial
241 	 * numbers SHOULD be initialized at the start of the
242 	 * association to the same value as the initial TSN.
243 	 */
244 	asoc->addip_serial = asoc->c.initial_tsn;
245 
246 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
247 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
248 
249 	/* Make an empty list of remote transport addresses.  */
250 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
251 	asoc->peer.transport_count = 0;
252 
253 	/* RFC 2960 5.1 Normal Establishment of an Association
254 	 *
255 	 * After the reception of the first data chunk in an
256 	 * association the endpoint must immediately respond with a
257 	 * sack to acknowledge the data chunk.  Subsequent
258 	 * acknowledgements should be done as described in Section
259 	 * 6.2.
260 	 *
261 	 * [We implement this by telling a new association that it
262 	 * already received one packet.]
263 	 */
264 	asoc->peer.sack_needed = 1;
265 	asoc->peer.sack_cnt = 0;
266 
267 	/* Assume that the peer will tell us if he recognizes ASCONF
268 	 * as part of INIT exchange.
269 	 * The sctp_addip_noauth option is there for backward compatibilty
270 	 * and will revert old behavior.
271 	 */
272 	asoc->peer.asconf_capable = 0;
273 	if (sctp_addip_noauth)
274 		asoc->peer.asconf_capable = 1;
275 
276 	/* Create an input queue.  */
277 	sctp_inq_init(&asoc->base.inqueue);
278 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
279 
280 	/* Create an output queue.  */
281 	sctp_outq_init(asoc, &asoc->outqueue);
282 
283 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
284 		goto fail_init;
285 
286 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
287 
288 	asoc->need_ecne = 0;
289 
290 	asoc->assoc_id = 0;
291 
292 	/* Assume that peer would support both address types unless we are
293 	 * told otherwise.
294 	 */
295 	asoc->peer.ipv4_address = 1;
296 	if (asoc->base.sk->sk_family == PF_INET6)
297 		asoc->peer.ipv6_address = 1;
298 	INIT_LIST_HEAD(&asoc->asocs);
299 
300 	asoc->autoclose = sp->autoclose;
301 
302 	asoc->default_stream = sp->default_stream;
303 	asoc->default_ppid = sp->default_ppid;
304 	asoc->default_flags = sp->default_flags;
305 	asoc->default_context = sp->default_context;
306 	asoc->default_timetolive = sp->default_timetolive;
307 	asoc->default_rcv_context = sp->default_rcv_context;
308 
309 	/* AUTH related initializations */
310 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
311 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
312 	if (err)
313 		goto fail_init;
314 
315 	asoc->active_key_id = ep->active_key_id;
316 	asoc->asoc_shared_key = NULL;
317 
318 	asoc->default_hmac_id = 0;
319 	/* Save the hmacs and chunks list into this association */
320 	if (ep->auth_hmacs_list)
321 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
322 			ntohs(ep->auth_hmacs_list->param_hdr.length));
323 	if (ep->auth_chunk_list)
324 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
325 			ntohs(ep->auth_chunk_list->param_hdr.length));
326 
327 	/* Get the AUTH random number for this association */
328 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
329 	p->type = SCTP_PARAM_RANDOM;
330 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
331 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
332 
333 	return asoc;
334 
335 fail_init:
336 	sctp_endpoint_put(asoc->ep);
337 	sock_put(asoc->base.sk);
338 	return NULL;
339 }
340 
341 /* Allocate and initialize a new association */
342 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
343 					 const struct sock *sk,
344 					 sctp_scope_t scope,
345 					 gfp_t gfp)
346 {
347 	struct sctp_association *asoc;
348 
349 	asoc = t_new(struct sctp_association, gfp);
350 	if (!asoc)
351 		goto fail;
352 
353 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
354 		goto fail_init;
355 
356 	asoc->base.malloced = 1;
357 	SCTP_DBG_OBJCNT_INC(assoc);
358 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
359 
360 	return asoc;
361 
362 fail_init:
363 	kfree(asoc);
364 fail:
365 	return NULL;
366 }
367 
368 /* Free this association if possible.  There may still be users, so
369  * the actual deallocation may be delayed.
370  */
371 void sctp_association_free(struct sctp_association *asoc)
372 {
373 	struct sock *sk = asoc->base.sk;
374 	struct sctp_transport *transport;
375 	struct list_head *pos, *temp;
376 	int i;
377 
378 	/* Only real associations count against the endpoint, so
379 	 * don't bother for if this is a temporary association.
380 	 */
381 	if (!asoc->temp) {
382 		list_del(&asoc->asocs);
383 
384 		/* Decrement the backlog value for a TCP-style listening
385 		 * socket.
386 		 */
387 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
388 			sk->sk_ack_backlog--;
389 	}
390 
391 	/* Mark as dead, so other users can know this structure is
392 	 * going away.
393 	 */
394 	asoc->base.dead = 1;
395 
396 	/* Dispose of any data lying around in the outqueue. */
397 	sctp_outq_free(&asoc->outqueue);
398 
399 	/* Dispose of any pending messages for the upper layer. */
400 	sctp_ulpq_free(&asoc->ulpq);
401 
402 	/* Dispose of any pending chunks on the inqueue. */
403 	sctp_inq_free(&asoc->base.inqueue);
404 
405 	sctp_tsnmap_free(&asoc->peer.tsn_map);
406 
407 	/* Free ssnmap storage. */
408 	sctp_ssnmap_free(asoc->ssnmap);
409 
410 	/* Clean up the bound address list. */
411 	sctp_bind_addr_free(&asoc->base.bind_addr);
412 
413 	/* Do we need to go through all of our timers and
414 	 * delete them?   To be safe we will try to delete all, but we
415 	 * should be able to go through and make a guess based
416 	 * on our state.
417 	 */
418 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
419 		if (timer_pending(&asoc->timers[i]) &&
420 		    del_timer(&asoc->timers[i]))
421 			sctp_association_put(asoc);
422 	}
423 
424 	/* Free peer's cached cookie. */
425 	kfree(asoc->peer.cookie);
426 	kfree(asoc->peer.peer_random);
427 	kfree(asoc->peer.peer_chunks);
428 	kfree(asoc->peer.peer_hmacs);
429 
430 	/* Release the transport structures. */
431 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
432 		transport = list_entry(pos, struct sctp_transport, transports);
433 		list_del(pos);
434 		sctp_transport_free(transport);
435 	}
436 
437 	asoc->peer.transport_count = 0;
438 
439 	/* Free any cached ASCONF_ACK chunk. */
440 	sctp_assoc_free_asconf_acks(asoc);
441 
442 	/* Free any cached ASCONF chunk. */
443 	if (asoc->addip_last_asconf)
444 		sctp_chunk_free(asoc->addip_last_asconf);
445 
446 	/* AUTH - Free the endpoint shared keys */
447 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
448 
449 	/* AUTH - Free the association shared key */
450 	sctp_auth_key_put(asoc->asoc_shared_key);
451 
452 	sctp_association_put(asoc);
453 }
454 
455 /* Cleanup and free up an association. */
456 static void sctp_association_destroy(struct sctp_association *asoc)
457 {
458 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
459 
460 	sctp_endpoint_put(asoc->ep);
461 	sock_put(asoc->base.sk);
462 
463 	if (asoc->assoc_id != 0) {
464 		spin_lock_bh(&sctp_assocs_id_lock);
465 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
466 		spin_unlock_bh(&sctp_assocs_id_lock);
467 	}
468 
469 	WARN_ON(atomic_read(&asoc->rmem_alloc));
470 
471 	if (asoc->base.malloced) {
472 		kfree(asoc);
473 		SCTP_DBG_OBJCNT_DEC(assoc);
474 	}
475 }
476 
477 /* Change the primary destination address for the peer. */
478 void sctp_assoc_set_primary(struct sctp_association *asoc,
479 			    struct sctp_transport *transport)
480 {
481 	int changeover = 0;
482 
483 	/* it's a changeover only if we already have a primary path
484 	 * that we are changing
485 	 */
486 	if (asoc->peer.primary_path != NULL &&
487 	    asoc->peer.primary_path != transport)
488 		changeover = 1 ;
489 
490 	asoc->peer.primary_path = transport;
491 
492 	/* Set a default msg_name for events. */
493 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
494 	       sizeof(union sctp_addr));
495 
496 	/* If the primary path is changing, assume that the
497 	 * user wants to use this new path.
498 	 */
499 	if ((transport->state == SCTP_ACTIVE) ||
500 	    (transport->state == SCTP_UNKNOWN))
501 		asoc->peer.active_path = transport;
502 
503 	/*
504 	 * SFR-CACC algorithm:
505 	 * Upon the receipt of a request to change the primary
506 	 * destination address, on the data structure for the new
507 	 * primary destination, the sender MUST do the following:
508 	 *
509 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
510 	 * to this destination address earlier. The sender MUST set
511 	 * CYCLING_CHANGEOVER to indicate that this switch is a
512 	 * double switch to the same destination address.
513 	 */
514 	if (transport->cacc.changeover_active)
515 		transport->cacc.cycling_changeover = changeover;
516 
517 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
518 	 * a changeover has occurred.
519 	 */
520 	transport->cacc.changeover_active = changeover;
521 
522 	/* 3) The sender MUST store the next TSN to be sent in
523 	 * next_tsn_at_change.
524 	 */
525 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
526 }
527 
528 /* Remove a transport from an association.  */
529 void sctp_assoc_rm_peer(struct sctp_association *asoc,
530 			struct sctp_transport *peer)
531 {
532 	struct list_head	*pos;
533 	struct sctp_transport	*transport;
534 
535 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
536 				 " port: %d\n",
537 				 asoc,
538 				 (&peer->ipaddr),
539 				 ntohs(peer->ipaddr.v4.sin_port));
540 
541 	/* If we are to remove the current retran_path, update it
542 	 * to the next peer before removing this peer from the list.
543 	 */
544 	if (asoc->peer.retran_path == peer)
545 		sctp_assoc_update_retran_path(asoc);
546 
547 	/* Remove this peer from the list. */
548 	list_del(&peer->transports);
549 
550 	/* Get the first transport of asoc. */
551 	pos = asoc->peer.transport_addr_list.next;
552 	transport = list_entry(pos, struct sctp_transport, transports);
553 
554 	/* Update any entries that match the peer to be deleted. */
555 	if (asoc->peer.primary_path == peer)
556 		sctp_assoc_set_primary(asoc, transport);
557 	if (asoc->peer.active_path == peer)
558 		asoc->peer.active_path = transport;
559 	if (asoc->peer.last_data_from == peer)
560 		asoc->peer.last_data_from = transport;
561 
562 	/* If we remove the transport an INIT was last sent to, set it to
563 	 * NULL. Combined with the update of the retran path above, this
564 	 * will cause the next INIT to be sent to the next available
565 	 * transport, maintaining the cycle.
566 	 */
567 	if (asoc->init_last_sent_to == peer)
568 		asoc->init_last_sent_to = NULL;
569 
570 	/* If we remove the transport an SHUTDOWN was last sent to, set it
571 	 * to NULL. Combined with the update of the retran path above, this
572 	 * will cause the next SHUTDOWN to be sent to the next available
573 	 * transport, maintaining the cycle.
574 	 */
575 	if (asoc->shutdown_last_sent_to == peer)
576 		asoc->shutdown_last_sent_to = NULL;
577 
578 	/* If we remove the transport an ASCONF was last sent to, set it to
579 	 * NULL.
580 	 */
581 	if (asoc->addip_last_asconf &&
582 	    asoc->addip_last_asconf->transport == peer)
583 		asoc->addip_last_asconf->transport = NULL;
584 
585 	asoc->peer.transport_count--;
586 
587 	sctp_transport_free(peer);
588 }
589 
590 /* Add a transport address to an association.  */
591 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
592 					   const union sctp_addr *addr,
593 					   const gfp_t gfp,
594 					   const int peer_state)
595 {
596 	struct sctp_transport *peer;
597 	struct sctp_sock *sp;
598 	unsigned short port;
599 
600 	sp = sctp_sk(asoc->base.sk);
601 
602 	/* AF_INET and AF_INET6 share common port field. */
603 	port = ntohs(addr->v4.sin_port);
604 
605 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
606 				 " port: %d state:%d\n",
607 				 asoc,
608 				 addr,
609 				 port,
610 				 peer_state);
611 
612 	/* Set the port if it has not been set yet.  */
613 	if (0 == asoc->peer.port)
614 		asoc->peer.port = port;
615 
616 	/* Check to see if this is a duplicate. */
617 	peer = sctp_assoc_lookup_paddr(asoc, addr);
618 	if (peer) {
619 		/* An UNKNOWN state is only set on transports added by
620 		 * user in sctp_connectx() call.  Such transports should be
621 		 * considered CONFIRMED per RFC 4960, Section 5.4.
622 		 */
623 		if (peer->state == SCTP_UNKNOWN) {
624 			peer->state = SCTP_ACTIVE;
625 		}
626 		return peer;
627 	}
628 
629 	peer = sctp_transport_new(addr, gfp);
630 	if (!peer)
631 		return NULL;
632 
633 	sctp_transport_set_owner(peer, asoc);
634 
635 	/* Initialize the peer's heartbeat interval based on the
636 	 * association configured value.
637 	 */
638 	peer->hbinterval = asoc->hbinterval;
639 
640 	/* Set the path max_retrans.  */
641 	peer->pathmaxrxt = asoc->pathmaxrxt;
642 
643 	/* Initialize the peer's SACK delay timeout based on the
644 	 * association configured value.
645 	 */
646 	peer->sackdelay = asoc->sackdelay;
647 	peer->sackfreq = asoc->sackfreq;
648 
649 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
650 	 * based on association setting.
651 	 */
652 	peer->param_flags = asoc->param_flags;
653 
654 	/* Initialize the pmtu of the transport. */
655 	if (peer->param_flags & SPP_PMTUD_ENABLE)
656 		sctp_transport_pmtu(peer);
657 	else if (asoc->pathmtu)
658 		peer->pathmtu = asoc->pathmtu;
659 	else
660 		peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
661 
662 	/* If this is the first transport addr on this association,
663 	 * initialize the association PMTU to the peer's PMTU.
664 	 * If not and the current association PMTU is higher than the new
665 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
666 	 */
667 	if (asoc->pathmtu)
668 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
669 	else
670 		asoc->pathmtu = peer->pathmtu;
671 
672 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
673 			  "%d\n", asoc, asoc->pathmtu);
674 	peer->pmtu_pending = 0;
675 
676 	asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
677 
678 	/* The asoc->peer.port might not be meaningful yet, but
679 	 * initialize the packet structure anyway.
680 	 */
681 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
682 			 asoc->peer.port);
683 
684 	/* 7.2.1 Slow-Start
685 	 *
686 	 * o The initial cwnd before DATA transmission or after a sufficiently
687 	 *   long idle period MUST be set to
688 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
689 	 *
690 	 * o The initial value of ssthresh MAY be arbitrarily high
691 	 *   (for example, implementations MAY use the size of the
692 	 *   receiver advertised window).
693 	 */
694 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
695 
696 	/* At this point, we may not have the receiver's advertised window,
697 	 * so initialize ssthresh to the default value and it will be set
698 	 * later when we process the INIT.
699 	 */
700 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
701 
702 	peer->partial_bytes_acked = 0;
703 	peer->flight_size = 0;
704 
705 	/* Set the transport's RTO.initial value */
706 	peer->rto = asoc->rto_initial;
707 
708 	/* Set the peer's active state. */
709 	peer->state = peer_state;
710 
711 	/* Attach the remote transport to our asoc.  */
712 	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
713 	asoc->peer.transport_count++;
714 
715 	/* If we do not yet have a primary path, set one.  */
716 	if (!asoc->peer.primary_path) {
717 		sctp_assoc_set_primary(asoc, peer);
718 		asoc->peer.retran_path = peer;
719 	}
720 
721 	if (asoc->peer.active_path == asoc->peer.retran_path) {
722 		asoc->peer.retran_path = peer;
723 	}
724 
725 	return peer;
726 }
727 
728 /* Delete a transport address from an association.  */
729 void sctp_assoc_del_peer(struct sctp_association *asoc,
730 			 const union sctp_addr *addr)
731 {
732 	struct list_head	*pos;
733 	struct list_head	*temp;
734 	struct sctp_transport	*transport;
735 
736 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
737 		transport = list_entry(pos, struct sctp_transport, transports);
738 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
739 			/* Do book keeping for removing the peer and free it. */
740 			sctp_assoc_rm_peer(asoc, transport);
741 			break;
742 		}
743 	}
744 }
745 
746 /* Lookup a transport by address. */
747 struct sctp_transport *sctp_assoc_lookup_paddr(
748 					const struct sctp_association *asoc,
749 					const union sctp_addr *address)
750 {
751 	struct sctp_transport *t;
752 
753 	/* Cycle through all transports searching for a peer address. */
754 
755 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
756 			transports) {
757 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
758 			return t;
759 	}
760 
761 	return NULL;
762 }
763 
764 /* Remove all transports except a give one */
765 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
766 				     struct sctp_transport *primary)
767 {
768 	struct sctp_transport	*temp;
769 	struct sctp_transport	*t;
770 
771 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
772 				 transports) {
773 		/* if the current transport is not the primary one, delete it */
774 		if (t != primary)
775 			sctp_assoc_rm_peer(asoc, t);
776 	}
777 
778 	return;
779 }
780 
781 /* Engage in transport control operations.
782  * Mark the transport up or down and send a notification to the user.
783  * Select and update the new active and retran paths.
784  */
785 void sctp_assoc_control_transport(struct sctp_association *asoc,
786 				  struct sctp_transport *transport,
787 				  sctp_transport_cmd_t command,
788 				  sctp_sn_error_t error)
789 {
790 	struct sctp_transport *t = NULL;
791 	struct sctp_transport *first;
792 	struct sctp_transport *second;
793 	struct sctp_ulpevent *event;
794 	struct sockaddr_storage addr;
795 	int spc_state = 0;
796 
797 	/* Record the transition on the transport.  */
798 	switch (command) {
799 	case SCTP_TRANSPORT_UP:
800 		/* If we are moving from UNCONFIRMED state due
801 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
802 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
803 		 */
804 		if (SCTP_UNCONFIRMED == transport->state &&
805 		    SCTP_HEARTBEAT_SUCCESS == error)
806 			spc_state = SCTP_ADDR_CONFIRMED;
807 		else
808 			spc_state = SCTP_ADDR_AVAILABLE;
809 		transport->state = SCTP_ACTIVE;
810 		break;
811 
812 	case SCTP_TRANSPORT_DOWN:
813 		/* if the transort was never confirmed, do not transition it
814 		 * to inactive state.
815 		 */
816 		if (transport->state != SCTP_UNCONFIRMED)
817 			transport->state = SCTP_INACTIVE;
818 
819 		spc_state = SCTP_ADDR_UNREACHABLE;
820 		break;
821 
822 	default:
823 		return;
824 	}
825 
826 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
827 	 * user.
828 	 */
829 	memset(&addr, 0, sizeof(struct sockaddr_storage));
830 	memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
831 	event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
832 				0, spc_state, error, GFP_ATOMIC);
833 	if (event)
834 		sctp_ulpq_tail_event(&asoc->ulpq, event);
835 
836 	/* Select new active and retran paths. */
837 
838 	/* Look for the two most recently used active transports.
839 	 *
840 	 * This code produces the wrong ordering whenever jiffies
841 	 * rolls over, but we still get usable transports, so we don't
842 	 * worry about it.
843 	 */
844 	first = NULL; second = NULL;
845 
846 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
847 			transports) {
848 
849 		if ((t->state == SCTP_INACTIVE) ||
850 		    (t->state == SCTP_UNCONFIRMED))
851 			continue;
852 		if (!first || t->last_time_heard > first->last_time_heard) {
853 			second = first;
854 			first = t;
855 		}
856 		if (!second || t->last_time_heard > second->last_time_heard)
857 			second = t;
858 	}
859 
860 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
861 	 *
862 	 * By default, an endpoint should always transmit to the
863 	 * primary path, unless the SCTP user explicitly specifies the
864 	 * destination transport address (and possibly source
865 	 * transport address) to use.
866 	 *
867 	 * [If the primary is active but not most recent, bump the most
868 	 * recently used transport.]
869 	 */
870 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
871 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
872 	    first != asoc->peer.primary_path) {
873 		second = first;
874 		first = asoc->peer.primary_path;
875 	}
876 
877 	/* If we failed to find a usable transport, just camp on the
878 	 * primary, even if it is inactive.
879 	 */
880 	if (!first) {
881 		first = asoc->peer.primary_path;
882 		second = asoc->peer.primary_path;
883 	}
884 
885 	/* Set the active and retran transports.  */
886 	asoc->peer.active_path = first;
887 	asoc->peer.retran_path = second;
888 }
889 
890 /* Hold a reference to an association. */
891 void sctp_association_hold(struct sctp_association *asoc)
892 {
893 	atomic_inc(&asoc->base.refcnt);
894 }
895 
896 /* Release a reference to an association and cleanup
897  * if there are no more references.
898  */
899 void sctp_association_put(struct sctp_association *asoc)
900 {
901 	if (atomic_dec_and_test(&asoc->base.refcnt))
902 		sctp_association_destroy(asoc);
903 }
904 
905 /* Allocate the next TSN, Transmission Sequence Number, for the given
906  * association.
907  */
908 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
909 {
910 	/* From Section 1.6 Serial Number Arithmetic:
911 	 * Transmission Sequence Numbers wrap around when they reach
912 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
913 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
914 	 */
915 	__u32 retval = asoc->next_tsn;
916 	asoc->next_tsn++;
917 	asoc->unack_data++;
918 
919 	return retval;
920 }
921 
922 /* Compare two addresses to see if they match.  Wildcard addresses
923  * only match themselves.
924  */
925 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
926 			const union sctp_addr *ss2)
927 {
928 	struct sctp_af *af;
929 
930 	af = sctp_get_af_specific(ss1->sa.sa_family);
931 	if (unlikely(!af))
932 		return 0;
933 
934 	return af->cmp_addr(ss1, ss2);
935 }
936 
937 /* Return an ecne chunk to get prepended to a packet.
938  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
939  * No we don't, but we could/should.
940  */
941 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
942 {
943 	struct sctp_chunk *chunk;
944 
945 	/* Send ECNE if needed.
946 	 * Not being able to allocate a chunk here is not deadly.
947 	 */
948 	if (asoc->need_ecne)
949 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
950 	else
951 		chunk = NULL;
952 
953 	return chunk;
954 }
955 
956 /*
957  * Find which transport this TSN was sent on.
958  */
959 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
960 					     __u32 tsn)
961 {
962 	struct sctp_transport *active;
963 	struct sctp_transport *match;
964 	struct sctp_transport *transport;
965 	struct sctp_chunk *chunk;
966 	__be32 key = htonl(tsn);
967 
968 	match = NULL;
969 
970 	/*
971 	 * FIXME: In general, find a more efficient data structure for
972 	 * searching.
973 	 */
974 
975 	/*
976 	 * The general strategy is to search each transport's transmitted
977 	 * list.   Return which transport this TSN lives on.
978 	 *
979 	 * Let's be hopeful and check the active_path first.
980 	 * Another optimization would be to know if there is only one
981 	 * outbound path and not have to look for the TSN at all.
982 	 *
983 	 */
984 
985 	active = asoc->peer.active_path;
986 
987 	list_for_each_entry(chunk, &active->transmitted,
988 			transmitted_list) {
989 
990 		if (key == chunk->subh.data_hdr->tsn) {
991 			match = active;
992 			goto out;
993 		}
994 	}
995 
996 	/* If not found, go search all the other transports. */
997 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
998 			transports) {
999 
1000 		if (transport == active)
1001 			break;
1002 		list_for_each_entry(chunk, &transport->transmitted,
1003 				transmitted_list) {
1004 			if (key == chunk->subh.data_hdr->tsn) {
1005 				match = transport;
1006 				goto out;
1007 			}
1008 		}
1009 	}
1010 out:
1011 	return match;
1012 }
1013 
1014 /* Is this the association we are looking for? */
1015 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1016 					   const union sctp_addr *laddr,
1017 					   const union sctp_addr *paddr)
1018 {
1019 	struct sctp_transport *transport;
1020 
1021 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1022 	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1023 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1024 		if (!transport)
1025 			goto out;
1026 
1027 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1028 					 sctp_sk(asoc->base.sk)))
1029 			goto out;
1030 	}
1031 	transport = NULL;
1032 
1033 out:
1034 	return transport;
1035 }
1036 
1037 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1038 static void sctp_assoc_bh_rcv(struct work_struct *work)
1039 {
1040 	struct sctp_association *asoc =
1041 		container_of(work, struct sctp_association,
1042 			     base.inqueue.immediate);
1043 	struct sctp_endpoint *ep;
1044 	struct sctp_chunk *chunk;
1045 	struct sock *sk;
1046 	struct sctp_inq *inqueue;
1047 	int state;
1048 	sctp_subtype_t subtype;
1049 	int error = 0;
1050 
1051 	/* The association should be held so we should be safe. */
1052 	ep = asoc->ep;
1053 	sk = asoc->base.sk;
1054 
1055 	inqueue = &asoc->base.inqueue;
1056 	sctp_association_hold(asoc);
1057 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1058 		state = asoc->state;
1059 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1060 
1061 		/* SCTP-AUTH, Section 6.3:
1062 		 *    The receiver has a list of chunk types which it expects
1063 		 *    to be received only after an AUTH-chunk.  This list has
1064 		 *    been sent to the peer during the association setup.  It
1065 		 *    MUST silently discard these chunks if they are not placed
1066 		 *    after an AUTH chunk in the packet.
1067 		 */
1068 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1069 			continue;
1070 
1071 		/* Remember where the last DATA chunk came from so we
1072 		 * know where to send the SACK.
1073 		 */
1074 		if (sctp_chunk_is_data(chunk))
1075 			asoc->peer.last_data_from = chunk->transport;
1076 		else
1077 			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1078 
1079 		if (chunk->transport)
1080 			chunk->transport->last_time_heard = jiffies;
1081 
1082 		/* Run through the state machine. */
1083 		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1084 				   state, ep, asoc, chunk, GFP_ATOMIC);
1085 
1086 		/* Check to see if the association is freed in response to
1087 		 * the incoming chunk.  If so, get out of the while loop.
1088 		 */
1089 		if (asoc->base.dead)
1090 			break;
1091 
1092 		/* If there is an error on chunk, discard this packet. */
1093 		if (error && chunk)
1094 			chunk->pdiscard = 1;
1095 	}
1096 	sctp_association_put(asoc);
1097 }
1098 
1099 /* This routine moves an association from its old sk to a new sk.  */
1100 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1101 {
1102 	struct sctp_sock *newsp = sctp_sk(newsk);
1103 	struct sock *oldsk = assoc->base.sk;
1104 
1105 	/* Delete the association from the old endpoint's list of
1106 	 * associations.
1107 	 */
1108 	list_del_init(&assoc->asocs);
1109 
1110 	/* Decrement the backlog value for a TCP-style socket. */
1111 	if (sctp_style(oldsk, TCP))
1112 		oldsk->sk_ack_backlog--;
1113 
1114 	/* Release references to the old endpoint and the sock.  */
1115 	sctp_endpoint_put(assoc->ep);
1116 	sock_put(assoc->base.sk);
1117 
1118 	/* Get a reference to the new endpoint.  */
1119 	assoc->ep = newsp->ep;
1120 	sctp_endpoint_hold(assoc->ep);
1121 
1122 	/* Get a reference to the new sock.  */
1123 	assoc->base.sk = newsk;
1124 	sock_hold(assoc->base.sk);
1125 
1126 	/* Add the association to the new endpoint's list of associations.  */
1127 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1128 }
1129 
1130 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1131 void sctp_assoc_update(struct sctp_association *asoc,
1132 		       struct sctp_association *new)
1133 {
1134 	struct sctp_transport *trans;
1135 	struct list_head *pos, *temp;
1136 
1137 	/* Copy in new parameters of peer. */
1138 	asoc->c = new->c;
1139 	asoc->peer.rwnd = new->peer.rwnd;
1140 	asoc->peer.sack_needed = new->peer.sack_needed;
1141 	asoc->peer.i = new->peer.i;
1142 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1143 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1144 
1145 	/* Remove any peer addresses not present in the new association. */
1146 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1147 		trans = list_entry(pos, struct sctp_transport, transports);
1148 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
1149 			sctp_assoc_del_peer(asoc, &trans->ipaddr);
1150 
1151 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1152 			sctp_transport_reset(trans);
1153 	}
1154 
1155 	/* If the case is A (association restart), use
1156 	 * initial_tsn as next_tsn. If the case is B, use
1157 	 * current next_tsn in case data sent to peer
1158 	 * has been discarded and needs retransmission.
1159 	 */
1160 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1161 		asoc->next_tsn = new->next_tsn;
1162 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1163 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1164 
1165 		/* Reinitialize SSN for both local streams
1166 		 * and peer's streams.
1167 		 */
1168 		sctp_ssnmap_clear(asoc->ssnmap);
1169 
1170 		/* Flush the ULP reassembly and ordered queue.
1171 		 * Any data there will now be stale and will
1172 		 * cause problems.
1173 		 */
1174 		sctp_ulpq_flush(&asoc->ulpq);
1175 
1176 		/* reset the overall association error count so
1177 		 * that the restarted association doesn't get torn
1178 		 * down on the next retransmission timer.
1179 		 */
1180 		asoc->overall_error_count = 0;
1181 
1182 	} else {
1183 		/* Add any peer addresses from the new association. */
1184 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1185 				transports) {
1186 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1187 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1188 						    GFP_ATOMIC, trans->state);
1189 		}
1190 
1191 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1192 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1193 		if (!asoc->ssnmap) {
1194 			/* Move the ssnmap. */
1195 			asoc->ssnmap = new->ssnmap;
1196 			new->ssnmap = NULL;
1197 		}
1198 
1199 		if (!asoc->assoc_id) {
1200 			/* get a new association id since we don't have one
1201 			 * yet.
1202 			 */
1203 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1204 		}
1205 	}
1206 
1207 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1208 	 * and also move the association shared keys over
1209 	 */
1210 	kfree(asoc->peer.peer_random);
1211 	asoc->peer.peer_random = new->peer.peer_random;
1212 	new->peer.peer_random = NULL;
1213 
1214 	kfree(asoc->peer.peer_chunks);
1215 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1216 	new->peer.peer_chunks = NULL;
1217 
1218 	kfree(asoc->peer.peer_hmacs);
1219 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1220 	new->peer.peer_hmacs = NULL;
1221 
1222 	sctp_auth_key_put(asoc->asoc_shared_key);
1223 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1224 }
1225 
1226 /* Update the retran path for sending a retransmitted packet.
1227  * Round-robin through the active transports, else round-robin
1228  * through the inactive transports as this is the next best thing
1229  * we can try.
1230  */
1231 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1232 {
1233 	struct sctp_transport *t, *next;
1234 	struct list_head *head = &asoc->peer.transport_addr_list;
1235 	struct list_head *pos;
1236 
1237 	if (asoc->peer.transport_count == 1)
1238 		return;
1239 
1240 	/* Find the next transport in a round-robin fashion. */
1241 	t = asoc->peer.retran_path;
1242 	pos = &t->transports;
1243 	next = NULL;
1244 
1245 	while (1) {
1246 		/* Skip the head. */
1247 		if (pos->next == head)
1248 			pos = head->next;
1249 		else
1250 			pos = pos->next;
1251 
1252 		t = list_entry(pos, struct sctp_transport, transports);
1253 
1254 		/* We have exhausted the list, but didn't find any
1255 		 * other active transports.  If so, use the next
1256 		 * transport.
1257 		 */
1258 		if (t == asoc->peer.retran_path) {
1259 			t = next;
1260 			break;
1261 		}
1262 
1263 		/* Try to find an active transport. */
1264 
1265 		if ((t->state == SCTP_ACTIVE) ||
1266 		    (t->state == SCTP_UNKNOWN)) {
1267 			break;
1268 		} else {
1269 			/* Keep track of the next transport in case
1270 			 * we don't find any active transport.
1271 			 */
1272 			if (!next)
1273 				next = t;
1274 		}
1275 	}
1276 
1277 	asoc->peer.retran_path = t;
1278 
1279 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1280 				 " %p addr: ",
1281 				 " port: %d\n",
1282 				 asoc,
1283 				 (&t->ipaddr),
1284 				 ntohs(t->ipaddr.v4.sin_port));
1285 }
1286 
1287 /* Choose the transport for sending retransmit packet.  */
1288 struct sctp_transport *sctp_assoc_choose_alter_transport(
1289 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1290 {
1291 	/* If this is the first time packet is sent, use the active path,
1292 	 * else use the retran path. If the last packet was sent over the
1293 	 * retran path, update the retran path and use it.
1294 	 */
1295 	if (!last_sent_to)
1296 		return asoc->peer.active_path;
1297 	else {
1298 		if (last_sent_to == asoc->peer.retran_path)
1299 			sctp_assoc_update_retran_path(asoc);
1300 		return asoc->peer.retran_path;
1301 	}
1302 }
1303 
1304 /* Update the association's pmtu and frag_point by going through all the
1305  * transports. This routine is called when a transport's PMTU has changed.
1306  */
1307 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1308 {
1309 	struct sctp_transport *t;
1310 	__u32 pmtu = 0;
1311 
1312 	if (!asoc)
1313 		return;
1314 
1315 	/* Get the lowest pmtu of all the transports. */
1316 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1317 				transports) {
1318 		if (t->pmtu_pending && t->dst) {
1319 			sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1320 			t->pmtu_pending = 0;
1321 		}
1322 		if (!pmtu || (t->pathmtu < pmtu))
1323 			pmtu = t->pathmtu;
1324 	}
1325 
1326 	if (pmtu) {
1327 		struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1328 		asoc->pathmtu = pmtu;
1329 		asoc->frag_point = sctp_frag_point(sp, pmtu);
1330 	}
1331 
1332 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1333 			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1334 }
1335 
1336 /* Should we send a SACK to update our peer? */
1337 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1338 {
1339 	switch (asoc->state) {
1340 	case SCTP_STATE_ESTABLISHED:
1341 	case SCTP_STATE_SHUTDOWN_PENDING:
1342 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1343 	case SCTP_STATE_SHUTDOWN_SENT:
1344 		if ((asoc->rwnd > asoc->a_rwnd) &&
1345 		    ((asoc->rwnd - asoc->a_rwnd) >=
1346 		     min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu)))
1347 			return 1;
1348 		break;
1349 	default:
1350 		break;
1351 	}
1352 	return 0;
1353 }
1354 
1355 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1356 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1357 {
1358 	struct sctp_chunk *sack;
1359 	struct timer_list *timer;
1360 
1361 	if (asoc->rwnd_over) {
1362 		if (asoc->rwnd_over >= len) {
1363 			asoc->rwnd_over -= len;
1364 		} else {
1365 			asoc->rwnd += (len - asoc->rwnd_over);
1366 			asoc->rwnd_over = 0;
1367 		}
1368 	} else {
1369 		asoc->rwnd += len;
1370 	}
1371 
1372 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1373 			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1374 			  asoc->rwnd_over, asoc->a_rwnd);
1375 
1376 	/* Send a window update SACK if the rwnd has increased by at least the
1377 	 * minimum of the association's PMTU and half of the receive buffer.
1378 	 * The algorithm used is similar to the one described in
1379 	 * Section 4.2.3.3 of RFC 1122.
1380 	 */
1381 	if (sctp_peer_needs_update(asoc)) {
1382 		asoc->a_rwnd = asoc->rwnd;
1383 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1384 				  "rwnd: %u a_rwnd: %u\n", __func__,
1385 				  asoc, asoc->rwnd, asoc->a_rwnd);
1386 		sack = sctp_make_sack(asoc);
1387 		if (!sack)
1388 			return;
1389 
1390 		asoc->peer.sack_needed = 0;
1391 
1392 		sctp_outq_tail(&asoc->outqueue, sack);
1393 
1394 		/* Stop the SACK timer.  */
1395 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1396 		if (timer_pending(timer) && del_timer(timer))
1397 			sctp_association_put(asoc);
1398 	}
1399 }
1400 
1401 /* Decrease asoc's rwnd by len. */
1402 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1403 {
1404 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1405 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1406 	if (asoc->rwnd >= len) {
1407 		asoc->rwnd -= len;
1408 	} else {
1409 		asoc->rwnd_over = len - asoc->rwnd;
1410 		asoc->rwnd = 0;
1411 	}
1412 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1413 			  __func__, asoc, len, asoc->rwnd,
1414 			  asoc->rwnd_over);
1415 }
1416 
1417 /* Build the bind address list for the association based on info from the
1418  * local endpoint and the remote peer.
1419  */
1420 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1421 				     gfp_t gfp)
1422 {
1423 	sctp_scope_t scope;
1424 	int flags;
1425 
1426 	/* Use scoping rules to determine the subset of addresses from
1427 	 * the endpoint.
1428 	 */
1429 	scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1430 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1431 	if (asoc->peer.ipv4_address)
1432 		flags |= SCTP_ADDR4_PEERSUPP;
1433 	if (asoc->peer.ipv6_address)
1434 		flags |= SCTP_ADDR6_PEERSUPP;
1435 
1436 	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1437 				   &asoc->ep->base.bind_addr,
1438 				   scope, gfp, flags);
1439 }
1440 
1441 /* Build the association's bind address list from the cookie.  */
1442 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1443 					 struct sctp_cookie *cookie,
1444 					 gfp_t gfp)
1445 {
1446 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1447 	int var_size3 = cookie->raw_addr_list_len;
1448 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1449 
1450 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1451 				      asoc->ep->base.bind_addr.port, gfp);
1452 }
1453 
1454 /* Lookup laddr in the bind address list of an association. */
1455 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1456 			    const union sctp_addr *laddr)
1457 {
1458 	int found = 0;
1459 
1460 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1461 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1462 				 sctp_sk(asoc->base.sk)))
1463 		found = 1;
1464 
1465 	return found;
1466 }
1467 
1468 /* Set an association id for a given association */
1469 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1470 {
1471 	int assoc_id;
1472 	int error = 0;
1473 
1474 	/* If the id is already assigned, keep it. */
1475 	if (asoc->assoc_id)
1476 		return error;
1477 retry:
1478 	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1479 		return -ENOMEM;
1480 
1481 	spin_lock_bh(&sctp_assocs_id_lock);
1482 	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1483 				    1, &assoc_id);
1484 	spin_unlock_bh(&sctp_assocs_id_lock);
1485 	if (error == -EAGAIN)
1486 		goto retry;
1487 	else if (error)
1488 		return error;
1489 
1490 	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1491 	return error;
1492 }
1493 
1494 /* Free asconf_ack cache */
1495 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1496 {
1497 	struct sctp_chunk *ack;
1498 	struct sctp_chunk *tmp;
1499 
1500 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1501 				transmitted_list) {
1502 		list_del_init(&ack->transmitted_list);
1503 		sctp_chunk_free(ack);
1504 	}
1505 }
1506 
1507 /* Clean up the ASCONF_ACK queue */
1508 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1509 {
1510 	struct sctp_chunk *ack;
1511 	struct sctp_chunk *tmp;
1512 
1513 	/* We can remove all the entries from the queue upto
1514 	 * the "Peer-Sequence-Number".
1515 	 */
1516 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1517 				transmitted_list) {
1518 		if (ack->subh.addip_hdr->serial ==
1519 				htonl(asoc->peer.addip_serial))
1520 			break;
1521 
1522 		list_del_init(&ack->transmitted_list);
1523 		sctp_chunk_free(ack);
1524 	}
1525 }
1526 
1527 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1528 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1529 					const struct sctp_association *asoc,
1530 					__be32 serial)
1531 {
1532 	struct sctp_chunk *ack;
1533 
1534 	/* Walk through the list of cached ASCONF-ACKs and find the
1535 	 * ack chunk whose serial number matches that of the request.
1536 	 */
1537 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1538 		if (ack->subh.addip_hdr->serial == serial) {
1539 			sctp_chunk_hold(ack);
1540 			return ack;
1541 		}
1542 	}
1543 
1544 	return NULL;
1545 }
1546