xref: /openbmc/linux/net/sctp/associola.c (revision 4323cc4d)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@us.ibm.com>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang             <hui.huang@nokia.com>
38  *    Sridhar Samudrala	    <sri@us.ibm.com>
39  *    Daisy Chang	    <daisyc@us.ibm.com>
40  *    Ryan Layer	    <rmlayer@us.ibm.com>
41  *    Kevin Gao             <kevin.gao@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50 
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56 
57 /* Forward declarations for internal functions. */
58 static void sctp_assoc_bh_rcv(struct work_struct *work);
59 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
60 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
61 
62 /* 1st Level Abstractions. */
63 
64 /* Initialize a new association from provided memory. */
65 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
66 					  const struct sctp_endpoint *ep,
67 					  const struct sock *sk,
68 					  sctp_scope_t scope,
69 					  gfp_t gfp)
70 {
71 	struct net *net = sock_net(sk);
72 	struct sctp_sock *sp;
73 	int i;
74 	sctp_paramhdr_t *p;
75 	int err;
76 
77 	/* Retrieve the SCTP per socket area.  */
78 	sp = sctp_sk((struct sock *)sk);
79 
80 	/* Discarding const is appropriate here.  */
81 	asoc->ep = (struct sctp_endpoint *)ep;
82 	asoc->base.sk = (struct sock *)sk;
83 
84 	sctp_endpoint_hold(asoc->ep);
85 	sock_hold(asoc->base.sk);
86 
87 	/* Initialize the common base substructure.  */
88 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
89 
90 	/* Initialize the object handling fields.  */
91 	atomic_set(&asoc->base.refcnt, 1);
92 
93 	/* Initialize the bind addr area.  */
94 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
95 
96 	asoc->state = SCTP_STATE_CLOSED;
97 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 	asoc->user_frag = sp->user_frag;
99 
100 	/* Set the association max_retrans and RTO values from the
101 	 * socket values.
102 	 */
103 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 	asoc->pf_retrans  = net->sctp.pf_retrans;
105 
106 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
109 
110 	/* Initialize the association's heartbeat interval based on the
111 	 * sock configured value.
112 	 */
113 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
114 
115 	/* Initialize path max retrans value. */
116 	asoc->pathmaxrxt = sp->pathmaxrxt;
117 
118 	/* Initialize default path MTU. */
119 	asoc->pathmtu = sp->pathmtu;
120 
121 	/* Set association default SACK delay */
122 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
123 	asoc->sackfreq = sp->sackfreq;
124 
125 	/* Set the association default flags controlling
126 	 * Heartbeat, SACK delay, and Path MTU Discovery.
127 	 */
128 	asoc->param_flags = sp->param_flags;
129 
130 	/* Initialize the maximum number of new data packets that can be sent
131 	 * in a burst.
132 	 */
133 	asoc->max_burst = sp->max_burst;
134 
135 	/* initialize association timers */
136 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
137 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
138 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
139 
140 	/* sctpimpguide Section 2.12.2
141 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
142 	 * recommended value of 5 times 'RTO.Max'.
143 	 */
144 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
145 		= 5 * asoc->rto_max;
146 
147 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
148 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
149 
150 	/* Initializes the timers */
151 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
152 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
153 				(unsigned long)asoc);
154 
155 	/* Pull default initialization values from the sock options.
156 	 * Note: This assumes that the values have already been
157 	 * validated in the sock.
158 	 */
159 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
160 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
161 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
162 
163 	asoc->max_init_timeo =
164 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
165 
166 	/* Set the local window size for receive.
167 	 * This is also the rcvbuf space per association.
168 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
169 	 * 1500 bytes in one SCTP packet.
170 	 */
171 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
172 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
173 	else
174 		asoc->rwnd = sk->sk_rcvbuf/2;
175 
176 	asoc->a_rwnd = asoc->rwnd;
177 
178 	/* Use my own max window until I learn something better.  */
179 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
180 
181 	/* Initialize the receive memory counter */
182 	atomic_set(&asoc->rmem_alloc, 0);
183 
184 	init_waitqueue_head(&asoc->wait);
185 
186 	asoc->c.my_vtag = sctp_generate_tag(ep);
187 	asoc->c.my_port = ep->base.bind_addr.port;
188 
189 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
190 
191 	asoc->next_tsn = asoc->c.initial_tsn;
192 
193 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
194 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
195 	asoc->highest_sacked = asoc->ctsn_ack_point;
196 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
197 
198 	/* ADDIP Section 4.1 Asconf Chunk Procedures
199 	 *
200 	 * When an endpoint has an ASCONF signaled change to be sent to the
201 	 * remote endpoint it should do the following:
202 	 * ...
203 	 * A2) a serial number should be assigned to the chunk. The serial
204 	 * number SHOULD be a monotonically increasing number. The serial
205 	 * numbers SHOULD be initialized at the start of the
206 	 * association to the same value as the initial TSN.
207 	 */
208 	asoc->addip_serial = asoc->c.initial_tsn;
209 
210 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
211 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
212 
213 	/* Make an empty list of remote transport addresses.  */
214 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
215 
216 	/* RFC 2960 5.1 Normal Establishment of an Association
217 	 *
218 	 * After the reception of the first data chunk in an
219 	 * association the endpoint must immediately respond with a
220 	 * sack to acknowledge the data chunk.  Subsequent
221 	 * acknowledgements should be done as described in Section
222 	 * 6.2.
223 	 *
224 	 * [We implement this by telling a new association that it
225 	 * already received one packet.]
226 	 */
227 	asoc->peer.sack_needed = 1;
228 	asoc->peer.sack_generation = 1;
229 
230 	/* Assume that the peer will tell us if he recognizes ASCONF
231 	 * as part of INIT exchange.
232 	 * The sctp_addip_noauth option is there for backward compatibility
233 	 * and will revert old behavior.
234 	 */
235 	if (net->sctp.addip_noauth)
236 		asoc->peer.asconf_capable = 1;
237 
238 	/* Create an input queue.  */
239 	sctp_inq_init(&asoc->base.inqueue);
240 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
241 
242 	/* Create an output queue.  */
243 	sctp_outq_init(asoc, &asoc->outqueue);
244 
245 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
246 		goto fail_init;
247 
248 	/* Assume that peer would support both address types unless we are
249 	 * told otherwise.
250 	 */
251 	asoc->peer.ipv4_address = 1;
252 	if (asoc->base.sk->sk_family == PF_INET6)
253 		asoc->peer.ipv6_address = 1;
254 	INIT_LIST_HEAD(&asoc->asocs);
255 
256 	asoc->default_stream = sp->default_stream;
257 	asoc->default_ppid = sp->default_ppid;
258 	asoc->default_flags = sp->default_flags;
259 	asoc->default_context = sp->default_context;
260 	asoc->default_timetolive = sp->default_timetolive;
261 	asoc->default_rcv_context = sp->default_rcv_context;
262 
263 	/* AUTH related initializations */
264 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
265 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
266 	if (err)
267 		goto fail_init;
268 
269 	asoc->active_key_id = ep->active_key_id;
270 
271 	/* Save the hmacs and chunks list into this association */
272 	if (ep->auth_hmacs_list)
273 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
274 			ntohs(ep->auth_hmacs_list->param_hdr.length));
275 	if (ep->auth_chunk_list)
276 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
277 			ntohs(ep->auth_chunk_list->param_hdr.length));
278 
279 	/* Get the AUTH random number for this association */
280 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
281 	p->type = SCTP_PARAM_RANDOM;
282 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
283 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
284 
285 	return asoc;
286 
287 fail_init:
288 	sock_put(asoc->base.sk);
289 	sctp_endpoint_put(asoc->ep);
290 	return NULL;
291 }
292 
293 /* Allocate and initialize a new association */
294 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
295 					 const struct sock *sk,
296 					 sctp_scope_t scope,
297 					 gfp_t gfp)
298 {
299 	struct sctp_association *asoc;
300 
301 	asoc = kzalloc(sizeof(*asoc), gfp);
302 	if (!asoc)
303 		goto fail;
304 
305 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
306 		goto fail_init;
307 
308 	SCTP_DBG_OBJCNT_INC(assoc);
309 
310 	pr_debug("Created asoc %p\n", asoc);
311 
312 	return asoc;
313 
314 fail_init:
315 	kfree(asoc);
316 fail:
317 	return NULL;
318 }
319 
320 /* Free this association if possible.  There may still be users, so
321  * the actual deallocation may be delayed.
322  */
323 void sctp_association_free(struct sctp_association *asoc)
324 {
325 	struct sock *sk = asoc->base.sk;
326 	struct sctp_transport *transport;
327 	struct list_head *pos, *temp;
328 	int i;
329 
330 	/* Only real associations count against the endpoint, so
331 	 * don't bother for if this is a temporary association.
332 	 */
333 	if (!asoc->temp) {
334 		list_del(&asoc->asocs);
335 
336 		/* Decrement the backlog value for a TCP-style listening
337 		 * socket.
338 		 */
339 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
340 			sk->sk_ack_backlog--;
341 	}
342 
343 	/* Mark as dead, so other users can know this structure is
344 	 * going away.
345 	 */
346 	asoc->base.dead = true;
347 
348 	/* Dispose of any data lying around in the outqueue. */
349 	sctp_outq_free(&asoc->outqueue);
350 
351 	/* Dispose of any pending messages for the upper layer. */
352 	sctp_ulpq_free(&asoc->ulpq);
353 
354 	/* Dispose of any pending chunks on the inqueue. */
355 	sctp_inq_free(&asoc->base.inqueue);
356 
357 	sctp_tsnmap_free(&asoc->peer.tsn_map);
358 
359 	/* Free ssnmap storage. */
360 	sctp_ssnmap_free(asoc->ssnmap);
361 
362 	/* Clean up the bound address list. */
363 	sctp_bind_addr_free(&asoc->base.bind_addr);
364 
365 	/* Do we need to go through all of our timers and
366 	 * delete them?   To be safe we will try to delete all, but we
367 	 * should be able to go through and make a guess based
368 	 * on our state.
369 	 */
370 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
371 		if (del_timer(&asoc->timers[i]))
372 			sctp_association_put(asoc);
373 	}
374 
375 	/* Free peer's cached cookie. */
376 	kfree(asoc->peer.cookie);
377 	kfree(asoc->peer.peer_random);
378 	kfree(asoc->peer.peer_chunks);
379 	kfree(asoc->peer.peer_hmacs);
380 
381 	/* Release the transport structures. */
382 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
383 		transport = list_entry(pos, struct sctp_transport, transports);
384 		list_del_rcu(pos);
385 		sctp_transport_free(transport);
386 	}
387 
388 	asoc->peer.transport_count = 0;
389 
390 	sctp_asconf_queue_teardown(asoc);
391 
392 	/* Free pending address space being deleted */
393 	if (asoc->asconf_addr_del_pending != NULL)
394 		kfree(asoc->asconf_addr_del_pending);
395 
396 	/* AUTH - Free the endpoint shared keys */
397 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
398 
399 	/* AUTH - Free the association shared key */
400 	sctp_auth_key_put(asoc->asoc_shared_key);
401 
402 	sctp_association_put(asoc);
403 }
404 
405 /* Cleanup and free up an association. */
406 static void sctp_association_destroy(struct sctp_association *asoc)
407 {
408 	if (unlikely(!asoc->base.dead)) {
409 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
410 		return;
411 	}
412 
413 	sctp_endpoint_put(asoc->ep);
414 	sock_put(asoc->base.sk);
415 
416 	if (asoc->assoc_id != 0) {
417 		spin_lock_bh(&sctp_assocs_id_lock);
418 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
419 		spin_unlock_bh(&sctp_assocs_id_lock);
420 	}
421 
422 	WARN_ON(atomic_read(&asoc->rmem_alloc));
423 
424 	kfree(asoc);
425 	SCTP_DBG_OBJCNT_DEC(assoc);
426 }
427 
428 /* Change the primary destination address for the peer. */
429 void sctp_assoc_set_primary(struct sctp_association *asoc,
430 			    struct sctp_transport *transport)
431 {
432 	int changeover = 0;
433 
434 	/* it's a changeover only if we already have a primary path
435 	 * that we are changing
436 	 */
437 	if (asoc->peer.primary_path != NULL &&
438 	    asoc->peer.primary_path != transport)
439 		changeover = 1 ;
440 
441 	asoc->peer.primary_path = transport;
442 
443 	/* Set a default msg_name for events. */
444 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
445 	       sizeof(union sctp_addr));
446 
447 	/* If the primary path is changing, assume that the
448 	 * user wants to use this new path.
449 	 */
450 	if ((transport->state == SCTP_ACTIVE) ||
451 	    (transport->state == SCTP_UNKNOWN))
452 		asoc->peer.active_path = transport;
453 
454 	/*
455 	 * SFR-CACC algorithm:
456 	 * Upon the receipt of a request to change the primary
457 	 * destination address, on the data structure for the new
458 	 * primary destination, the sender MUST do the following:
459 	 *
460 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
461 	 * to this destination address earlier. The sender MUST set
462 	 * CYCLING_CHANGEOVER to indicate that this switch is a
463 	 * double switch to the same destination address.
464 	 *
465 	 * Really, only bother is we have data queued or outstanding on
466 	 * the association.
467 	 */
468 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
469 		return;
470 
471 	if (transport->cacc.changeover_active)
472 		transport->cacc.cycling_changeover = changeover;
473 
474 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
475 	 * a changeover has occurred.
476 	 */
477 	transport->cacc.changeover_active = changeover;
478 
479 	/* 3) The sender MUST store the next TSN to be sent in
480 	 * next_tsn_at_change.
481 	 */
482 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
483 }
484 
485 /* Remove a transport from an association.  */
486 void sctp_assoc_rm_peer(struct sctp_association *asoc,
487 			struct sctp_transport *peer)
488 {
489 	struct list_head	*pos;
490 	struct sctp_transport	*transport;
491 
492 	pr_debug("%s: association:%p addr:%pISpc\n",
493 		 __func__, asoc, &peer->ipaddr.sa);
494 
495 	/* If we are to remove the current retran_path, update it
496 	 * to the next peer before removing this peer from the list.
497 	 */
498 	if (asoc->peer.retran_path == peer)
499 		sctp_assoc_update_retran_path(asoc);
500 
501 	/* Remove this peer from the list. */
502 	list_del_rcu(&peer->transports);
503 
504 	/* Get the first transport of asoc. */
505 	pos = asoc->peer.transport_addr_list.next;
506 	transport = list_entry(pos, struct sctp_transport, transports);
507 
508 	/* Update any entries that match the peer to be deleted. */
509 	if (asoc->peer.primary_path == peer)
510 		sctp_assoc_set_primary(asoc, transport);
511 	if (asoc->peer.active_path == peer)
512 		asoc->peer.active_path = transport;
513 	if (asoc->peer.retran_path == peer)
514 		asoc->peer.retran_path = transport;
515 	if (asoc->peer.last_data_from == peer)
516 		asoc->peer.last_data_from = transport;
517 
518 	/* If we remove the transport an INIT was last sent to, set it to
519 	 * NULL. Combined with the update of the retran path above, this
520 	 * will cause the next INIT to be sent to the next available
521 	 * transport, maintaining the cycle.
522 	 */
523 	if (asoc->init_last_sent_to == peer)
524 		asoc->init_last_sent_to = NULL;
525 
526 	/* If we remove the transport an SHUTDOWN was last sent to, set it
527 	 * to NULL. Combined with the update of the retran path above, this
528 	 * will cause the next SHUTDOWN to be sent to the next available
529 	 * transport, maintaining the cycle.
530 	 */
531 	if (asoc->shutdown_last_sent_to == peer)
532 		asoc->shutdown_last_sent_to = NULL;
533 
534 	/* If we remove the transport an ASCONF was last sent to, set it to
535 	 * NULL.
536 	 */
537 	if (asoc->addip_last_asconf &&
538 	    asoc->addip_last_asconf->transport == peer)
539 		asoc->addip_last_asconf->transport = NULL;
540 
541 	/* If we have something on the transmitted list, we have to
542 	 * save it off.  The best place is the active path.
543 	 */
544 	if (!list_empty(&peer->transmitted)) {
545 		struct sctp_transport *active = asoc->peer.active_path;
546 		struct sctp_chunk *ch;
547 
548 		/* Reset the transport of each chunk on this list */
549 		list_for_each_entry(ch, &peer->transmitted,
550 					transmitted_list) {
551 			ch->transport = NULL;
552 			ch->rtt_in_progress = 0;
553 		}
554 
555 		list_splice_tail_init(&peer->transmitted,
556 					&active->transmitted);
557 
558 		/* Start a T3 timer here in case it wasn't running so
559 		 * that these migrated packets have a chance to get
560 		 * retransmitted.
561 		 */
562 		if (!timer_pending(&active->T3_rtx_timer))
563 			if (!mod_timer(&active->T3_rtx_timer,
564 					jiffies + active->rto))
565 				sctp_transport_hold(active);
566 	}
567 
568 	asoc->peer.transport_count--;
569 
570 	sctp_transport_free(peer);
571 }
572 
573 /* Add a transport address to an association.  */
574 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
575 					   const union sctp_addr *addr,
576 					   const gfp_t gfp,
577 					   const int peer_state)
578 {
579 	struct net *net = sock_net(asoc->base.sk);
580 	struct sctp_transport *peer;
581 	struct sctp_sock *sp;
582 	unsigned short port;
583 
584 	sp = sctp_sk(asoc->base.sk);
585 
586 	/* AF_INET and AF_INET6 share common port field. */
587 	port = ntohs(addr->v4.sin_port);
588 
589 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
590 		 asoc, &addr->sa, peer_state);
591 
592 	/* Set the port if it has not been set yet.  */
593 	if (0 == asoc->peer.port)
594 		asoc->peer.port = port;
595 
596 	/* Check to see if this is a duplicate. */
597 	peer = sctp_assoc_lookup_paddr(asoc, addr);
598 	if (peer) {
599 		/* An UNKNOWN state is only set on transports added by
600 		 * user in sctp_connectx() call.  Such transports should be
601 		 * considered CONFIRMED per RFC 4960, Section 5.4.
602 		 */
603 		if (peer->state == SCTP_UNKNOWN) {
604 			peer->state = SCTP_ACTIVE;
605 		}
606 		return peer;
607 	}
608 
609 	peer = sctp_transport_new(net, addr, gfp);
610 	if (!peer)
611 		return NULL;
612 
613 	sctp_transport_set_owner(peer, asoc);
614 
615 	/* Initialize the peer's heartbeat interval based on the
616 	 * association configured value.
617 	 */
618 	peer->hbinterval = asoc->hbinterval;
619 
620 	/* Set the path max_retrans.  */
621 	peer->pathmaxrxt = asoc->pathmaxrxt;
622 
623 	/* And the partial failure retrans threshold */
624 	peer->pf_retrans = asoc->pf_retrans;
625 
626 	/* Initialize the peer's SACK delay timeout based on the
627 	 * association configured value.
628 	 */
629 	peer->sackdelay = asoc->sackdelay;
630 	peer->sackfreq = asoc->sackfreq;
631 
632 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
633 	 * based on association setting.
634 	 */
635 	peer->param_flags = asoc->param_flags;
636 
637 	sctp_transport_route(peer, NULL, sp);
638 
639 	/* Initialize the pmtu of the transport. */
640 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
641 		if (asoc->pathmtu)
642 			peer->pathmtu = asoc->pathmtu;
643 		else
644 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
645 	}
646 
647 	/* If this is the first transport addr on this association,
648 	 * initialize the association PMTU to the peer's PMTU.
649 	 * If not and the current association PMTU is higher than the new
650 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
651 	 */
652 	if (asoc->pathmtu)
653 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
654 	else
655 		asoc->pathmtu = peer->pathmtu;
656 
657 	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
658 		 asoc->pathmtu);
659 
660 	peer->pmtu_pending = 0;
661 
662 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
663 
664 	/* The asoc->peer.port might not be meaningful yet, but
665 	 * initialize the packet structure anyway.
666 	 */
667 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
668 			 asoc->peer.port);
669 
670 	/* 7.2.1 Slow-Start
671 	 *
672 	 * o The initial cwnd before DATA transmission or after a sufficiently
673 	 *   long idle period MUST be set to
674 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
675 	 *
676 	 * o The initial value of ssthresh MAY be arbitrarily high
677 	 *   (for example, implementations MAY use the size of the
678 	 *   receiver advertised window).
679 	 */
680 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
681 
682 	/* At this point, we may not have the receiver's advertised window,
683 	 * so initialize ssthresh to the default value and it will be set
684 	 * later when we process the INIT.
685 	 */
686 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
687 
688 	peer->partial_bytes_acked = 0;
689 	peer->flight_size = 0;
690 	peer->burst_limited = 0;
691 
692 	/* Set the transport's RTO.initial value */
693 	peer->rto = asoc->rto_initial;
694 	sctp_max_rto(asoc, peer);
695 
696 	/* Set the peer's active state. */
697 	peer->state = peer_state;
698 
699 	/* Attach the remote transport to our asoc.  */
700 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
701 	asoc->peer.transport_count++;
702 
703 	/* If we do not yet have a primary path, set one.  */
704 	if (!asoc->peer.primary_path) {
705 		sctp_assoc_set_primary(asoc, peer);
706 		asoc->peer.retran_path = peer;
707 	}
708 
709 	if (asoc->peer.active_path == asoc->peer.retran_path &&
710 	    peer->state != SCTP_UNCONFIRMED) {
711 		asoc->peer.retran_path = peer;
712 	}
713 
714 	return peer;
715 }
716 
717 /* Delete a transport address from an association.  */
718 void sctp_assoc_del_peer(struct sctp_association *asoc,
719 			 const union sctp_addr *addr)
720 {
721 	struct list_head	*pos;
722 	struct list_head	*temp;
723 	struct sctp_transport	*transport;
724 
725 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
726 		transport = list_entry(pos, struct sctp_transport, transports);
727 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
728 			/* Do book keeping for removing the peer and free it. */
729 			sctp_assoc_rm_peer(asoc, transport);
730 			break;
731 		}
732 	}
733 }
734 
735 /* Lookup a transport by address. */
736 struct sctp_transport *sctp_assoc_lookup_paddr(
737 					const struct sctp_association *asoc,
738 					const union sctp_addr *address)
739 {
740 	struct sctp_transport *t;
741 
742 	/* Cycle through all transports searching for a peer address. */
743 
744 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
745 			transports) {
746 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
747 			return t;
748 	}
749 
750 	return NULL;
751 }
752 
753 /* Remove all transports except a give one */
754 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
755 				     struct sctp_transport *primary)
756 {
757 	struct sctp_transport	*temp;
758 	struct sctp_transport	*t;
759 
760 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
761 				 transports) {
762 		/* if the current transport is not the primary one, delete it */
763 		if (t != primary)
764 			sctp_assoc_rm_peer(asoc, t);
765 	}
766 }
767 
768 /* Engage in transport control operations.
769  * Mark the transport up or down and send a notification to the user.
770  * Select and update the new active and retran paths.
771  */
772 void sctp_assoc_control_transport(struct sctp_association *asoc,
773 				  struct sctp_transport *transport,
774 				  sctp_transport_cmd_t command,
775 				  sctp_sn_error_t error)
776 {
777 	struct sctp_transport *t = NULL;
778 	struct sctp_transport *first;
779 	struct sctp_transport *second;
780 	struct sctp_ulpevent *event;
781 	struct sockaddr_storage addr;
782 	int spc_state = 0;
783 	bool ulp_notify = true;
784 
785 	/* Record the transition on the transport.  */
786 	switch (command) {
787 	case SCTP_TRANSPORT_UP:
788 		/* If we are moving from UNCONFIRMED state due
789 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
790 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
791 		 */
792 		if (SCTP_UNCONFIRMED == transport->state &&
793 		    SCTP_HEARTBEAT_SUCCESS == error)
794 			spc_state = SCTP_ADDR_CONFIRMED;
795 		else
796 			spc_state = SCTP_ADDR_AVAILABLE;
797 		/* Don't inform ULP about transition from PF to
798 		 * active state and set cwnd to 1 MTU, see SCTP
799 		 * Quick failover draft section 5.1, point 5
800 		 */
801 		if (transport->state == SCTP_PF) {
802 			ulp_notify = false;
803 			transport->cwnd = asoc->pathmtu;
804 		}
805 		transport->state = SCTP_ACTIVE;
806 		break;
807 
808 	case SCTP_TRANSPORT_DOWN:
809 		/* If the transport was never confirmed, do not transition it
810 		 * to inactive state.  Also, release the cached route since
811 		 * there may be a better route next time.
812 		 */
813 		if (transport->state != SCTP_UNCONFIRMED)
814 			transport->state = SCTP_INACTIVE;
815 		else {
816 			dst_release(transport->dst);
817 			transport->dst = NULL;
818 		}
819 
820 		spc_state = SCTP_ADDR_UNREACHABLE;
821 		break;
822 
823 	case SCTP_TRANSPORT_PF:
824 		transport->state = SCTP_PF;
825 		ulp_notify = false;
826 		break;
827 
828 	default:
829 		return;
830 	}
831 
832 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
833 	 * user.
834 	 */
835 	if (ulp_notify) {
836 		memset(&addr, 0, sizeof(struct sockaddr_storage));
837 		memcpy(&addr, &transport->ipaddr,
838 		       transport->af_specific->sockaddr_len);
839 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
840 					0, spc_state, error, GFP_ATOMIC);
841 		if (event)
842 			sctp_ulpq_tail_event(&asoc->ulpq, event);
843 	}
844 
845 	/* Select new active and retran paths. */
846 
847 	/* Look for the two most recently used active transports.
848 	 *
849 	 * This code produces the wrong ordering whenever jiffies
850 	 * rolls over, but we still get usable transports, so we don't
851 	 * worry about it.
852 	 */
853 	first = NULL; second = NULL;
854 
855 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
856 			transports) {
857 
858 		if ((t->state == SCTP_INACTIVE) ||
859 		    (t->state == SCTP_UNCONFIRMED) ||
860 		    (t->state == SCTP_PF))
861 			continue;
862 		if (!first || t->last_time_heard > first->last_time_heard) {
863 			second = first;
864 			first = t;
865 		} else if (!second ||
866 			   t->last_time_heard > second->last_time_heard)
867 			second = t;
868 	}
869 
870 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
871 	 *
872 	 * By default, an endpoint should always transmit to the
873 	 * primary path, unless the SCTP user explicitly specifies the
874 	 * destination transport address (and possibly source
875 	 * transport address) to use.
876 	 *
877 	 * [If the primary is active but not most recent, bump the most
878 	 * recently used transport.]
879 	 */
880 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
881 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
882 	    first != asoc->peer.primary_path) {
883 		second = first;
884 		first = asoc->peer.primary_path;
885 	}
886 
887 	if (!second)
888 		second = first;
889 	/* If we failed to find a usable transport, just camp on the
890 	 * primary, even if it is inactive.
891 	 */
892 	if (!first) {
893 		first = asoc->peer.primary_path;
894 		second = asoc->peer.primary_path;
895 	}
896 
897 	/* Set the active and retran transports.  */
898 	asoc->peer.active_path = first;
899 	asoc->peer.retran_path = second;
900 }
901 
902 /* Hold a reference to an association. */
903 void sctp_association_hold(struct sctp_association *asoc)
904 {
905 	atomic_inc(&asoc->base.refcnt);
906 }
907 
908 /* Release a reference to an association and cleanup
909  * if there are no more references.
910  */
911 void sctp_association_put(struct sctp_association *asoc)
912 {
913 	if (atomic_dec_and_test(&asoc->base.refcnt))
914 		sctp_association_destroy(asoc);
915 }
916 
917 /* Allocate the next TSN, Transmission Sequence Number, for the given
918  * association.
919  */
920 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
921 {
922 	/* From Section 1.6 Serial Number Arithmetic:
923 	 * Transmission Sequence Numbers wrap around when they reach
924 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
925 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
926 	 */
927 	__u32 retval = asoc->next_tsn;
928 	asoc->next_tsn++;
929 	asoc->unack_data++;
930 
931 	return retval;
932 }
933 
934 /* Compare two addresses to see if they match.  Wildcard addresses
935  * only match themselves.
936  */
937 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
938 			const union sctp_addr *ss2)
939 {
940 	struct sctp_af *af;
941 
942 	af = sctp_get_af_specific(ss1->sa.sa_family);
943 	if (unlikely(!af))
944 		return 0;
945 
946 	return af->cmp_addr(ss1, ss2);
947 }
948 
949 /* Return an ecne chunk to get prepended to a packet.
950  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
951  * No we don't, but we could/should.
952  */
953 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
954 {
955 	if (!asoc->need_ecne)
956 		return NULL;
957 
958 	/* Send ECNE if needed.
959 	 * Not being able to allocate a chunk here is not deadly.
960 	 */
961 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
962 }
963 
964 /*
965  * Find which transport this TSN was sent on.
966  */
967 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
968 					     __u32 tsn)
969 {
970 	struct sctp_transport *active;
971 	struct sctp_transport *match;
972 	struct sctp_transport *transport;
973 	struct sctp_chunk *chunk;
974 	__be32 key = htonl(tsn);
975 
976 	match = NULL;
977 
978 	/*
979 	 * FIXME: In general, find a more efficient data structure for
980 	 * searching.
981 	 */
982 
983 	/*
984 	 * The general strategy is to search each transport's transmitted
985 	 * list.   Return which transport this TSN lives on.
986 	 *
987 	 * Let's be hopeful and check the active_path first.
988 	 * Another optimization would be to know if there is only one
989 	 * outbound path and not have to look for the TSN at all.
990 	 *
991 	 */
992 
993 	active = asoc->peer.active_path;
994 
995 	list_for_each_entry(chunk, &active->transmitted,
996 			transmitted_list) {
997 
998 		if (key == chunk->subh.data_hdr->tsn) {
999 			match = active;
1000 			goto out;
1001 		}
1002 	}
1003 
1004 	/* If not found, go search all the other transports. */
1005 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1006 			transports) {
1007 
1008 		if (transport == active)
1009 			continue;
1010 		list_for_each_entry(chunk, &transport->transmitted,
1011 				transmitted_list) {
1012 			if (key == chunk->subh.data_hdr->tsn) {
1013 				match = transport;
1014 				goto out;
1015 			}
1016 		}
1017 	}
1018 out:
1019 	return match;
1020 }
1021 
1022 /* Is this the association we are looking for? */
1023 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1024 					   struct net *net,
1025 					   const union sctp_addr *laddr,
1026 					   const union sctp_addr *paddr)
1027 {
1028 	struct sctp_transport *transport;
1029 
1030 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1031 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1032 	    net_eq(sock_net(asoc->base.sk), net)) {
1033 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1034 		if (!transport)
1035 			goto out;
1036 
1037 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1038 					 sctp_sk(asoc->base.sk)))
1039 			goto out;
1040 	}
1041 	transport = NULL;
1042 
1043 out:
1044 	return transport;
1045 }
1046 
1047 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1048 static void sctp_assoc_bh_rcv(struct work_struct *work)
1049 {
1050 	struct sctp_association *asoc =
1051 		container_of(work, struct sctp_association,
1052 			     base.inqueue.immediate);
1053 	struct net *net = sock_net(asoc->base.sk);
1054 	struct sctp_endpoint *ep;
1055 	struct sctp_chunk *chunk;
1056 	struct sctp_inq *inqueue;
1057 	int state;
1058 	sctp_subtype_t subtype;
1059 	int error = 0;
1060 
1061 	/* The association should be held so we should be safe. */
1062 	ep = asoc->ep;
1063 
1064 	inqueue = &asoc->base.inqueue;
1065 	sctp_association_hold(asoc);
1066 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1067 		state = asoc->state;
1068 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1069 
1070 		/* SCTP-AUTH, Section 6.3:
1071 		 *    The receiver has a list of chunk types which it expects
1072 		 *    to be received only after an AUTH-chunk.  This list has
1073 		 *    been sent to the peer during the association setup.  It
1074 		 *    MUST silently discard these chunks if they are not placed
1075 		 *    after an AUTH chunk in the packet.
1076 		 */
1077 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1078 			continue;
1079 
1080 		/* Remember where the last DATA chunk came from so we
1081 		 * know where to send the SACK.
1082 		 */
1083 		if (sctp_chunk_is_data(chunk))
1084 			asoc->peer.last_data_from = chunk->transport;
1085 		else {
1086 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1087 			asoc->stats.ictrlchunks++;
1088 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1089 				asoc->stats.isacks++;
1090 		}
1091 
1092 		if (chunk->transport)
1093 			chunk->transport->last_time_heard = jiffies;
1094 
1095 		/* Run through the state machine. */
1096 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1097 				   state, ep, asoc, chunk, GFP_ATOMIC);
1098 
1099 		/* Check to see if the association is freed in response to
1100 		 * the incoming chunk.  If so, get out of the while loop.
1101 		 */
1102 		if (asoc->base.dead)
1103 			break;
1104 
1105 		/* If there is an error on chunk, discard this packet. */
1106 		if (error && chunk)
1107 			chunk->pdiscard = 1;
1108 	}
1109 	sctp_association_put(asoc);
1110 }
1111 
1112 /* This routine moves an association from its old sk to a new sk.  */
1113 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1114 {
1115 	struct sctp_sock *newsp = sctp_sk(newsk);
1116 	struct sock *oldsk = assoc->base.sk;
1117 
1118 	/* Delete the association from the old endpoint's list of
1119 	 * associations.
1120 	 */
1121 	list_del_init(&assoc->asocs);
1122 
1123 	/* Decrement the backlog value for a TCP-style socket. */
1124 	if (sctp_style(oldsk, TCP))
1125 		oldsk->sk_ack_backlog--;
1126 
1127 	/* Release references to the old endpoint and the sock.  */
1128 	sctp_endpoint_put(assoc->ep);
1129 	sock_put(assoc->base.sk);
1130 
1131 	/* Get a reference to the new endpoint.  */
1132 	assoc->ep = newsp->ep;
1133 	sctp_endpoint_hold(assoc->ep);
1134 
1135 	/* Get a reference to the new sock.  */
1136 	assoc->base.sk = newsk;
1137 	sock_hold(assoc->base.sk);
1138 
1139 	/* Add the association to the new endpoint's list of associations.  */
1140 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1141 }
1142 
1143 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1144 void sctp_assoc_update(struct sctp_association *asoc,
1145 		       struct sctp_association *new)
1146 {
1147 	struct sctp_transport *trans;
1148 	struct list_head *pos, *temp;
1149 
1150 	/* Copy in new parameters of peer. */
1151 	asoc->c = new->c;
1152 	asoc->peer.rwnd = new->peer.rwnd;
1153 	asoc->peer.sack_needed = new->peer.sack_needed;
1154 	asoc->peer.i = new->peer.i;
1155 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1156 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1157 
1158 	/* Remove any peer addresses not present in the new association. */
1159 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1160 		trans = list_entry(pos, struct sctp_transport, transports);
1161 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1162 			sctp_assoc_rm_peer(asoc, trans);
1163 			continue;
1164 		}
1165 
1166 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1167 			sctp_transport_reset(trans);
1168 	}
1169 
1170 	/* If the case is A (association restart), use
1171 	 * initial_tsn as next_tsn. If the case is B, use
1172 	 * current next_tsn in case data sent to peer
1173 	 * has been discarded and needs retransmission.
1174 	 */
1175 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1176 		asoc->next_tsn = new->next_tsn;
1177 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1178 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1179 
1180 		/* Reinitialize SSN for both local streams
1181 		 * and peer's streams.
1182 		 */
1183 		sctp_ssnmap_clear(asoc->ssnmap);
1184 
1185 		/* Flush the ULP reassembly and ordered queue.
1186 		 * Any data there will now be stale and will
1187 		 * cause problems.
1188 		 */
1189 		sctp_ulpq_flush(&asoc->ulpq);
1190 
1191 		/* reset the overall association error count so
1192 		 * that the restarted association doesn't get torn
1193 		 * down on the next retransmission timer.
1194 		 */
1195 		asoc->overall_error_count = 0;
1196 
1197 	} else {
1198 		/* Add any peer addresses from the new association. */
1199 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1200 				transports) {
1201 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1202 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1203 						    GFP_ATOMIC, trans->state);
1204 		}
1205 
1206 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1207 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1208 		if (!asoc->ssnmap) {
1209 			/* Move the ssnmap. */
1210 			asoc->ssnmap = new->ssnmap;
1211 			new->ssnmap = NULL;
1212 		}
1213 
1214 		if (!asoc->assoc_id) {
1215 			/* get a new association id since we don't have one
1216 			 * yet.
1217 			 */
1218 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1219 		}
1220 	}
1221 
1222 	/* SCTP-AUTH: Save the peer parameters from the new associations
1223 	 * and also move the association shared keys over
1224 	 */
1225 	kfree(asoc->peer.peer_random);
1226 	asoc->peer.peer_random = new->peer.peer_random;
1227 	new->peer.peer_random = NULL;
1228 
1229 	kfree(asoc->peer.peer_chunks);
1230 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1231 	new->peer.peer_chunks = NULL;
1232 
1233 	kfree(asoc->peer.peer_hmacs);
1234 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1235 	new->peer.peer_hmacs = NULL;
1236 
1237 	sctp_auth_key_put(asoc->asoc_shared_key);
1238 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1239 }
1240 
1241 /* Update the retran path for sending a retransmitted packet.
1242  * Round-robin through the active transports, else round-robin
1243  * through the inactive transports as this is the next best thing
1244  * we can try.
1245  */
1246 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1247 {
1248 	struct sctp_transport *t, *next;
1249 	struct list_head *head = &asoc->peer.transport_addr_list;
1250 	struct list_head *pos;
1251 
1252 	if (asoc->peer.transport_count == 1)
1253 		return;
1254 
1255 	/* Find the next transport in a round-robin fashion. */
1256 	t = asoc->peer.retran_path;
1257 	pos = &t->transports;
1258 	next = NULL;
1259 
1260 	while (1) {
1261 		/* Skip the head. */
1262 		if (pos->next == head)
1263 			pos = head->next;
1264 		else
1265 			pos = pos->next;
1266 
1267 		t = list_entry(pos, struct sctp_transport, transports);
1268 
1269 		/* We have exhausted the list, but didn't find any
1270 		 * other active transports.  If so, use the next
1271 		 * transport.
1272 		 */
1273 		if (t == asoc->peer.retran_path) {
1274 			t = next;
1275 			break;
1276 		}
1277 
1278 		/* Try to find an active transport. */
1279 
1280 		if ((t->state == SCTP_ACTIVE) ||
1281 		    (t->state == SCTP_UNKNOWN)) {
1282 			break;
1283 		} else {
1284 			/* Keep track of the next transport in case
1285 			 * we don't find any active transport.
1286 			 */
1287 			if (t->state != SCTP_UNCONFIRMED && !next)
1288 				next = t;
1289 		}
1290 	}
1291 
1292 	if (t)
1293 		asoc->peer.retran_path = t;
1294 	else
1295 		t = asoc->peer.retran_path;
1296 
1297 	pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc,
1298 		 &t->ipaddr.sa);
1299 }
1300 
1301 /* Choose the transport for sending retransmit packet.  */
1302 struct sctp_transport *sctp_assoc_choose_alter_transport(
1303 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1304 {
1305 	/* If this is the first time packet is sent, use the active path,
1306 	 * else use the retran path. If the last packet was sent over the
1307 	 * retran path, update the retran path and use it.
1308 	 */
1309 	if (!last_sent_to)
1310 		return asoc->peer.active_path;
1311 	else {
1312 		if (last_sent_to == asoc->peer.retran_path)
1313 			sctp_assoc_update_retran_path(asoc);
1314 		return asoc->peer.retran_path;
1315 	}
1316 }
1317 
1318 /* Update the association's pmtu and frag_point by going through all the
1319  * transports. This routine is called when a transport's PMTU has changed.
1320  */
1321 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1322 {
1323 	struct sctp_transport *t;
1324 	__u32 pmtu = 0;
1325 
1326 	if (!asoc)
1327 		return;
1328 
1329 	/* Get the lowest pmtu of all the transports. */
1330 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1331 				transports) {
1332 		if (t->pmtu_pending && t->dst) {
1333 			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1334 			t->pmtu_pending = 0;
1335 		}
1336 		if (!pmtu || (t->pathmtu < pmtu))
1337 			pmtu = t->pathmtu;
1338 	}
1339 
1340 	if (pmtu) {
1341 		asoc->pathmtu = pmtu;
1342 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1343 	}
1344 
1345 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1346 		 asoc->pathmtu, asoc->frag_point);
1347 }
1348 
1349 /* Should we send a SACK to update our peer? */
1350 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1351 {
1352 	struct net *net = sock_net(asoc->base.sk);
1353 	switch (asoc->state) {
1354 	case SCTP_STATE_ESTABLISHED:
1355 	case SCTP_STATE_SHUTDOWN_PENDING:
1356 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1357 	case SCTP_STATE_SHUTDOWN_SENT:
1358 		if ((asoc->rwnd > asoc->a_rwnd) &&
1359 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1360 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1361 			   asoc->pathmtu)))
1362 			return true;
1363 		break;
1364 	default:
1365 		break;
1366 	}
1367 	return false;
1368 }
1369 
1370 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1371 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1372 {
1373 	struct sctp_chunk *sack;
1374 	struct timer_list *timer;
1375 
1376 	if (asoc->rwnd_over) {
1377 		if (asoc->rwnd_over >= len) {
1378 			asoc->rwnd_over -= len;
1379 		} else {
1380 			asoc->rwnd += (len - asoc->rwnd_over);
1381 			asoc->rwnd_over = 0;
1382 		}
1383 	} else {
1384 		asoc->rwnd += len;
1385 	}
1386 
1387 	/* If we had window pressure, start recovering it
1388 	 * once our rwnd had reached the accumulated pressure
1389 	 * threshold.  The idea is to recover slowly, but up
1390 	 * to the initial advertised window.
1391 	 */
1392 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1393 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1394 		asoc->rwnd += change;
1395 		asoc->rwnd_press -= change;
1396 	}
1397 
1398 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1399 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1400 		 asoc->a_rwnd);
1401 
1402 	/* Send a window update SACK if the rwnd has increased by at least the
1403 	 * minimum of the association's PMTU and half of the receive buffer.
1404 	 * The algorithm used is similar to the one described in
1405 	 * Section 4.2.3.3 of RFC 1122.
1406 	 */
1407 	if (sctp_peer_needs_update(asoc)) {
1408 		asoc->a_rwnd = asoc->rwnd;
1409 
1410 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1411 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1412 			 asoc->a_rwnd);
1413 
1414 		sack = sctp_make_sack(asoc);
1415 		if (!sack)
1416 			return;
1417 
1418 		asoc->peer.sack_needed = 0;
1419 
1420 		sctp_outq_tail(&asoc->outqueue, sack);
1421 
1422 		/* Stop the SACK timer.  */
1423 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1424 		if (del_timer(timer))
1425 			sctp_association_put(asoc);
1426 	}
1427 }
1428 
1429 /* Decrease asoc's rwnd by len. */
1430 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1431 {
1432 	int rx_count;
1433 	int over = 0;
1434 
1435 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1436 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1437 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1438 			 asoc->rwnd, asoc->rwnd_over);
1439 
1440 	if (asoc->ep->rcvbuf_policy)
1441 		rx_count = atomic_read(&asoc->rmem_alloc);
1442 	else
1443 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1444 
1445 	/* If we've reached or overflowed our receive buffer, announce
1446 	 * a 0 rwnd if rwnd would still be positive.  Store the
1447 	 * the potential pressure overflow so that the window can be restored
1448 	 * back to original value.
1449 	 */
1450 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1451 		over = 1;
1452 
1453 	if (asoc->rwnd >= len) {
1454 		asoc->rwnd -= len;
1455 		if (over) {
1456 			asoc->rwnd_press += asoc->rwnd;
1457 			asoc->rwnd = 0;
1458 		}
1459 	} else {
1460 		asoc->rwnd_over = len - asoc->rwnd;
1461 		asoc->rwnd = 0;
1462 	}
1463 
1464 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1465 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1466 		 asoc->rwnd_press);
1467 }
1468 
1469 /* Build the bind address list for the association based on info from the
1470  * local endpoint and the remote peer.
1471  */
1472 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1473 				     sctp_scope_t scope, gfp_t gfp)
1474 {
1475 	int flags;
1476 
1477 	/* Use scoping rules to determine the subset of addresses from
1478 	 * the endpoint.
1479 	 */
1480 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1481 	if (asoc->peer.ipv4_address)
1482 		flags |= SCTP_ADDR4_PEERSUPP;
1483 	if (asoc->peer.ipv6_address)
1484 		flags |= SCTP_ADDR6_PEERSUPP;
1485 
1486 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1487 				   &asoc->base.bind_addr,
1488 				   &asoc->ep->base.bind_addr,
1489 				   scope, gfp, flags);
1490 }
1491 
1492 /* Build the association's bind address list from the cookie.  */
1493 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1494 					 struct sctp_cookie *cookie,
1495 					 gfp_t gfp)
1496 {
1497 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1498 	int var_size3 = cookie->raw_addr_list_len;
1499 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1500 
1501 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1502 				      asoc->ep->base.bind_addr.port, gfp);
1503 }
1504 
1505 /* Lookup laddr in the bind address list of an association. */
1506 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1507 			    const union sctp_addr *laddr)
1508 {
1509 	int found = 0;
1510 
1511 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1512 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1513 				 sctp_sk(asoc->base.sk)))
1514 		found = 1;
1515 
1516 	return found;
1517 }
1518 
1519 /* Set an association id for a given association */
1520 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1521 {
1522 	bool preload = gfp & __GFP_WAIT;
1523 	int ret;
1524 
1525 	/* If the id is already assigned, keep it. */
1526 	if (asoc->assoc_id)
1527 		return 0;
1528 
1529 	if (preload)
1530 		idr_preload(gfp);
1531 	spin_lock_bh(&sctp_assocs_id_lock);
1532 	/* 0 is not a valid assoc_id, must be >= 1 */
1533 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1534 	spin_unlock_bh(&sctp_assocs_id_lock);
1535 	if (preload)
1536 		idr_preload_end();
1537 	if (ret < 0)
1538 		return ret;
1539 
1540 	asoc->assoc_id = (sctp_assoc_t)ret;
1541 	return 0;
1542 }
1543 
1544 /* Free the ASCONF queue */
1545 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1546 {
1547 	struct sctp_chunk *asconf;
1548 	struct sctp_chunk *tmp;
1549 
1550 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1551 		list_del_init(&asconf->list);
1552 		sctp_chunk_free(asconf);
1553 	}
1554 }
1555 
1556 /* Free asconf_ack cache */
1557 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1558 {
1559 	struct sctp_chunk *ack;
1560 	struct sctp_chunk *tmp;
1561 
1562 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1563 				transmitted_list) {
1564 		list_del_init(&ack->transmitted_list);
1565 		sctp_chunk_free(ack);
1566 	}
1567 }
1568 
1569 /* Clean up the ASCONF_ACK queue */
1570 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1571 {
1572 	struct sctp_chunk *ack;
1573 	struct sctp_chunk *tmp;
1574 
1575 	/* We can remove all the entries from the queue up to
1576 	 * the "Peer-Sequence-Number".
1577 	 */
1578 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1579 				transmitted_list) {
1580 		if (ack->subh.addip_hdr->serial ==
1581 				htonl(asoc->peer.addip_serial))
1582 			break;
1583 
1584 		list_del_init(&ack->transmitted_list);
1585 		sctp_chunk_free(ack);
1586 	}
1587 }
1588 
1589 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1590 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1591 					const struct sctp_association *asoc,
1592 					__be32 serial)
1593 {
1594 	struct sctp_chunk *ack;
1595 
1596 	/* Walk through the list of cached ASCONF-ACKs and find the
1597 	 * ack chunk whose serial number matches that of the request.
1598 	 */
1599 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1600 		if (ack->subh.addip_hdr->serial == serial) {
1601 			sctp_chunk_hold(ack);
1602 			return ack;
1603 		}
1604 	}
1605 
1606 	return NULL;
1607 }
1608 
1609 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1610 {
1611 	/* Free any cached ASCONF_ACK chunk. */
1612 	sctp_assoc_free_asconf_acks(asoc);
1613 
1614 	/* Free the ASCONF queue. */
1615 	sctp_assoc_free_asconf_queue(asoc);
1616 
1617 	/* Free any cached ASCONF chunk. */
1618 	if (asoc->addip_last_asconf)
1619 		sctp_chunk_free(asoc->addip_last_asconf);
1620 }
1621