xref: /openbmc/linux/net/sctp/associola.c (revision 3a448205)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@us.ibm.com>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang             <hui.huang@nokia.com>
38  *    Sridhar Samudrala	    <sri@us.ibm.com>
39  *    Daisy Chang	    <daisyc@us.ibm.com>
40  *    Ryan Layer	    <rmlayer@us.ibm.com>
41  *    Kevin Gao             <kevin.gao@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50 
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56 
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(
67 					struct sctp_association *asoc,
68 					const struct sctp_endpoint *ep,
69 					const struct sock *sk,
70 					enum sctp_scope scope, gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	struct sctp_paramhdr *p;
75 	int i;
76 
77 	/* Retrieve the SCTP per socket area.  */
78 	sp = sctp_sk((struct sock *)sk);
79 
80 	/* Discarding const is appropriate here.  */
81 	asoc->ep = (struct sctp_endpoint *)ep;
82 	asoc->base.sk = (struct sock *)sk;
83 
84 	sctp_endpoint_hold(asoc->ep);
85 	sock_hold(asoc->base.sk);
86 
87 	/* Initialize the common base substructure.  */
88 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
89 
90 	/* Initialize the object handling fields.  */
91 	refcount_set(&asoc->base.refcnt, 1);
92 
93 	/* Initialize the bind addr area.  */
94 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
95 
96 	asoc->state = SCTP_STATE_CLOSED;
97 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 	asoc->user_frag = sp->user_frag;
99 
100 	/* Set the association max_retrans and RTO values from the
101 	 * socket values.
102 	 */
103 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 	asoc->pf_retrans  = net->sctp.pf_retrans;
105 
106 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
109 
110 	/* Initialize the association's heartbeat interval based on the
111 	 * sock configured value.
112 	 */
113 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
114 
115 	/* Initialize path max retrans value. */
116 	asoc->pathmaxrxt = sp->pathmaxrxt;
117 
118 	asoc->flowlabel = sp->flowlabel;
119 	asoc->dscp = sp->dscp;
120 
121 	/* Initialize default path MTU. */
122 	asoc->pathmtu = sp->pathmtu;
123 
124 	/* Set association default SACK delay */
125 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
126 	asoc->sackfreq = sp->sackfreq;
127 
128 	/* Set the association default flags controlling
129 	 * Heartbeat, SACK delay, and Path MTU Discovery.
130 	 */
131 	asoc->param_flags = sp->param_flags;
132 
133 	/* Initialize the maximum number of new data packets that can be sent
134 	 * in a burst.
135 	 */
136 	asoc->max_burst = sp->max_burst;
137 
138 	asoc->subscribe = sp->subscribe;
139 
140 	/* initialize association timers */
141 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
142 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
143 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
144 
145 	/* sctpimpguide Section 2.12.2
146 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
147 	 * recommended value of 5 times 'RTO.Max'.
148 	 */
149 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
150 		= 5 * asoc->rto_max;
151 
152 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
153 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
154 
155 	/* Initializes the timers */
156 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
157 		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
158 
159 	/* Pull default initialization values from the sock options.
160 	 * Note: This assumes that the values have already been
161 	 * validated in the sock.
162 	 */
163 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
164 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
165 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
166 
167 	asoc->max_init_timeo =
168 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
169 
170 	/* Set the local window size for receive.
171 	 * This is also the rcvbuf space per association.
172 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
173 	 * 1500 bytes in one SCTP packet.
174 	 */
175 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
176 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
177 	else
178 		asoc->rwnd = sk->sk_rcvbuf/2;
179 
180 	asoc->a_rwnd = asoc->rwnd;
181 
182 	/* Use my own max window until I learn something better.  */
183 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
184 
185 	/* Initialize the receive memory counter */
186 	atomic_set(&asoc->rmem_alloc, 0);
187 
188 	init_waitqueue_head(&asoc->wait);
189 
190 	asoc->c.my_vtag = sctp_generate_tag(ep);
191 	asoc->c.my_port = ep->base.bind_addr.port;
192 
193 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
194 
195 	asoc->next_tsn = asoc->c.initial_tsn;
196 
197 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
198 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
199 	asoc->highest_sacked = asoc->ctsn_ack_point;
200 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
201 
202 	/* ADDIP Section 4.1 Asconf Chunk Procedures
203 	 *
204 	 * When an endpoint has an ASCONF signaled change to be sent to the
205 	 * remote endpoint it should do the following:
206 	 * ...
207 	 * A2) a serial number should be assigned to the chunk. The serial
208 	 * number SHOULD be a monotonically increasing number. The serial
209 	 * numbers SHOULD be initialized at the start of the
210 	 * association to the same value as the initial TSN.
211 	 */
212 	asoc->addip_serial = asoc->c.initial_tsn;
213 	asoc->strreset_outseq = asoc->c.initial_tsn;
214 
215 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
216 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
217 
218 	/* Make an empty list of remote transport addresses.  */
219 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
220 
221 	/* RFC 2960 5.1 Normal Establishment of an Association
222 	 *
223 	 * After the reception of the first data chunk in an
224 	 * association the endpoint must immediately respond with a
225 	 * sack to acknowledge the data chunk.  Subsequent
226 	 * acknowledgements should be done as described in Section
227 	 * 6.2.
228 	 *
229 	 * [We implement this by telling a new association that it
230 	 * already received one packet.]
231 	 */
232 	asoc->peer.sack_needed = 1;
233 	asoc->peer.sack_generation = 1;
234 
235 	/* Assume that the peer will tell us if he recognizes ASCONF
236 	 * as part of INIT exchange.
237 	 * The sctp_addip_noauth option is there for backward compatibility
238 	 * and will revert old behavior.
239 	 */
240 	if (net->sctp.addip_noauth)
241 		asoc->peer.asconf_capable = 1;
242 
243 	/* Create an input queue.  */
244 	sctp_inq_init(&asoc->base.inqueue);
245 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
246 
247 	/* Create an output queue.  */
248 	sctp_outq_init(asoc, &asoc->outqueue);
249 
250 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
251 		goto fail_init;
252 
253 	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
254 			     0, gfp))
255 		goto fail_init;
256 
257 	/* Assume that peer would support both address types unless we are
258 	 * told otherwise.
259 	 */
260 	asoc->peer.ipv4_address = 1;
261 	if (asoc->base.sk->sk_family == PF_INET6)
262 		asoc->peer.ipv6_address = 1;
263 	INIT_LIST_HEAD(&asoc->asocs);
264 
265 	asoc->default_stream = sp->default_stream;
266 	asoc->default_ppid = sp->default_ppid;
267 	asoc->default_flags = sp->default_flags;
268 	asoc->default_context = sp->default_context;
269 	asoc->default_timetolive = sp->default_timetolive;
270 	asoc->default_rcv_context = sp->default_rcv_context;
271 
272 	/* AUTH related initializations */
273 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
274 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
275 		goto stream_free;
276 
277 	asoc->active_key_id = ep->active_key_id;
278 	asoc->prsctp_enable = ep->prsctp_enable;
279 	asoc->reconf_enable = ep->reconf_enable;
280 	asoc->strreset_enable = ep->strreset_enable;
281 
282 	/* Save the hmacs and chunks list into this association */
283 	if (ep->auth_hmacs_list)
284 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
285 			ntohs(ep->auth_hmacs_list->param_hdr.length));
286 	if (ep->auth_chunk_list)
287 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
288 			ntohs(ep->auth_chunk_list->param_hdr.length));
289 
290 	/* Get the AUTH random number for this association */
291 	p = (struct sctp_paramhdr *)asoc->c.auth_random;
292 	p->type = SCTP_PARAM_RANDOM;
293 	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
294 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
295 
296 	return asoc;
297 
298 stream_free:
299 	sctp_stream_free(&asoc->stream);
300 fail_init:
301 	sock_put(asoc->base.sk);
302 	sctp_endpoint_put(asoc->ep);
303 	return NULL;
304 }
305 
306 /* Allocate and initialize a new association */
307 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
308 					      const struct sock *sk,
309 					      enum sctp_scope scope, gfp_t gfp)
310 {
311 	struct sctp_association *asoc;
312 
313 	asoc = kzalloc(sizeof(*asoc), gfp);
314 	if (!asoc)
315 		goto fail;
316 
317 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
318 		goto fail_init;
319 
320 	SCTP_DBG_OBJCNT_INC(assoc);
321 
322 	pr_debug("Created asoc %p\n", asoc);
323 
324 	return asoc;
325 
326 fail_init:
327 	kfree(asoc);
328 fail:
329 	return NULL;
330 }
331 
332 /* Free this association if possible.  There may still be users, so
333  * the actual deallocation may be delayed.
334  */
335 void sctp_association_free(struct sctp_association *asoc)
336 {
337 	struct sock *sk = asoc->base.sk;
338 	struct sctp_transport *transport;
339 	struct list_head *pos, *temp;
340 	int i;
341 
342 	/* Only real associations count against the endpoint, so
343 	 * don't bother for if this is a temporary association.
344 	 */
345 	if (!list_empty(&asoc->asocs)) {
346 		list_del(&asoc->asocs);
347 
348 		/* Decrement the backlog value for a TCP-style listening
349 		 * socket.
350 		 */
351 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
352 			sk->sk_ack_backlog--;
353 	}
354 
355 	/* Mark as dead, so other users can know this structure is
356 	 * going away.
357 	 */
358 	asoc->base.dead = true;
359 
360 	/* Dispose of any data lying around in the outqueue. */
361 	sctp_outq_free(&asoc->outqueue);
362 
363 	/* Dispose of any pending messages for the upper layer. */
364 	sctp_ulpq_free(&asoc->ulpq);
365 
366 	/* Dispose of any pending chunks on the inqueue. */
367 	sctp_inq_free(&asoc->base.inqueue);
368 
369 	sctp_tsnmap_free(&asoc->peer.tsn_map);
370 
371 	/* Free stream information. */
372 	sctp_stream_free(&asoc->stream);
373 
374 	if (asoc->strreset_chunk)
375 		sctp_chunk_free(asoc->strreset_chunk);
376 
377 	/* Clean up the bound address list. */
378 	sctp_bind_addr_free(&asoc->base.bind_addr);
379 
380 	/* Do we need to go through all of our timers and
381 	 * delete them?   To be safe we will try to delete all, but we
382 	 * should be able to go through and make a guess based
383 	 * on our state.
384 	 */
385 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
386 		if (del_timer(&asoc->timers[i]))
387 			sctp_association_put(asoc);
388 	}
389 
390 	/* Free peer's cached cookie. */
391 	kfree(asoc->peer.cookie);
392 	kfree(asoc->peer.peer_random);
393 	kfree(asoc->peer.peer_chunks);
394 	kfree(asoc->peer.peer_hmacs);
395 
396 	/* Release the transport structures. */
397 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
398 		transport = list_entry(pos, struct sctp_transport, transports);
399 		list_del_rcu(pos);
400 		sctp_unhash_transport(transport);
401 		sctp_transport_free(transport);
402 	}
403 
404 	asoc->peer.transport_count = 0;
405 
406 	sctp_asconf_queue_teardown(asoc);
407 
408 	/* Free pending address space being deleted */
409 	kfree(asoc->asconf_addr_del_pending);
410 
411 	/* AUTH - Free the endpoint shared keys */
412 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
413 
414 	/* AUTH - Free the association shared key */
415 	sctp_auth_key_put(asoc->asoc_shared_key);
416 
417 	sctp_association_put(asoc);
418 }
419 
420 /* Cleanup and free up an association. */
421 static void sctp_association_destroy(struct sctp_association *asoc)
422 {
423 	if (unlikely(!asoc->base.dead)) {
424 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
425 		return;
426 	}
427 
428 	sctp_endpoint_put(asoc->ep);
429 	sock_put(asoc->base.sk);
430 
431 	if (asoc->assoc_id != 0) {
432 		spin_lock_bh(&sctp_assocs_id_lock);
433 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
434 		spin_unlock_bh(&sctp_assocs_id_lock);
435 	}
436 
437 	WARN_ON(atomic_read(&asoc->rmem_alloc));
438 
439 	kfree(asoc);
440 	SCTP_DBG_OBJCNT_DEC(assoc);
441 }
442 
443 /* Change the primary destination address for the peer. */
444 void sctp_assoc_set_primary(struct sctp_association *asoc,
445 			    struct sctp_transport *transport)
446 {
447 	int changeover = 0;
448 
449 	/* it's a changeover only if we already have a primary path
450 	 * that we are changing
451 	 */
452 	if (asoc->peer.primary_path != NULL &&
453 	    asoc->peer.primary_path != transport)
454 		changeover = 1 ;
455 
456 	asoc->peer.primary_path = transport;
457 
458 	/* Set a default msg_name for events. */
459 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
460 	       sizeof(union sctp_addr));
461 
462 	/* If the primary path is changing, assume that the
463 	 * user wants to use this new path.
464 	 */
465 	if ((transport->state == SCTP_ACTIVE) ||
466 	    (transport->state == SCTP_UNKNOWN))
467 		asoc->peer.active_path = transport;
468 
469 	/*
470 	 * SFR-CACC algorithm:
471 	 * Upon the receipt of a request to change the primary
472 	 * destination address, on the data structure for the new
473 	 * primary destination, the sender MUST do the following:
474 	 *
475 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
476 	 * to this destination address earlier. The sender MUST set
477 	 * CYCLING_CHANGEOVER to indicate that this switch is a
478 	 * double switch to the same destination address.
479 	 *
480 	 * Really, only bother is we have data queued or outstanding on
481 	 * the association.
482 	 */
483 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
484 		return;
485 
486 	if (transport->cacc.changeover_active)
487 		transport->cacc.cycling_changeover = changeover;
488 
489 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
490 	 * a changeover has occurred.
491 	 */
492 	transport->cacc.changeover_active = changeover;
493 
494 	/* 3) The sender MUST store the next TSN to be sent in
495 	 * next_tsn_at_change.
496 	 */
497 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
498 }
499 
500 /* Remove a transport from an association.  */
501 void sctp_assoc_rm_peer(struct sctp_association *asoc,
502 			struct sctp_transport *peer)
503 {
504 	struct sctp_transport *transport;
505 	struct list_head *pos;
506 	struct sctp_chunk *ch;
507 
508 	pr_debug("%s: association:%p addr:%pISpc\n",
509 		 __func__, asoc, &peer->ipaddr.sa);
510 
511 	/* If we are to remove the current retran_path, update it
512 	 * to the next peer before removing this peer from the list.
513 	 */
514 	if (asoc->peer.retran_path == peer)
515 		sctp_assoc_update_retran_path(asoc);
516 
517 	/* Remove this peer from the list. */
518 	list_del_rcu(&peer->transports);
519 	/* Remove this peer from the transport hashtable */
520 	sctp_unhash_transport(peer);
521 
522 	/* Get the first transport of asoc. */
523 	pos = asoc->peer.transport_addr_list.next;
524 	transport = list_entry(pos, struct sctp_transport, transports);
525 
526 	/* Update any entries that match the peer to be deleted. */
527 	if (asoc->peer.primary_path == peer)
528 		sctp_assoc_set_primary(asoc, transport);
529 	if (asoc->peer.active_path == peer)
530 		asoc->peer.active_path = transport;
531 	if (asoc->peer.retran_path == peer)
532 		asoc->peer.retran_path = transport;
533 	if (asoc->peer.last_data_from == peer)
534 		asoc->peer.last_data_from = transport;
535 
536 	if (asoc->strreset_chunk &&
537 	    asoc->strreset_chunk->transport == peer) {
538 		asoc->strreset_chunk->transport = transport;
539 		sctp_transport_reset_reconf_timer(transport);
540 	}
541 
542 	/* If we remove the transport an INIT was last sent to, set it to
543 	 * NULL. Combined with the update of the retran path above, this
544 	 * will cause the next INIT to be sent to the next available
545 	 * transport, maintaining the cycle.
546 	 */
547 	if (asoc->init_last_sent_to == peer)
548 		asoc->init_last_sent_to = NULL;
549 
550 	/* If we remove the transport an SHUTDOWN was last sent to, set it
551 	 * to NULL. Combined with the update of the retran path above, this
552 	 * will cause the next SHUTDOWN to be sent to the next available
553 	 * transport, maintaining the cycle.
554 	 */
555 	if (asoc->shutdown_last_sent_to == peer)
556 		asoc->shutdown_last_sent_to = NULL;
557 
558 	/* If we remove the transport an ASCONF was last sent to, set it to
559 	 * NULL.
560 	 */
561 	if (asoc->addip_last_asconf &&
562 	    asoc->addip_last_asconf->transport == peer)
563 		asoc->addip_last_asconf->transport = NULL;
564 
565 	/* If we have something on the transmitted list, we have to
566 	 * save it off.  The best place is the active path.
567 	 */
568 	if (!list_empty(&peer->transmitted)) {
569 		struct sctp_transport *active = asoc->peer.active_path;
570 
571 		/* Reset the transport of each chunk on this list */
572 		list_for_each_entry(ch, &peer->transmitted,
573 					transmitted_list) {
574 			ch->transport = NULL;
575 			ch->rtt_in_progress = 0;
576 		}
577 
578 		list_splice_tail_init(&peer->transmitted,
579 					&active->transmitted);
580 
581 		/* Start a T3 timer here in case it wasn't running so
582 		 * that these migrated packets have a chance to get
583 		 * retransmitted.
584 		 */
585 		if (!timer_pending(&active->T3_rtx_timer))
586 			if (!mod_timer(&active->T3_rtx_timer,
587 					jiffies + active->rto))
588 				sctp_transport_hold(active);
589 	}
590 
591 	list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
592 		if (ch->transport == peer)
593 			ch->transport = NULL;
594 
595 	asoc->peer.transport_count--;
596 
597 	sctp_transport_free(peer);
598 }
599 
600 /* Add a transport address to an association.  */
601 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
602 					   const union sctp_addr *addr,
603 					   const gfp_t gfp,
604 					   const int peer_state)
605 {
606 	struct net *net = sock_net(asoc->base.sk);
607 	struct sctp_transport *peer;
608 	struct sctp_sock *sp;
609 	unsigned short port;
610 
611 	sp = sctp_sk(asoc->base.sk);
612 
613 	/* AF_INET and AF_INET6 share common port field. */
614 	port = ntohs(addr->v4.sin_port);
615 
616 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
617 		 asoc, &addr->sa, peer_state);
618 
619 	/* Set the port if it has not been set yet.  */
620 	if (0 == asoc->peer.port)
621 		asoc->peer.port = port;
622 
623 	/* Check to see if this is a duplicate. */
624 	peer = sctp_assoc_lookup_paddr(asoc, addr);
625 	if (peer) {
626 		/* An UNKNOWN state is only set on transports added by
627 		 * user in sctp_connectx() call.  Such transports should be
628 		 * considered CONFIRMED per RFC 4960, Section 5.4.
629 		 */
630 		if (peer->state == SCTP_UNKNOWN) {
631 			peer->state = SCTP_ACTIVE;
632 		}
633 		return peer;
634 	}
635 
636 	peer = sctp_transport_new(net, addr, gfp);
637 	if (!peer)
638 		return NULL;
639 
640 	sctp_transport_set_owner(peer, asoc);
641 
642 	/* Initialize the peer's heartbeat interval based on the
643 	 * association configured value.
644 	 */
645 	peer->hbinterval = asoc->hbinterval;
646 
647 	/* Set the path max_retrans.  */
648 	peer->pathmaxrxt = asoc->pathmaxrxt;
649 
650 	/* And the partial failure retrans threshold */
651 	peer->pf_retrans = asoc->pf_retrans;
652 
653 	/* Initialize the peer's SACK delay timeout based on the
654 	 * association configured value.
655 	 */
656 	peer->sackdelay = asoc->sackdelay;
657 	peer->sackfreq = asoc->sackfreq;
658 
659 	if (addr->sa.sa_family == AF_INET6) {
660 		__be32 info = addr->v6.sin6_flowinfo;
661 
662 		if (info) {
663 			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
664 			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
665 		} else {
666 			peer->flowlabel = asoc->flowlabel;
667 		}
668 	}
669 	peer->dscp = asoc->dscp;
670 
671 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
672 	 * based on association setting.
673 	 */
674 	peer->param_flags = asoc->param_flags;
675 
676 	/* Initialize the pmtu of the transport. */
677 	sctp_transport_route(peer, NULL, sp);
678 
679 	/* If this is the first transport addr on this association,
680 	 * initialize the association PMTU to the peer's PMTU.
681 	 * If not and the current association PMTU is higher than the new
682 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
683 	 */
684 	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
685 				  min_t(int, peer->pathmtu, asoc->pathmtu) :
686 				  peer->pathmtu);
687 
688 	peer->pmtu_pending = 0;
689 
690 	/* The asoc->peer.port might not be meaningful yet, but
691 	 * initialize the packet structure anyway.
692 	 */
693 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
694 			 asoc->peer.port);
695 
696 	/* 7.2.1 Slow-Start
697 	 *
698 	 * o The initial cwnd before DATA transmission or after a sufficiently
699 	 *   long idle period MUST be set to
700 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
701 	 *
702 	 * o The initial value of ssthresh MAY be arbitrarily high
703 	 *   (for example, implementations MAY use the size of the
704 	 *   receiver advertised window).
705 	 */
706 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
707 
708 	/* At this point, we may not have the receiver's advertised window,
709 	 * so initialize ssthresh to the default value and it will be set
710 	 * later when we process the INIT.
711 	 */
712 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
713 
714 	peer->partial_bytes_acked = 0;
715 	peer->flight_size = 0;
716 	peer->burst_limited = 0;
717 
718 	/* Set the transport's RTO.initial value */
719 	peer->rto = asoc->rto_initial;
720 	sctp_max_rto(asoc, peer);
721 
722 	/* Set the peer's active state. */
723 	peer->state = peer_state;
724 
725 	/* Add this peer into the transport hashtable */
726 	if (sctp_hash_transport(peer)) {
727 		sctp_transport_free(peer);
728 		return NULL;
729 	}
730 
731 	/* Attach the remote transport to our asoc.  */
732 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
733 	asoc->peer.transport_count++;
734 
735 	/* If we do not yet have a primary path, set one.  */
736 	if (!asoc->peer.primary_path) {
737 		sctp_assoc_set_primary(asoc, peer);
738 		asoc->peer.retran_path = peer;
739 	}
740 
741 	if (asoc->peer.active_path == asoc->peer.retran_path &&
742 	    peer->state != SCTP_UNCONFIRMED) {
743 		asoc->peer.retran_path = peer;
744 	}
745 
746 	return peer;
747 }
748 
749 /* Delete a transport address from an association.  */
750 void sctp_assoc_del_peer(struct sctp_association *asoc,
751 			 const union sctp_addr *addr)
752 {
753 	struct list_head	*pos;
754 	struct list_head	*temp;
755 	struct sctp_transport	*transport;
756 
757 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
758 		transport = list_entry(pos, struct sctp_transport, transports);
759 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
760 			/* Do book keeping for removing the peer and free it. */
761 			sctp_assoc_rm_peer(asoc, transport);
762 			break;
763 		}
764 	}
765 }
766 
767 /* Lookup a transport by address. */
768 struct sctp_transport *sctp_assoc_lookup_paddr(
769 					const struct sctp_association *asoc,
770 					const union sctp_addr *address)
771 {
772 	struct sctp_transport *t;
773 
774 	/* Cycle through all transports searching for a peer address. */
775 
776 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
777 			transports) {
778 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
779 			return t;
780 	}
781 
782 	return NULL;
783 }
784 
785 /* Remove all transports except a give one */
786 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
787 				     struct sctp_transport *primary)
788 {
789 	struct sctp_transport	*temp;
790 	struct sctp_transport	*t;
791 
792 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
793 				 transports) {
794 		/* if the current transport is not the primary one, delete it */
795 		if (t != primary)
796 			sctp_assoc_rm_peer(asoc, t);
797 	}
798 }
799 
800 /* Engage in transport control operations.
801  * Mark the transport up or down and send a notification to the user.
802  * Select and update the new active and retran paths.
803  */
804 void sctp_assoc_control_transport(struct sctp_association *asoc,
805 				  struct sctp_transport *transport,
806 				  enum sctp_transport_cmd command,
807 				  sctp_sn_error_t error)
808 {
809 	struct sctp_ulpevent *event;
810 	struct sockaddr_storage addr;
811 	int spc_state = 0;
812 	bool ulp_notify = true;
813 
814 	/* Record the transition on the transport.  */
815 	switch (command) {
816 	case SCTP_TRANSPORT_UP:
817 		/* If we are moving from UNCONFIRMED state due
818 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
819 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
820 		 */
821 		if (SCTP_UNCONFIRMED == transport->state &&
822 		    SCTP_HEARTBEAT_SUCCESS == error)
823 			spc_state = SCTP_ADDR_CONFIRMED;
824 		else
825 			spc_state = SCTP_ADDR_AVAILABLE;
826 		/* Don't inform ULP about transition from PF to
827 		 * active state and set cwnd to 1 MTU, see SCTP
828 		 * Quick failover draft section 5.1, point 5
829 		 */
830 		if (transport->state == SCTP_PF) {
831 			ulp_notify = false;
832 			transport->cwnd = asoc->pathmtu;
833 		}
834 		transport->state = SCTP_ACTIVE;
835 		break;
836 
837 	case SCTP_TRANSPORT_DOWN:
838 		/* If the transport was never confirmed, do not transition it
839 		 * to inactive state.  Also, release the cached route since
840 		 * there may be a better route next time.
841 		 */
842 		if (transport->state != SCTP_UNCONFIRMED)
843 			transport->state = SCTP_INACTIVE;
844 		else {
845 			sctp_transport_dst_release(transport);
846 			ulp_notify = false;
847 		}
848 
849 		spc_state = SCTP_ADDR_UNREACHABLE;
850 		break;
851 
852 	case SCTP_TRANSPORT_PF:
853 		transport->state = SCTP_PF;
854 		ulp_notify = false;
855 		break;
856 
857 	default:
858 		return;
859 	}
860 
861 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
862 	 * to the user.
863 	 */
864 	if (ulp_notify) {
865 		memset(&addr, 0, sizeof(struct sockaddr_storage));
866 		memcpy(&addr, &transport->ipaddr,
867 		       transport->af_specific->sockaddr_len);
868 
869 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
870 					0, spc_state, error, GFP_ATOMIC);
871 		if (event)
872 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
873 	}
874 
875 	/* Select new active and retran paths. */
876 	sctp_select_active_and_retran_path(asoc);
877 }
878 
879 /* Hold a reference to an association. */
880 void sctp_association_hold(struct sctp_association *asoc)
881 {
882 	refcount_inc(&asoc->base.refcnt);
883 }
884 
885 /* Release a reference to an association and cleanup
886  * if there are no more references.
887  */
888 void sctp_association_put(struct sctp_association *asoc)
889 {
890 	if (refcount_dec_and_test(&asoc->base.refcnt))
891 		sctp_association_destroy(asoc);
892 }
893 
894 /* Allocate the next TSN, Transmission Sequence Number, for the given
895  * association.
896  */
897 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
898 {
899 	/* From Section 1.6 Serial Number Arithmetic:
900 	 * Transmission Sequence Numbers wrap around when they reach
901 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
902 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
903 	 */
904 	__u32 retval = asoc->next_tsn;
905 	asoc->next_tsn++;
906 	asoc->unack_data++;
907 
908 	return retval;
909 }
910 
911 /* Compare two addresses to see if they match.  Wildcard addresses
912  * only match themselves.
913  */
914 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
915 			const union sctp_addr *ss2)
916 {
917 	struct sctp_af *af;
918 
919 	af = sctp_get_af_specific(ss1->sa.sa_family);
920 	if (unlikely(!af))
921 		return 0;
922 
923 	return af->cmp_addr(ss1, ss2);
924 }
925 
926 /* Return an ecne chunk to get prepended to a packet.
927  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
928  * No we don't, but we could/should.
929  */
930 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
931 {
932 	if (!asoc->need_ecne)
933 		return NULL;
934 
935 	/* Send ECNE if needed.
936 	 * Not being able to allocate a chunk here is not deadly.
937 	 */
938 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
939 }
940 
941 /*
942  * Find which transport this TSN was sent on.
943  */
944 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
945 					     __u32 tsn)
946 {
947 	struct sctp_transport *active;
948 	struct sctp_transport *match;
949 	struct sctp_transport *transport;
950 	struct sctp_chunk *chunk;
951 	__be32 key = htonl(tsn);
952 
953 	match = NULL;
954 
955 	/*
956 	 * FIXME: In general, find a more efficient data structure for
957 	 * searching.
958 	 */
959 
960 	/*
961 	 * The general strategy is to search each transport's transmitted
962 	 * list.   Return which transport this TSN lives on.
963 	 *
964 	 * Let's be hopeful and check the active_path first.
965 	 * Another optimization would be to know if there is only one
966 	 * outbound path and not have to look for the TSN at all.
967 	 *
968 	 */
969 
970 	active = asoc->peer.active_path;
971 
972 	list_for_each_entry(chunk, &active->transmitted,
973 			transmitted_list) {
974 
975 		if (key == chunk->subh.data_hdr->tsn) {
976 			match = active;
977 			goto out;
978 		}
979 	}
980 
981 	/* If not found, go search all the other transports. */
982 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
983 			transports) {
984 
985 		if (transport == active)
986 			continue;
987 		list_for_each_entry(chunk, &transport->transmitted,
988 				transmitted_list) {
989 			if (key == chunk->subh.data_hdr->tsn) {
990 				match = transport;
991 				goto out;
992 			}
993 		}
994 	}
995 out:
996 	return match;
997 }
998 
999 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1000 static void sctp_assoc_bh_rcv(struct work_struct *work)
1001 {
1002 	struct sctp_association *asoc =
1003 		container_of(work, struct sctp_association,
1004 			     base.inqueue.immediate);
1005 	struct net *net = sock_net(asoc->base.sk);
1006 	union sctp_subtype subtype;
1007 	struct sctp_endpoint *ep;
1008 	struct sctp_chunk *chunk;
1009 	struct sctp_inq *inqueue;
1010 	int first_time = 1;	/* is this the first time through the loop */
1011 	int error = 0;
1012 	int state;
1013 
1014 	/* The association should be held so we should be safe. */
1015 	ep = asoc->ep;
1016 
1017 	inqueue = &asoc->base.inqueue;
1018 	sctp_association_hold(asoc);
1019 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1020 		state = asoc->state;
1021 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1022 
1023 		/* If the first chunk in the packet is AUTH, do special
1024 		 * processing specified in Section 6.3 of SCTP-AUTH spec
1025 		 */
1026 		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1027 			struct sctp_chunkhdr *next_hdr;
1028 
1029 			next_hdr = sctp_inq_peek(inqueue);
1030 			if (!next_hdr)
1031 				goto normal;
1032 
1033 			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1034 			 * chunk while saving a pointer to it so we can do
1035 			 * Authentication later (during cookie-echo
1036 			 * processing).
1037 			 */
1038 			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1039 				chunk->auth_chunk = skb_clone(chunk->skb,
1040 							      GFP_ATOMIC);
1041 				chunk->auth = 1;
1042 				continue;
1043 			}
1044 		}
1045 
1046 normal:
1047 		/* SCTP-AUTH, Section 6.3:
1048 		 *    The receiver has a list of chunk types which it expects
1049 		 *    to be received only after an AUTH-chunk.  This list has
1050 		 *    been sent to the peer during the association setup.  It
1051 		 *    MUST silently discard these chunks if they are not placed
1052 		 *    after an AUTH chunk in the packet.
1053 		 */
1054 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1055 			continue;
1056 
1057 		/* Remember where the last DATA chunk came from so we
1058 		 * know where to send the SACK.
1059 		 */
1060 		if (sctp_chunk_is_data(chunk))
1061 			asoc->peer.last_data_from = chunk->transport;
1062 		else {
1063 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1064 			asoc->stats.ictrlchunks++;
1065 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1066 				asoc->stats.isacks++;
1067 		}
1068 
1069 		if (chunk->transport)
1070 			chunk->transport->last_time_heard = ktime_get();
1071 
1072 		/* Run through the state machine. */
1073 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1074 				   state, ep, asoc, chunk, GFP_ATOMIC);
1075 
1076 		/* Check to see if the association is freed in response to
1077 		 * the incoming chunk.  If so, get out of the while loop.
1078 		 */
1079 		if (asoc->base.dead)
1080 			break;
1081 
1082 		/* If there is an error on chunk, discard this packet. */
1083 		if (error && chunk)
1084 			chunk->pdiscard = 1;
1085 
1086 		if (first_time)
1087 			first_time = 0;
1088 	}
1089 	sctp_association_put(asoc);
1090 }
1091 
1092 /* This routine moves an association from its old sk to a new sk.  */
1093 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1094 {
1095 	struct sctp_sock *newsp = sctp_sk(newsk);
1096 	struct sock *oldsk = assoc->base.sk;
1097 
1098 	/* Delete the association from the old endpoint's list of
1099 	 * associations.
1100 	 */
1101 	list_del_init(&assoc->asocs);
1102 
1103 	/* Decrement the backlog value for a TCP-style socket. */
1104 	if (sctp_style(oldsk, TCP))
1105 		oldsk->sk_ack_backlog--;
1106 
1107 	/* Release references to the old endpoint and the sock.  */
1108 	sctp_endpoint_put(assoc->ep);
1109 	sock_put(assoc->base.sk);
1110 
1111 	/* Get a reference to the new endpoint.  */
1112 	assoc->ep = newsp->ep;
1113 	sctp_endpoint_hold(assoc->ep);
1114 
1115 	/* Get a reference to the new sock.  */
1116 	assoc->base.sk = newsk;
1117 	sock_hold(assoc->base.sk);
1118 
1119 	/* Add the association to the new endpoint's list of associations.  */
1120 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1121 }
1122 
1123 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1124 int sctp_assoc_update(struct sctp_association *asoc,
1125 		      struct sctp_association *new)
1126 {
1127 	struct sctp_transport *trans;
1128 	struct list_head *pos, *temp;
1129 
1130 	/* Copy in new parameters of peer. */
1131 	asoc->c = new->c;
1132 	asoc->peer.rwnd = new->peer.rwnd;
1133 	asoc->peer.sack_needed = new->peer.sack_needed;
1134 	asoc->peer.auth_capable = new->peer.auth_capable;
1135 	asoc->peer.i = new->peer.i;
1136 
1137 	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1138 			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1139 		return -ENOMEM;
1140 
1141 	/* Remove any peer addresses not present in the new association. */
1142 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1143 		trans = list_entry(pos, struct sctp_transport, transports);
1144 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1145 			sctp_assoc_rm_peer(asoc, trans);
1146 			continue;
1147 		}
1148 
1149 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1150 			sctp_transport_reset(trans);
1151 	}
1152 
1153 	/* If the case is A (association restart), use
1154 	 * initial_tsn as next_tsn. If the case is B, use
1155 	 * current next_tsn in case data sent to peer
1156 	 * has been discarded and needs retransmission.
1157 	 */
1158 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1159 		asoc->next_tsn = new->next_tsn;
1160 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1161 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1162 
1163 		/* Reinitialize SSN for both local streams
1164 		 * and peer's streams.
1165 		 */
1166 		sctp_stream_clear(&asoc->stream);
1167 
1168 		/* Flush the ULP reassembly and ordered queue.
1169 		 * Any data there will now be stale and will
1170 		 * cause problems.
1171 		 */
1172 		sctp_ulpq_flush(&asoc->ulpq);
1173 
1174 		/* reset the overall association error count so
1175 		 * that the restarted association doesn't get torn
1176 		 * down on the next retransmission timer.
1177 		 */
1178 		asoc->overall_error_count = 0;
1179 
1180 	} else {
1181 		/* Add any peer addresses from the new association. */
1182 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1183 				    transports)
1184 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1185 			    !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1186 						 GFP_ATOMIC, trans->state))
1187 				return -ENOMEM;
1188 
1189 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1190 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1191 
1192 		if (sctp_state(asoc, COOKIE_WAIT))
1193 			sctp_stream_update(&asoc->stream, &new->stream);
1194 
1195 		/* get a new assoc id if we don't have one yet. */
1196 		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1197 			return -ENOMEM;
1198 	}
1199 
1200 	/* SCTP-AUTH: Save the peer parameters from the new associations
1201 	 * and also move the association shared keys over
1202 	 */
1203 	kfree(asoc->peer.peer_random);
1204 	asoc->peer.peer_random = new->peer.peer_random;
1205 	new->peer.peer_random = NULL;
1206 
1207 	kfree(asoc->peer.peer_chunks);
1208 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1209 	new->peer.peer_chunks = NULL;
1210 
1211 	kfree(asoc->peer.peer_hmacs);
1212 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1213 	new->peer.peer_hmacs = NULL;
1214 
1215 	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1216 }
1217 
1218 /* Update the retran path for sending a retransmitted packet.
1219  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1220  *
1221  *   When there is outbound data to send and the primary path
1222  *   becomes inactive (e.g., due to failures), or where the
1223  *   SCTP user explicitly requests to send data to an
1224  *   inactive destination transport address, before reporting
1225  *   an error to its ULP, the SCTP endpoint should try to send
1226  *   the data to an alternate active destination transport
1227  *   address if one exists.
1228  *
1229  *   When retransmitting data that timed out, if the endpoint
1230  *   is multihomed, it should consider each source-destination
1231  *   address pair in its retransmission selection policy.
1232  *   When retransmitting timed-out data, the endpoint should
1233  *   attempt to pick the most divergent source-destination
1234  *   pair from the original source-destination pair to which
1235  *   the packet was transmitted.
1236  *
1237  *   Note: Rules for picking the most divergent source-destination
1238  *   pair are an implementation decision and are not specified
1239  *   within this document.
1240  *
1241  * Our basic strategy is to round-robin transports in priorities
1242  * according to sctp_trans_score() e.g., if no such
1243  * transport with state SCTP_ACTIVE exists, round-robin through
1244  * SCTP_UNKNOWN, etc. You get the picture.
1245  */
1246 static u8 sctp_trans_score(const struct sctp_transport *trans)
1247 {
1248 	switch (trans->state) {
1249 	case SCTP_ACTIVE:
1250 		return 3;	/* best case */
1251 	case SCTP_UNKNOWN:
1252 		return 2;
1253 	case SCTP_PF:
1254 		return 1;
1255 	default: /* case SCTP_INACTIVE */
1256 		return 0;	/* worst case */
1257 	}
1258 }
1259 
1260 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1261 						   struct sctp_transport *trans2)
1262 {
1263 	if (trans1->error_count > trans2->error_count) {
1264 		return trans2;
1265 	} else if (trans1->error_count == trans2->error_count &&
1266 		   ktime_after(trans2->last_time_heard,
1267 			       trans1->last_time_heard)) {
1268 		return trans2;
1269 	} else {
1270 		return trans1;
1271 	}
1272 }
1273 
1274 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1275 						    struct sctp_transport *best)
1276 {
1277 	u8 score_curr, score_best;
1278 
1279 	if (best == NULL || curr == best)
1280 		return curr;
1281 
1282 	score_curr = sctp_trans_score(curr);
1283 	score_best = sctp_trans_score(best);
1284 
1285 	/* First, try a score-based selection if both transport states
1286 	 * differ. If we're in a tie, lets try to make a more clever
1287 	 * decision here based on error counts and last time heard.
1288 	 */
1289 	if (score_curr > score_best)
1290 		return curr;
1291 	else if (score_curr == score_best)
1292 		return sctp_trans_elect_tie(best, curr);
1293 	else
1294 		return best;
1295 }
1296 
1297 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1298 {
1299 	struct sctp_transport *trans = asoc->peer.retran_path;
1300 	struct sctp_transport *trans_next = NULL;
1301 
1302 	/* We're done as we only have the one and only path. */
1303 	if (asoc->peer.transport_count == 1)
1304 		return;
1305 	/* If active_path and retran_path are the same and active,
1306 	 * then this is the only active path. Use it.
1307 	 */
1308 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1309 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1310 		return;
1311 
1312 	/* Iterate from retran_path's successor back to retran_path. */
1313 	for (trans = list_next_entry(trans, transports); 1;
1314 	     trans = list_next_entry(trans, transports)) {
1315 		/* Manually skip the head element. */
1316 		if (&trans->transports == &asoc->peer.transport_addr_list)
1317 			continue;
1318 		if (trans->state == SCTP_UNCONFIRMED)
1319 			continue;
1320 		trans_next = sctp_trans_elect_best(trans, trans_next);
1321 		/* Active is good enough for immediate return. */
1322 		if (trans_next->state == SCTP_ACTIVE)
1323 			break;
1324 		/* We've reached the end, time to update path. */
1325 		if (trans == asoc->peer.retran_path)
1326 			break;
1327 	}
1328 
1329 	asoc->peer.retran_path = trans_next;
1330 
1331 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1332 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1333 }
1334 
1335 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1336 {
1337 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1338 	struct sctp_transport *trans_pf = NULL;
1339 
1340 	/* Look for the two most recently used active transports. */
1341 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1342 			    transports) {
1343 		/* Skip uninteresting transports. */
1344 		if (trans->state == SCTP_INACTIVE ||
1345 		    trans->state == SCTP_UNCONFIRMED)
1346 			continue;
1347 		/* Keep track of the best PF transport from our
1348 		 * list in case we don't find an active one.
1349 		 */
1350 		if (trans->state == SCTP_PF) {
1351 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1352 			continue;
1353 		}
1354 		/* For active transports, pick the most recent ones. */
1355 		if (trans_pri == NULL ||
1356 		    ktime_after(trans->last_time_heard,
1357 				trans_pri->last_time_heard)) {
1358 			trans_sec = trans_pri;
1359 			trans_pri = trans;
1360 		} else if (trans_sec == NULL ||
1361 			   ktime_after(trans->last_time_heard,
1362 				       trans_sec->last_time_heard)) {
1363 			trans_sec = trans;
1364 		}
1365 	}
1366 
1367 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1368 	 *
1369 	 * By default, an endpoint should always transmit to the primary
1370 	 * path, unless the SCTP user explicitly specifies the
1371 	 * destination transport address (and possibly source transport
1372 	 * address) to use. [If the primary is active but not most recent,
1373 	 * bump the most recently used transport.]
1374 	 */
1375 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1376 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1377 	     asoc->peer.primary_path != trans_pri) {
1378 		trans_sec = trans_pri;
1379 		trans_pri = asoc->peer.primary_path;
1380 	}
1381 
1382 	/* We did not find anything useful for a possible retransmission
1383 	 * path; either primary path that we found is the the same as
1384 	 * the current one, or we didn't generally find an active one.
1385 	 */
1386 	if (trans_sec == NULL)
1387 		trans_sec = trans_pri;
1388 
1389 	/* If we failed to find a usable transport, just camp on the
1390 	 * active or pick a PF iff it's the better choice.
1391 	 */
1392 	if (trans_pri == NULL) {
1393 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1394 		trans_sec = trans_pri;
1395 	}
1396 
1397 	/* Set the active and retran transports. */
1398 	asoc->peer.active_path = trans_pri;
1399 	asoc->peer.retran_path = trans_sec;
1400 }
1401 
1402 struct sctp_transport *
1403 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1404 				  struct sctp_transport *last_sent_to)
1405 {
1406 	/* If this is the first time packet is sent, use the active path,
1407 	 * else use the retran path. If the last packet was sent over the
1408 	 * retran path, update the retran path and use it.
1409 	 */
1410 	if (last_sent_to == NULL) {
1411 		return asoc->peer.active_path;
1412 	} else {
1413 		if (last_sent_to == asoc->peer.retran_path)
1414 			sctp_assoc_update_retran_path(asoc);
1415 
1416 		return asoc->peer.retran_path;
1417 	}
1418 }
1419 
1420 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1421 {
1422 	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1423 				    sctp_datachk_len(&asoc->stream));
1424 
1425 	if (asoc->user_frag)
1426 		frag = min_t(int, frag, asoc->user_frag);
1427 
1428 	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1429 				sctp_datachk_len(&asoc->stream));
1430 
1431 	asoc->frag_point = SCTP_TRUNC4(frag);
1432 }
1433 
1434 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1435 {
1436 	if (asoc->pathmtu != pmtu) {
1437 		asoc->pathmtu = pmtu;
1438 		sctp_assoc_update_frag_point(asoc);
1439 	}
1440 
1441 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1442 		 asoc->pathmtu, asoc->frag_point);
1443 }
1444 
1445 /* Update the association's pmtu and frag_point by going through all the
1446  * transports. This routine is called when a transport's PMTU has changed.
1447  */
1448 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1449 {
1450 	struct sctp_transport *t;
1451 	__u32 pmtu = 0;
1452 
1453 	if (!asoc)
1454 		return;
1455 
1456 	/* Get the lowest pmtu of all the transports. */
1457 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1458 		if (t->pmtu_pending && t->dst) {
1459 			sctp_transport_update_pmtu(t,
1460 						   atomic_read(&t->mtu_info));
1461 			t->pmtu_pending = 0;
1462 		}
1463 		if (!pmtu || (t->pathmtu < pmtu))
1464 			pmtu = t->pathmtu;
1465 	}
1466 
1467 	sctp_assoc_set_pmtu(asoc, pmtu);
1468 }
1469 
1470 /* Should we send a SACK to update our peer? */
1471 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1472 {
1473 	struct net *net = sock_net(asoc->base.sk);
1474 	switch (asoc->state) {
1475 	case SCTP_STATE_ESTABLISHED:
1476 	case SCTP_STATE_SHUTDOWN_PENDING:
1477 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1478 	case SCTP_STATE_SHUTDOWN_SENT:
1479 		if ((asoc->rwnd > asoc->a_rwnd) &&
1480 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1481 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1482 			   asoc->pathmtu)))
1483 			return true;
1484 		break;
1485 	default:
1486 		break;
1487 	}
1488 	return false;
1489 }
1490 
1491 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1492 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1493 {
1494 	struct sctp_chunk *sack;
1495 	struct timer_list *timer;
1496 
1497 	if (asoc->rwnd_over) {
1498 		if (asoc->rwnd_over >= len) {
1499 			asoc->rwnd_over -= len;
1500 		} else {
1501 			asoc->rwnd += (len - asoc->rwnd_over);
1502 			asoc->rwnd_over = 0;
1503 		}
1504 	} else {
1505 		asoc->rwnd += len;
1506 	}
1507 
1508 	/* If we had window pressure, start recovering it
1509 	 * once our rwnd had reached the accumulated pressure
1510 	 * threshold.  The idea is to recover slowly, but up
1511 	 * to the initial advertised window.
1512 	 */
1513 	if (asoc->rwnd_press) {
1514 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1515 		asoc->rwnd += change;
1516 		asoc->rwnd_press -= change;
1517 	}
1518 
1519 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1520 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1521 		 asoc->a_rwnd);
1522 
1523 	/* Send a window update SACK if the rwnd has increased by at least the
1524 	 * minimum of the association's PMTU and half of the receive buffer.
1525 	 * The algorithm used is similar to the one described in
1526 	 * Section 4.2.3.3 of RFC 1122.
1527 	 */
1528 	if (sctp_peer_needs_update(asoc)) {
1529 		asoc->a_rwnd = asoc->rwnd;
1530 
1531 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1532 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1533 			 asoc->a_rwnd);
1534 
1535 		sack = sctp_make_sack(asoc);
1536 		if (!sack)
1537 			return;
1538 
1539 		asoc->peer.sack_needed = 0;
1540 
1541 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1542 
1543 		/* Stop the SACK timer.  */
1544 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1545 		if (del_timer(timer))
1546 			sctp_association_put(asoc);
1547 	}
1548 }
1549 
1550 /* Decrease asoc's rwnd by len. */
1551 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1552 {
1553 	int rx_count;
1554 	int over = 0;
1555 
1556 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1557 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1558 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1559 			 asoc->rwnd, asoc->rwnd_over);
1560 
1561 	if (asoc->ep->rcvbuf_policy)
1562 		rx_count = atomic_read(&asoc->rmem_alloc);
1563 	else
1564 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1565 
1566 	/* If we've reached or overflowed our receive buffer, announce
1567 	 * a 0 rwnd if rwnd would still be positive.  Store the
1568 	 * the potential pressure overflow so that the window can be restored
1569 	 * back to original value.
1570 	 */
1571 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1572 		over = 1;
1573 
1574 	if (asoc->rwnd >= len) {
1575 		asoc->rwnd -= len;
1576 		if (over) {
1577 			asoc->rwnd_press += asoc->rwnd;
1578 			asoc->rwnd = 0;
1579 		}
1580 	} else {
1581 		asoc->rwnd_over += len - asoc->rwnd;
1582 		asoc->rwnd = 0;
1583 	}
1584 
1585 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1586 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1587 		 asoc->rwnd_press);
1588 }
1589 
1590 /* Build the bind address list for the association based on info from the
1591  * local endpoint and the remote peer.
1592  */
1593 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1594 				     enum sctp_scope scope, gfp_t gfp)
1595 {
1596 	int flags;
1597 
1598 	/* Use scoping rules to determine the subset of addresses from
1599 	 * the endpoint.
1600 	 */
1601 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1602 	if (asoc->peer.ipv4_address)
1603 		flags |= SCTP_ADDR4_PEERSUPP;
1604 	if (asoc->peer.ipv6_address)
1605 		flags |= SCTP_ADDR6_PEERSUPP;
1606 
1607 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1608 				   &asoc->base.bind_addr,
1609 				   &asoc->ep->base.bind_addr,
1610 				   scope, gfp, flags);
1611 }
1612 
1613 /* Build the association's bind address list from the cookie.  */
1614 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1615 					 struct sctp_cookie *cookie,
1616 					 gfp_t gfp)
1617 {
1618 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1619 	int var_size3 = cookie->raw_addr_list_len;
1620 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1621 
1622 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1623 				      asoc->ep->base.bind_addr.port, gfp);
1624 }
1625 
1626 /* Lookup laddr in the bind address list of an association. */
1627 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1628 			    const union sctp_addr *laddr)
1629 {
1630 	int found = 0;
1631 
1632 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1633 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1634 				 sctp_sk(asoc->base.sk)))
1635 		found = 1;
1636 
1637 	return found;
1638 }
1639 
1640 /* Set an association id for a given association */
1641 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1642 {
1643 	bool preload = gfpflags_allow_blocking(gfp);
1644 	int ret;
1645 
1646 	/* If the id is already assigned, keep it. */
1647 	if (asoc->assoc_id)
1648 		return 0;
1649 
1650 	if (preload)
1651 		idr_preload(gfp);
1652 	spin_lock_bh(&sctp_assocs_id_lock);
1653 	/* 0 is not a valid assoc_id, must be >= 1 */
1654 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1655 	spin_unlock_bh(&sctp_assocs_id_lock);
1656 	if (preload)
1657 		idr_preload_end();
1658 	if (ret < 0)
1659 		return ret;
1660 
1661 	asoc->assoc_id = (sctp_assoc_t)ret;
1662 	return 0;
1663 }
1664 
1665 /* Free the ASCONF queue */
1666 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1667 {
1668 	struct sctp_chunk *asconf;
1669 	struct sctp_chunk *tmp;
1670 
1671 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1672 		list_del_init(&asconf->list);
1673 		sctp_chunk_free(asconf);
1674 	}
1675 }
1676 
1677 /* Free asconf_ack cache */
1678 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1679 {
1680 	struct sctp_chunk *ack;
1681 	struct sctp_chunk *tmp;
1682 
1683 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1684 				transmitted_list) {
1685 		list_del_init(&ack->transmitted_list);
1686 		sctp_chunk_free(ack);
1687 	}
1688 }
1689 
1690 /* Clean up the ASCONF_ACK queue */
1691 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1692 {
1693 	struct sctp_chunk *ack;
1694 	struct sctp_chunk *tmp;
1695 
1696 	/* We can remove all the entries from the queue up to
1697 	 * the "Peer-Sequence-Number".
1698 	 */
1699 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1700 				transmitted_list) {
1701 		if (ack->subh.addip_hdr->serial ==
1702 				htonl(asoc->peer.addip_serial))
1703 			break;
1704 
1705 		list_del_init(&ack->transmitted_list);
1706 		sctp_chunk_free(ack);
1707 	}
1708 }
1709 
1710 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1711 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1712 					const struct sctp_association *asoc,
1713 					__be32 serial)
1714 {
1715 	struct sctp_chunk *ack;
1716 
1717 	/* Walk through the list of cached ASCONF-ACKs and find the
1718 	 * ack chunk whose serial number matches that of the request.
1719 	 */
1720 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1721 		if (sctp_chunk_pending(ack))
1722 			continue;
1723 		if (ack->subh.addip_hdr->serial == serial) {
1724 			sctp_chunk_hold(ack);
1725 			return ack;
1726 		}
1727 	}
1728 
1729 	return NULL;
1730 }
1731 
1732 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1733 {
1734 	/* Free any cached ASCONF_ACK chunk. */
1735 	sctp_assoc_free_asconf_acks(asoc);
1736 
1737 	/* Free the ASCONF queue. */
1738 	sctp_assoc_free_asconf_queue(asoc);
1739 
1740 	/* Free any cached ASCONF chunk. */
1741 	if (asoc->addip_last_asconf)
1742 		sctp_chunk_free(asoc->addip_last_asconf);
1743 }
1744