1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init( 67 struct sctp_association *asoc, 68 const struct sctp_endpoint *ep, 69 const struct sock *sk, 70 enum sctp_scope scope, gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 struct sctp_paramhdr *p; 75 int i; 76 77 /* Retrieve the SCTP per socket area. */ 78 sp = sctp_sk((struct sock *)sk); 79 80 /* Discarding const is appropriate here. */ 81 asoc->ep = (struct sctp_endpoint *)ep; 82 asoc->base.sk = (struct sock *)sk; 83 84 sctp_endpoint_hold(asoc->ep); 85 sock_hold(asoc->base.sk); 86 87 /* Initialize the common base substructure. */ 88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 89 90 /* Initialize the object handling fields. */ 91 refcount_set(&asoc->base.refcnt, 1); 92 93 /* Initialize the bind addr area. */ 94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 95 96 asoc->state = SCTP_STATE_CLOSED; 97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 98 asoc->user_frag = sp->user_frag; 99 100 /* Set the association max_retrans and RTO values from the 101 * socket values. 102 */ 103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 104 asoc->pf_retrans = net->sctp.pf_retrans; 105 106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 109 110 /* Initialize the association's heartbeat interval based on the 111 * sock configured value. 112 */ 113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 114 115 /* Initialize path max retrans value. */ 116 asoc->pathmaxrxt = sp->pathmaxrxt; 117 118 asoc->flowlabel = sp->flowlabel; 119 asoc->dscp = sp->dscp; 120 121 /* Initialize default path MTU. */ 122 asoc->pathmtu = sp->pathmtu; 123 124 /* Set association default SACK delay */ 125 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 126 asoc->sackfreq = sp->sackfreq; 127 128 /* Set the association default flags controlling 129 * Heartbeat, SACK delay, and Path MTU Discovery. 130 */ 131 asoc->param_flags = sp->param_flags; 132 133 /* Initialize the maximum number of new data packets that can be sent 134 * in a burst. 135 */ 136 asoc->max_burst = sp->max_burst; 137 138 asoc->subscribe = sp->subscribe; 139 140 /* initialize association timers */ 141 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 142 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 143 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 144 145 /* sctpimpguide Section 2.12.2 146 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 147 * recommended value of 5 times 'RTO.Max'. 148 */ 149 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 150 = 5 * asoc->rto_max; 151 152 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 153 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 154 155 /* Initializes the timers */ 156 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 157 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0); 158 159 /* Pull default initialization values from the sock options. 160 * Note: This assumes that the values have already been 161 * validated in the sock. 162 */ 163 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 164 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 165 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 166 167 asoc->max_init_timeo = 168 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 169 170 /* Set the local window size for receive. 171 * This is also the rcvbuf space per association. 172 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 173 * 1500 bytes in one SCTP packet. 174 */ 175 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 176 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 177 else 178 asoc->rwnd = sk->sk_rcvbuf/2; 179 180 asoc->a_rwnd = asoc->rwnd; 181 182 /* Use my own max window until I learn something better. */ 183 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 184 185 /* Initialize the receive memory counter */ 186 atomic_set(&asoc->rmem_alloc, 0); 187 188 init_waitqueue_head(&asoc->wait); 189 190 asoc->c.my_vtag = sctp_generate_tag(ep); 191 asoc->c.my_port = ep->base.bind_addr.port; 192 193 asoc->c.initial_tsn = sctp_generate_tsn(ep); 194 195 asoc->next_tsn = asoc->c.initial_tsn; 196 197 asoc->ctsn_ack_point = asoc->next_tsn - 1; 198 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 199 asoc->highest_sacked = asoc->ctsn_ack_point; 200 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 201 202 /* ADDIP Section 4.1 Asconf Chunk Procedures 203 * 204 * When an endpoint has an ASCONF signaled change to be sent to the 205 * remote endpoint it should do the following: 206 * ... 207 * A2) a serial number should be assigned to the chunk. The serial 208 * number SHOULD be a monotonically increasing number. The serial 209 * numbers SHOULD be initialized at the start of the 210 * association to the same value as the initial TSN. 211 */ 212 asoc->addip_serial = asoc->c.initial_tsn; 213 asoc->strreset_outseq = asoc->c.initial_tsn; 214 215 INIT_LIST_HEAD(&asoc->addip_chunk_list); 216 INIT_LIST_HEAD(&asoc->asconf_ack_list); 217 218 /* Make an empty list of remote transport addresses. */ 219 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 220 221 /* RFC 2960 5.1 Normal Establishment of an Association 222 * 223 * After the reception of the first data chunk in an 224 * association the endpoint must immediately respond with a 225 * sack to acknowledge the data chunk. Subsequent 226 * acknowledgements should be done as described in Section 227 * 6.2. 228 * 229 * [We implement this by telling a new association that it 230 * already received one packet.] 231 */ 232 asoc->peer.sack_needed = 1; 233 asoc->peer.sack_generation = 1; 234 235 /* Assume that the peer will tell us if he recognizes ASCONF 236 * as part of INIT exchange. 237 * The sctp_addip_noauth option is there for backward compatibility 238 * and will revert old behavior. 239 */ 240 if (net->sctp.addip_noauth) 241 asoc->peer.asconf_capable = 1; 242 243 /* Create an input queue. */ 244 sctp_inq_init(&asoc->base.inqueue); 245 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 246 247 /* Create an output queue. */ 248 sctp_outq_init(asoc, &asoc->outqueue); 249 250 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 251 goto fail_init; 252 253 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 254 0, gfp)) 255 goto fail_init; 256 257 /* Assume that peer would support both address types unless we are 258 * told otherwise. 259 */ 260 asoc->peer.ipv4_address = 1; 261 if (asoc->base.sk->sk_family == PF_INET6) 262 asoc->peer.ipv6_address = 1; 263 INIT_LIST_HEAD(&asoc->asocs); 264 265 asoc->default_stream = sp->default_stream; 266 asoc->default_ppid = sp->default_ppid; 267 asoc->default_flags = sp->default_flags; 268 asoc->default_context = sp->default_context; 269 asoc->default_timetolive = sp->default_timetolive; 270 asoc->default_rcv_context = sp->default_rcv_context; 271 272 /* AUTH related initializations */ 273 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 274 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) 275 goto stream_free; 276 277 asoc->active_key_id = ep->active_key_id; 278 asoc->prsctp_enable = ep->prsctp_enable; 279 asoc->reconf_enable = ep->reconf_enable; 280 asoc->strreset_enable = ep->strreset_enable; 281 282 /* Save the hmacs and chunks list into this association */ 283 if (ep->auth_hmacs_list) 284 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 285 ntohs(ep->auth_hmacs_list->param_hdr.length)); 286 if (ep->auth_chunk_list) 287 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 288 ntohs(ep->auth_chunk_list->param_hdr.length)); 289 290 /* Get the AUTH random number for this association */ 291 p = (struct sctp_paramhdr *)asoc->c.auth_random; 292 p->type = SCTP_PARAM_RANDOM; 293 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH); 294 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 295 296 return asoc; 297 298 stream_free: 299 sctp_stream_free(&asoc->stream); 300 fail_init: 301 sock_put(asoc->base.sk); 302 sctp_endpoint_put(asoc->ep); 303 return NULL; 304 } 305 306 /* Allocate and initialize a new association */ 307 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 308 const struct sock *sk, 309 enum sctp_scope scope, gfp_t gfp) 310 { 311 struct sctp_association *asoc; 312 313 asoc = kzalloc(sizeof(*asoc), gfp); 314 if (!asoc) 315 goto fail; 316 317 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 318 goto fail_init; 319 320 SCTP_DBG_OBJCNT_INC(assoc); 321 322 pr_debug("Created asoc %p\n", asoc); 323 324 return asoc; 325 326 fail_init: 327 kfree(asoc); 328 fail: 329 return NULL; 330 } 331 332 /* Free this association if possible. There may still be users, so 333 * the actual deallocation may be delayed. 334 */ 335 void sctp_association_free(struct sctp_association *asoc) 336 { 337 struct sock *sk = asoc->base.sk; 338 struct sctp_transport *transport; 339 struct list_head *pos, *temp; 340 int i; 341 342 /* Only real associations count against the endpoint, so 343 * don't bother for if this is a temporary association. 344 */ 345 if (!list_empty(&asoc->asocs)) { 346 list_del(&asoc->asocs); 347 348 /* Decrement the backlog value for a TCP-style listening 349 * socket. 350 */ 351 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 352 sk->sk_ack_backlog--; 353 } 354 355 /* Mark as dead, so other users can know this structure is 356 * going away. 357 */ 358 asoc->base.dead = true; 359 360 /* Dispose of any data lying around in the outqueue. */ 361 sctp_outq_free(&asoc->outqueue); 362 363 /* Dispose of any pending messages for the upper layer. */ 364 sctp_ulpq_free(&asoc->ulpq); 365 366 /* Dispose of any pending chunks on the inqueue. */ 367 sctp_inq_free(&asoc->base.inqueue); 368 369 sctp_tsnmap_free(&asoc->peer.tsn_map); 370 371 /* Free stream information. */ 372 sctp_stream_free(&asoc->stream); 373 374 if (asoc->strreset_chunk) 375 sctp_chunk_free(asoc->strreset_chunk); 376 377 /* Clean up the bound address list. */ 378 sctp_bind_addr_free(&asoc->base.bind_addr); 379 380 /* Do we need to go through all of our timers and 381 * delete them? To be safe we will try to delete all, but we 382 * should be able to go through and make a guess based 383 * on our state. 384 */ 385 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 386 if (del_timer(&asoc->timers[i])) 387 sctp_association_put(asoc); 388 } 389 390 /* Free peer's cached cookie. */ 391 kfree(asoc->peer.cookie); 392 kfree(asoc->peer.peer_random); 393 kfree(asoc->peer.peer_chunks); 394 kfree(asoc->peer.peer_hmacs); 395 396 /* Release the transport structures. */ 397 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 398 transport = list_entry(pos, struct sctp_transport, transports); 399 list_del_rcu(pos); 400 sctp_unhash_transport(transport); 401 sctp_transport_free(transport); 402 } 403 404 asoc->peer.transport_count = 0; 405 406 sctp_asconf_queue_teardown(asoc); 407 408 /* Free pending address space being deleted */ 409 kfree(asoc->asconf_addr_del_pending); 410 411 /* AUTH - Free the endpoint shared keys */ 412 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 413 414 /* AUTH - Free the association shared key */ 415 sctp_auth_key_put(asoc->asoc_shared_key); 416 417 sctp_association_put(asoc); 418 } 419 420 /* Cleanup and free up an association. */ 421 static void sctp_association_destroy(struct sctp_association *asoc) 422 { 423 if (unlikely(!asoc->base.dead)) { 424 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 425 return; 426 } 427 428 sctp_endpoint_put(asoc->ep); 429 sock_put(asoc->base.sk); 430 431 if (asoc->assoc_id != 0) { 432 spin_lock_bh(&sctp_assocs_id_lock); 433 idr_remove(&sctp_assocs_id, asoc->assoc_id); 434 spin_unlock_bh(&sctp_assocs_id_lock); 435 } 436 437 WARN_ON(atomic_read(&asoc->rmem_alloc)); 438 439 kfree(asoc); 440 SCTP_DBG_OBJCNT_DEC(assoc); 441 } 442 443 /* Change the primary destination address for the peer. */ 444 void sctp_assoc_set_primary(struct sctp_association *asoc, 445 struct sctp_transport *transport) 446 { 447 int changeover = 0; 448 449 /* it's a changeover only if we already have a primary path 450 * that we are changing 451 */ 452 if (asoc->peer.primary_path != NULL && 453 asoc->peer.primary_path != transport) 454 changeover = 1 ; 455 456 asoc->peer.primary_path = transport; 457 458 /* Set a default msg_name for events. */ 459 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 460 sizeof(union sctp_addr)); 461 462 /* If the primary path is changing, assume that the 463 * user wants to use this new path. 464 */ 465 if ((transport->state == SCTP_ACTIVE) || 466 (transport->state == SCTP_UNKNOWN)) 467 asoc->peer.active_path = transport; 468 469 /* 470 * SFR-CACC algorithm: 471 * Upon the receipt of a request to change the primary 472 * destination address, on the data structure for the new 473 * primary destination, the sender MUST do the following: 474 * 475 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 476 * to this destination address earlier. The sender MUST set 477 * CYCLING_CHANGEOVER to indicate that this switch is a 478 * double switch to the same destination address. 479 * 480 * Really, only bother is we have data queued or outstanding on 481 * the association. 482 */ 483 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 484 return; 485 486 if (transport->cacc.changeover_active) 487 transport->cacc.cycling_changeover = changeover; 488 489 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 490 * a changeover has occurred. 491 */ 492 transport->cacc.changeover_active = changeover; 493 494 /* 3) The sender MUST store the next TSN to be sent in 495 * next_tsn_at_change. 496 */ 497 transport->cacc.next_tsn_at_change = asoc->next_tsn; 498 } 499 500 /* Remove a transport from an association. */ 501 void sctp_assoc_rm_peer(struct sctp_association *asoc, 502 struct sctp_transport *peer) 503 { 504 struct sctp_transport *transport; 505 struct list_head *pos; 506 struct sctp_chunk *ch; 507 508 pr_debug("%s: association:%p addr:%pISpc\n", 509 __func__, asoc, &peer->ipaddr.sa); 510 511 /* If we are to remove the current retran_path, update it 512 * to the next peer before removing this peer from the list. 513 */ 514 if (asoc->peer.retran_path == peer) 515 sctp_assoc_update_retran_path(asoc); 516 517 /* Remove this peer from the list. */ 518 list_del_rcu(&peer->transports); 519 /* Remove this peer from the transport hashtable */ 520 sctp_unhash_transport(peer); 521 522 /* Get the first transport of asoc. */ 523 pos = asoc->peer.transport_addr_list.next; 524 transport = list_entry(pos, struct sctp_transport, transports); 525 526 /* Update any entries that match the peer to be deleted. */ 527 if (asoc->peer.primary_path == peer) 528 sctp_assoc_set_primary(asoc, transport); 529 if (asoc->peer.active_path == peer) 530 asoc->peer.active_path = transport; 531 if (asoc->peer.retran_path == peer) 532 asoc->peer.retran_path = transport; 533 if (asoc->peer.last_data_from == peer) 534 asoc->peer.last_data_from = transport; 535 536 if (asoc->strreset_chunk && 537 asoc->strreset_chunk->transport == peer) { 538 asoc->strreset_chunk->transport = transport; 539 sctp_transport_reset_reconf_timer(transport); 540 } 541 542 /* If we remove the transport an INIT was last sent to, set it to 543 * NULL. Combined with the update of the retran path above, this 544 * will cause the next INIT to be sent to the next available 545 * transport, maintaining the cycle. 546 */ 547 if (asoc->init_last_sent_to == peer) 548 asoc->init_last_sent_to = NULL; 549 550 /* If we remove the transport an SHUTDOWN was last sent to, set it 551 * to NULL. Combined with the update of the retran path above, this 552 * will cause the next SHUTDOWN to be sent to the next available 553 * transport, maintaining the cycle. 554 */ 555 if (asoc->shutdown_last_sent_to == peer) 556 asoc->shutdown_last_sent_to = NULL; 557 558 /* If we remove the transport an ASCONF was last sent to, set it to 559 * NULL. 560 */ 561 if (asoc->addip_last_asconf && 562 asoc->addip_last_asconf->transport == peer) 563 asoc->addip_last_asconf->transport = NULL; 564 565 /* If we have something on the transmitted list, we have to 566 * save it off. The best place is the active path. 567 */ 568 if (!list_empty(&peer->transmitted)) { 569 struct sctp_transport *active = asoc->peer.active_path; 570 571 /* Reset the transport of each chunk on this list */ 572 list_for_each_entry(ch, &peer->transmitted, 573 transmitted_list) { 574 ch->transport = NULL; 575 ch->rtt_in_progress = 0; 576 } 577 578 list_splice_tail_init(&peer->transmitted, 579 &active->transmitted); 580 581 /* Start a T3 timer here in case it wasn't running so 582 * that these migrated packets have a chance to get 583 * retransmitted. 584 */ 585 if (!timer_pending(&active->T3_rtx_timer)) 586 if (!mod_timer(&active->T3_rtx_timer, 587 jiffies + active->rto)) 588 sctp_transport_hold(active); 589 } 590 591 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list) 592 if (ch->transport == peer) 593 ch->transport = NULL; 594 595 asoc->peer.transport_count--; 596 597 sctp_transport_free(peer); 598 } 599 600 /* Add a transport address to an association. */ 601 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 602 const union sctp_addr *addr, 603 const gfp_t gfp, 604 const int peer_state) 605 { 606 struct net *net = sock_net(asoc->base.sk); 607 struct sctp_transport *peer; 608 struct sctp_sock *sp; 609 unsigned short port; 610 611 sp = sctp_sk(asoc->base.sk); 612 613 /* AF_INET and AF_INET6 share common port field. */ 614 port = ntohs(addr->v4.sin_port); 615 616 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 617 asoc, &addr->sa, peer_state); 618 619 /* Set the port if it has not been set yet. */ 620 if (0 == asoc->peer.port) 621 asoc->peer.port = port; 622 623 /* Check to see if this is a duplicate. */ 624 peer = sctp_assoc_lookup_paddr(asoc, addr); 625 if (peer) { 626 /* An UNKNOWN state is only set on transports added by 627 * user in sctp_connectx() call. Such transports should be 628 * considered CONFIRMED per RFC 4960, Section 5.4. 629 */ 630 if (peer->state == SCTP_UNKNOWN) { 631 peer->state = SCTP_ACTIVE; 632 } 633 return peer; 634 } 635 636 peer = sctp_transport_new(net, addr, gfp); 637 if (!peer) 638 return NULL; 639 640 sctp_transport_set_owner(peer, asoc); 641 642 /* Initialize the peer's heartbeat interval based on the 643 * association configured value. 644 */ 645 peer->hbinterval = asoc->hbinterval; 646 647 /* Set the path max_retrans. */ 648 peer->pathmaxrxt = asoc->pathmaxrxt; 649 650 /* And the partial failure retrans threshold */ 651 peer->pf_retrans = asoc->pf_retrans; 652 653 /* Initialize the peer's SACK delay timeout based on the 654 * association configured value. 655 */ 656 peer->sackdelay = asoc->sackdelay; 657 peer->sackfreq = asoc->sackfreq; 658 659 if (addr->sa.sa_family == AF_INET6) { 660 __be32 info = addr->v6.sin6_flowinfo; 661 662 if (info) { 663 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK); 664 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 665 } else { 666 peer->flowlabel = asoc->flowlabel; 667 } 668 } 669 peer->dscp = asoc->dscp; 670 671 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 672 * based on association setting. 673 */ 674 peer->param_flags = asoc->param_flags; 675 676 /* Initialize the pmtu of the transport. */ 677 sctp_transport_route(peer, NULL, sp); 678 679 /* If this is the first transport addr on this association, 680 * initialize the association PMTU to the peer's PMTU. 681 * If not and the current association PMTU is higher than the new 682 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 683 */ 684 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ? 685 min_t(int, peer->pathmtu, asoc->pathmtu) : 686 peer->pathmtu); 687 688 peer->pmtu_pending = 0; 689 690 /* The asoc->peer.port might not be meaningful yet, but 691 * initialize the packet structure anyway. 692 */ 693 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 694 asoc->peer.port); 695 696 /* 7.2.1 Slow-Start 697 * 698 * o The initial cwnd before DATA transmission or after a sufficiently 699 * long idle period MUST be set to 700 * min(4*MTU, max(2*MTU, 4380 bytes)) 701 * 702 * o The initial value of ssthresh MAY be arbitrarily high 703 * (for example, implementations MAY use the size of the 704 * receiver advertised window). 705 */ 706 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 707 708 /* At this point, we may not have the receiver's advertised window, 709 * so initialize ssthresh to the default value and it will be set 710 * later when we process the INIT. 711 */ 712 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 713 714 peer->partial_bytes_acked = 0; 715 peer->flight_size = 0; 716 peer->burst_limited = 0; 717 718 /* Set the transport's RTO.initial value */ 719 peer->rto = asoc->rto_initial; 720 sctp_max_rto(asoc, peer); 721 722 /* Set the peer's active state. */ 723 peer->state = peer_state; 724 725 /* Add this peer into the transport hashtable */ 726 if (sctp_hash_transport(peer)) { 727 sctp_transport_free(peer); 728 return NULL; 729 } 730 731 /* Attach the remote transport to our asoc. */ 732 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 733 asoc->peer.transport_count++; 734 735 /* If we do not yet have a primary path, set one. */ 736 if (!asoc->peer.primary_path) { 737 sctp_assoc_set_primary(asoc, peer); 738 asoc->peer.retran_path = peer; 739 } 740 741 if (asoc->peer.active_path == asoc->peer.retran_path && 742 peer->state != SCTP_UNCONFIRMED) { 743 asoc->peer.retran_path = peer; 744 } 745 746 return peer; 747 } 748 749 /* Delete a transport address from an association. */ 750 void sctp_assoc_del_peer(struct sctp_association *asoc, 751 const union sctp_addr *addr) 752 { 753 struct list_head *pos; 754 struct list_head *temp; 755 struct sctp_transport *transport; 756 757 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 758 transport = list_entry(pos, struct sctp_transport, transports); 759 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 760 /* Do book keeping for removing the peer and free it. */ 761 sctp_assoc_rm_peer(asoc, transport); 762 break; 763 } 764 } 765 } 766 767 /* Lookup a transport by address. */ 768 struct sctp_transport *sctp_assoc_lookup_paddr( 769 const struct sctp_association *asoc, 770 const union sctp_addr *address) 771 { 772 struct sctp_transport *t; 773 774 /* Cycle through all transports searching for a peer address. */ 775 776 list_for_each_entry(t, &asoc->peer.transport_addr_list, 777 transports) { 778 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 779 return t; 780 } 781 782 return NULL; 783 } 784 785 /* Remove all transports except a give one */ 786 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 787 struct sctp_transport *primary) 788 { 789 struct sctp_transport *temp; 790 struct sctp_transport *t; 791 792 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 793 transports) { 794 /* if the current transport is not the primary one, delete it */ 795 if (t != primary) 796 sctp_assoc_rm_peer(asoc, t); 797 } 798 } 799 800 /* Engage in transport control operations. 801 * Mark the transport up or down and send a notification to the user. 802 * Select and update the new active and retran paths. 803 */ 804 void sctp_assoc_control_transport(struct sctp_association *asoc, 805 struct sctp_transport *transport, 806 enum sctp_transport_cmd command, 807 sctp_sn_error_t error) 808 { 809 struct sctp_ulpevent *event; 810 struct sockaddr_storage addr; 811 int spc_state = 0; 812 bool ulp_notify = true; 813 814 /* Record the transition on the transport. */ 815 switch (command) { 816 case SCTP_TRANSPORT_UP: 817 /* If we are moving from UNCONFIRMED state due 818 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 819 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 820 */ 821 if (SCTP_UNCONFIRMED == transport->state && 822 SCTP_HEARTBEAT_SUCCESS == error) 823 spc_state = SCTP_ADDR_CONFIRMED; 824 else 825 spc_state = SCTP_ADDR_AVAILABLE; 826 /* Don't inform ULP about transition from PF to 827 * active state and set cwnd to 1 MTU, see SCTP 828 * Quick failover draft section 5.1, point 5 829 */ 830 if (transport->state == SCTP_PF) { 831 ulp_notify = false; 832 transport->cwnd = asoc->pathmtu; 833 } 834 transport->state = SCTP_ACTIVE; 835 break; 836 837 case SCTP_TRANSPORT_DOWN: 838 /* If the transport was never confirmed, do not transition it 839 * to inactive state. Also, release the cached route since 840 * there may be a better route next time. 841 */ 842 if (transport->state != SCTP_UNCONFIRMED) 843 transport->state = SCTP_INACTIVE; 844 else { 845 sctp_transport_dst_release(transport); 846 ulp_notify = false; 847 } 848 849 spc_state = SCTP_ADDR_UNREACHABLE; 850 break; 851 852 case SCTP_TRANSPORT_PF: 853 transport->state = SCTP_PF; 854 ulp_notify = false; 855 break; 856 857 default: 858 return; 859 } 860 861 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 862 * to the user. 863 */ 864 if (ulp_notify) { 865 memset(&addr, 0, sizeof(struct sockaddr_storage)); 866 memcpy(&addr, &transport->ipaddr, 867 transport->af_specific->sockaddr_len); 868 869 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 870 0, spc_state, error, GFP_ATOMIC); 871 if (event) 872 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 873 } 874 875 /* Select new active and retran paths. */ 876 sctp_select_active_and_retran_path(asoc); 877 } 878 879 /* Hold a reference to an association. */ 880 void sctp_association_hold(struct sctp_association *asoc) 881 { 882 refcount_inc(&asoc->base.refcnt); 883 } 884 885 /* Release a reference to an association and cleanup 886 * if there are no more references. 887 */ 888 void sctp_association_put(struct sctp_association *asoc) 889 { 890 if (refcount_dec_and_test(&asoc->base.refcnt)) 891 sctp_association_destroy(asoc); 892 } 893 894 /* Allocate the next TSN, Transmission Sequence Number, for the given 895 * association. 896 */ 897 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 898 { 899 /* From Section 1.6 Serial Number Arithmetic: 900 * Transmission Sequence Numbers wrap around when they reach 901 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 902 * after transmitting TSN = 2*32 - 1 is TSN = 0. 903 */ 904 __u32 retval = asoc->next_tsn; 905 asoc->next_tsn++; 906 asoc->unack_data++; 907 908 return retval; 909 } 910 911 /* Compare two addresses to see if they match. Wildcard addresses 912 * only match themselves. 913 */ 914 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 915 const union sctp_addr *ss2) 916 { 917 struct sctp_af *af; 918 919 af = sctp_get_af_specific(ss1->sa.sa_family); 920 if (unlikely(!af)) 921 return 0; 922 923 return af->cmp_addr(ss1, ss2); 924 } 925 926 /* Return an ecne chunk to get prepended to a packet. 927 * Note: We are sly and return a shared, prealloced chunk. FIXME: 928 * No we don't, but we could/should. 929 */ 930 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 931 { 932 if (!asoc->need_ecne) 933 return NULL; 934 935 /* Send ECNE if needed. 936 * Not being able to allocate a chunk here is not deadly. 937 */ 938 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 939 } 940 941 /* 942 * Find which transport this TSN was sent on. 943 */ 944 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 945 __u32 tsn) 946 { 947 struct sctp_transport *active; 948 struct sctp_transport *match; 949 struct sctp_transport *transport; 950 struct sctp_chunk *chunk; 951 __be32 key = htonl(tsn); 952 953 match = NULL; 954 955 /* 956 * FIXME: In general, find a more efficient data structure for 957 * searching. 958 */ 959 960 /* 961 * The general strategy is to search each transport's transmitted 962 * list. Return which transport this TSN lives on. 963 * 964 * Let's be hopeful and check the active_path first. 965 * Another optimization would be to know if there is only one 966 * outbound path and not have to look for the TSN at all. 967 * 968 */ 969 970 active = asoc->peer.active_path; 971 972 list_for_each_entry(chunk, &active->transmitted, 973 transmitted_list) { 974 975 if (key == chunk->subh.data_hdr->tsn) { 976 match = active; 977 goto out; 978 } 979 } 980 981 /* If not found, go search all the other transports. */ 982 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 983 transports) { 984 985 if (transport == active) 986 continue; 987 list_for_each_entry(chunk, &transport->transmitted, 988 transmitted_list) { 989 if (key == chunk->subh.data_hdr->tsn) { 990 match = transport; 991 goto out; 992 } 993 } 994 } 995 out: 996 return match; 997 } 998 999 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1000 static void sctp_assoc_bh_rcv(struct work_struct *work) 1001 { 1002 struct sctp_association *asoc = 1003 container_of(work, struct sctp_association, 1004 base.inqueue.immediate); 1005 struct net *net = sock_net(asoc->base.sk); 1006 union sctp_subtype subtype; 1007 struct sctp_endpoint *ep; 1008 struct sctp_chunk *chunk; 1009 struct sctp_inq *inqueue; 1010 int first_time = 1; /* is this the first time through the loop */ 1011 int error = 0; 1012 int state; 1013 1014 /* The association should be held so we should be safe. */ 1015 ep = asoc->ep; 1016 1017 inqueue = &asoc->base.inqueue; 1018 sctp_association_hold(asoc); 1019 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1020 state = asoc->state; 1021 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1022 1023 /* If the first chunk in the packet is AUTH, do special 1024 * processing specified in Section 6.3 of SCTP-AUTH spec 1025 */ 1026 if (first_time && subtype.chunk == SCTP_CID_AUTH) { 1027 struct sctp_chunkhdr *next_hdr; 1028 1029 next_hdr = sctp_inq_peek(inqueue); 1030 if (!next_hdr) 1031 goto normal; 1032 1033 /* If the next chunk is COOKIE-ECHO, skip the AUTH 1034 * chunk while saving a pointer to it so we can do 1035 * Authentication later (during cookie-echo 1036 * processing). 1037 */ 1038 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) { 1039 chunk->auth_chunk = skb_clone(chunk->skb, 1040 GFP_ATOMIC); 1041 chunk->auth = 1; 1042 continue; 1043 } 1044 } 1045 1046 normal: 1047 /* SCTP-AUTH, Section 6.3: 1048 * The receiver has a list of chunk types which it expects 1049 * to be received only after an AUTH-chunk. This list has 1050 * been sent to the peer during the association setup. It 1051 * MUST silently discard these chunks if they are not placed 1052 * after an AUTH chunk in the packet. 1053 */ 1054 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1055 continue; 1056 1057 /* Remember where the last DATA chunk came from so we 1058 * know where to send the SACK. 1059 */ 1060 if (sctp_chunk_is_data(chunk)) 1061 asoc->peer.last_data_from = chunk->transport; 1062 else { 1063 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1064 asoc->stats.ictrlchunks++; 1065 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1066 asoc->stats.isacks++; 1067 } 1068 1069 if (chunk->transport) 1070 chunk->transport->last_time_heard = ktime_get(); 1071 1072 /* Run through the state machine. */ 1073 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1074 state, ep, asoc, chunk, GFP_ATOMIC); 1075 1076 /* Check to see if the association is freed in response to 1077 * the incoming chunk. If so, get out of the while loop. 1078 */ 1079 if (asoc->base.dead) 1080 break; 1081 1082 /* If there is an error on chunk, discard this packet. */ 1083 if (error && chunk) 1084 chunk->pdiscard = 1; 1085 1086 if (first_time) 1087 first_time = 0; 1088 } 1089 sctp_association_put(asoc); 1090 } 1091 1092 /* This routine moves an association from its old sk to a new sk. */ 1093 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1094 { 1095 struct sctp_sock *newsp = sctp_sk(newsk); 1096 struct sock *oldsk = assoc->base.sk; 1097 1098 /* Delete the association from the old endpoint's list of 1099 * associations. 1100 */ 1101 list_del_init(&assoc->asocs); 1102 1103 /* Decrement the backlog value for a TCP-style socket. */ 1104 if (sctp_style(oldsk, TCP)) 1105 oldsk->sk_ack_backlog--; 1106 1107 /* Release references to the old endpoint and the sock. */ 1108 sctp_endpoint_put(assoc->ep); 1109 sock_put(assoc->base.sk); 1110 1111 /* Get a reference to the new endpoint. */ 1112 assoc->ep = newsp->ep; 1113 sctp_endpoint_hold(assoc->ep); 1114 1115 /* Get a reference to the new sock. */ 1116 assoc->base.sk = newsk; 1117 sock_hold(assoc->base.sk); 1118 1119 /* Add the association to the new endpoint's list of associations. */ 1120 sctp_endpoint_add_asoc(newsp->ep, assoc); 1121 } 1122 1123 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1124 int sctp_assoc_update(struct sctp_association *asoc, 1125 struct sctp_association *new) 1126 { 1127 struct sctp_transport *trans; 1128 struct list_head *pos, *temp; 1129 1130 /* Copy in new parameters of peer. */ 1131 asoc->c = new->c; 1132 asoc->peer.rwnd = new->peer.rwnd; 1133 asoc->peer.sack_needed = new->peer.sack_needed; 1134 asoc->peer.auth_capable = new->peer.auth_capable; 1135 asoc->peer.i = new->peer.i; 1136 1137 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1138 asoc->peer.i.initial_tsn, GFP_ATOMIC)) 1139 return -ENOMEM; 1140 1141 /* Remove any peer addresses not present in the new association. */ 1142 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1143 trans = list_entry(pos, struct sctp_transport, transports); 1144 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1145 sctp_assoc_rm_peer(asoc, trans); 1146 continue; 1147 } 1148 1149 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1150 sctp_transport_reset(trans); 1151 } 1152 1153 /* If the case is A (association restart), use 1154 * initial_tsn as next_tsn. If the case is B, use 1155 * current next_tsn in case data sent to peer 1156 * has been discarded and needs retransmission. 1157 */ 1158 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1159 asoc->next_tsn = new->next_tsn; 1160 asoc->ctsn_ack_point = new->ctsn_ack_point; 1161 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1162 1163 /* Reinitialize SSN for both local streams 1164 * and peer's streams. 1165 */ 1166 sctp_stream_clear(&asoc->stream); 1167 1168 /* Flush the ULP reassembly and ordered queue. 1169 * Any data there will now be stale and will 1170 * cause problems. 1171 */ 1172 sctp_ulpq_flush(&asoc->ulpq); 1173 1174 /* reset the overall association error count so 1175 * that the restarted association doesn't get torn 1176 * down on the next retransmission timer. 1177 */ 1178 asoc->overall_error_count = 0; 1179 1180 } else { 1181 /* Add any peer addresses from the new association. */ 1182 list_for_each_entry(trans, &new->peer.transport_addr_list, 1183 transports) 1184 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) && 1185 !sctp_assoc_add_peer(asoc, &trans->ipaddr, 1186 GFP_ATOMIC, trans->state)) 1187 return -ENOMEM; 1188 1189 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1190 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1191 1192 if (sctp_state(asoc, COOKIE_WAIT)) 1193 sctp_stream_update(&asoc->stream, &new->stream); 1194 1195 /* get a new assoc id if we don't have one yet. */ 1196 if (sctp_assoc_set_id(asoc, GFP_ATOMIC)) 1197 return -ENOMEM; 1198 } 1199 1200 /* SCTP-AUTH: Save the peer parameters from the new associations 1201 * and also move the association shared keys over 1202 */ 1203 kfree(asoc->peer.peer_random); 1204 asoc->peer.peer_random = new->peer.peer_random; 1205 new->peer.peer_random = NULL; 1206 1207 kfree(asoc->peer.peer_chunks); 1208 asoc->peer.peer_chunks = new->peer.peer_chunks; 1209 new->peer.peer_chunks = NULL; 1210 1211 kfree(asoc->peer.peer_hmacs); 1212 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1213 new->peer.peer_hmacs = NULL; 1214 1215 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1216 } 1217 1218 /* Update the retran path for sending a retransmitted packet. 1219 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1220 * 1221 * When there is outbound data to send and the primary path 1222 * becomes inactive (e.g., due to failures), or where the 1223 * SCTP user explicitly requests to send data to an 1224 * inactive destination transport address, before reporting 1225 * an error to its ULP, the SCTP endpoint should try to send 1226 * the data to an alternate active destination transport 1227 * address if one exists. 1228 * 1229 * When retransmitting data that timed out, if the endpoint 1230 * is multihomed, it should consider each source-destination 1231 * address pair in its retransmission selection policy. 1232 * When retransmitting timed-out data, the endpoint should 1233 * attempt to pick the most divergent source-destination 1234 * pair from the original source-destination pair to which 1235 * the packet was transmitted. 1236 * 1237 * Note: Rules for picking the most divergent source-destination 1238 * pair are an implementation decision and are not specified 1239 * within this document. 1240 * 1241 * Our basic strategy is to round-robin transports in priorities 1242 * according to sctp_trans_score() e.g., if no such 1243 * transport with state SCTP_ACTIVE exists, round-robin through 1244 * SCTP_UNKNOWN, etc. You get the picture. 1245 */ 1246 static u8 sctp_trans_score(const struct sctp_transport *trans) 1247 { 1248 switch (trans->state) { 1249 case SCTP_ACTIVE: 1250 return 3; /* best case */ 1251 case SCTP_UNKNOWN: 1252 return 2; 1253 case SCTP_PF: 1254 return 1; 1255 default: /* case SCTP_INACTIVE */ 1256 return 0; /* worst case */ 1257 } 1258 } 1259 1260 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1261 struct sctp_transport *trans2) 1262 { 1263 if (trans1->error_count > trans2->error_count) { 1264 return trans2; 1265 } else if (trans1->error_count == trans2->error_count && 1266 ktime_after(trans2->last_time_heard, 1267 trans1->last_time_heard)) { 1268 return trans2; 1269 } else { 1270 return trans1; 1271 } 1272 } 1273 1274 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1275 struct sctp_transport *best) 1276 { 1277 u8 score_curr, score_best; 1278 1279 if (best == NULL || curr == best) 1280 return curr; 1281 1282 score_curr = sctp_trans_score(curr); 1283 score_best = sctp_trans_score(best); 1284 1285 /* First, try a score-based selection if both transport states 1286 * differ. If we're in a tie, lets try to make a more clever 1287 * decision here based on error counts and last time heard. 1288 */ 1289 if (score_curr > score_best) 1290 return curr; 1291 else if (score_curr == score_best) 1292 return sctp_trans_elect_tie(best, curr); 1293 else 1294 return best; 1295 } 1296 1297 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1298 { 1299 struct sctp_transport *trans = asoc->peer.retran_path; 1300 struct sctp_transport *trans_next = NULL; 1301 1302 /* We're done as we only have the one and only path. */ 1303 if (asoc->peer.transport_count == 1) 1304 return; 1305 /* If active_path and retran_path are the same and active, 1306 * then this is the only active path. Use it. 1307 */ 1308 if (asoc->peer.active_path == asoc->peer.retran_path && 1309 asoc->peer.active_path->state == SCTP_ACTIVE) 1310 return; 1311 1312 /* Iterate from retran_path's successor back to retran_path. */ 1313 for (trans = list_next_entry(trans, transports); 1; 1314 trans = list_next_entry(trans, transports)) { 1315 /* Manually skip the head element. */ 1316 if (&trans->transports == &asoc->peer.transport_addr_list) 1317 continue; 1318 if (trans->state == SCTP_UNCONFIRMED) 1319 continue; 1320 trans_next = sctp_trans_elect_best(trans, trans_next); 1321 /* Active is good enough for immediate return. */ 1322 if (trans_next->state == SCTP_ACTIVE) 1323 break; 1324 /* We've reached the end, time to update path. */ 1325 if (trans == asoc->peer.retran_path) 1326 break; 1327 } 1328 1329 asoc->peer.retran_path = trans_next; 1330 1331 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1332 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1333 } 1334 1335 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1336 { 1337 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1338 struct sctp_transport *trans_pf = NULL; 1339 1340 /* Look for the two most recently used active transports. */ 1341 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1342 transports) { 1343 /* Skip uninteresting transports. */ 1344 if (trans->state == SCTP_INACTIVE || 1345 trans->state == SCTP_UNCONFIRMED) 1346 continue; 1347 /* Keep track of the best PF transport from our 1348 * list in case we don't find an active one. 1349 */ 1350 if (trans->state == SCTP_PF) { 1351 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1352 continue; 1353 } 1354 /* For active transports, pick the most recent ones. */ 1355 if (trans_pri == NULL || 1356 ktime_after(trans->last_time_heard, 1357 trans_pri->last_time_heard)) { 1358 trans_sec = trans_pri; 1359 trans_pri = trans; 1360 } else if (trans_sec == NULL || 1361 ktime_after(trans->last_time_heard, 1362 trans_sec->last_time_heard)) { 1363 trans_sec = trans; 1364 } 1365 } 1366 1367 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1368 * 1369 * By default, an endpoint should always transmit to the primary 1370 * path, unless the SCTP user explicitly specifies the 1371 * destination transport address (and possibly source transport 1372 * address) to use. [If the primary is active but not most recent, 1373 * bump the most recently used transport.] 1374 */ 1375 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1376 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1377 asoc->peer.primary_path != trans_pri) { 1378 trans_sec = trans_pri; 1379 trans_pri = asoc->peer.primary_path; 1380 } 1381 1382 /* We did not find anything useful for a possible retransmission 1383 * path; either primary path that we found is the the same as 1384 * the current one, or we didn't generally find an active one. 1385 */ 1386 if (trans_sec == NULL) 1387 trans_sec = trans_pri; 1388 1389 /* If we failed to find a usable transport, just camp on the 1390 * active or pick a PF iff it's the better choice. 1391 */ 1392 if (trans_pri == NULL) { 1393 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1394 trans_sec = trans_pri; 1395 } 1396 1397 /* Set the active and retran transports. */ 1398 asoc->peer.active_path = trans_pri; 1399 asoc->peer.retran_path = trans_sec; 1400 } 1401 1402 struct sctp_transport * 1403 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1404 struct sctp_transport *last_sent_to) 1405 { 1406 /* If this is the first time packet is sent, use the active path, 1407 * else use the retran path. If the last packet was sent over the 1408 * retran path, update the retran path and use it. 1409 */ 1410 if (last_sent_to == NULL) { 1411 return asoc->peer.active_path; 1412 } else { 1413 if (last_sent_to == asoc->peer.retran_path) 1414 sctp_assoc_update_retran_path(asoc); 1415 1416 return asoc->peer.retran_path; 1417 } 1418 } 1419 1420 void sctp_assoc_update_frag_point(struct sctp_association *asoc) 1421 { 1422 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu, 1423 sctp_datachk_len(&asoc->stream)); 1424 1425 if (asoc->user_frag) 1426 frag = min_t(int, frag, asoc->user_frag); 1427 1428 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN - 1429 sctp_datachk_len(&asoc->stream)); 1430 1431 asoc->frag_point = SCTP_TRUNC4(frag); 1432 } 1433 1434 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu) 1435 { 1436 if (asoc->pathmtu != pmtu) { 1437 asoc->pathmtu = pmtu; 1438 sctp_assoc_update_frag_point(asoc); 1439 } 1440 1441 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1442 asoc->pathmtu, asoc->frag_point); 1443 } 1444 1445 /* Update the association's pmtu and frag_point by going through all the 1446 * transports. This routine is called when a transport's PMTU has changed. 1447 */ 1448 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1449 { 1450 struct sctp_transport *t; 1451 __u32 pmtu = 0; 1452 1453 if (!asoc) 1454 return; 1455 1456 /* Get the lowest pmtu of all the transports. */ 1457 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 1458 if (t->pmtu_pending && t->dst) { 1459 sctp_transport_update_pmtu(t, 1460 atomic_read(&t->mtu_info)); 1461 t->pmtu_pending = 0; 1462 } 1463 if (!pmtu || (t->pathmtu < pmtu)) 1464 pmtu = t->pathmtu; 1465 } 1466 1467 sctp_assoc_set_pmtu(asoc, pmtu); 1468 } 1469 1470 /* Should we send a SACK to update our peer? */ 1471 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1472 { 1473 struct net *net = sock_net(asoc->base.sk); 1474 switch (asoc->state) { 1475 case SCTP_STATE_ESTABLISHED: 1476 case SCTP_STATE_SHUTDOWN_PENDING: 1477 case SCTP_STATE_SHUTDOWN_RECEIVED: 1478 case SCTP_STATE_SHUTDOWN_SENT: 1479 if ((asoc->rwnd > asoc->a_rwnd) && 1480 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1481 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1482 asoc->pathmtu))) 1483 return true; 1484 break; 1485 default: 1486 break; 1487 } 1488 return false; 1489 } 1490 1491 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1492 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1493 { 1494 struct sctp_chunk *sack; 1495 struct timer_list *timer; 1496 1497 if (asoc->rwnd_over) { 1498 if (asoc->rwnd_over >= len) { 1499 asoc->rwnd_over -= len; 1500 } else { 1501 asoc->rwnd += (len - asoc->rwnd_over); 1502 asoc->rwnd_over = 0; 1503 } 1504 } else { 1505 asoc->rwnd += len; 1506 } 1507 1508 /* If we had window pressure, start recovering it 1509 * once our rwnd had reached the accumulated pressure 1510 * threshold. The idea is to recover slowly, but up 1511 * to the initial advertised window. 1512 */ 1513 if (asoc->rwnd_press) { 1514 int change = min(asoc->pathmtu, asoc->rwnd_press); 1515 asoc->rwnd += change; 1516 asoc->rwnd_press -= change; 1517 } 1518 1519 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1520 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1521 asoc->a_rwnd); 1522 1523 /* Send a window update SACK if the rwnd has increased by at least the 1524 * minimum of the association's PMTU and half of the receive buffer. 1525 * The algorithm used is similar to the one described in 1526 * Section 4.2.3.3 of RFC 1122. 1527 */ 1528 if (sctp_peer_needs_update(asoc)) { 1529 asoc->a_rwnd = asoc->rwnd; 1530 1531 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1532 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1533 asoc->a_rwnd); 1534 1535 sack = sctp_make_sack(asoc); 1536 if (!sack) 1537 return; 1538 1539 asoc->peer.sack_needed = 0; 1540 1541 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1542 1543 /* Stop the SACK timer. */ 1544 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1545 if (del_timer(timer)) 1546 sctp_association_put(asoc); 1547 } 1548 } 1549 1550 /* Decrease asoc's rwnd by len. */ 1551 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1552 { 1553 int rx_count; 1554 int over = 0; 1555 1556 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1557 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1558 "asoc->rwnd_over:%u!\n", __func__, asoc, 1559 asoc->rwnd, asoc->rwnd_over); 1560 1561 if (asoc->ep->rcvbuf_policy) 1562 rx_count = atomic_read(&asoc->rmem_alloc); 1563 else 1564 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1565 1566 /* If we've reached or overflowed our receive buffer, announce 1567 * a 0 rwnd if rwnd would still be positive. Store the 1568 * the potential pressure overflow so that the window can be restored 1569 * back to original value. 1570 */ 1571 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1572 over = 1; 1573 1574 if (asoc->rwnd >= len) { 1575 asoc->rwnd -= len; 1576 if (over) { 1577 asoc->rwnd_press += asoc->rwnd; 1578 asoc->rwnd = 0; 1579 } 1580 } else { 1581 asoc->rwnd_over += len - asoc->rwnd; 1582 asoc->rwnd = 0; 1583 } 1584 1585 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1586 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1587 asoc->rwnd_press); 1588 } 1589 1590 /* Build the bind address list for the association based on info from the 1591 * local endpoint and the remote peer. 1592 */ 1593 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1594 enum sctp_scope scope, gfp_t gfp) 1595 { 1596 int flags; 1597 1598 /* Use scoping rules to determine the subset of addresses from 1599 * the endpoint. 1600 */ 1601 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1602 if (asoc->peer.ipv4_address) 1603 flags |= SCTP_ADDR4_PEERSUPP; 1604 if (asoc->peer.ipv6_address) 1605 flags |= SCTP_ADDR6_PEERSUPP; 1606 1607 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1608 &asoc->base.bind_addr, 1609 &asoc->ep->base.bind_addr, 1610 scope, gfp, flags); 1611 } 1612 1613 /* Build the association's bind address list from the cookie. */ 1614 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1615 struct sctp_cookie *cookie, 1616 gfp_t gfp) 1617 { 1618 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1619 int var_size3 = cookie->raw_addr_list_len; 1620 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1621 1622 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1623 asoc->ep->base.bind_addr.port, gfp); 1624 } 1625 1626 /* Lookup laddr in the bind address list of an association. */ 1627 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1628 const union sctp_addr *laddr) 1629 { 1630 int found = 0; 1631 1632 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1633 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1634 sctp_sk(asoc->base.sk))) 1635 found = 1; 1636 1637 return found; 1638 } 1639 1640 /* Set an association id for a given association */ 1641 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1642 { 1643 bool preload = gfpflags_allow_blocking(gfp); 1644 int ret; 1645 1646 /* If the id is already assigned, keep it. */ 1647 if (asoc->assoc_id) 1648 return 0; 1649 1650 if (preload) 1651 idr_preload(gfp); 1652 spin_lock_bh(&sctp_assocs_id_lock); 1653 /* 0 is not a valid assoc_id, must be >= 1 */ 1654 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1655 spin_unlock_bh(&sctp_assocs_id_lock); 1656 if (preload) 1657 idr_preload_end(); 1658 if (ret < 0) 1659 return ret; 1660 1661 asoc->assoc_id = (sctp_assoc_t)ret; 1662 return 0; 1663 } 1664 1665 /* Free the ASCONF queue */ 1666 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1667 { 1668 struct sctp_chunk *asconf; 1669 struct sctp_chunk *tmp; 1670 1671 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1672 list_del_init(&asconf->list); 1673 sctp_chunk_free(asconf); 1674 } 1675 } 1676 1677 /* Free asconf_ack cache */ 1678 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1679 { 1680 struct sctp_chunk *ack; 1681 struct sctp_chunk *tmp; 1682 1683 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1684 transmitted_list) { 1685 list_del_init(&ack->transmitted_list); 1686 sctp_chunk_free(ack); 1687 } 1688 } 1689 1690 /* Clean up the ASCONF_ACK queue */ 1691 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1692 { 1693 struct sctp_chunk *ack; 1694 struct sctp_chunk *tmp; 1695 1696 /* We can remove all the entries from the queue up to 1697 * the "Peer-Sequence-Number". 1698 */ 1699 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1700 transmitted_list) { 1701 if (ack->subh.addip_hdr->serial == 1702 htonl(asoc->peer.addip_serial)) 1703 break; 1704 1705 list_del_init(&ack->transmitted_list); 1706 sctp_chunk_free(ack); 1707 } 1708 } 1709 1710 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1711 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1712 const struct sctp_association *asoc, 1713 __be32 serial) 1714 { 1715 struct sctp_chunk *ack; 1716 1717 /* Walk through the list of cached ASCONF-ACKs and find the 1718 * ack chunk whose serial number matches that of the request. 1719 */ 1720 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1721 if (sctp_chunk_pending(ack)) 1722 continue; 1723 if (ack->subh.addip_hdr->serial == serial) { 1724 sctp_chunk_hold(ack); 1725 return ack; 1726 } 1727 } 1728 1729 return NULL; 1730 } 1731 1732 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1733 { 1734 /* Free any cached ASCONF_ACK chunk. */ 1735 sctp_assoc_free_asconf_acks(asoc); 1736 1737 /* Free the ASCONF queue. */ 1738 sctp_assoc_free_asconf_queue(asoc); 1739 1740 /* Free any cached ASCONF chunk. */ 1741 if (asoc->addip_last_asconf) 1742 sctp_chunk_free(asoc->addip_last_asconf); 1743 } 1744