xref: /openbmc/linux/net/sctp/associola.c (revision 23c2b932)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@us.ibm.com>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang             <hui.huang@nokia.com>
38  *    Sridhar Samudrala	    <sri@us.ibm.com>
39  *    Daisy Chang	    <daisyc@us.ibm.com>
40  *    Ryan Layer	    <rmlayer@us.ibm.com>
41  *    Kevin Gao             <kevin.gao@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50 
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56 
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 
63 /* 1st Level Abstractions. */
64 
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 					  const struct sctp_endpoint *ep,
68 					  const struct sock *sk,
69 					  sctp_scope_t scope,
70 					  gfp_t gfp)
71 {
72 	struct net *net = sock_net(sk);
73 	struct sctp_sock *sp;
74 	int i;
75 	sctp_paramhdr_t *p;
76 	int err;
77 
78 	/* Retrieve the SCTP per socket area.  */
79 	sp = sctp_sk((struct sock *)sk);
80 
81 	/* Discarding const is appropriate here.  */
82 	asoc->ep = (struct sctp_endpoint *)ep;
83 	asoc->base.sk = (struct sock *)sk;
84 
85 	sctp_endpoint_hold(asoc->ep);
86 	sock_hold(asoc->base.sk);
87 
88 	/* Initialize the common base substructure.  */
89 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90 
91 	/* Initialize the object handling fields.  */
92 	atomic_set(&asoc->base.refcnt, 1);
93 
94 	/* Initialize the bind addr area.  */
95 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96 
97 	asoc->state = SCTP_STATE_CLOSED;
98 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 	asoc->user_frag = sp->user_frag;
100 
101 	/* Set the association max_retrans and RTO values from the
102 	 * socket values.
103 	 */
104 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 	asoc->pf_retrans  = net->sctp.pf_retrans;
106 
107 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110 
111 	/* Initialize the association's heartbeat interval based on the
112 	 * sock configured value.
113 	 */
114 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115 
116 	/* Initialize path max retrans value. */
117 	asoc->pathmaxrxt = sp->pathmaxrxt;
118 
119 	/* Initialize default path MTU. */
120 	asoc->pathmtu = sp->pathmtu;
121 
122 	/* Set association default SACK delay */
123 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 	asoc->sackfreq = sp->sackfreq;
125 
126 	/* Set the association default flags controlling
127 	 * Heartbeat, SACK delay, and Path MTU Discovery.
128 	 */
129 	asoc->param_flags = sp->param_flags;
130 
131 	/* Initialize the maximum number of new data packets that can be sent
132 	 * in a burst.
133 	 */
134 	asoc->max_burst = sp->max_burst;
135 
136 	/* initialize association timers */
137 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140 
141 	/* sctpimpguide Section 2.12.2
142 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 	 * recommended value of 5 times 'RTO.Max'.
144 	 */
145 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 		= 5 * asoc->rto_max;
147 
148 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150 
151 	/* Initializes the timers */
152 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 				(unsigned long)asoc);
155 
156 	/* Pull default initialization values from the sock options.
157 	 * Note: This assumes that the values have already been
158 	 * validated in the sock.
159 	 */
160 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
162 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
163 
164 	asoc->max_init_timeo =
165 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166 
167 	/* Set the local window size for receive.
168 	 * This is also the rcvbuf space per association.
169 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 	 * 1500 bytes in one SCTP packet.
171 	 */
172 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 	else
175 		asoc->rwnd = sk->sk_rcvbuf/2;
176 
177 	asoc->a_rwnd = asoc->rwnd;
178 
179 	/* Use my own max window until I learn something better.  */
180 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181 
182 	/* Initialize the receive memory counter */
183 	atomic_set(&asoc->rmem_alloc, 0);
184 
185 	init_waitqueue_head(&asoc->wait);
186 
187 	asoc->c.my_vtag = sctp_generate_tag(ep);
188 	asoc->c.my_port = ep->base.bind_addr.port;
189 
190 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
191 
192 	asoc->next_tsn = asoc->c.initial_tsn;
193 
194 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 	asoc->highest_sacked = asoc->ctsn_ack_point;
197 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198 
199 	/* ADDIP Section 4.1 Asconf Chunk Procedures
200 	 *
201 	 * When an endpoint has an ASCONF signaled change to be sent to the
202 	 * remote endpoint it should do the following:
203 	 * ...
204 	 * A2) a serial number should be assigned to the chunk. The serial
205 	 * number SHOULD be a monotonically increasing number. The serial
206 	 * numbers SHOULD be initialized at the start of the
207 	 * association to the same value as the initial TSN.
208 	 */
209 	asoc->addip_serial = asoc->c.initial_tsn;
210 
211 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
213 
214 	/* Make an empty list of remote transport addresses.  */
215 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216 
217 	/* RFC 2960 5.1 Normal Establishment of an Association
218 	 *
219 	 * After the reception of the first data chunk in an
220 	 * association the endpoint must immediately respond with a
221 	 * sack to acknowledge the data chunk.  Subsequent
222 	 * acknowledgements should be done as described in Section
223 	 * 6.2.
224 	 *
225 	 * [We implement this by telling a new association that it
226 	 * already received one packet.]
227 	 */
228 	asoc->peer.sack_needed = 1;
229 	asoc->peer.sack_generation = 1;
230 
231 	/* Assume that the peer will tell us if he recognizes ASCONF
232 	 * as part of INIT exchange.
233 	 * The sctp_addip_noauth option is there for backward compatibility
234 	 * and will revert old behavior.
235 	 */
236 	if (net->sctp.addip_noauth)
237 		asoc->peer.asconf_capable = 1;
238 
239 	/* Create an input queue.  */
240 	sctp_inq_init(&asoc->base.inqueue);
241 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242 
243 	/* Create an output queue.  */
244 	sctp_outq_init(asoc, &asoc->outqueue);
245 
246 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 		goto fail_init;
248 
249 	/* Assume that peer would support both address types unless we are
250 	 * told otherwise.
251 	 */
252 	asoc->peer.ipv4_address = 1;
253 	if (asoc->base.sk->sk_family == PF_INET6)
254 		asoc->peer.ipv6_address = 1;
255 	INIT_LIST_HEAD(&asoc->asocs);
256 
257 	asoc->default_stream = sp->default_stream;
258 	asoc->default_ppid = sp->default_ppid;
259 	asoc->default_flags = sp->default_flags;
260 	asoc->default_context = sp->default_context;
261 	asoc->default_timetolive = sp->default_timetolive;
262 	asoc->default_rcv_context = sp->default_rcv_context;
263 
264 	/* AUTH related initializations */
265 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 	if (err)
268 		goto fail_init;
269 
270 	asoc->active_key_id = ep->active_key_id;
271 
272 	/* Save the hmacs and chunks list into this association */
273 	if (ep->auth_hmacs_list)
274 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
275 			ntohs(ep->auth_hmacs_list->param_hdr.length));
276 	if (ep->auth_chunk_list)
277 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
278 			ntohs(ep->auth_chunk_list->param_hdr.length));
279 
280 	/* Get the AUTH random number for this association */
281 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
282 	p->type = SCTP_PARAM_RANDOM;
283 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
284 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285 
286 	return asoc;
287 
288 fail_init:
289 	sock_put(asoc->base.sk);
290 	sctp_endpoint_put(asoc->ep);
291 	return NULL;
292 }
293 
294 /* Allocate and initialize a new association */
295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
296 					 const struct sock *sk,
297 					 sctp_scope_t scope,
298 					 gfp_t gfp)
299 {
300 	struct sctp_association *asoc;
301 
302 	asoc = kzalloc(sizeof(*asoc), gfp);
303 	if (!asoc)
304 		goto fail;
305 
306 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
307 		goto fail_init;
308 
309 	SCTP_DBG_OBJCNT_INC(assoc);
310 
311 	pr_debug("Created asoc %p\n", asoc);
312 
313 	return asoc;
314 
315 fail_init:
316 	kfree(asoc);
317 fail:
318 	return NULL;
319 }
320 
321 /* Free this association if possible.  There may still be users, so
322  * the actual deallocation may be delayed.
323  */
324 void sctp_association_free(struct sctp_association *asoc)
325 {
326 	struct sock *sk = asoc->base.sk;
327 	struct sctp_transport *transport;
328 	struct list_head *pos, *temp;
329 	int i;
330 
331 	/* Only real associations count against the endpoint, so
332 	 * don't bother for if this is a temporary association.
333 	 */
334 	if (!list_empty(&asoc->asocs)) {
335 		list_del(&asoc->asocs);
336 
337 		/* Decrement the backlog value for a TCP-style listening
338 		 * socket.
339 		 */
340 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
341 			sk->sk_ack_backlog--;
342 	}
343 
344 	/* Mark as dead, so other users can know this structure is
345 	 * going away.
346 	 */
347 	asoc->base.dead = true;
348 
349 	/* Dispose of any data lying around in the outqueue. */
350 	sctp_outq_free(&asoc->outqueue);
351 
352 	/* Dispose of any pending messages for the upper layer. */
353 	sctp_ulpq_free(&asoc->ulpq);
354 
355 	/* Dispose of any pending chunks on the inqueue. */
356 	sctp_inq_free(&asoc->base.inqueue);
357 
358 	sctp_tsnmap_free(&asoc->peer.tsn_map);
359 
360 	/* Free ssnmap storage. */
361 	sctp_ssnmap_free(asoc->ssnmap);
362 
363 	/* Clean up the bound address list. */
364 	sctp_bind_addr_free(&asoc->base.bind_addr);
365 
366 	/* Do we need to go through all of our timers and
367 	 * delete them?   To be safe we will try to delete all, but we
368 	 * should be able to go through and make a guess based
369 	 * on our state.
370 	 */
371 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372 		if (del_timer(&asoc->timers[i]))
373 			sctp_association_put(asoc);
374 	}
375 
376 	/* Free peer's cached cookie. */
377 	kfree(asoc->peer.cookie);
378 	kfree(asoc->peer.peer_random);
379 	kfree(asoc->peer.peer_chunks);
380 	kfree(asoc->peer.peer_hmacs);
381 
382 	/* Release the transport structures. */
383 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384 		transport = list_entry(pos, struct sctp_transport, transports);
385 		list_del_rcu(pos);
386 		sctp_unhash_transport(transport);
387 		sctp_transport_free(transport);
388 	}
389 
390 	asoc->peer.transport_count = 0;
391 
392 	sctp_asconf_queue_teardown(asoc);
393 
394 	/* Free pending address space being deleted */
395 	kfree(asoc->asconf_addr_del_pending);
396 
397 	/* AUTH - Free the endpoint shared keys */
398 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
399 
400 	/* AUTH - Free the association shared key */
401 	sctp_auth_key_put(asoc->asoc_shared_key);
402 
403 	sctp_association_put(asoc);
404 }
405 
406 /* Cleanup and free up an association. */
407 static void sctp_association_destroy(struct sctp_association *asoc)
408 {
409 	if (unlikely(!asoc->base.dead)) {
410 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
411 		return;
412 	}
413 
414 	sctp_endpoint_put(asoc->ep);
415 	sock_put(asoc->base.sk);
416 
417 	if (asoc->assoc_id != 0) {
418 		spin_lock_bh(&sctp_assocs_id_lock);
419 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
420 		spin_unlock_bh(&sctp_assocs_id_lock);
421 	}
422 
423 	WARN_ON(atomic_read(&asoc->rmem_alloc));
424 
425 	kfree(asoc);
426 	SCTP_DBG_OBJCNT_DEC(assoc);
427 }
428 
429 /* Change the primary destination address for the peer. */
430 void sctp_assoc_set_primary(struct sctp_association *asoc,
431 			    struct sctp_transport *transport)
432 {
433 	int changeover = 0;
434 
435 	/* it's a changeover only if we already have a primary path
436 	 * that we are changing
437 	 */
438 	if (asoc->peer.primary_path != NULL &&
439 	    asoc->peer.primary_path != transport)
440 		changeover = 1 ;
441 
442 	asoc->peer.primary_path = transport;
443 
444 	/* Set a default msg_name for events. */
445 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
446 	       sizeof(union sctp_addr));
447 
448 	/* If the primary path is changing, assume that the
449 	 * user wants to use this new path.
450 	 */
451 	if ((transport->state == SCTP_ACTIVE) ||
452 	    (transport->state == SCTP_UNKNOWN))
453 		asoc->peer.active_path = transport;
454 
455 	/*
456 	 * SFR-CACC algorithm:
457 	 * Upon the receipt of a request to change the primary
458 	 * destination address, on the data structure for the new
459 	 * primary destination, the sender MUST do the following:
460 	 *
461 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
462 	 * to this destination address earlier. The sender MUST set
463 	 * CYCLING_CHANGEOVER to indicate that this switch is a
464 	 * double switch to the same destination address.
465 	 *
466 	 * Really, only bother is we have data queued or outstanding on
467 	 * the association.
468 	 */
469 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
470 		return;
471 
472 	if (transport->cacc.changeover_active)
473 		transport->cacc.cycling_changeover = changeover;
474 
475 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
476 	 * a changeover has occurred.
477 	 */
478 	transport->cacc.changeover_active = changeover;
479 
480 	/* 3) The sender MUST store the next TSN to be sent in
481 	 * next_tsn_at_change.
482 	 */
483 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
484 }
485 
486 /* Remove a transport from an association.  */
487 void sctp_assoc_rm_peer(struct sctp_association *asoc,
488 			struct sctp_transport *peer)
489 {
490 	struct list_head	*pos;
491 	struct sctp_transport	*transport;
492 
493 	pr_debug("%s: association:%p addr:%pISpc\n",
494 		 __func__, asoc, &peer->ipaddr.sa);
495 
496 	/* If we are to remove the current retran_path, update it
497 	 * to the next peer before removing this peer from the list.
498 	 */
499 	if (asoc->peer.retran_path == peer)
500 		sctp_assoc_update_retran_path(asoc);
501 
502 	/* Remove this peer from the list. */
503 	list_del_rcu(&peer->transports);
504 	/* Remove this peer from the transport hashtable */
505 	sctp_unhash_transport(peer);
506 
507 	/* Get the first transport of asoc. */
508 	pos = asoc->peer.transport_addr_list.next;
509 	transport = list_entry(pos, struct sctp_transport, transports);
510 
511 	/* Update any entries that match the peer to be deleted. */
512 	if (asoc->peer.primary_path == peer)
513 		sctp_assoc_set_primary(asoc, transport);
514 	if (asoc->peer.active_path == peer)
515 		asoc->peer.active_path = transport;
516 	if (asoc->peer.retran_path == peer)
517 		asoc->peer.retran_path = transport;
518 	if (asoc->peer.last_data_from == peer)
519 		asoc->peer.last_data_from = transport;
520 
521 	/* If we remove the transport an INIT was last sent to, set it to
522 	 * NULL. Combined with the update of the retran path above, this
523 	 * will cause the next INIT to be sent to the next available
524 	 * transport, maintaining the cycle.
525 	 */
526 	if (asoc->init_last_sent_to == peer)
527 		asoc->init_last_sent_to = NULL;
528 
529 	/* If we remove the transport an SHUTDOWN was last sent to, set it
530 	 * to NULL. Combined with the update of the retran path above, this
531 	 * will cause the next SHUTDOWN to be sent to the next available
532 	 * transport, maintaining the cycle.
533 	 */
534 	if (asoc->shutdown_last_sent_to == peer)
535 		asoc->shutdown_last_sent_to = NULL;
536 
537 	/* If we remove the transport an ASCONF was last sent to, set it to
538 	 * NULL.
539 	 */
540 	if (asoc->addip_last_asconf &&
541 	    asoc->addip_last_asconf->transport == peer)
542 		asoc->addip_last_asconf->transport = NULL;
543 
544 	/* If we have something on the transmitted list, we have to
545 	 * save it off.  The best place is the active path.
546 	 */
547 	if (!list_empty(&peer->transmitted)) {
548 		struct sctp_transport *active = asoc->peer.active_path;
549 		struct sctp_chunk *ch;
550 
551 		/* Reset the transport of each chunk on this list */
552 		list_for_each_entry(ch, &peer->transmitted,
553 					transmitted_list) {
554 			ch->transport = NULL;
555 			ch->rtt_in_progress = 0;
556 		}
557 
558 		list_splice_tail_init(&peer->transmitted,
559 					&active->transmitted);
560 
561 		/* Start a T3 timer here in case it wasn't running so
562 		 * that these migrated packets have a chance to get
563 		 * retransmitted.
564 		 */
565 		if (!timer_pending(&active->T3_rtx_timer))
566 			if (!mod_timer(&active->T3_rtx_timer,
567 					jiffies + active->rto))
568 				sctp_transport_hold(active);
569 	}
570 
571 	asoc->peer.transport_count--;
572 
573 	sctp_transport_free(peer);
574 }
575 
576 /* Add a transport address to an association.  */
577 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
578 					   const union sctp_addr *addr,
579 					   const gfp_t gfp,
580 					   const int peer_state)
581 {
582 	struct net *net = sock_net(asoc->base.sk);
583 	struct sctp_transport *peer;
584 	struct sctp_sock *sp;
585 	unsigned short port;
586 
587 	sp = sctp_sk(asoc->base.sk);
588 
589 	/* AF_INET and AF_INET6 share common port field. */
590 	port = ntohs(addr->v4.sin_port);
591 
592 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
593 		 asoc, &addr->sa, peer_state);
594 
595 	/* Set the port if it has not been set yet.  */
596 	if (0 == asoc->peer.port)
597 		asoc->peer.port = port;
598 
599 	/* Check to see if this is a duplicate. */
600 	peer = sctp_assoc_lookup_paddr(asoc, addr);
601 	if (peer) {
602 		/* An UNKNOWN state is only set on transports added by
603 		 * user in sctp_connectx() call.  Such transports should be
604 		 * considered CONFIRMED per RFC 4960, Section 5.4.
605 		 */
606 		if (peer->state == SCTP_UNKNOWN) {
607 			peer->state = SCTP_ACTIVE;
608 		}
609 		return peer;
610 	}
611 
612 	peer = sctp_transport_new(net, addr, gfp);
613 	if (!peer)
614 		return NULL;
615 
616 	sctp_transport_set_owner(peer, asoc);
617 
618 	/* Initialize the peer's heartbeat interval based on the
619 	 * association configured value.
620 	 */
621 	peer->hbinterval = asoc->hbinterval;
622 
623 	/* Set the path max_retrans.  */
624 	peer->pathmaxrxt = asoc->pathmaxrxt;
625 
626 	/* And the partial failure retrans threshold */
627 	peer->pf_retrans = asoc->pf_retrans;
628 
629 	/* Initialize the peer's SACK delay timeout based on the
630 	 * association configured value.
631 	 */
632 	peer->sackdelay = asoc->sackdelay;
633 	peer->sackfreq = asoc->sackfreq;
634 
635 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
636 	 * based on association setting.
637 	 */
638 	peer->param_flags = asoc->param_flags;
639 
640 	sctp_transport_route(peer, NULL, sp);
641 
642 	/* Initialize the pmtu of the transport. */
643 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
644 		if (asoc->pathmtu)
645 			peer->pathmtu = asoc->pathmtu;
646 		else
647 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
648 	}
649 
650 	/* If this is the first transport addr on this association,
651 	 * initialize the association PMTU to the peer's PMTU.
652 	 * If not and the current association PMTU is higher than the new
653 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
654 	 */
655 	if (asoc->pathmtu)
656 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
657 	else
658 		asoc->pathmtu = peer->pathmtu;
659 
660 	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
661 		 asoc->pathmtu);
662 
663 	peer->pmtu_pending = 0;
664 
665 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
666 
667 	/* The asoc->peer.port might not be meaningful yet, but
668 	 * initialize the packet structure anyway.
669 	 */
670 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
671 			 asoc->peer.port);
672 
673 	/* 7.2.1 Slow-Start
674 	 *
675 	 * o The initial cwnd before DATA transmission or after a sufficiently
676 	 *   long idle period MUST be set to
677 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
678 	 *
679 	 * o The initial value of ssthresh MAY be arbitrarily high
680 	 *   (for example, implementations MAY use the size of the
681 	 *   receiver advertised window).
682 	 */
683 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
684 
685 	/* At this point, we may not have the receiver's advertised window,
686 	 * so initialize ssthresh to the default value and it will be set
687 	 * later when we process the INIT.
688 	 */
689 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
690 
691 	peer->partial_bytes_acked = 0;
692 	peer->flight_size = 0;
693 	peer->burst_limited = 0;
694 
695 	/* Set the transport's RTO.initial value */
696 	peer->rto = asoc->rto_initial;
697 	sctp_max_rto(asoc, peer);
698 
699 	/* Set the peer's active state. */
700 	peer->state = peer_state;
701 
702 	/* Attach the remote transport to our asoc.  */
703 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
704 	asoc->peer.transport_count++;
705 	/* Add this peer into the transport hashtable */
706 	sctp_hash_transport(peer);
707 
708 	/* If we do not yet have a primary path, set one.  */
709 	if (!asoc->peer.primary_path) {
710 		sctp_assoc_set_primary(asoc, peer);
711 		asoc->peer.retran_path = peer;
712 	}
713 
714 	if (asoc->peer.active_path == asoc->peer.retran_path &&
715 	    peer->state != SCTP_UNCONFIRMED) {
716 		asoc->peer.retran_path = peer;
717 	}
718 
719 	return peer;
720 }
721 
722 /* Delete a transport address from an association.  */
723 void sctp_assoc_del_peer(struct sctp_association *asoc,
724 			 const union sctp_addr *addr)
725 {
726 	struct list_head	*pos;
727 	struct list_head	*temp;
728 	struct sctp_transport	*transport;
729 
730 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
731 		transport = list_entry(pos, struct sctp_transport, transports);
732 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
733 			/* Do book keeping for removing the peer and free it. */
734 			sctp_assoc_rm_peer(asoc, transport);
735 			break;
736 		}
737 	}
738 }
739 
740 /* Lookup a transport by address. */
741 struct sctp_transport *sctp_assoc_lookup_paddr(
742 					const struct sctp_association *asoc,
743 					const union sctp_addr *address)
744 {
745 	struct sctp_transport *t;
746 
747 	/* Cycle through all transports searching for a peer address. */
748 
749 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
750 			transports) {
751 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
752 			return t;
753 	}
754 
755 	return NULL;
756 }
757 
758 /* Remove all transports except a give one */
759 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
760 				     struct sctp_transport *primary)
761 {
762 	struct sctp_transport	*temp;
763 	struct sctp_transport	*t;
764 
765 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
766 				 transports) {
767 		/* if the current transport is not the primary one, delete it */
768 		if (t != primary)
769 			sctp_assoc_rm_peer(asoc, t);
770 	}
771 }
772 
773 /* Engage in transport control operations.
774  * Mark the transport up or down and send a notification to the user.
775  * Select and update the new active and retran paths.
776  */
777 void sctp_assoc_control_transport(struct sctp_association *asoc,
778 				  struct sctp_transport *transport,
779 				  sctp_transport_cmd_t command,
780 				  sctp_sn_error_t error)
781 {
782 	struct sctp_ulpevent *event;
783 	struct sockaddr_storage addr;
784 	int spc_state = 0;
785 	bool ulp_notify = true;
786 
787 	/* Record the transition on the transport.  */
788 	switch (command) {
789 	case SCTP_TRANSPORT_UP:
790 		/* If we are moving from UNCONFIRMED state due
791 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
792 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
793 		 */
794 		if (SCTP_UNCONFIRMED == transport->state &&
795 		    SCTP_HEARTBEAT_SUCCESS == error)
796 			spc_state = SCTP_ADDR_CONFIRMED;
797 		else
798 			spc_state = SCTP_ADDR_AVAILABLE;
799 		/* Don't inform ULP about transition from PF to
800 		 * active state and set cwnd to 1 MTU, see SCTP
801 		 * Quick failover draft section 5.1, point 5
802 		 */
803 		if (transport->state == SCTP_PF) {
804 			ulp_notify = false;
805 			transport->cwnd = asoc->pathmtu;
806 		}
807 		transport->state = SCTP_ACTIVE;
808 		break;
809 
810 	case SCTP_TRANSPORT_DOWN:
811 		/* If the transport was never confirmed, do not transition it
812 		 * to inactive state.  Also, release the cached route since
813 		 * there may be a better route next time.
814 		 */
815 		if (transport->state != SCTP_UNCONFIRMED)
816 			transport->state = SCTP_INACTIVE;
817 		else {
818 			dst_release(transport->dst);
819 			transport->dst = NULL;
820 			ulp_notify = false;
821 		}
822 
823 		spc_state = SCTP_ADDR_UNREACHABLE;
824 		break;
825 
826 	case SCTP_TRANSPORT_PF:
827 		transport->state = SCTP_PF;
828 		ulp_notify = false;
829 		break;
830 
831 	default:
832 		return;
833 	}
834 
835 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
836 	 * to the user.
837 	 */
838 	if (ulp_notify) {
839 		memset(&addr, 0, sizeof(struct sockaddr_storage));
840 		memcpy(&addr, &transport->ipaddr,
841 		       transport->af_specific->sockaddr_len);
842 
843 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
844 					0, spc_state, error, GFP_ATOMIC);
845 		if (event)
846 			sctp_ulpq_tail_event(&asoc->ulpq, event);
847 	}
848 
849 	/* Select new active and retran paths. */
850 	sctp_select_active_and_retran_path(asoc);
851 }
852 
853 /* Hold a reference to an association. */
854 void sctp_association_hold(struct sctp_association *asoc)
855 {
856 	atomic_inc(&asoc->base.refcnt);
857 }
858 
859 /* Release a reference to an association and cleanup
860  * if there are no more references.
861  */
862 void sctp_association_put(struct sctp_association *asoc)
863 {
864 	if (atomic_dec_and_test(&asoc->base.refcnt))
865 		sctp_association_destroy(asoc);
866 }
867 
868 /* Allocate the next TSN, Transmission Sequence Number, for the given
869  * association.
870  */
871 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
872 {
873 	/* From Section 1.6 Serial Number Arithmetic:
874 	 * Transmission Sequence Numbers wrap around when they reach
875 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
876 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
877 	 */
878 	__u32 retval = asoc->next_tsn;
879 	asoc->next_tsn++;
880 	asoc->unack_data++;
881 
882 	return retval;
883 }
884 
885 /* Compare two addresses to see if they match.  Wildcard addresses
886  * only match themselves.
887  */
888 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
889 			const union sctp_addr *ss2)
890 {
891 	struct sctp_af *af;
892 
893 	af = sctp_get_af_specific(ss1->sa.sa_family);
894 	if (unlikely(!af))
895 		return 0;
896 
897 	return af->cmp_addr(ss1, ss2);
898 }
899 
900 /* Return an ecne chunk to get prepended to a packet.
901  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
902  * No we don't, but we could/should.
903  */
904 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
905 {
906 	if (!asoc->need_ecne)
907 		return NULL;
908 
909 	/* Send ECNE if needed.
910 	 * Not being able to allocate a chunk here is not deadly.
911 	 */
912 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
913 }
914 
915 /*
916  * Find which transport this TSN was sent on.
917  */
918 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
919 					     __u32 tsn)
920 {
921 	struct sctp_transport *active;
922 	struct sctp_transport *match;
923 	struct sctp_transport *transport;
924 	struct sctp_chunk *chunk;
925 	__be32 key = htonl(tsn);
926 
927 	match = NULL;
928 
929 	/*
930 	 * FIXME: In general, find a more efficient data structure for
931 	 * searching.
932 	 */
933 
934 	/*
935 	 * The general strategy is to search each transport's transmitted
936 	 * list.   Return which transport this TSN lives on.
937 	 *
938 	 * Let's be hopeful and check the active_path first.
939 	 * Another optimization would be to know if there is only one
940 	 * outbound path and not have to look for the TSN at all.
941 	 *
942 	 */
943 
944 	active = asoc->peer.active_path;
945 
946 	list_for_each_entry(chunk, &active->transmitted,
947 			transmitted_list) {
948 
949 		if (key == chunk->subh.data_hdr->tsn) {
950 			match = active;
951 			goto out;
952 		}
953 	}
954 
955 	/* If not found, go search all the other transports. */
956 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
957 			transports) {
958 
959 		if (transport == active)
960 			continue;
961 		list_for_each_entry(chunk, &transport->transmitted,
962 				transmitted_list) {
963 			if (key == chunk->subh.data_hdr->tsn) {
964 				match = transport;
965 				goto out;
966 			}
967 		}
968 	}
969 out:
970 	return match;
971 }
972 
973 /* Is this the association we are looking for? */
974 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
975 					   struct net *net,
976 					   const union sctp_addr *laddr,
977 					   const union sctp_addr *paddr)
978 {
979 	struct sctp_transport *transport;
980 
981 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
982 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
983 	    net_eq(sock_net(asoc->base.sk), net)) {
984 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
985 		if (!transport)
986 			goto out;
987 
988 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
989 					 sctp_sk(asoc->base.sk)))
990 			goto out;
991 	}
992 	transport = NULL;
993 
994 out:
995 	return transport;
996 }
997 
998 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
999 static void sctp_assoc_bh_rcv(struct work_struct *work)
1000 {
1001 	struct sctp_association *asoc =
1002 		container_of(work, struct sctp_association,
1003 			     base.inqueue.immediate);
1004 	struct net *net = sock_net(asoc->base.sk);
1005 	struct sctp_endpoint *ep;
1006 	struct sctp_chunk *chunk;
1007 	struct sctp_inq *inqueue;
1008 	int state;
1009 	sctp_subtype_t subtype;
1010 	int error = 0;
1011 
1012 	/* The association should be held so we should be safe. */
1013 	ep = asoc->ep;
1014 
1015 	inqueue = &asoc->base.inqueue;
1016 	sctp_association_hold(asoc);
1017 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1018 		state = asoc->state;
1019 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1020 
1021 		/* SCTP-AUTH, Section 6.3:
1022 		 *    The receiver has a list of chunk types which it expects
1023 		 *    to be received only after an AUTH-chunk.  This list has
1024 		 *    been sent to the peer during the association setup.  It
1025 		 *    MUST silently discard these chunks if they are not placed
1026 		 *    after an AUTH chunk in the packet.
1027 		 */
1028 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1029 			continue;
1030 
1031 		/* Remember where the last DATA chunk came from so we
1032 		 * know where to send the SACK.
1033 		 */
1034 		if (sctp_chunk_is_data(chunk))
1035 			asoc->peer.last_data_from = chunk->transport;
1036 		else {
1037 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1038 			asoc->stats.ictrlchunks++;
1039 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1040 				asoc->stats.isacks++;
1041 		}
1042 
1043 		if (chunk->transport)
1044 			chunk->transport->last_time_heard = ktime_get();
1045 
1046 		/* Run through the state machine. */
1047 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1048 				   state, ep, asoc, chunk, GFP_ATOMIC);
1049 
1050 		/* Check to see if the association is freed in response to
1051 		 * the incoming chunk.  If so, get out of the while loop.
1052 		 */
1053 		if (asoc->base.dead)
1054 			break;
1055 
1056 		/* If there is an error on chunk, discard this packet. */
1057 		if (error && chunk)
1058 			chunk->pdiscard = 1;
1059 	}
1060 	sctp_association_put(asoc);
1061 }
1062 
1063 /* This routine moves an association from its old sk to a new sk.  */
1064 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1065 {
1066 	struct sctp_sock *newsp = sctp_sk(newsk);
1067 	struct sock *oldsk = assoc->base.sk;
1068 
1069 	/* Delete the association from the old endpoint's list of
1070 	 * associations.
1071 	 */
1072 	list_del_init(&assoc->asocs);
1073 
1074 	/* Decrement the backlog value for a TCP-style socket. */
1075 	if (sctp_style(oldsk, TCP))
1076 		oldsk->sk_ack_backlog--;
1077 
1078 	/* Release references to the old endpoint and the sock.  */
1079 	sctp_endpoint_put(assoc->ep);
1080 	sock_put(assoc->base.sk);
1081 
1082 	/* Get a reference to the new endpoint.  */
1083 	assoc->ep = newsp->ep;
1084 	sctp_endpoint_hold(assoc->ep);
1085 
1086 	/* Get a reference to the new sock.  */
1087 	assoc->base.sk = newsk;
1088 	sock_hold(assoc->base.sk);
1089 
1090 	/* Add the association to the new endpoint's list of associations.  */
1091 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1092 }
1093 
1094 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1095 void sctp_assoc_update(struct sctp_association *asoc,
1096 		       struct sctp_association *new)
1097 {
1098 	struct sctp_transport *trans;
1099 	struct list_head *pos, *temp;
1100 
1101 	/* Copy in new parameters of peer. */
1102 	asoc->c = new->c;
1103 	asoc->peer.rwnd = new->peer.rwnd;
1104 	asoc->peer.sack_needed = new->peer.sack_needed;
1105 	asoc->peer.auth_capable = new->peer.auth_capable;
1106 	asoc->peer.i = new->peer.i;
1107 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1108 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1109 
1110 	/* Remove any peer addresses not present in the new association. */
1111 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1112 		trans = list_entry(pos, struct sctp_transport, transports);
1113 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1114 			sctp_assoc_rm_peer(asoc, trans);
1115 			continue;
1116 		}
1117 
1118 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1119 			sctp_transport_reset(trans);
1120 	}
1121 
1122 	/* If the case is A (association restart), use
1123 	 * initial_tsn as next_tsn. If the case is B, use
1124 	 * current next_tsn in case data sent to peer
1125 	 * has been discarded and needs retransmission.
1126 	 */
1127 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1128 		asoc->next_tsn = new->next_tsn;
1129 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1130 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1131 
1132 		/* Reinitialize SSN for both local streams
1133 		 * and peer's streams.
1134 		 */
1135 		sctp_ssnmap_clear(asoc->ssnmap);
1136 
1137 		/* Flush the ULP reassembly and ordered queue.
1138 		 * Any data there will now be stale and will
1139 		 * cause problems.
1140 		 */
1141 		sctp_ulpq_flush(&asoc->ulpq);
1142 
1143 		/* reset the overall association error count so
1144 		 * that the restarted association doesn't get torn
1145 		 * down on the next retransmission timer.
1146 		 */
1147 		asoc->overall_error_count = 0;
1148 
1149 	} else {
1150 		/* Add any peer addresses from the new association. */
1151 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1152 				transports) {
1153 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1154 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1155 						    GFP_ATOMIC, trans->state);
1156 		}
1157 
1158 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1159 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1160 		if (!asoc->ssnmap) {
1161 			/* Move the ssnmap. */
1162 			asoc->ssnmap = new->ssnmap;
1163 			new->ssnmap = NULL;
1164 		}
1165 
1166 		if (!asoc->assoc_id) {
1167 			/* get a new association id since we don't have one
1168 			 * yet.
1169 			 */
1170 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1171 		}
1172 	}
1173 
1174 	/* SCTP-AUTH: Save the peer parameters from the new associations
1175 	 * and also move the association shared keys over
1176 	 */
1177 	kfree(asoc->peer.peer_random);
1178 	asoc->peer.peer_random = new->peer.peer_random;
1179 	new->peer.peer_random = NULL;
1180 
1181 	kfree(asoc->peer.peer_chunks);
1182 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1183 	new->peer.peer_chunks = NULL;
1184 
1185 	kfree(asoc->peer.peer_hmacs);
1186 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1187 	new->peer.peer_hmacs = NULL;
1188 
1189 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1190 }
1191 
1192 /* Update the retran path for sending a retransmitted packet.
1193  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1194  *
1195  *   When there is outbound data to send and the primary path
1196  *   becomes inactive (e.g., due to failures), or where the
1197  *   SCTP user explicitly requests to send data to an
1198  *   inactive destination transport address, before reporting
1199  *   an error to its ULP, the SCTP endpoint should try to send
1200  *   the data to an alternate active destination transport
1201  *   address if one exists.
1202  *
1203  *   When retransmitting data that timed out, if the endpoint
1204  *   is multihomed, it should consider each source-destination
1205  *   address pair in its retransmission selection policy.
1206  *   When retransmitting timed-out data, the endpoint should
1207  *   attempt to pick the most divergent source-destination
1208  *   pair from the original source-destination pair to which
1209  *   the packet was transmitted.
1210  *
1211  *   Note: Rules for picking the most divergent source-destination
1212  *   pair are an implementation decision and are not specified
1213  *   within this document.
1214  *
1215  * Our basic strategy is to round-robin transports in priorities
1216  * according to sctp_trans_score() e.g., if no such
1217  * transport with state SCTP_ACTIVE exists, round-robin through
1218  * SCTP_UNKNOWN, etc. You get the picture.
1219  */
1220 static u8 sctp_trans_score(const struct sctp_transport *trans)
1221 {
1222 	switch (trans->state) {
1223 	case SCTP_ACTIVE:
1224 		return 3;	/* best case */
1225 	case SCTP_UNKNOWN:
1226 		return 2;
1227 	case SCTP_PF:
1228 		return 1;
1229 	default: /* case SCTP_INACTIVE */
1230 		return 0;	/* worst case */
1231 	}
1232 }
1233 
1234 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1235 						   struct sctp_transport *trans2)
1236 {
1237 	if (trans1->error_count > trans2->error_count) {
1238 		return trans2;
1239 	} else if (trans1->error_count == trans2->error_count &&
1240 		   ktime_after(trans2->last_time_heard,
1241 			       trans1->last_time_heard)) {
1242 		return trans2;
1243 	} else {
1244 		return trans1;
1245 	}
1246 }
1247 
1248 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1249 						    struct sctp_transport *best)
1250 {
1251 	u8 score_curr, score_best;
1252 
1253 	if (best == NULL || curr == best)
1254 		return curr;
1255 
1256 	score_curr = sctp_trans_score(curr);
1257 	score_best = sctp_trans_score(best);
1258 
1259 	/* First, try a score-based selection if both transport states
1260 	 * differ. If we're in a tie, lets try to make a more clever
1261 	 * decision here based on error counts and last time heard.
1262 	 */
1263 	if (score_curr > score_best)
1264 		return curr;
1265 	else if (score_curr == score_best)
1266 		return sctp_trans_elect_tie(best, curr);
1267 	else
1268 		return best;
1269 }
1270 
1271 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1272 {
1273 	struct sctp_transport *trans = asoc->peer.retran_path;
1274 	struct sctp_transport *trans_next = NULL;
1275 
1276 	/* We're done as we only have the one and only path. */
1277 	if (asoc->peer.transport_count == 1)
1278 		return;
1279 	/* If active_path and retran_path are the same and active,
1280 	 * then this is the only active path. Use it.
1281 	 */
1282 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1283 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1284 		return;
1285 
1286 	/* Iterate from retran_path's successor back to retran_path. */
1287 	for (trans = list_next_entry(trans, transports); 1;
1288 	     trans = list_next_entry(trans, transports)) {
1289 		/* Manually skip the head element. */
1290 		if (&trans->transports == &asoc->peer.transport_addr_list)
1291 			continue;
1292 		if (trans->state == SCTP_UNCONFIRMED)
1293 			continue;
1294 		trans_next = sctp_trans_elect_best(trans, trans_next);
1295 		/* Active is good enough for immediate return. */
1296 		if (trans_next->state == SCTP_ACTIVE)
1297 			break;
1298 		/* We've reached the end, time to update path. */
1299 		if (trans == asoc->peer.retran_path)
1300 			break;
1301 	}
1302 
1303 	asoc->peer.retran_path = trans_next;
1304 
1305 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1306 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1307 }
1308 
1309 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1310 {
1311 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1312 	struct sctp_transport *trans_pf = NULL;
1313 
1314 	/* Look for the two most recently used active transports. */
1315 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1316 			    transports) {
1317 		/* Skip uninteresting transports. */
1318 		if (trans->state == SCTP_INACTIVE ||
1319 		    trans->state == SCTP_UNCONFIRMED)
1320 			continue;
1321 		/* Keep track of the best PF transport from our
1322 		 * list in case we don't find an active one.
1323 		 */
1324 		if (trans->state == SCTP_PF) {
1325 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1326 			continue;
1327 		}
1328 		/* For active transports, pick the most recent ones. */
1329 		if (trans_pri == NULL ||
1330 		    ktime_after(trans->last_time_heard,
1331 				trans_pri->last_time_heard)) {
1332 			trans_sec = trans_pri;
1333 			trans_pri = trans;
1334 		} else if (trans_sec == NULL ||
1335 			   ktime_after(trans->last_time_heard,
1336 				       trans_sec->last_time_heard)) {
1337 			trans_sec = trans;
1338 		}
1339 	}
1340 
1341 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1342 	 *
1343 	 * By default, an endpoint should always transmit to the primary
1344 	 * path, unless the SCTP user explicitly specifies the
1345 	 * destination transport address (and possibly source transport
1346 	 * address) to use. [If the primary is active but not most recent,
1347 	 * bump the most recently used transport.]
1348 	 */
1349 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1350 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1351 	     asoc->peer.primary_path != trans_pri) {
1352 		trans_sec = trans_pri;
1353 		trans_pri = asoc->peer.primary_path;
1354 	}
1355 
1356 	/* We did not find anything useful for a possible retransmission
1357 	 * path; either primary path that we found is the the same as
1358 	 * the current one, or we didn't generally find an active one.
1359 	 */
1360 	if (trans_sec == NULL)
1361 		trans_sec = trans_pri;
1362 
1363 	/* If we failed to find a usable transport, just camp on the
1364 	 * active or pick a PF iff it's the better choice.
1365 	 */
1366 	if (trans_pri == NULL) {
1367 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1368 		trans_sec = trans_pri;
1369 	}
1370 
1371 	/* Set the active and retran transports. */
1372 	asoc->peer.active_path = trans_pri;
1373 	asoc->peer.retran_path = trans_sec;
1374 }
1375 
1376 struct sctp_transport *
1377 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1378 				  struct sctp_transport *last_sent_to)
1379 {
1380 	/* If this is the first time packet is sent, use the active path,
1381 	 * else use the retran path. If the last packet was sent over the
1382 	 * retran path, update the retran path and use it.
1383 	 */
1384 	if (last_sent_to == NULL) {
1385 		return asoc->peer.active_path;
1386 	} else {
1387 		if (last_sent_to == asoc->peer.retran_path)
1388 			sctp_assoc_update_retran_path(asoc);
1389 
1390 		return asoc->peer.retran_path;
1391 	}
1392 }
1393 
1394 /* Update the association's pmtu and frag_point by going through all the
1395  * transports. This routine is called when a transport's PMTU has changed.
1396  */
1397 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1398 {
1399 	struct sctp_transport *t;
1400 	__u32 pmtu = 0;
1401 
1402 	if (!asoc)
1403 		return;
1404 
1405 	/* Get the lowest pmtu of all the transports. */
1406 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1407 				transports) {
1408 		if (t->pmtu_pending && t->dst) {
1409 			sctp_transport_update_pmtu(sk, t,
1410 						   WORD_TRUNC(dst_mtu(t->dst)));
1411 			t->pmtu_pending = 0;
1412 		}
1413 		if (!pmtu || (t->pathmtu < pmtu))
1414 			pmtu = t->pathmtu;
1415 	}
1416 
1417 	if (pmtu) {
1418 		asoc->pathmtu = pmtu;
1419 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1420 	}
1421 
1422 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1423 		 asoc->pathmtu, asoc->frag_point);
1424 }
1425 
1426 /* Should we send a SACK to update our peer? */
1427 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1428 {
1429 	struct net *net = sock_net(asoc->base.sk);
1430 	switch (asoc->state) {
1431 	case SCTP_STATE_ESTABLISHED:
1432 	case SCTP_STATE_SHUTDOWN_PENDING:
1433 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1434 	case SCTP_STATE_SHUTDOWN_SENT:
1435 		if ((asoc->rwnd > asoc->a_rwnd) &&
1436 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1437 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1438 			   asoc->pathmtu)))
1439 			return true;
1440 		break;
1441 	default:
1442 		break;
1443 	}
1444 	return false;
1445 }
1446 
1447 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1448 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1449 {
1450 	struct sctp_chunk *sack;
1451 	struct timer_list *timer;
1452 
1453 	if (asoc->rwnd_over) {
1454 		if (asoc->rwnd_over >= len) {
1455 			asoc->rwnd_over -= len;
1456 		} else {
1457 			asoc->rwnd += (len - asoc->rwnd_over);
1458 			asoc->rwnd_over = 0;
1459 		}
1460 	} else {
1461 		asoc->rwnd += len;
1462 	}
1463 
1464 	/* If we had window pressure, start recovering it
1465 	 * once our rwnd had reached the accumulated pressure
1466 	 * threshold.  The idea is to recover slowly, but up
1467 	 * to the initial advertised window.
1468 	 */
1469 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1470 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1471 		asoc->rwnd += change;
1472 		asoc->rwnd_press -= change;
1473 	}
1474 
1475 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1476 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1477 		 asoc->a_rwnd);
1478 
1479 	/* Send a window update SACK if the rwnd has increased by at least the
1480 	 * minimum of the association's PMTU and half of the receive buffer.
1481 	 * The algorithm used is similar to the one described in
1482 	 * Section 4.2.3.3 of RFC 1122.
1483 	 */
1484 	if (sctp_peer_needs_update(asoc)) {
1485 		asoc->a_rwnd = asoc->rwnd;
1486 
1487 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1488 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1489 			 asoc->a_rwnd);
1490 
1491 		sack = sctp_make_sack(asoc);
1492 		if (!sack)
1493 			return;
1494 
1495 		asoc->peer.sack_needed = 0;
1496 
1497 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1498 
1499 		/* Stop the SACK timer.  */
1500 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1501 		if (del_timer(timer))
1502 			sctp_association_put(asoc);
1503 	}
1504 }
1505 
1506 /* Decrease asoc's rwnd by len. */
1507 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1508 {
1509 	int rx_count;
1510 	int over = 0;
1511 
1512 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1513 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1514 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1515 			 asoc->rwnd, asoc->rwnd_over);
1516 
1517 	if (asoc->ep->rcvbuf_policy)
1518 		rx_count = atomic_read(&asoc->rmem_alloc);
1519 	else
1520 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1521 
1522 	/* If we've reached or overflowed our receive buffer, announce
1523 	 * a 0 rwnd if rwnd would still be positive.  Store the
1524 	 * the potential pressure overflow so that the window can be restored
1525 	 * back to original value.
1526 	 */
1527 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1528 		over = 1;
1529 
1530 	if (asoc->rwnd >= len) {
1531 		asoc->rwnd -= len;
1532 		if (over) {
1533 			asoc->rwnd_press += asoc->rwnd;
1534 			asoc->rwnd = 0;
1535 		}
1536 	} else {
1537 		asoc->rwnd_over = len - asoc->rwnd;
1538 		asoc->rwnd = 0;
1539 	}
1540 
1541 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1542 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1543 		 asoc->rwnd_press);
1544 }
1545 
1546 /* Build the bind address list for the association based on info from the
1547  * local endpoint and the remote peer.
1548  */
1549 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1550 				     sctp_scope_t scope, gfp_t gfp)
1551 {
1552 	int flags;
1553 
1554 	/* Use scoping rules to determine the subset of addresses from
1555 	 * the endpoint.
1556 	 */
1557 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1558 	if (asoc->peer.ipv4_address)
1559 		flags |= SCTP_ADDR4_PEERSUPP;
1560 	if (asoc->peer.ipv6_address)
1561 		flags |= SCTP_ADDR6_PEERSUPP;
1562 
1563 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1564 				   &asoc->base.bind_addr,
1565 				   &asoc->ep->base.bind_addr,
1566 				   scope, gfp, flags);
1567 }
1568 
1569 /* Build the association's bind address list from the cookie.  */
1570 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1571 					 struct sctp_cookie *cookie,
1572 					 gfp_t gfp)
1573 {
1574 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1575 	int var_size3 = cookie->raw_addr_list_len;
1576 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1577 
1578 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1579 				      asoc->ep->base.bind_addr.port, gfp);
1580 }
1581 
1582 /* Lookup laddr in the bind address list of an association. */
1583 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1584 			    const union sctp_addr *laddr)
1585 {
1586 	int found = 0;
1587 
1588 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1589 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1590 				 sctp_sk(asoc->base.sk)))
1591 		found = 1;
1592 
1593 	return found;
1594 }
1595 
1596 /* Set an association id for a given association */
1597 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1598 {
1599 	bool preload = gfpflags_allow_blocking(gfp);
1600 	int ret;
1601 
1602 	/* If the id is already assigned, keep it. */
1603 	if (asoc->assoc_id)
1604 		return 0;
1605 
1606 	if (preload)
1607 		idr_preload(gfp);
1608 	spin_lock_bh(&sctp_assocs_id_lock);
1609 	/* 0 is not a valid assoc_id, must be >= 1 */
1610 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1611 	spin_unlock_bh(&sctp_assocs_id_lock);
1612 	if (preload)
1613 		idr_preload_end();
1614 	if (ret < 0)
1615 		return ret;
1616 
1617 	asoc->assoc_id = (sctp_assoc_t)ret;
1618 	return 0;
1619 }
1620 
1621 /* Free the ASCONF queue */
1622 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1623 {
1624 	struct sctp_chunk *asconf;
1625 	struct sctp_chunk *tmp;
1626 
1627 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1628 		list_del_init(&asconf->list);
1629 		sctp_chunk_free(asconf);
1630 	}
1631 }
1632 
1633 /* Free asconf_ack cache */
1634 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1635 {
1636 	struct sctp_chunk *ack;
1637 	struct sctp_chunk *tmp;
1638 
1639 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1640 				transmitted_list) {
1641 		list_del_init(&ack->transmitted_list);
1642 		sctp_chunk_free(ack);
1643 	}
1644 }
1645 
1646 /* Clean up the ASCONF_ACK queue */
1647 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1648 {
1649 	struct sctp_chunk *ack;
1650 	struct sctp_chunk *tmp;
1651 
1652 	/* We can remove all the entries from the queue up to
1653 	 * the "Peer-Sequence-Number".
1654 	 */
1655 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1656 				transmitted_list) {
1657 		if (ack->subh.addip_hdr->serial ==
1658 				htonl(asoc->peer.addip_serial))
1659 			break;
1660 
1661 		list_del_init(&ack->transmitted_list);
1662 		sctp_chunk_free(ack);
1663 	}
1664 }
1665 
1666 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1667 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1668 					const struct sctp_association *asoc,
1669 					__be32 serial)
1670 {
1671 	struct sctp_chunk *ack;
1672 
1673 	/* Walk through the list of cached ASCONF-ACKs and find the
1674 	 * ack chunk whose serial number matches that of the request.
1675 	 */
1676 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1677 		if (sctp_chunk_pending(ack))
1678 			continue;
1679 		if (ack->subh.addip_hdr->serial == serial) {
1680 			sctp_chunk_hold(ack);
1681 			return ack;
1682 		}
1683 	}
1684 
1685 	return NULL;
1686 }
1687 
1688 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1689 {
1690 	/* Free any cached ASCONF_ACK chunk. */
1691 	sctp_assoc_free_asconf_acks(asoc);
1692 
1693 	/* Free the ASCONF queue. */
1694 	sctp_assoc_free_asconf_queue(asoc);
1695 
1696 	/* Free any cached ASCONF chunk. */
1697 	if (asoc->addip_last_asconf)
1698 		sctp_chunk_free(asoc->addip_last_asconf);
1699 }
1700