1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@us.ibm.com> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com> 41 * Kevin Gao <kevin.gao@intel.com> 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/types.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 51 #include <linux/slab.h> 52 #include <linux/in.h> 53 #include <net/ipv6.h> 54 #include <net/sctp/sctp.h> 55 #include <net/sctp/sm.h> 56 57 /* Forward declarations for internal functions. */ 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 59 static void sctp_assoc_bh_rcv(struct work_struct *work); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 62 63 /* 1st Level Abstractions. */ 64 65 /* Initialize a new association from provided memory. */ 66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 67 const struct sctp_endpoint *ep, 68 const struct sock *sk, 69 sctp_scope_t scope, 70 gfp_t gfp) 71 { 72 struct net *net = sock_net(sk); 73 struct sctp_sock *sp; 74 sctp_paramhdr_t *p; 75 int i; 76 77 /* Retrieve the SCTP per socket area. */ 78 sp = sctp_sk((struct sock *)sk); 79 80 /* Discarding const is appropriate here. */ 81 asoc->ep = (struct sctp_endpoint *)ep; 82 asoc->base.sk = (struct sock *)sk; 83 84 sctp_endpoint_hold(asoc->ep); 85 sock_hold(asoc->base.sk); 86 87 /* Initialize the common base substructure. */ 88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 89 90 /* Initialize the object handling fields. */ 91 atomic_set(&asoc->base.refcnt, 1); 92 93 /* Initialize the bind addr area. */ 94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 95 96 asoc->state = SCTP_STATE_CLOSED; 97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 98 asoc->user_frag = sp->user_frag; 99 100 /* Set the association max_retrans and RTO values from the 101 * socket values. 102 */ 103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 104 asoc->pf_retrans = net->sctp.pf_retrans; 105 106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 109 110 /* Initialize the association's heartbeat interval based on the 111 * sock configured value. 112 */ 113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 114 115 /* Initialize path max retrans value. */ 116 asoc->pathmaxrxt = sp->pathmaxrxt; 117 118 /* Initialize default path MTU. */ 119 asoc->pathmtu = sp->pathmtu; 120 121 /* Set association default SACK delay */ 122 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 123 asoc->sackfreq = sp->sackfreq; 124 125 /* Set the association default flags controlling 126 * Heartbeat, SACK delay, and Path MTU Discovery. 127 */ 128 asoc->param_flags = sp->param_flags; 129 130 /* Initialize the maximum number of new data packets that can be sent 131 * in a burst. 132 */ 133 asoc->max_burst = sp->max_burst; 134 135 /* initialize association timers */ 136 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 139 140 /* sctpimpguide Section 2.12.2 141 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 142 * recommended value of 5 times 'RTO.Max'. 143 */ 144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 145 = 5 * asoc->rto_max; 146 147 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 149 150 /* Initializes the timers */ 151 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 152 setup_timer(&asoc->timers[i], sctp_timer_events[i], 153 (unsigned long)asoc); 154 155 /* Pull default initialization values from the sock options. 156 * Note: This assumes that the values have already been 157 * validated in the sock. 158 */ 159 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 160 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 161 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 162 163 asoc->max_init_timeo = 164 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 165 166 /* Set the local window size for receive. 167 * This is also the rcvbuf space per association. 168 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 169 * 1500 bytes in one SCTP packet. 170 */ 171 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 172 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 173 else 174 asoc->rwnd = sk->sk_rcvbuf/2; 175 176 asoc->a_rwnd = asoc->rwnd; 177 178 /* Use my own max window until I learn something better. */ 179 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 180 181 /* Initialize the receive memory counter */ 182 atomic_set(&asoc->rmem_alloc, 0); 183 184 init_waitqueue_head(&asoc->wait); 185 186 asoc->c.my_vtag = sctp_generate_tag(ep); 187 asoc->c.my_port = ep->base.bind_addr.port; 188 189 asoc->c.initial_tsn = sctp_generate_tsn(ep); 190 191 asoc->next_tsn = asoc->c.initial_tsn; 192 193 asoc->ctsn_ack_point = asoc->next_tsn - 1; 194 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 195 asoc->highest_sacked = asoc->ctsn_ack_point; 196 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 197 198 /* ADDIP Section 4.1 Asconf Chunk Procedures 199 * 200 * When an endpoint has an ASCONF signaled change to be sent to the 201 * remote endpoint it should do the following: 202 * ... 203 * A2) a serial number should be assigned to the chunk. The serial 204 * number SHOULD be a monotonically increasing number. The serial 205 * numbers SHOULD be initialized at the start of the 206 * association to the same value as the initial TSN. 207 */ 208 asoc->addip_serial = asoc->c.initial_tsn; 209 asoc->strreset_outseq = asoc->c.initial_tsn; 210 211 INIT_LIST_HEAD(&asoc->addip_chunk_list); 212 INIT_LIST_HEAD(&asoc->asconf_ack_list); 213 214 /* Make an empty list of remote transport addresses. */ 215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 216 217 /* RFC 2960 5.1 Normal Establishment of an Association 218 * 219 * After the reception of the first data chunk in an 220 * association the endpoint must immediately respond with a 221 * sack to acknowledge the data chunk. Subsequent 222 * acknowledgements should be done as described in Section 223 * 6.2. 224 * 225 * [We implement this by telling a new association that it 226 * already received one packet.] 227 */ 228 asoc->peer.sack_needed = 1; 229 asoc->peer.sack_generation = 1; 230 231 /* Assume that the peer will tell us if he recognizes ASCONF 232 * as part of INIT exchange. 233 * The sctp_addip_noauth option is there for backward compatibility 234 * and will revert old behavior. 235 */ 236 if (net->sctp.addip_noauth) 237 asoc->peer.asconf_capable = 1; 238 239 /* Create an input queue. */ 240 sctp_inq_init(&asoc->base.inqueue); 241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 242 243 /* Create an output queue. */ 244 sctp_outq_init(asoc, &asoc->outqueue); 245 246 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 247 goto fail_init; 248 249 /* Assume that peer would support both address types unless we are 250 * told otherwise. 251 */ 252 asoc->peer.ipv4_address = 1; 253 if (asoc->base.sk->sk_family == PF_INET6) 254 asoc->peer.ipv6_address = 1; 255 INIT_LIST_HEAD(&asoc->asocs); 256 257 asoc->default_stream = sp->default_stream; 258 asoc->default_ppid = sp->default_ppid; 259 asoc->default_flags = sp->default_flags; 260 asoc->default_context = sp->default_context; 261 asoc->default_timetolive = sp->default_timetolive; 262 asoc->default_rcv_context = sp->default_rcv_context; 263 264 /* AUTH related initializations */ 265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 266 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) 267 goto fail_init; 268 269 asoc->active_key_id = ep->active_key_id; 270 asoc->prsctp_enable = ep->prsctp_enable; 271 asoc->reconf_enable = ep->reconf_enable; 272 asoc->strreset_enable = ep->strreset_enable; 273 274 /* Save the hmacs and chunks list into this association */ 275 if (ep->auth_hmacs_list) 276 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 277 ntohs(ep->auth_hmacs_list->param_hdr.length)); 278 if (ep->auth_chunk_list) 279 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 280 ntohs(ep->auth_chunk_list->param_hdr.length)); 281 282 /* Get the AUTH random number for this association */ 283 p = (sctp_paramhdr_t *)asoc->c.auth_random; 284 p->type = SCTP_PARAM_RANDOM; 285 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 286 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 287 288 return asoc; 289 290 fail_init: 291 sock_put(asoc->base.sk); 292 sctp_endpoint_put(asoc->ep); 293 return NULL; 294 } 295 296 /* Allocate and initialize a new association */ 297 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 298 const struct sock *sk, 299 sctp_scope_t scope, 300 gfp_t gfp) 301 { 302 struct sctp_association *asoc; 303 304 asoc = kzalloc(sizeof(*asoc), gfp); 305 if (!asoc) 306 goto fail; 307 308 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 309 goto fail_init; 310 311 SCTP_DBG_OBJCNT_INC(assoc); 312 313 pr_debug("Created asoc %p\n", asoc); 314 315 return asoc; 316 317 fail_init: 318 kfree(asoc); 319 fail: 320 return NULL; 321 } 322 323 /* Free this association if possible. There may still be users, so 324 * the actual deallocation may be delayed. 325 */ 326 void sctp_association_free(struct sctp_association *asoc) 327 { 328 struct sock *sk = asoc->base.sk; 329 struct sctp_transport *transport; 330 struct list_head *pos, *temp; 331 int i; 332 333 /* Only real associations count against the endpoint, so 334 * don't bother for if this is a temporary association. 335 */ 336 if (!list_empty(&asoc->asocs)) { 337 list_del(&asoc->asocs); 338 339 /* Decrement the backlog value for a TCP-style listening 340 * socket. 341 */ 342 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 343 sk->sk_ack_backlog--; 344 } 345 346 /* Mark as dead, so other users can know this structure is 347 * going away. 348 */ 349 asoc->base.dead = true; 350 351 /* Dispose of any data lying around in the outqueue. */ 352 sctp_outq_free(&asoc->outqueue); 353 354 /* Dispose of any pending messages for the upper layer. */ 355 sctp_ulpq_free(&asoc->ulpq); 356 357 /* Dispose of any pending chunks on the inqueue. */ 358 sctp_inq_free(&asoc->base.inqueue); 359 360 sctp_tsnmap_free(&asoc->peer.tsn_map); 361 362 /* Free stream information. */ 363 sctp_stream_free(asoc->stream); 364 365 if (asoc->strreset_chunk) 366 sctp_chunk_free(asoc->strreset_chunk); 367 368 /* Clean up the bound address list. */ 369 sctp_bind_addr_free(&asoc->base.bind_addr); 370 371 /* Do we need to go through all of our timers and 372 * delete them? To be safe we will try to delete all, but we 373 * should be able to go through and make a guess based 374 * on our state. 375 */ 376 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 377 if (del_timer(&asoc->timers[i])) 378 sctp_association_put(asoc); 379 } 380 381 /* Free peer's cached cookie. */ 382 kfree(asoc->peer.cookie); 383 kfree(asoc->peer.peer_random); 384 kfree(asoc->peer.peer_chunks); 385 kfree(asoc->peer.peer_hmacs); 386 387 /* Release the transport structures. */ 388 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 389 transport = list_entry(pos, struct sctp_transport, transports); 390 list_del_rcu(pos); 391 sctp_unhash_transport(transport); 392 sctp_transport_free(transport); 393 } 394 395 asoc->peer.transport_count = 0; 396 397 sctp_asconf_queue_teardown(asoc); 398 399 /* Free pending address space being deleted */ 400 kfree(asoc->asconf_addr_del_pending); 401 402 /* AUTH - Free the endpoint shared keys */ 403 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 404 405 /* AUTH - Free the association shared key */ 406 sctp_auth_key_put(asoc->asoc_shared_key); 407 408 sctp_association_put(asoc); 409 } 410 411 /* Cleanup and free up an association. */ 412 static void sctp_association_destroy(struct sctp_association *asoc) 413 { 414 if (unlikely(!asoc->base.dead)) { 415 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 416 return; 417 } 418 419 sctp_endpoint_put(asoc->ep); 420 sock_put(asoc->base.sk); 421 422 if (asoc->assoc_id != 0) { 423 spin_lock_bh(&sctp_assocs_id_lock); 424 idr_remove(&sctp_assocs_id, asoc->assoc_id); 425 spin_unlock_bh(&sctp_assocs_id_lock); 426 } 427 428 WARN_ON(atomic_read(&asoc->rmem_alloc)); 429 430 kfree(asoc); 431 SCTP_DBG_OBJCNT_DEC(assoc); 432 } 433 434 /* Change the primary destination address for the peer. */ 435 void sctp_assoc_set_primary(struct sctp_association *asoc, 436 struct sctp_transport *transport) 437 { 438 int changeover = 0; 439 440 /* it's a changeover only if we already have a primary path 441 * that we are changing 442 */ 443 if (asoc->peer.primary_path != NULL && 444 asoc->peer.primary_path != transport) 445 changeover = 1 ; 446 447 asoc->peer.primary_path = transport; 448 449 /* Set a default msg_name for events. */ 450 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 451 sizeof(union sctp_addr)); 452 453 /* If the primary path is changing, assume that the 454 * user wants to use this new path. 455 */ 456 if ((transport->state == SCTP_ACTIVE) || 457 (transport->state == SCTP_UNKNOWN)) 458 asoc->peer.active_path = transport; 459 460 /* 461 * SFR-CACC algorithm: 462 * Upon the receipt of a request to change the primary 463 * destination address, on the data structure for the new 464 * primary destination, the sender MUST do the following: 465 * 466 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 467 * to this destination address earlier. The sender MUST set 468 * CYCLING_CHANGEOVER to indicate that this switch is a 469 * double switch to the same destination address. 470 * 471 * Really, only bother is we have data queued or outstanding on 472 * the association. 473 */ 474 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 475 return; 476 477 if (transport->cacc.changeover_active) 478 transport->cacc.cycling_changeover = changeover; 479 480 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 481 * a changeover has occurred. 482 */ 483 transport->cacc.changeover_active = changeover; 484 485 /* 3) The sender MUST store the next TSN to be sent in 486 * next_tsn_at_change. 487 */ 488 transport->cacc.next_tsn_at_change = asoc->next_tsn; 489 } 490 491 /* Remove a transport from an association. */ 492 void sctp_assoc_rm_peer(struct sctp_association *asoc, 493 struct sctp_transport *peer) 494 { 495 struct list_head *pos; 496 struct sctp_transport *transport; 497 498 pr_debug("%s: association:%p addr:%pISpc\n", 499 __func__, asoc, &peer->ipaddr.sa); 500 501 /* If we are to remove the current retran_path, update it 502 * to the next peer before removing this peer from the list. 503 */ 504 if (asoc->peer.retran_path == peer) 505 sctp_assoc_update_retran_path(asoc); 506 507 /* Remove this peer from the list. */ 508 list_del_rcu(&peer->transports); 509 /* Remove this peer from the transport hashtable */ 510 sctp_unhash_transport(peer); 511 512 /* Get the first transport of asoc. */ 513 pos = asoc->peer.transport_addr_list.next; 514 transport = list_entry(pos, struct sctp_transport, transports); 515 516 /* Update any entries that match the peer to be deleted. */ 517 if (asoc->peer.primary_path == peer) 518 sctp_assoc_set_primary(asoc, transport); 519 if (asoc->peer.active_path == peer) 520 asoc->peer.active_path = transport; 521 if (asoc->peer.retran_path == peer) 522 asoc->peer.retran_path = transport; 523 if (asoc->peer.last_data_from == peer) 524 asoc->peer.last_data_from = transport; 525 526 if (asoc->strreset_chunk && 527 asoc->strreset_chunk->transport == peer) { 528 asoc->strreset_chunk->transport = transport; 529 sctp_transport_reset_reconf_timer(transport); 530 } 531 532 /* If we remove the transport an INIT was last sent to, set it to 533 * NULL. Combined with the update of the retran path above, this 534 * will cause the next INIT to be sent to the next available 535 * transport, maintaining the cycle. 536 */ 537 if (asoc->init_last_sent_to == peer) 538 asoc->init_last_sent_to = NULL; 539 540 /* If we remove the transport an SHUTDOWN was last sent to, set it 541 * to NULL. Combined with the update of the retran path above, this 542 * will cause the next SHUTDOWN to be sent to the next available 543 * transport, maintaining the cycle. 544 */ 545 if (asoc->shutdown_last_sent_to == peer) 546 asoc->shutdown_last_sent_to = NULL; 547 548 /* If we remove the transport an ASCONF was last sent to, set it to 549 * NULL. 550 */ 551 if (asoc->addip_last_asconf && 552 asoc->addip_last_asconf->transport == peer) 553 asoc->addip_last_asconf->transport = NULL; 554 555 /* If we have something on the transmitted list, we have to 556 * save it off. The best place is the active path. 557 */ 558 if (!list_empty(&peer->transmitted)) { 559 struct sctp_transport *active = asoc->peer.active_path; 560 struct sctp_chunk *ch; 561 562 /* Reset the transport of each chunk on this list */ 563 list_for_each_entry(ch, &peer->transmitted, 564 transmitted_list) { 565 ch->transport = NULL; 566 ch->rtt_in_progress = 0; 567 } 568 569 list_splice_tail_init(&peer->transmitted, 570 &active->transmitted); 571 572 /* Start a T3 timer here in case it wasn't running so 573 * that these migrated packets have a chance to get 574 * retransmitted. 575 */ 576 if (!timer_pending(&active->T3_rtx_timer)) 577 if (!mod_timer(&active->T3_rtx_timer, 578 jiffies + active->rto)) 579 sctp_transport_hold(active); 580 } 581 582 asoc->peer.transport_count--; 583 584 sctp_transport_free(peer); 585 } 586 587 /* Add a transport address to an association. */ 588 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 589 const union sctp_addr *addr, 590 const gfp_t gfp, 591 const int peer_state) 592 { 593 struct net *net = sock_net(asoc->base.sk); 594 struct sctp_transport *peer; 595 struct sctp_sock *sp; 596 unsigned short port; 597 598 sp = sctp_sk(asoc->base.sk); 599 600 /* AF_INET and AF_INET6 share common port field. */ 601 port = ntohs(addr->v4.sin_port); 602 603 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 604 asoc, &addr->sa, peer_state); 605 606 /* Set the port if it has not been set yet. */ 607 if (0 == asoc->peer.port) 608 asoc->peer.port = port; 609 610 /* Check to see if this is a duplicate. */ 611 peer = sctp_assoc_lookup_paddr(asoc, addr); 612 if (peer) { 613 /* An UNKNOWN state is only set on transports added by 614 * user in sctp_connectx() call. Such transports should be 615 * considered CONFIRMED per RFC 4960, Section 5.4. 616 */ 617 if (peer->state == SCTP_UNKNOWN) { 618 peer->state = SCTP_ACTIVE; 619 } 620 return peer; 621 } 622 623 peer = sctp_transport_new(net, addr, gfp); 624 if (!peer) 625 return NULL; 626 627 sctp_transport_set_owner(peer, asoc); 628 629 /* Initialize the peer's heartbeat interval based on the 630 * association configured value. 631 */ 632 peer->hbinterval = asoc->hbinterval; 633 634 /* Set the path max_retrans. */ 635 peer->pathmaxrxt = asoc->pathmaxrxt; 636 637 /* And the partial failure retrans threshold */ 638 peer->pf_retrans = asoc->pf_retrans; 639 640 /* Initialize the peer's SACK delay timeout based on the 641 * association configured value. 642 */ 643 peer->sackdelay = asoc->sackdelay; 644 peer->sackfreq = asoc->sackfreq; 645 646 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 647 * based on association setting. 648 */ 649 peer->param_flags = asoc->param_flags; 650 651 sctp_transport_route(peer, NULL, sp); 652 653 /* Initialize the pmtu of the transport. */ 654 if (peer->param_flags & SPP_PMTUD_DISABLE) { 655 if (asoc->pathmtu) 656 peer->pathmtu = asoc->pathmtu; 657 else 658 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 659 } 660 661 /* If this is the first transport addr on this association, 662 * initialize the association PMTU to the peer's PMTU. 663 * If not and the current association PMTU is higher than the new 664 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 665 */ 666 if (asoc->pathmtu) 667 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 668 else 669 asoc->pathmtu = peer->pathmtu; 670 671 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 672 asoc->pathmtu); 673 674 peer->pmtu_pending = 0; 675 676 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 677 678 /* The asoc->peer.port might not be meaningful yet, but 679 * initialize the packet structure anyway. 680 */ 681 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 682 asoc->peer.port); 683 684 /* 7.2.1 Slow-Start 685 * 686 * o The initial cwnd before DATA transmission or after a sufficiently 687 * long idle period MUST be set to 688 * min(4*MTU, max(2*MTU, 4380 bytes)) 689 * 690 * o The initial value of ssthresh MAY be arbitrarily high 691 * (for example, implementations MAY use the size of the 692 * receiver advertised window). 693 */ 694 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 695 696 /* At this point, we may not have the receiver's advertised window, 697 * so initialize ssthresh to the default value and it will be set 698 * later when we process the INIT. 699 */ 700 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 701 702 peer->partial_bytes_acked = 0; 703 peer->flight_size = 0; 704 peer->burst_limited = 0; 705 706 /* Set the transport's RTO.initial value */ 707 peer->rto = asoc->rto_initial; 708 sctp_max_rto(asoc, peer); 709 710 /* Set the peer's active state. */ 711 peer->state = peer_state; 712 713 /* Add this peer into the transport hashtable */ 714 if (sctp_hash_transport(peer)) { 715 sctp_transport_free(peer); 716 return NULL; 717 } 718 719 /* Attach the remote transport to our asoc. */ 720 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 721 asoc->peer.transport_count++; 722 723 /* If we do not yet have a primary path, set one. */ 724 if (!asoc->peer.primary_path) { 725 sctp_assoc_set_primary(asoc, peer); 726 asoc->peer.retran_path = peer; 727 } 728 729 if (asoc->peer.active_path == asoc->peer.retran_path && 730 peer->state != SCTP_UNCONFIRMED) { 731 asoc->peer.retran_path = peer; 732 } 733 734 return peer; 735 } 736 737 /* Delete a transport address from an association. */ 738 void sctp_assoc_del_peer(struct sctp_association *asoc, 739 const union sctp_addr *addr) 740 { 741 struct list_head *pos; 742 struct list_head *temp; 743 struct sctp_transport *transport; 744 745 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 746 transport = list_entry(pos, struct sctp_transport, transports); 747 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 748 /* Do book keeping for removing the peer and free it. */ 749 sctp_assoc_rm_peer(asoc, transport); 750 break; 751 } 752 } 753 } 754 755 /* Lookup a transport by address. */ 756 struct sctp_transport *sctp_assoc_lookup_paddr( 757 const struct sctp_association *asoc, 758 const union sctp_addr *address) 759 { 760 struct sctp_transport *t; 761 762 /* Cycle through all transports searching for a peer address. */ 763 764 list_for_each_entry(t, &asoc->peer.transport_addr_list, 765 transports) { 766 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 767 return t; 768 } 769 770 return NULL; 771 } 772 773 /* Remove all transports except a give one */ 774 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 775 struct sctp_transport *primary) 776 { 777 struct sctp_transport *temp; 778 struct sctp_transport *t; 779 780 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 781 transports) { 782 /* if the current transport is not the primary one, delete it */ 783 if (t != primary) 784 sctp_assoc_rm_peer(asoc, t); 785 } 786 } 787 788 /* Engage in transport control operations. 789 * Mark the transport up or down and send a notification to the user. 790 * Select and update the new active and retran paths. 791 */ 792 void sctp_assoc_control_transport(struct sctp_association *asoc, 793 struct sctp_transport *transport, 794 sctp_transport_cmd_t command, 795 sctp_sn_error_t error) 796 { 797 struct sctp_ulpevent *event; 798 struct sockaddr_storage addr; 799 int spc_state = 0; 800 bool ulp_notify = true; 801 802 /* Record the transition on the transport. */ 803 switch (command) { 804 case SCTP_TRANSPORT_UP: 805 /* If we are moving from UNCONFIRMED state due 806 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 807 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 808 */ 809 if (SCTP_UNCONFIRMED == transport->state && 810 SCTP_HEARTBEAT_SUCCESS == error) 811 spc_state = SCTP_ADDR_CONFIRMED; 812 else 813 spc_state = SCTP_ADDR_AVAILABLE; 814 /* Don't inform ULP about transition from PF to 815 * active state and set cwnd to 1 MTU, see SCTP 816 * Quick failover draft section 5.1, point 5 817 */ 818 if (transport->state == SCTP_PF) { 819 ulp_notify = false; 820 transport->cwnd = asoc->pathmtu; 821 } 822 transport->state = SCTP_ACTIVE; 823 break; 824 825 case SCTP_TRANSPORT_DOWN: 826 /* If the transport was never confirmed, do not transition it 827 * to inactive state. Also, release the cached route since 828 * there may be a better route next time. 829 */ 830 if (transport->state != SCTP_UNCONFIRMED) 831 transport->state = SCTP_INACTIVE; 832 else { 833 sctp_transport_dst_release(transport); 834 ulp_notify = false; 835 } 836 837 spc_state = SCTP_ADDR_UNREACHABLE; 838 break; 839 840 case SCTP_TRANSPORT_PF: 841 transport->state = SCTP_PF; 842 ulp_notify = false; 843 break; 844 845 default: 846 return; 847 } 848 849 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 850 * to the user. 851 */ 852 if (ulp_notify) { 853 memset(&addr, 0, sizeof(struct sockaddr_storage)); 854 memcpy(&addr, &transport->ipaddr, 855 transport->af_specific->sockaddr_len); 856 857 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 858 0, spc_state, error, GFP_ATOMIC); 859 if (event) 860 sctp_ulpq_tail_event(&asoc->ulpq, event); 861 } 862 863 /* Select new active and retran paths. */ 864 sctp_select_active_and_retran_path(asoc); 865 } 866 867 /* Hold a reference to an association. */ 868 void sctp_association_hold(struct sctp_association *asoc) 869 { 870 atomic_inc(&asoc->base.refcnt); 871 } 872 873 /* Release a reference to an association and cleanup 874 * if there are no more references. 875 */ 876 void sctp_association_put(struct sctp_association *asoc) 877 { 878 if (atomic_dec_and_test(&asoc->base.refcnt)) 879 sctp_association_destroy(asoc); 880 } 881 882 /* Allocate the next TSN, Transmission Sequence Number, for the given 883 * association. 884 */ 885 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 886 { 887 /* From Section 1.6 Serial Number Arithmetic: 888 * Transmission Sequence Numbers wrap around when they reach 889 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 890 * after transmitting TSN = 2*32 - 1 is TSN = 0. 891 */ 892 __u32 retval = asoc->next_tsn; 893 asoc->next_tsn++; 894 asoc->unack_data++; 895 896 return retval; 897 } 898 899 /* Compare two addresses to see if they match. Wildcard addresses 900 * only match themselves. 901 */ 902 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 903 const union sctp_addr *ss2) 904 { 905 struct sctp_af *af; 906 907 af = sctp_get_af_specific(ss1->sa.sa_family); 908 if (unlikely(!af)) 909 return 0; 910 911 return af->cmp_addr(ss1, ss2); 912 } 913 914 /* Return an ecne chunk to get prepended to a packet. 915 * Note: We are sly and return a shared, prealloced chunk. FIXME: 916 * No we don't, but we could/should. 917 */ 918 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 919 { 920 if (!asoc->need_ecne) 921 return NULL; 922 923 /* Send ECNE if needed. 924 * Not being able to allocate a chunk here is not deadly. 925 */ 926 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 927 } 928 929 /* 930 * Find which transport this TSN was sent on. 931 */ 932 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 933 __u32 tsn) 934 { 935 struct sctp_transport *active; 936 struct sctp_transport *match; 937 struct sctp_transport *transport; 938 struct sctp_chunk *chunk; 939 __be32 key = htonl(tsn); 940 941 match = NULL; 942 943 /* 944 * FIXME: In general, find a more efficient data structure for 945 * searching. 946 */ 947 948 /* 949 * The general strategy is to search each transport's transmitted 950 * list. Return which transport this TSN lives on. 951 * 952 * Let's be hopeful and check the active_path first. 953 * Another optimization would be to know if there is only one 954 * outbound path and not have to look for the TSN at all. 955 * 956 */ 957 958 active = asoc->peer.active_path; 959 960 list_for_each_entry(chunk, &active->transmitted, 961 transmitted_list) { 962 963 if (key == chunk->subh.data_hdr->tsn) { 964 match = active; 965 goto out; 966 } 967 } 968 969 /* If not found, go search all the other transports. */ 970 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 971 transports) { 972 973 if (transport == active) 974 continue; 975 list_for_each_entry(chunk, &transport->transmitted, 976 transmitted_list) { 977 if (key == chunk->subh.data_hdr->tsn) { 978 match = transport; 979 goto out; 980 } 981 } 982 } 983 out: 984 return match; 985 } 986 987 /* Is this the association we are looking for? */ 988 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 989 struct net *net, 990 const union sctp_addr *laddr, 991 const union sctp_addr *paddr) 992 { 993 struct sctp_transport *transport; 994 995 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 996 (htons(asoc->peer.port) == paddr->v4.sin_port) && 997 net_eq(sock_net(asoc->base.sk), net)) { 998 transport = sctp_assoc_lookup_paddr(asoc, paddr); 999 if (!transport) 1000 goto out; 1001 1002 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1003 sctp_sk(asoc->base.sk))) 1004 goto out; 1005 } 1006 transport = NULL; 1007 1008 out: 1009 return transport; 1010 } 1011 1012 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1013 static void sctp_assoc_bh_rcv(struct work_struct *work) 1014 { 1015 struct sctp_association *asoc = 1016 container_of(work, struct sctp_association, 1017 base.inqueue.immediate); 1018 struct net *net = sock_net(asoc->base.sk); 1019 struct sctp_endpoint *ep; 1020 struct sctp_chunk *chunk; 1021 struct sctp_inq *inqueue; 1022 int state; 1023 sctp_subtype_t subtype; 1024 int error = 0; 1025 1026 /* The association should be held so we should be safe. */ 1027 ep = asoc->ep; 1028 1029 inqueue = &asoc->base.inqueue; 1030 sctp_association_hold(asoc); 1031 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1032 state = asoc->state; 1033 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1034 1035 /* SCTP-AUTH, Section 6.3: 1036 * The receiver has a list of chunk types which it expects 1037 * to be received only after an AUTH-chunk. This list has 1038 * been sent to the peer during the association setup. It 1039 * MUST silently discard these chunks if they are not placed 1040 * after an AUTH chunk in the packet. 1041 */ 1042 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1043 continue; 1044 1045 /* Remember where the last DATA chunk came from so we 1046 * know where to send the SACK. 1047 */ 1048 if (sctp_chunk_is_data(chunk)) 1049 asoc->peer.last_data_from = chunk->transport; 1050 else { 1051 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1052 asoc->stats.ictrlchunks++; 1053 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1054 asoc->stats.isacks++; 1055 } 1056 1057 if (chunk->transport) 1058 chunk->transport->last_time_heard = ktime_get(); 1059 1060 /* Run through the state machine. */ 1061 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1062 state, ep, asoc, chunk, GFP_ATOMIC); 1063 1064 /* Check to see if the association is freed in response to 1065 * the incoming chunk. If so, get out of the while loop. 1066 */ 1067 if (asoc->base.dead) 1068 break; 1069 1070 /* If there is an error on chunk, discard this packet. */ 1071 if (error && chunk) 1072 chunk->pdiscard = 1; 1073 } 1074 sctp_association_put(asoc); 1075 } 1076 1077 /* This routine moves an association from its old sk to a new sk. */ 1078 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1079 { 1080 struct sctp_sock *newsp = sctp_sk(newsk); 1081 struct sock *oldsk = assoc->base.sk; 1082 1083 /* Delete the association from the old endpoint's list of 1084 * associations. 1085 */ 1086 list_del_init(&assoc->asocs); 1087 1088 /* Decrement the backlog value for a TCP-style socket. */ 1089 if (sctp_style(oldsk, TCP)) 1090 oldsk->sk_ack_backlog--; 1091 1092 /* Release references to the old endpoint and the sock. */ 1093 sctp_endpoint_put(assoc->ep); 1094 sock_put(assoc->base.sk); 1095 1096 /* Get a reference to the new endpoint. */ 1097 assoc->ep = newsp->ep; 1098 sctp_endpoint_hold(assoc->ep); 1099 1100 /* Get a reference to the new sock. */ 1101 assoc->base.sk = newsk; 1102 sock_hold(assoc->base.sk); 1103 1104 /* Add the association to the new endpoint's list of associations. */ 1105 sctp_endpoint_add_asoc(newsp->ep, assoc); 1106 } 1107 1108 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1109 void sctp_assoc_update(struct sctp_association *asoc, 1110 struct sctp_association *new) 1111 { 1112 struct sctp_transport *trans; 1113 struct list_head *pos, *temp; 1114 1115 /* Copy in new parameters of peer. */ 1116 asoc->c = new->c; 1117 asoc->peer.rwnd = new->peer.rwnd; 1118 asoc->peer.sack_needed = new->peer.sack_needed; 1119 asoc->peer.auth_capable = new->peer.auth_capable; 1120 asoc->peer.i = new->peer.i; 1121 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1122 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1123 1124 /* Remove any peer addresses not present in the new association. */ 1125 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1126 trans = list_entry(pos, struct sctp_transport, transports); 1127 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1128 sctp_assoc_rm_peer(asoc, trans); 1129 continue; 1130 } 1131 1132 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1133 sctp_transport_reset(trans); 1134 } 1135 1136 /* If the case is A (association restart), use 1137 * initial_tsn as next_tsn. If the case is B, use 1138 * current next_tsn in case data sent to peer 1139 * has been discarded and needs retransmission. 1140 */ 1141 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1142 asoc->next_tsn = new->next_tsn; 1143 asoc->ctsn_ack_point = new->ctsn_ack_point; 1144 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1145 1146 /* Reinitialize SSN for both local streams 1147 * and peer's streams. 1148 */ 1149 sctp_stream_clear(asoc->stream); 1150 1151 /* Flush the ULP reassembly and ordered queue. 1152 * Any data there will now be stale and will 1153 * cause problems. 1154 */ 1155 sctp_ulpq_flush(&asoc->ulpq); 1156 1157 /* reset the overall association error count so 1158 * that the restarted association doesn't get torn 1159 * down on the next retransmission timer. 1160 */ 1161 asoc->overall_error_count = 0; 1162 1163 } else { 1164 /* Add any peer addresses from the new association. */ 1165 list_for_each_entry(trans, &new->peer.transport_addr_list, 1166 transports) { 1167 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1168 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1169 GFP_ATOMIC, trans->state); 1170 } 1171 1172 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1173 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1174 if (!asoc->stream) { 1175 asoc->stream = new->stream; 1176 new->stream = NULL; 1177 } 1178 1179 if (!asoc->assoc_id) { 1180 /* get a new association id since we don't have one 1181 * yet. 1182 */ 1183 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1184 } 1185 } 1186 1187 /* SCTP-AUTH: Save the peer parameters from the new associations 1188 * and also move the association shared keys over 1189 */ 1190 kfree(asoc->peer.peer_random); 1191 asoc->peer.peer_random = new->peer.peer_random; 1192 new->peer.peer_random = NULL; 1193 1194 kfree(asoc->peer.peer_chunks); 1195 asoc->peer.peer_chunks = new->peer.peer_chunks; 1196 new->peer.peer_chunks = NULL; 1197 1198 kfree(asoc->peer.peer_hmacs); 1199 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1200 new->peer.peer_hmacs = NULL; 1201 1202 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1203 } 1204 1205 /* Update the retran path for sending a retransmitted packet. 1206 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1207 * 1208 * When there is outbound data to send and the primary path 1209 * becomes inactive (e.g., due to failures), or where the 1210 * SCTP user explicitly requests to send data to an 1211 * inactive destination transport address, before reporting 1212 * an error to its ULP, the SCTP endpoint should try to send 1213 * the data to an alternate active destination transport 1214 * address if one exists. 1215 * 1216 * When retransmitting data that timed out, if the endpoint 1217 * is multihomed, it should consider each source-destination 1218 * address pair in its retransmission selection policy. 1219 * When retransmitting timed-out data, the endpoint should 1220 * attempt to pick the most divergent source-destination 1221 * pair from the original source-destination pair to which 1222 * the packet was transmitted. 1223 * 1224 * Note: Rules for picking the most divergent source-destination 1225 * pair are an implementation decision and are not specified 1226 * within this document. 1227 * 1228 * Our basic strategy is to round-robin transports in priorities 1229 * according to sctp_trans_score() e.g., if no such 1230 * transport with state SCTP_ACTIVE exists, round-robin through 1231 * SCTP_UNKNOWN, etc. You get the picture. 1232 */ 1233 static u8 sctp_trans_score(const struct sctp_transport *trans) 1234 { 1235 switch (trans->state) { 1236 case SCTP_ACTIVE: 1237 return 3; /* best case */ 1238 case SCTP_UNKNOWN: 1239 return 2; 1240 case SCTP_PF: 1241 return 1; 1242 default: /* case SCTP_INACTIVE */ 1243 return 0; /* worst case */ 1244 } 1245 } 1246 1247 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1248 struct sctp_transport *trans2) 1249 { 1250 if (trans1->error_count > trans2->error_count) { 1251 return trans2; 1252 } else if (trans1->error_count == trans2->error_count && 1253 ktime_after(trans2->last_time_heard, 1254 trans1->last_time_heard)) { 1255 return trans2; 1256 } else { 1257 return trans1; 1258 } 1259 } 1260 1261 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1262 struct sctp_transport *best) 1263 { 1264 u8 score_curr, score_best; 1265 1266 if (best == NULL || curr == best) 1267 return curr; 1268 1269 score_curr = sctp_trans_score(curr); 1270 score_best = sctp_trans_score(best); 1271 1272 /* First, try a score-based selection if both transport states 1273 * differ. If we're in a tie, lets try to make a more clever 1274 * decision here based on error counts and last time heard. 1275 */ 1276 if (score_curr > score_best) 1277 return curr; 1278 else if (score_curr == score_best) 1279 return sctp_trans_elect_tie(best, curr); 1280 else 1281 return best; 1282 } 1283 1284 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1285 { 1286 struct sctp_transport *trans = asoc->peer.retran_path; 1287 struct sctp_transport *trans_next = NULL; 1288 1289 /* We're done as we only have the one and only path. */ 1290 if (asoc->peer.transport_count == 1) 1291 return; 1292 /* If active_path and retran_path are the same and active, 1293 * then this is the only active path. Use it. 1294 */ 1295 if (asoc->peer.active_path == asoc->peer.retran_path && 1296 asoc->peer.active_path->state == SCTP_ACTIVE) 1297 return; 1298 1299 /* Iterate from retran_path's successor back to retran_path. */ 1300 for (trans = list_next_entry(trans, transports); 1; 1301 trans = list_next_entry(trans, transports)) { 1302 /* Manually skip the head element. */ 1303 if (&trans->transports == &asoc->peer.transport_addr_list) 1304 continue; 1305 if (trans->state == SCTP_UNCONFIRMED) 1306 continue; 1307 trans_next = sctp_trans_elect_best(trans, trans_next); 1308 /* Active is good enough for immediate return. */ 1309 if (trans_next->state == SCTP_ACTIVE) 1310 break; 1311 /* We've reached the end, time to update path. */ 1312 if (trans == asoc->peer.retran_path) 1313 break; 1314 } 1315 1316 asoc->peer.retran_path = trans_next; 1317 1318 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1319 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1320 } 1321 1322 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1323 { 1324 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1325 struct sctp_transport *trans_pf = NULL; 1326 1327 /* Look for the two most recently used active transports. */ 1328 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1329 transports) { 1330 /* Skip uninteresting transports. */ 1331 if (trans->state == SCTP_INACTIVE || 1332 trans->state == SCTP_UNCONFIRMED) 1333 continue; 1334 /* Keep track of the best PF transport from our 1335 * list in case we don't find an active one. 1336 */ 1337 if (trans->state == SCTP_PF) { 1338 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1339 continue; 1340 } 1341 /* For active transports, pick the most recent ones. */ 1342 if (trans_pri == NULL || 1343 ktime_after(trans->last_time_heard, 1344 trans_pri->last_time_heard)) { 1345 trans_sec = trans_pri; 1346 trans_pri = trans; 1347 } else if (trans_sec == NULL || 1348 ktime_after(trans->last_time_heard, 1349 trans_sec->last_time_heard)) { 1350 trans_sec = trans; 1351 } 1352 } 1353 1354 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1355 * 1356 * By default, an endpoint should always transmit to the primary 1357 * path, unless the SCTP user explicitly specifies the 1358 * destination transport address (and possibly source transport 1359 * address) to use. [If the primary is active but not most recent, 1360 * bump the most recently used transport.] 1361 */ 1362 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1363 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1364 asoc->peer.primary_path != trans_pri) { 1365 trans_sec = trans_pri; 1366 trans_pri = asoc->peer.primary_path; 1367 } 1368 1369 /* We did not find anything useful for a possible retransmission 1370 * path; either primary path that we found is the the same as 1371 * the current one, or we didn't generally find an active one. 1372 */ 1373 if (trans_sec == NULL) 1374 trans_sec = trans_pri; 1375 1376 /* If we failed to find a usable transport, just camp on the 1377 * active or pick a PF iff it's the better choice. 1378 */ 1379 if (trans_pri == NULL) { 1380 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1381 trans_sec = trans_pri; 1382 } 1383 1384 /* Set the active and retran transports. */ 1385 asoc->peer.active_path = trans_pri; 1386 asoc->peer.retran_path = trans_sec; 1387 } 1388 1389 struct sctp_transport * 1390 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1391 struct sctp_transport *last_sent_to) 1392 { 1393 /* If this is the first time packet is sent, use the active path, 1394 * else use the retran path. If the last packet was sent over the 1395 * retran path, update the retran path and use it. 1396 */ 1397 if (last_sent_to == NULL) { 1398 return asoc->peer.active_path; 1399 } else { 1400 if (last_sent_to == asoc->peer.retran_path) 1401 sctp_assoc_update_retran_path(asoc); 1402 1403 return asoc->peer.retran_path; 1404 } 1405 } 1406 1407 /* Update the association's pmtu and frag_point by going through all the 1408 * transports. This routine is called when a transport's PMTU has changed. 1409 */ 1410 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1411 { 1412 struct sctp_transport *t; 1413 __u32 pmtu = 0; 1414 1415 if (!asoc) 1416 return; 1417 1418 /* Get the lowest pmtu of all the transports. */ 1419 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1420 transports) { 1421 if (t->pmtu_pending && t->dst) { 1422 sctp_transport_update_pmtu(sk, t, 1423 SCTP_TRUNC4(dst_mtu(t->dst))); 1424 t->pmtu_pending = 0; 1425 } 1426 if (!pmtu || (t->pathmtu < pmtu)) 1427 pmtu = t->pathmtu; 1428 } 1429 1430 if (pmtu) { 1431 asoc->pathmtu = pmtu; 1432 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1433 } 1434 1435 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1436 asoc->pathmtu, asoc->frag_point); 1437 } 1438 1439 /* Should we send a SACK to update our peer? */ 1440 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1441 { 1442 struct net *net = sock_net(asoc->base.sk); 1443 switch (asoc->state) { 1444 case SCTP_STATE_ESTABLISHED: 1445 case SCTP_STATE_SHUTDOWN_PENDING: 1446 case SCTP_STATE_SHUTDOWN_RECEIVED: 1447 case SCTP_STATE_SHUTDOWN_SENT: 1448 if ((asoc->rwnd > asoc->a_rwnd) && 1449 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1450 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1451 asoc->pathmtu))) 1452 return true; 1453 break; 1454 default: 1455 break; 1456 } 1457 return false; 1458 } 1459 1460 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1461 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1462 { 1463 struct sctp_chunk *sack; 1464 struct timer_list *timer; 1465 1466 if (asoc->rwnd_over) { 1467 if (asoc->rwnd_over >= len) { 1468 asoc->rwnd_over -= len; 1469 } else { 1470 asoc->rwnd += (len - asoc->rwnd_over); 1471 asoc->rwnd_over = 0; 1472 } 1473 } else { 1474 asoc->rwnd += len; 1475 } 1476 1477 /* If we had window pressure, start recovering it 1478 * once our rwnd had reached the accumulated pressure 1479 * threshold. The idea is to recover slowly, but up 1480 * to the initial advertised window. 1481 */ 1482 if (asoc->rwnd_press) { 1483 int change = min(asoc->pathmtu, asoc->rwnd_press); 1484 asoc->rwnd += change; 1485 asoc->rwnd_press -= change; 1486 } 1487 1488 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1489 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1490 asoc->a_rwnd); 1491 1492 /* Send a window update SACK if the rwnd has increased by at least the 1493 * minimum of the association's PMTU and half of the receive buffer. 1494 * The algorithm used is similar to the one described in 1495 * Section 4.2.3.3 of RFC 1122. 1496 */ 1497 if (sctp_peer_needs_update(asoc)) { 1498 asoc->a_rwnd = asoc->rwnd; 1499 1500 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1501 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1502 asoc->a_rwnd); 1503 1504 sack = sctp_make_sack(asoc); 1505 if (!sack) 1506 return; 1507 1508 asoc->peer.sack_needed = 0; 1509 1510 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1511 1512 /* Stop the SACK timer. */ 1513 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1514 if (del_timer(timer)) 1515 sctp_association_put(asoc); 1516 } 1517 } 1518 1519 /* Decrease asoc's rwnd by len. */ 1520 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1521 { 1522 int rx_count; 1523 int over = 0; 1524 1525 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1526 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1527 "asoc->rwnd_over:%u!\n", __func__, asoc, 1528 asoc->rwnd, asoc->rwnd_over); 1529 1530 if (asoc->ep->rcvbuf_policy) 1531 rx_count = atomic_read(&asoc->rmem_alloc); 1532 else 1533 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1534 1535 /* If we've reached or overflowed our receive buffer, announce 1536 * a 0 rwnd if rwnd would still be positive. Store the 1537 * the potential pressure overflow so that the window can be restored 1538 * back to original value. 1539 */ 1540 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1541 over = 1; 1542 1543 if (asoc->rwnd >= len) { 1544 asoc->rwnd -= len; 1545 if (over) { 1546 asoc->rwnd_press += asoc->rwnd; 1547 asoc->rwnd = 0; 1548 } 1549 } else { 1550 asoc->rwnd_over += len - asoc->rwnd; 1551 asoc->rwnd = 0; 1552 } 1553 1554 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1555 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1556 asoc->rwnd_press); 1557 } 1558 1559 /* Build the bind address list for the association based on info from the 1560 * local endpoint and the remote peer. 1561 */ 1562 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1563 sctp_scope_t scope, gfp_t gfp) 1564 { 1565 int flags; 1566 1567 /* Use scoping rules to determine the subset of addresses from 1568 * the endpoint. 1569 */ 1570 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1571 if (asoc->peer.ipv4_address) 1572 flags |= SCTP_ADDR4_PEERSUPP; 1573 if (asoc->peer.ipv6_address) 1574 flags |= SCTP_ADDR6_PEERSUPP; 1575 1576 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1577 &asoc->base.bind_addr, 1578 &asoc->ep->base.bind_addr, 1579 scope, gfp, flags); 1580 } 1581 1582 /* Build the association's bind address list from the cookie. */ 1583 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1584 struct sctp_cookie *cookie, 1585 gfp_t gfp) 1586 { 1587 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1588 int var_size3 = cookie->raw_addr_list_len; 1589 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1590 1591 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1592 asoc->ep->base.bind_addr.port, gfp); 1593 } 1594 1595 /* Lookup laddr in the bind address list of an association. */ 1596 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1597 const union sctp_addr *laddr) 1598 { 1599 int found = 0; 1600 1601 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1602 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1603 sctp_sk(asoc->base.sk))) 1604 found = 1; 1605 1606 return found; 1607 } 1608 1609 /* Set an association id for a given association */ 1610 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1611 { 1612 bool preload = gfpflags_allow_blocking(gfp); 1613 int ret; 1614 1615 /* If the id is already assigned, keep it. */ 1616 if (asoc->assoc_id) 1617 return 0; 1618 1619 if (preload) 1620 idr_preload(gfp); 1621 spin_lock_bh(&sctp_assocs_id_lock); 1622 /* 0 is not a valid assoc_id, must be >= 1 */ 1623 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1624 spin_unlock_bh(&sctp_assocs_id_lock); 1625 if (preload) 1626 idr_preload_end(); 1627 if (ret < 0) 1628 return ret; 1629 1630 asoc->assoc_id = (sctp_assoc_t)ret; 1631 return 0; 1632 } 1633 1634 /* Free the ASCONF queue */ 1635 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1636 { 1637 struct sctp_chunk *asconf; 1638 struct sctp_chunk *tmp; 1639 1640 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1641 list_del_init(&asconf->list); 1642 sctp_chunk_free(asconf); 1643 } 1644 } 1645 1646 /* Free asconf_ack cache */ 1647 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1648 { 1649 struct sctp_chunk *ack; 1650 struct sctp_chunk *tmp; 1651 1652 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1653 transmitted_list) { 1654 list_del_init(&ack->transmitted_list); 1655 sctp_chunk_free(ack); 1656 } 1657 } 1658 1659 /* Clean up the ASCONF_ACK queue */ 1660 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1661 { 1662 struct sctp_chunk *ack; 1663 struct sctp_chunk *tmp; 1664 1665 /* We can remove all the entries from the queue up to 1666 * the "Peer-Sequence-Number". 1667 */ 1668 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1669 transmitted_list) { 1670 if (ack->subh.addip_hdr->serial == 1671 htonl(asoc->peer.addip_serial)) 1672 break; 1673 1674 list_del_init(&ack->transmitted_list); 1675 sctp_chunk_free(ack); 1676 } 1677 } 1678 1679 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1680 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1681 const struct sctp_association *asoc, 1682 __be32 serial) 1683 { 1684 struct sctp_chunk *ack; 1685 1686 /* Walk through the list of cached ASCONF-ACKs and find the 1687 * ack chunk whose serial number matches that of the request. 1688 */ 1689 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1690 if (sctp_chunk_pending(ack)) 1691 continue; 1692 if (ack->subh.addip_hdr->serial == serial) { 1693 sctp_chunk_hold(ack); 1694 return ack; 1695 } 1696 } 1697 1698 return NULL; 1699 } 1700 1701 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1702 { 1703 /* Free any cached ASCONF_ACK chunk. */ 1704 sctp_assoc_free_asconf_acks(asoc); 1705 1706 /* Free the ASCONF queue. */ 1707 sctp_assoc_free_asconf_queue(asoc); 1708 1709 /* Free any cached ASCONF chunk. */ 1710 if (asoc->addip_last_asconf) 1711 sctp_chunk_free(asoc->addip_last_asconf); 1712 } 1713