xref: /openbmc/linux/net/sctp/associola.c (revision 0ad53fe3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001 Intel Corp.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * This module provides the abstraction for an SCTP association.
12  *
13  * Please send any bug reports or fixes you make to the
14  * email address(es):
15  *    lksctp developers <linux-sctp@vger.kernel.org>
16  *
17  * Written or modified by:
18  *    La Monte H.P. Yarroll <piggy@acm.org>
19  *    Karl Knutson          <karl@athena.chicago.il.us>
20  *    Jon Grimm             <jgrimm@us.ibm.com>
21  *    Xingang Guo           <xingang.guo@intel.com>
22  *    Hui Huang             <hui.huang@nokia.com>
23  *    Sridhar Samudrala	    <sri@us.ibm.com>
24  *    Daisy Chang	    <daisyc@us.ibm.com>
25  *    Ryan Layer	    <rmlayer@us.ibm.com>
26  *    Kevin Gao             <kevin.gao@intel.com>
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/poll.h>
34 #include <linux/init.h>
35 
36 #include <linux/slab.h>
37 #include <linux/in.h>
38 #include <net/ipv6.h>
39 #include <net/sctp/sctp.h>
40 #include <net/sctp/sm.h>
41 
42 /* Forward declarations for internal functions. */
43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
44 static void sctp_assoc_bh_rcv(struct work_struct *work);
45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
47 
48 /* 1st Level Abstractions. */
49 
50 /* Initialize a new association from provided memory. */
51 static struct sctp_association *sctp_association_init(
52 					struct sctp_association *asoc,
53 					const struct sctp_endpoint *ep,
54 					const struct sock *sk,
55 					enum sctp_scope scope, gfp_t gfp)
56 {
57 	struct sctp_sock *sp;
58 	struct sctp_paramhdr *p;
59 	int i;
60 
61 	/* Retrieve the SCTP per socket area.  */
62 	sp = sctp_sk((struct sock *)sk);
63 
64 	/* Discarding const is appropriate here.  */
65 	asoc->ep = (struct sctp_endpoint *)ep;
66 	asoc->base.sk = (struct sock *)sk;
67 	asoc->base.net = sock_net(sk);
68 
69 	sctp_endpoint_hold(asoc->ep);
70 	sock_hold(asoc->base.sk);
71 
72 	/* Initialize the common base substructure.  */
73 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
74 
75 	/* Initialize the object handling fields.  */
76 	refcount_set(&asoc->base.refcnt, 1);
77 
78 	/* Initialize the bind addr area.  */
79 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
80 
81 	asoc->state = SCTP_STATE_CLOSED;
82 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
83 	asoc->user_frag = sp->user_frag;
84 
85 	/* Set the association max_retrans and RTO values from the
86 	 * socket values.
87 	 */
88 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
89 	asoc->pf_retrans  = sp->pf_retrans;
90 	asoc->ps_retrans  = sp->ps_retrans;
91 	asoc->pf_expose   = sp->pf_expose;
92 
93 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
94 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
95 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
96 
97 	/* Initialize the association's heartbeat interval based on the
98 	 * sock configured value.
99 	 */
100 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
101 	asoc->probe_interval = msecs_to_jiffies(sp->probe_interval);
102 
103 	asoc->encap_port = sp->encap_port;
104 
105 	/* Initialize path max retrans value. */
106 	asoc->pathmaxrxt = sp->pathmaxrxt;
107 
108 	asoc->flowlabel = sp->flowlabel;
109 	asoc->dscp = sp->dscp;
110 
111 	/* Set association default SACK delay */
112 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
113 	asoc->sackfreq = sp->sackfreq;
114 
115 	/* Set the association default flags controlling
116 	 * Heartbeat, SACK delay, and Path MTU Discovery.
117 	 */
118 	asoc->param_flags = sp->param_flags;
119 
120 	/* Initialize the maximum number of new data packets that can be sent
121 	 * in a burst.
122 	 */
123 	asoc->max_burst = sp->max_burst;
124 
125 	asoc->subscribe = sp->subscribe;
126 
127 	/* initialize association timers */
128 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
129 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
130 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
131 
132 	/* sctpimpguide Section 2.12.2
133 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
134 	 * recommended value of 5 times 'RTO.Max'.
135 	 */
136 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
137 		= 5 * asoc->rto_max;
138 
139 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
140 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
141 
142 	/* Initializes the timers */
143 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
144 		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
145 
146 	/* Pull default initialization values from the sock options.
147 	 * Note: This assumes that the values have already been
148 	 * validated in the sock.
149 	 */
150 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
151 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
152 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
153 
154 	asoc->max_init_timeo =
155 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
156 
157 	/* Set the local window size for receive.
158 	 * This is also the rcvbuf space per association.
159 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
160 	 * 1500 bytes in one SCTP packet.
161 	 */
162 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
163 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
164 	else
165 		asoc->rwnd = sk->sk_rcvbuf/2;
166 
167 	asoc->a_rwnd = asoc->rwnd;
168 
169 	/* Use my own max window until I learn something better.  */
170 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
171 
172 	/* Initialize the receive memory counter */
173 	atomic_set(&asoc->rmem_alloc, 0);
174 
175 	init_waitqueue_head(&asoc->wait);
176 
177 	asoc->c.my_vtag = sctp_generate_tag(ep);
178 	asoc->c.my_port = ep->base.bind_addr.port;
179 
180 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
181 
182 	asoc->next_tsn = asoc->c.initial_tsn;
183 
184 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
185 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
186 	asoc->highest_sacked = asoc->ctsn_ack_point;
187 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
188 
189 	/* ADDIP Section 4.1 Asconf Chunk Procedures
190 	 *
191 	 * When an endpoint has an ASCONF signaled change to be sent to the
192 	 * remote endpoint it should do the following:
193 	 * ...
194 	 * A2) a serial number should be assigned to the chunk. The serial
195 	 * number SHOULD be a monotonically increasing number. The serial
196 	 * numbers SHOULD be initialized at the start of the
197 	 * association to the same value as the initial TSN.
198 	 */
199 	asoc->addip_serial = asoc->c.initial_tsn;
200 	asoc->strreset_outseq = asoc->c.initial_tsn;
201 
202 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
203 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
204 
205 	/* Make an empty list of remote transport addresses.  */
206 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
207 
208 	/* RFC 2960 5.1 Normal Establishment of an Association
209 	 *
210 	 * After the reception of the first data chunk in an
211 	 * association the endpoint must immediately respond with a
212 	 * sack to acknowledge the data chunk.  Subsequent
213 	 * acknowledgements should be done as described in Section
214 	 * 6.2.
215 	 *
216 	 * [We implement this by telling a new association that it
217 	 * already received one packet.]
218 	 */
219 	asoc->peer.sack_needed = 1;
220 	asoc->peer.sack_generation = 1;
221 
222 	/* Create an input queue.  */
223 	sctp_inq_init(&asoc->base.inqueue);
224 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
225 
226 	/* Create an output queue.  */
227 	sctp_outq_init(asoc, &asoc->outqueue);
228 
229 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
230 		goto fail_init;
231 
232 	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
233 			     0, gfp))
234 		goto fail_init;
235 
236 	/* Initialize default path MTU. */
237 	asoc->pathmtu = sp->pathmtu;
238 	sctp_assoc_update_frag_point(asoc);
239 
240 	/* Assume that peer would support both address types unless we are
241 	 * told otherwise.
242 	 */
243 	asoc->peer.ipv4_address = 1;
244 	if (asoc->base.sk->sk_family == PF_INET6)
245 		asoc->peer.ipv6_address = 1;
246 	INIT_LIST_HEAD(&asoc->asocs);
247 
248 	asoc->default_stream = sp->default_stream;
249 	asoc->default_ppid = sp->default_ppid;
250 	asoc->default_flags = sp->default_flags;
251 	asoc->default_context = sp->default_context;
252 	asoc->default_timetolive = sp->default_timetolive;
253 	asoc->default_rcv_context = sp->default_rcv_context;
254 
255 	/* AUTH related initializations */
256 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
257 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
258 		goto stream_free;
259 
260 	asoc->active_key_id = ep->active_key_id;
261 	asoc->strreset_enable = ep->strreset_enable;
262 
263 	/* Save the hmacs and chunks list into this association */
264 	if (ep->auth_hmacs_list)
265 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
266 			ntohs(ep->auth_hmacs_list->param_hdr.length));
267 	if (ep->auth_chunk_list)
268 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
269 			ntohs(ep->auth_chunk_list->param_hdr.length));
270 
271 	/* Get the AUTH random number for this association */
272 	p = (struct sctp_paramhdr *)asoc->c.auth_random;
273 	p->type = SCTP_PARAM_RANDOM;
274 	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
275 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
276 
277 	return asoc;
278 
279 stream_free:
280 	sctp_stream_free(&asoc->stream);
281 fail_init:
282 	sock_put(asoc->base.sk);
283 	sctp_endpoint_put(asoc->ep);
284 	return NULL;
285 }
286 
287 /* Allocate and initialize a new association */
288 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
289 					      const struct sock *sk,
290 					      enum sctp_scope scope, gfp_t gfp)
291 {
292 	struct sctp_association *asoc;
293 
294 	asoc = kzalloc(sizeof(*asoc), gfp);
295 	if (!asoc)
296 		goto fail;
297 
298 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
299 		goto fail_init;
300 
301 	SCTP_DBG_OBJCNT_INC(assoc);
302 
303 	pr_debug("Created asoc %p\n", asoc);
304 
305 	return asoc;
306 
307 fail_init:
308 	kfree(asoc);
309 fail:
310 	return NULL;
311 }
312 
313 /* Free this association if possible.  There may still be users, so
314  * the actual deallocation may be delayed.
315  */
316 void sctp_association_free(struct sctp_association *asoc)
317 {
318 	struct sock *sk = asoc->base.sk;
319 	struct sctp_transport *transport;
320 	struct list_head *pos, *temp;
321 	int i;
322 
323 	/* Only real associations count against the endpoint, so
324 	 * don't bother for if this is a temporary association.
325 	 */
326 	if (!list_empty(&asoc->asocs)) {
327 		list_del(&asoc->asocs);
328 
329 		/* Decrement the backlog value for a TCP-style listening
330 		 * socket.
331 		 */
332 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
333 			sk_acceptq_removed(sk);
334 	}
335 
336 	/* Mark as dead, so other users can know this structure is
337 	 * going away.
338 	 */
339 	asoc->base.dead = true;
340 
341 	/* Dispose of any data lying around in the outqueue. */
342 	sctp_outq_free(&asoc->outqueue);
343 
344 	/* Dispose of any pending messages for the upper layer. */
345 	sctp_ulpq_free(&asoc->ulpq);
346 
347 	/* Dispose of any pending chunks on the inqueue. */
348 	sctp_inq_free(&asoc->base.inqueue);
349 
350 	sctp_tsnmap_free(&asoc->peer.tsn_map);
351 
352 	/* Free stream information. */
353 	sctp_stream_free(&asoc->stream);
354 
355 	if (asoc->strreset_chunk)
356 		sctp_chunk_free(asoc->strreset_chunk);
357 
358 	/* Clean up the bound address list. */
359 	sctp_bind_addr_free(&asoc->base.bind_addr);
360 
361 	/* Do we need to go through all of our timers and
362 	 * delete them?   To be safe we will try to delete all, but we
363 	 * should be able to go through and make a guess based
364 	 * on our state.
365 	 */
366 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
367 		if (del_timer(&asoc->timers[i]))
368 			sctp_association_put(asoc);
369 	}
370 
371 	/* Free peer's cached cookie. */
372 	kfree(asoc->peer.cookie);
373 	kfree(asoc->peer.peer_random);
374 	kfree(asoc->peer.peer_chunks);
375 	kfree(asoc->peer.peer_hmacs);
376 
377 	/* Release the transport structures. */
378 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
379 		transport = list_entry(pos, struct sctp_transport, transports);
380 		list_del_rcu(pos);
381 		sctp_unhash_transport(transport);
382 		sctp_transport_free(transport);
383 	}
384 
385 	asoc->peer.transport_count = 0;
386 
387 	sctp_asconf_queue_teardown(asoc);
388 
389 	/* Free pending address space being deleted */
390 	kfree(asoc->asconf_addr_del_pending);
391 
392 	/* AUTH - Free the endpoint shared keys */
393 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
394 
395 	/* AUTH - Free the association shared key */
396 	sctp_auth_key_put(asoc->asoc_shared_key);
397 
398 	sctp_association_put(asoc);
399 }
400 
401 /* Cleanup and free up an association. */
402 static void sctp_association_destroy(struct sctp_association *asoc)
403 {
404 	if (unlikely(!asoc->base.dead)) {
405 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
406 		return;
407 	}
408 
409 	sctp_endpoint_put(asoc->ep);
410 	sock_put(asoc->base.sk);
411 
412 	if (asoc->assoc_id != 0) {
413 		spin_lock_bh(&sctp_assocs_id_lock);
414 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
415 		spin_unlock_bh(&sctp_assocs_id_lock);
416 	}
417 
418 	WARN_ON(atomic_read(&asoc->rmem_alloc));
419 
420 	kfree_rcu(asoc, rcu);
421 	SCTP_DBG_OBJCNT_DEC(assoc);
422 }
423 
424 /* Change the primary destination address for the peer. */
425 void sctp_assoc_set_primary(struct sctp_association *asoc,
426 			    struct sctp_transport *transport)
427 {
428 	int changeover = 0;
429 
430 	/* it's a changeover only if we already have a primary path
431 	 * that we are changing
432 	 */
433 	if (asoc->peer.primary_path != NULL &&
434 	    asoc->peer.primary_path != transport)
435 		changeover = 1 ;
436 
437 	asoc->peer.primary_path = transport;
438 	sctp_ulpevent_notify_peer_addr_change(transport,
439 					      SCTP_ADDR_MADE_PRIM, 0);
440 
441 	/* Set a default msg_name for events. */
442 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
443 	       sizeof(union sctp_addr));
444 
445 	/* If the primary path is changing, assume that the
446 	 * user wants to use this new path.
447 	 */
448 	if ((transport->state == SCTP_ACTIVE) ||
449 	    (transport->state == SCTP_UNKNOWN))
450 		asoc->peer.active_path = transport;
451 
452 	/*
453 	 * SFR-CACC algorithm:
454 	 * Upon the receipt of a request to change the primary
455 	 * destination address, on the data structure for the new
456 	 * primary destination, the sender MUST do the following:
457 	 *
458 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
459 	 * to this destination address earlier. The sender MUST set
460 	 * CYCLING_CHANGEOVER to indicate that this switch is a
461 	 * double switch to the same destination address.
462 	 *
463 	 * Really, only bother is we have data queued or outstanding on
464 	 * the association.
465 	 */
466 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
467 		return;
468 
469 	if (transport->cacc.changeover_active)
470 		transport->cacc.cycling_changeover = changeover;
471 
472 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
473 	 * a changeover has occurred.
474 	 */
475 	transport->cacc.changeover_active = changeover;
476 
477 	/* 3) The sender MUST store the next TSN to be sent in
478 	 * next_tsn_at_change.
479 	 */
480 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
481 }
482 
483 /* Remove a transport from an association.  */
484 void sctp_assoc_rm_peer(struct sctp_association *asoc,
485 			struct sctp_transport *peer)
486 {
487 	struct sctp_transport *transport;
488 	struct list_head *pos;
489 	struct sctp_chunk *ch;
490 
491 	pr_debug("%s: association:%p addr:%pISpc\n",
492 		 __func__, asoc, &peer->ipaddr.sa);
493 
494 	/* If we are to remove the current retran_path, update it
495 	 * to the next peer before removing this peer from the list.
496 	 */
497 	if (asoc->peer.retran_path == peer)
498 		sctp_assoc_update_retran_path(asoc);
499 
500 	/* Remove this peer from the list. */
501 	list_del_rcu(&peer->transports);
502 	/* Remove this peer from the transport hashtable */
503 	sctp_unhash_transport(peer);
504 
505 	/* Get the first transport of asoc. */
506 	pos = asoc->peer.transport_addr_list.next;
507 	transport = list_entry(pos, struct sctp_transport, transports);
508 
509 	/* Update any entries that match the peer to be deleted. */
510 	if (asoc->peer.primary_path == peer)
511 		sctp_assoc_set_primary(asoc, transport);
512 	if (asoc->peer.active_path == peer)
513 		asoc->peer.active_path = transport;
514 	if (asoc->peer.retran_path == peer)
515 		asoc->peer.retran_path = transport;
516 	if (asoc->peer.last_data_from == peer)
517 		asoc->peer.last_data_from = transport;
518 
519 	if (asoc->strreset_chunk &&
520 	    asoc->strreset_chunk->transport == peer) {
521 		asoc->strreset_chunk->transport = transport;
522 		sctp_transport_reset_reconf_timer(transport);
523 	}
524 
525 	/* If we remove the transport an INIT was last sent to, set it to
526 	 * NULL. Combined with the update of the retran path above, this
527 	 * will cause the next INIT to be sent to the next available
528 	 * transport, maintaining the cycle.
529 	 */
530 	if (asoc->init_last_sent_to == peer)
531 		asoc->init_last_sent_to = NULL;
532 
533 	/* If we remove the transport an SHUTDOWN was last sent to, set it
534 	 * to NULL. Combined with the update of the retran path above, this
535 	 * will cause the next SHUTDOWN to be sent to the next available
536 	 * transport, maintaining the cycle.
537 	 */
538 	if (asoc->shutdown_last_sent_to == peer)
539 		asoc->shutdown_last_sent_to = NULL;
540 
541 	/* If we remove the transport an ASCONF was last sent to, set it to
542 	 * NULL.
543 	 */
544 	if (asoc->addip_last_asconf &&
545 	    asoc->addip_last_asconf->transport == peer)
546 		asoc->addip_last_asconf->transport = NULL;
547 
548 	/* If we have something on the transmitted list, we have to
549 	 * save it off.  The best place is the active path.
550 	 */
551 	if (!list_empty(&peer->transmitted)) {
552 		struct sctp_transport *active = asoc->peer.active_path;
553 
554 		/* Reset the transport of each chunk on this list */
555 		list_for_each_entry(ch, &peer->transmitted,
556 					transmitted_list) {
557 			ch->transport = NULL;
558 			ch->rtt_in_progress = 0;
559 		}
560 
561 		list_splice_tail_init(&peer->transmitted,
562 					&active->transmitted);
563 
564 		/* Start a T3 timer here in case it wasn't running so
565 		 * that these migrated packets have a chance to get
566 		 * retransmitted.
567 		 */
568 		if (!timer_pending(&active->T3_rtx_timer))
569 			if (!mod_timer(&active->T3_rtx_timer,
570 					jiffies + active->rto))
571 				sctp_transport_hold(active);
572 	}
573 
574 	list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
575 		if (ch->transport == peer)
576 			ch->transport = NULL;
577 
578 	asoc->peer.transport_count--;
579 
580 	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0);
581 	sctp_transport_free(peer);
582 }
583 
584 /* Add a transport address to an association.  */
585 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
586 					   const union sctp_addr *addr,
587 					   const gfp_t gfp,
588 					   const int peer_state)
589 {
590 	struct sctp_transport *peer;
591 	struct sctp_sock *sp;
592 	unsigned short port;
593 
594 	sp = sctp_sk(asoc->base.sk);
595 
596 	/* AF_INET and AF_INET6 share common port field. */
597 	port = ntohs(addr->v4.sin_port);
598 
599 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
600 		 asoc, &addr->sa, peer_state);
601 
602 	/* Set the port if it has not been set yet.  */
603 	if (0 == asoc->peer.port)
604 		asoc->peer.port = port;
605 
606 	/* Check to see if this is a duplicate. */
607 	peer = sctp_assoc_lookup_paddr(asoc, addr);
608 	if (peer) {
609 		/* An UNKNOWN state is only set on transports added by
610 		 * user in sctp_connectx() call.  Such transports should be
611 		 * considered CONFIRMED per RFC 4960, Section 5.4.
612 		 */
613 		if (peer->state == SCTP_UNKNOWN) {
614 			peer->state = SCTP_ACTIVE;
615 		}
616 		return peer;
617 	}
618 
619 	peer = sctp_transport_new(asoc->base.net, addr, gfp);
620 	if (!peer)
621 		return NULL;
622 
623 	sctp_transport_set_owner(peer, asoc);
624 
625 	/* Initialize the peer's heartbeat interval based on the
626 	 * association configured value.
627 	 */
628 	peer->hbinterval = asoc->hbinterval;
629 	peer->probe_interval = asoc->probe_interval;
630 
631 	peer->encap_port = asoc->encap_port;
632 
633 	/* Set the path max_retrans.  */
634 	peer->pathmaxrxt = asoc->pathmaxrxt;
635 
636 	/* And the partial failure retrans threshold */
637 	peer->pf_retrans = asoc->pf_retrans;
638 	/* And the primary path switchover retrans threshold */
639 	peer->ps_retrans = asoc->ps_retrans;
640 
641 	/* Initialize the peer's SACK delay timeout based on the
642 	 * association configured value.
643 	 */
644 	peer->sackdelay = asoc->sackdelay;
645 	peer->sackfreq = asoc->sackfreq;
646 
647 	if (addr->sa.sa_family == AF_INET6) {
648 		__be32 info = addr->v6.sin6_flowinfo;
649 
650 		if (info) {
651 			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
652 			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
653 		} else {
654 			peer->flowlabel = asoc->flowlabel;
655 		}
656 	}
657 	peer->dscp = asoc->dscp;
658 
659 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
660 	 * based on association setting.
661 	 */
662 	peer->param_flags = asoc->param_flags;
663 
664 	/* Initialize the pmtu of the transport. */
665 	sctp_transport_route(peer, NULL, sp);
666 
667 	/* If this is the first transport addr on this association,
668 	 * initialize the association PMTU to the peer's PMTU.
669 	 * If not and the current association PMTU is higher than the new
670 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
671 	 */
672 	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
673 				  min_t(int, peer->pathmtu, asoc->pathmtu) :
674 				  peer->pathmtu);
675 
676 	peer->pmtu_pending = 0;
677 
678 	/* The asoc->peer.port might not be meaningful yet, but
679 	 * initialize the packet structure anyway.
680 	 */
681 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
682 			 asoc->peer.port);
683 
684 	/* 7.2.1 Slow-Start
685 	 *
686 	 * o The initial cwnd before DATA transmission or after a sufficiently
687 	 *   long idle period MUST be set to
688 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
689 	 *
690 	 * o The initial value of ssthresh MAY be arbitrarily high
691 	 *   (for example, implementations MAY use the size of the
692 	 *   receiver advertised window).
693 	 */
694 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
695 
696 	/* At this point, we may not have the receiver's advertised window,
697 	 * so initialize ssthresh to the default value and it will be set
698 	 * later when we process the INIT.
699 	 */
700 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
701 
702 	peer->partial_bytes_acked = 0;
703 	peer->flight_size = 0;
704 	peer->burst_limited = 0;
705 
706 	/* Set the transport's RTO.initial value */
707 	peer->rto = asoc->rto_initial;
708 	sctp_max_rto(asoc, peer);
709 
710 	/* Set the peer's active state. */
711 	peer->state = peer_state;
712 
713 	/* Add this peer into the transport hashtable */
714 	if (sctp_hash_transport(peer)) {
715 		sctp_transport_free(peer);
716 		return NULL;
717 	}
718 
719 	sctp_transport_pl_reset(peer);
720 
721 	/* Attach the remote transport to our asoc.  */
722 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
723 	asoc->peer.transport_count++;
724 
725 	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_ADDED, 0);
726 
727 	/* If we do not yet have a primary path, set one.  */
728 	if (!asoc->peer.primary_path) {
729 		sctp_assoc_set_primary(asoc, peer);
730 		asoc->peer.retran_path = peer;
731 	}
732 
733 	if (asoc->peer.active_path == asoc->peer.retran_path &&
734 	    peer->state != SCTP_UNCONFIRMED) {
735 		asoc->peer.retran_path = peer;
736 	}
737 
738 	return peer;
739 }
740 
741 /* Delete a transport address from an association.  */
742 void sctp_assoc_del_peer(struct sctp_association *asoc,
743 			 const union sctp_addr *addr)
744 {
745 	struct list_head	*pos;
746 	struct list_head	*temp;
747 	struct sctp_transport	*transport;
748 
749 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
750 		transport = list_entry(pos, struct sctp_transport, transports);
751 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
752 			/* Do book keeping for removing the peer and free it. */
753 			sctp_assoc_rm_peer(asoc, transport);
754 			break;
755 		}
756 	}
757 }
758 
759 /* Lookup a transport by address. */
760 struct sctp_transport *sctp_assoc_lookup_paddr(
761 					const struct sctp_association *asoc,
762 					const union sctp_addr *address)
763 {
764 	struct sctp_transport *t;
765 
766 	/* Cycle through all transports searching for a peer address. */
767 
768 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
769 			transports) {
770 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
771 			return t;
772 	}
773 
774 	return NULL;
775 }
776 
777 /* Remove all transports except a give one */
778 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
779 				     struct sctp_transport *primary)
780 {
781 	struct sctp_transport	*temp;
782 	struct sctp_transport	*t;
783 
784 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
785 				 transports) {
786 		/* if the current transport is not the primary one, delete it */
787 		if (t != primary)
788 			sctp_assoc_rm_peer(asoc, t);
789 	}
790 }
791 
792 /* Engage in transport control operations.
793  * Mark the transport up or down and send a notification to the user.
794  * Select and update the new active and retran paths.
795  */
796 void sctp_assoc_control_transport(struct sctp_association *asoc,
797 				  struct sctp_transport *transport,
798 				  enum sctp_transport_cmd command,
799 				  sctp_sn_error_t error)
800 {
801 	int spc_state = SCTP_ADDR_AVAILABLE;
802 	bool ulp_notify = true;
803 
804 	/* Record the transition on the transport.  */
805 	switch (command) {
806 	case SCTP_TRANSPORT_UP:
807 		/* If we are moving from UNCONFIRMED state due
808 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
809 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
810 		 */
811 		if (transport->state == SCTP_PF &&
812 		    asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
813 			ulp_notify = false;
814 		else if (transport->state == SCTP_UNCONFIRMED &&
815 			 error == SCTP_HEARTBEAT_SUCCESS)
816 			spc_state = SCTP_ADDR_CONFIRMED;
817 
818 		transport->state = SCTP_ACTIVE;
819 		sctp_transport_pl_reset(transport);
820 		break;
821 
822 	case SCTP_TRANSPORT_DOWN:
823 		/* If the transport was never confirmed, do not transition it
824 		 * to inactive state.  Also, release the cached route since
825 		 * there may be a better route next time.
826 		 */
827 		if (transport->state != SCTP_UNCONFIRMED) {
828 			transport->state = SCTP_INACTIVE;
829 			sctp_transport_pl_reset(transport);
830 			spc_state = SCTP_ADDR_UNREACHABLE;
831 		} else {
832 			sctp_transport_dst_release(transport);
833 			ulp_notify = false;
834 		}
835 		break;
836 
837 	case SCTP_TRANSPORT_PF:
838 		transport->state = SCTP_PF;
839 		if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
840 			ulp_notify = false;
841 		else
842 			spc_state = SCTP_ADDR_POTENTIALLY_FAILED;
843 		break;
844 
845 	default:
846 		return;
847 	}
848 
849 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
850 	 * to the user.
851 	 */
852 	if (ulp_notify)
853 		sctp_ulpevent_notify_peer_addr_change(transport,
854 						      spc_state, error);
855 
856 	/* Select new active and retran paths. */
857 	sctp_select_active_and_retran_path(asoc);
858 }
859 
860 /* Hold a reference to an association. */
861 void sctp_association_hold(struct sctp_association *asoc)
862 {
863 	refcount_inc(&asoc->base.refcnt);
864 }
865 
866 /* Release a reference to an association and cleanup
867  * if there are no more references.
868  */
869 void sctp_association_put(struct sctp_association *asoc)
870 {
871 	if (refcount_dec_and_test(&asoc->base.refcnt))
872 		sctp_association_destroy(asoc);
873 }
874 
875 /* Allocate the next TSN, Transmission Sequence Number, for the given
876  * association.
877  */
878 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
879 {
880 	/* From Section 1.6 Serial Number Arithmetic:
881 	 * Transmission Sequence Numbers wrap around when they reach
882 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
883 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
884 	 */
885 	__u32 retval = asoc->next_tsn;
886 	asoc->next_tsn++;
887 	asoc->unack_data++;
888 
889 	return retval;
890 }
891 
892 /* Compare two addresses to see if they match.  Wildcard addresses
893  * only match themselves.
894  */
895 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
896 			const union sctp_addr *ss2)
897 {
898 	struct sctp_af *af;
899 
900 	af = sctp_get_af_specific(ss1->sa.sa_family);
901 	if (unlikely(!af))
902 		return 0;
903 
904 	return af->cmp_addr(ss1, ss2);
905 }
906 
907 /* Return an ecne chunk to get prepended to a packet.
908  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
909  * No we don't, but we could/should.
910  */
911 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
912 {
913 	if (!asoc->need_ecne)
914 		return NULL;
915 
916 	/* Send ECNE if needed.
917 	 * Not being able to allocate a chunk here is not deadly.
918 	 */
919 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
920 }
921 
922 /*
923  * Find which transport this TSN was sent on.
924  */
925 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
926 					     __u32 tsn)
927 {
928 	struct sctp_transport *active;
929 	struct sctp_transport *match;
930 	struct sctp_transport *transport;
931 	struct sctp_chunk *chunk;
932 	__be32 key = htonl(tsn);
933 
934 	match = NULL;
935 
936 	/*
937 	 * FIXME: In general, find a more efficient data structure for
938 	 * searching.
939 	 */
940 
941 	/*
942 	 * The general strategy is to search each transport's transmitted
943 	 * list.   Return which transport this TSN lives on.
944 	 *
945 	 * Let's be hopeful and check the active_path first.
946 	 * Another optimization would be to know if there is only one
947 	 * outbound path and not have to look for the TSN at all.
948 	 *
949 	 */
950 
951 	active = asoc->peer.active_path;
952 
953 	list_for_each_entry(chunk, &active->transmitted,
954 			transmitted_list) {
955 
956 		if (key == chunk->subh.data_hdr->tsn) {
957 			match = active;
958 			goto out;
959 		}
960 	}
961 
962 	/* If not found, go search all the other transports. */
963 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
964 			transports) {
965 
966 		if (transport == active)
967 			continue;
968 		list_for_each_entry(chunk, &transport->transmitted,
969 				transmitted_list) {
970 			if (key == chunk->subh.data_hdr->tsn) {
971 				match = transport;
972 				goto out;
973 			}
974 		}
975 	}
976 out:
977 	return match;
978 }
979 
980 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
981 static void sctp_assoc_bh_rcv(struct work_struct *work)
982 {
983 	struct sctp_association *asoc =
984 		container_of(work, struct sctp_association,
985 			     base.inqueue.immediate);
986 	struct net *net = asoc->base.net;
987 	union sctp_subtype subtype;
988 	struct sctp_endpoint *ep;
989 	struct sctp_chunk *chunk;
990 	struct sctp_inq *inqueue;
991 	int first_time = 1;	/* is this the first time through the loop */
992 	int error = 0;
993 	int state;
994 
995 	/* The association should be held so we should be safe. */
996 	ep = asoc->ep;
997 
998 	inqueue = &asoc->base.inqueue;
999 	sctp_association_hold(asoc);
1000 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1001 		state = asoc->state;
1002 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1003 
1004 		/* If the first chunk in the packet is AUTH, do special
1005 		 * processing specified in Section 6.3 of SCTP-AUTH spec
1006 		 */
1007 		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1008 			struct sctp_chunkhdr *next_hdr;
1009 
1010 			next_hdr = sctp_inq_peek(inqueue);
1011 			if (!next_hdr)
1012 				goto normal;
1013 
1014 			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1015 			 * chunk while saving a pointer to it so we can do
1016 			 * Authentication later (during cookie-echo
1017 			 * processing).
1018 			 */
1019 			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1020 				chunk->auth_chunk = skb_clone(chunk->skb,
1021 							      GFP_ATOMIC);
1022 				chunk->auth = 1;
1023 				continue;
1024 			}
1025 		}
1026 
1027 normal:
1028 		/* SCTP-AUTH, Section 6.3:
1029 		 *    The receiver has a list of chunk types which it expects
1030 		 *    to be received only after an AUTH-chunk.  This list has
1031 		 *    been sent to the peer during the association setup.  It
1032 		 *    MUST silently discard these chunks if they are not placed
1033 		 *    after an AUTH chunk in the packet.
1034 		 */
1035 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1036 			continue;
1037 
1038 		/* Remember where the last DATA chunk came from so we
1039 		 * know where to send the SACK.
1040 		 */
1041 		if (sctp_chunk_is_data(chunk))
1042 			asoc->peer.last_data_from = chunk->transport;
1043 		else {
1044 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1045 			asoc->stats.ictrlchunks++;
1046 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1047 				asoc->stats.isacks++;
1048 		}
1049 
1050 		if (chunk->transport)
1051 			chunk->transport->last_time_heard = ktime_get();
1052 
1053 		/* Run through the state machine. */
1054 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1055 				   state, ep, asoc, chunk, GFP_ATOMIC);
1056 
1057 		/* Check to see if the association is freed in response to
1058 		 * the incoming chunk.  If so, get out of the while loop.
1059 		 */
1060 		if (asoc->base.dead)
1061 			break;
1062 
1063 		/* If there is an error on chunk, discard this packet. */
1064 		if (error && chunk)
1065 			chunk->pdiscard = 1;
1066 
1067 		if (first_time)
1068 			first_time = 0;
1069 	}
1070 	sctp_association_put(asoc);
1071 }
1072 
1073 /* This routine moves an association from its old sk to a new sk.  */
1074 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1075 {
1076 	struct sctp_sock *newsp = sctp_sk(newsk);
1077 	struct sock *oldsk = assoc->base.sk;
1078 
1079 	/* Delete the association from the old endpoint's list of
1080 	 * associations.
1081 	 */
1082 	list_del_init(&assoc->asocs);
1083 
1084 	/* Decrement the backlog value for a TCP-style socket. */
1085 	if (sctp_style(oldsk, TCP))
1086 		sk_acceptq_removed(oldsk);
1087 
1088 	/* Release references to the old endpoint and the sock.  */
1089 	sctp_endpoint_put(assoc->ep);
1090 	sock_put(assoc->base.sk);
1091 
1092 	/* Get a reference to the new endpoint.  */
1093 	assoc->ep = newsp->ep;
1094 	sctp_endpoint_hold(assoc->ep);
1095 
1096 	/* Get a reference to the new sock.  */
1097 	assoc->base.sk = newsk;
1098 	sock_hold(assoc->base.sk);
1099 
1100 	/* Add the association to the new endpoint's list of associations.  */
1101 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1102 }
1103 
1104 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1105 int sctp_assoc_update(struct sctp_association *asoc,
1106 		      struct sctp_association *new)
1107 {
1108 	struct sctp_transport *trans;
1109 	struct list_head *pos, *temp;
1110 
1111 	/* Copy in new parameters of peer. */
1112 	asoc->c = new->c;
1113 	asoc->peer.rwnd = new->peer.rwnd;
1114 	asoc->peer.sack_needed = new->peer.sack_needed;
1115 	asoc->peer.auth_capable = new->peer.auth_capable;
1116 	asoc->peer.i = new->peer.i;
1117 
1118 	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1119 			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1120 		return -ENOMEM;
1121 
1122 	/* Remove any peer addresses not present in the new association. */
1123 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1124 		trans = list_entry(pos, struct sctp_transport, transports);
1125 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1126 			sctp_assoc_rm_peer(asoc, trans);
1127 			continue;
1128 		}
1129 
1130 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1131 			sctp_transport_reset(trans);
1132 	}
1133 
1134 	/* If the case is A (association restart), use
1135 	 * initial_tsn as next_tsn. If the case is B, use
1136 	 * current next_tsn in case data sent to peer
1137 	 * has been discarded and needs retransmission.
1138 	 */
1139 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1140 		asoc->next_tsn = new->next_tsn;
1141 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1142 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1143 
1144 		/* Reinitialize SSN for both local streams
1145 		 * and peer's streams.
1146 		 */
1147 		sctp_stream_clear(&asoc->stream);
1148 
1149 		/* Flush the ULP reassembly and ordered queue.
1150 		 * Any data there will now be stale and will
1151 		 * cause problems.
1152 		 */
1153 		sctp_ulpq_flush(&asoc->ulpq);
1154 
1155 		/* reset the overall association error count so
1156 		 * that the restarted association doesn't get torn
1157 		 * down on the next retransmission timer.
1158 		 */
1159 		asoc->overall_error_count = 0;
1160 
1161 	} else {
1162 		/* Add any peer addresses from the new association. */
1163 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1164 				    transports)
1165 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1166 			    !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1167 						 GFP_ATOMIC, trans->state))
1168 				return -ENOMEM;
1169 
1170 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1171 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1172 
1173 		if (sctp_state(asoc, COOKIE_WAIT))
1174 			sctp_stream_update(&asoc->stream, &new->stream);
1175 
1176 		/* get a new assoc id if we don't have one yet. */
1177 		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1178 			return -ENOMEM;
1179 	}
1180 
1181 	/* SCTP-AUTH: Save the peer parameters from the new associations
1182 	 * and also move the association shared keys over
1183 	 */
1184 	kfree(asoc->peer.peer_random);
1185 	asoc->peer.peer_random = new->peer.peer_random;
1186 	new->peer.peer_random = NULL;
1187 
1188 	kfree(asoc->peer.peer_chunks);
1189 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1190 	new->peer.peer_chunks = NULL;
1191 
1192 	kfree(asoc->peer.peer_hmacs);
1193 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1194 	new->peer.peer_hmacs = NULL;
1195 
1196 	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1197 }
1198 
1199 /* Update the retran path for sending a retransmitted packet.
1200  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1201  *
1202  *   When there is outbound data to send and the primary path
1203  *   becomes inactive (e.g., due to failures), or where the
1204  *   SCTP user explicitly requests to send data to an
1205  *   inactive destination transport address, before reporting
1206  *   an error to its ULP, the SCTP endpoint should try to send
1207  *   the data to an alternate active destination transport
1208  *   address if one exists.
1209  *
1210  *   When retransmitting data that timed out, if the endpoint
1211  *   is multihomed, it should consider each source-destination
1212  *   address pair in its retransmission selection policy.
1213  *   When retransmitting timed-out data, the endpoint should
1214  *   attempt to pick the most divergent source-destination
1215  *   pair from the original source-destination pair to which
1216  *   the packet was transmitted.
1217  *
1218  *   Note: Rules for picking the most divergent source-destination
1219  *   pair are an implementation decision and are not specified
1220  *   within this document.
1221  *
1222  * Our basic strategy is to round-robin transports in priorities
1223  * according to sctp_trans_score() e.g., if no such
1224  * transport with state SCTP_ACTIVE exists, round-robin through
1225  * SCTP_UNKNOWN, etc. You get the picture.
1226  */
1227 static u8 sctp_trans_score(const struct sctp_transport *trans)
1228 {
1229 	switch (trans->state) {
1230 	case SCTP_ACTIVE:
1231 		return 3;	/* best case */
1232 	case SCTP_UNKNOWN:
1233 		return 2;
1234 	case SCTP_PF:
1235 		return 1;
1236 	default: /* case SCTP_INACTIVE */
1237 		return 0;	/* worst case */
1238 	}
1239 }
1240 
1241 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1242 						   struct sctp_transport *trans2)
1243 {
1244 	if (trans1->error_count > trans2->error_count) {
1245 		return trans2;
1246 	} else if (trans1->error_count == trans2->error_count &&
1247 		   ktime_after(trans2->last_time_heard,
1248 			       trans1->last_time_heard)) {
1249 		return trans2;
1250 	} else {
1251 		return trans1;
1252 	}
1253 }
1254 
1255 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1256 						    struct sctp_transport *best)
1257 {
1258 	u8 score_curr, score_best;
1259 
1260 	if (best == NULL || curr == best)
1261 		return curr;
1262 
1263 	score_curr = sctp_trans_score(curr);
1264 	score_best = sctp_trans_score(best);
1265 
1266 	/* First, try a score-based selection if both transport states
1267 	 * differ. If we're in a tie, lets try to make a more clever
1268 	 * decision here based on error counts and last time heard.
1269 	 */
1270 	if (score_curr > score_best)
1271 		return curr;
1272 	else if (score_curr == score_best)
1273 		return sctp_trans_elect_tie(best, curr);
1274 	else
1275 		return best;
1276 }
1277 
1278 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1279 {
1280 	struct sctp_transport *trans = asoc->peer.retran_path;
1281 	struct sctp_transport *trans_next = NULL;
1282 
1283 	/* We're done as we only have the one and only path. */
1284 	if (asoc->peer.transport_count == 1)
1285 		return;
1286 	/* If active_path and retran_path are the same and active,
1287 	 * then this is the only active path. Use it.
1288 	 */
1289 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1290 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1291 		return;
1292 
1293 	/* Iterate from retran_path's successor back to retran_path. */
1294 	for (trans = list_next_entry(trans, transports); 1;
1295 	     trans = list_next_entry(trans, transports)) {
1296 		/* Manually skip the head element. */
1297 		if (&trans->transports == &asoc->peer.transport_addr_list)
1298 			continue;
1299 		if (trans->state == SCTP_UNCONFIRMED)
1300 			continue;
1301 		trans_next = sctp_trans_elect_best(trans, trans_next);
1302 		/* Active is good enough for immediate return. */
1303 		if (trans_next->state == SCTP_ACTIVE)
1304 			break;
1305 		/* We've reached the end, time to update path. */
1306 		if (trans == asoc->peer.retran_path)
1307 			break;
1308 	}
1309 
1310 	asoc->peer.retran_path = trans_next;
1311 
1312 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1313 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1314 }
1315 
1316 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1317 {
1318 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1319 	struct sctp_transport *trans_pf = NULL;
1320 
1321 	/* Look for the two most recently used active transports. */
1322 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1323 			    transports) {
1324 		/* Skip uninteresting transports. */
1325 		if (trans->state == SCTP_INACTIVE ||
1326 		    trans->state == SCTP_UNCONFIRMED)
1327 			continue;
1328 		/* Keep track of the best PF transport from our
1329 		 * list in case we don't find an active one.
1330 		 */
1331 		if (trans->state == SCTP_PF) {
1332 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1333 			continue;
1334 		}
1335 		/* For active transports, pick the most recent ones. */
1336 		if (trans_pri == NULL ||
1337 		    ktime_after(trans->last_time_heard,
1338 				trans_pri->last_time_heard)) {
1339 			trans_sec = trans_pri;
1340 			trans_pri = trans;
1341 		} else if (trans_sec == NULL ||
1342 			   ktime_after(trans->last_time_heard,
1343 				       trans_sec->last_time_heard)) {
1344 			trans_sec = trans;
1345 		}
1346 	}
1347 
1348 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1349 	 *
1350 	 * By default, an endpoint should always transmit to the primary
1351 	 * path, unless the SCTP user explicitly specifies the
1352 	 * destination transport address (and possibly source transport
1353 	 * address) to use. [If the primary is active but not most recent,
1354 	 * bump the most recently used transport.]
1355 	 */
1356 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1357 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1358 	     asoc->peer.primary_path != trans_pri) {
1359 		trans_sec = trans_pri;
1360 		trans_pri = asoc->peer.primary_path;
1361 	}
1362 
1363 	/* We did not find anything useful for a possible retransmission
1364 	 * path; either primary path that we found is the same as
1365 	 * the current one, or we didn't generally find an active one.
1366 	 */
1367 	if (trans_sec == NULL)
1368 		trans_sec = trans_pri;
1369 
1370 	/* If we failed to find a usable transport, just camp on the
1371 	 * active or pick a PF iff it's the better choice.
1372 	 */
1373 	if (trans_pri == NULL) {
1374 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1375 		trans_sec = trans_pri;
1376 	}
1377 
1378 	/* Set the active and retran transports. */
1379 	asoc->peer.active_path = trans_pri;
1380 	asoc->peer.retran_path = trans_sec;
1381 }
1382 
1383 struct sctp_transport *
1384 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1385 				  struct sctp_transport *last_sent_to)
1386 {
1387 	/* If this is the first time packet is sent, use the active path,
1388 	 * else use the retran path. If the last packet was sent over the
1389 	 * retran path, update the retran path and use it.
1390 	 */
1391 	if (last_sent_to == NULL) {
1392 		return asoc->peer.active_path;
1393 	} else {
1394 		if (last_sent_to == asoc->peer.retran_path)
1395 			sctp_assoc_update_retran_path(asoc);
1396 
1397 		return asoc->peer.retran_path;
1398 	}
1399 }
1400 
1401 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1402 {
1403 	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1404 				    sctp_datachk_len(&asoc->stream));
1405 
1406 	if (asoc->user_frag)
1407 		frag = min_t(int, frag, asoc->user_frag);
1408 
1409 	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1410 				sctp_datachk_len(&asoc->stream));
1411 
1412 	asoc->frag_point = SCTP_TRUNC4(frag);
1413 }
1414 
1415 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1416 {
1417 	if (asoc->pathmtu != pmtu) {
1418 		asoc->pathmtu = pmtu;
1419 		sctp_assoc_update_frag_point(asoc);
1420 	}
1421 
1422 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1423 		 asoc->pathmtu, asoc->frag_point);
1424 }
1425 
1426 /* Update the association's pmtu and frag_point by going through all the
1427  * transports. This routine is called when a transport's PMTU has changed.
1428  */
1429 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1430 {
1431 	struct sctp_transport *t;
1432 	__u32 pmtu = 0;
1433 
1434 	if (!asoc)
1435 		return;
1436 
1437 	/* Get the lowest pmtu of all the transports. */
1438 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1439 		if (t->pmtu_pending && t->dst) {
1440 			sctp_transport_update_pmtu(t,
1441 						   atomic_read(&t->mtu_info));
1442 			t->pmtu_pending = 0;
1443 		}
1444 		if (!pmtu || (t->pathmtu < pmtu))
1445 			pmtu = t->pathmtu;
1446 	}
1447 
1448 	sctp_assoc_set_pmtu(asoc, pmtu);
1449 }
1450 
1451 /* Should we send a SACK to update our peer? */
1452 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1453 {
1454 	struct net *net = asoc->base.net;
1455 
1456 	switch (asoc->state) {
1457 	case SCTP_STATE_ESTABLISHED:
1458 	case SCTP_STATE_SHUTDOWN_PENDING:
1459 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1460 	case SCTP_STATE_SHUTDOWN_SENT:
1461 		if ((asoc->rwnd > asoc->a_rwnd) &&
1462 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1463 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1464 			   asoc->pathmtu)))
1465 			return true;
1466 		break;
1467 	default:
1468 		break;
1469 	}
1470 	return false;
1471 }
1472 
1473 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1474 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1475 {
1476 	struct sctp_chunk *sack;
1477 	struct timer_list *timer;
1478 
1479 	if (asoc->rwnd_over) {
1480 		if (asoc->rwnd_over >= len) {
1481 			asoc->rwnd_over -= len;
1482 		} else {
1483 			asoc->rwnd += (len - asoc->rwnd_over);
1484 			asoc->rwnd_over = 0;
1485 		}
1486 	} else {
1487 		asoc->rwnd += len;
1488 	}
1489 
1490 	/* If we had window pressure, start recovering it
1491 	 * once our rwnd had reached the accumulated pressure
1492 	 * threshold.  The idea is to recover slowly, but up
1493 	 * to the initial advertised window.
1494 	 */
1495 	if (asoc->rwnd_press) {
1496 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1497 		asoc->rwnd += change;
1498 		asoc->rwnd_press -= change;
1499 	}
1500 
1501 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1502 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1503 		 asoc->a_rwnd);
1504 
1505 	/* Send a window update SACK if the rwnd has increased by at least the
1506 	 * minimum of the association's PMTU and half of the receive buffer.
1507 	 * The algorithm used is similar to the one described in
1508 	 * Section 4.2.3.3 of RFC 1122.
1509 	 */
1510 	if (sctp_peer_needs_update(asoc)) {
1511 		asoc->a_rwnd = asoc->rwnd;
1512 
1513 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1514 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1515 			 asoc->a_rwnd);
1516 
1517 		sack = sctp_make_sack(asoc);
1518 		if (!sack)
1519 			return;
1520 
1521 		asoc->peer.sack_needed = 0;
1522 
1523 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1524 
1525 		/* Stop the SACK timer.  */
1526 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1527 		if (del_timer(timer))
1528 			sctp_association_put(asoc);
1529 	}
1530 }
1531 
1532 /* Decrease asoc's rwnd by len. */
1533 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1534 {
1535 	int rx_count;
1536 	int over = 0;
1537 
1538 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1539 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1540 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1541 			 asoc->rwnd, asoc->rwnd_over);
1542 
1543 	if (asoc->ep->rcvbuf_policy)
1544 		rx_count = atomic_read(&asoc->rmem_alloc);
1545 	else
1546 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1547 
1548 	/* If we've reached or overflowed our receive buffer, announce
1549 	 * a 0 rwnd if rwnd would still be positive.  Store the
1550 	 * potential pressure overflow so that the window can be restored
1551 	 * back to original value.
1552 	 */
1553 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1554 		over = 1;
1555 
1556 	if (asoc->rwnd >= len) {
1557 		asoc->rwnd -= len;
1558 		if (over) {
1559 			asoc->rwnd_press += asoc->rwnd;
1560 			asoc->rwnd = 0;
1561 		}
1562 	} else {
1563 		asoc->rwnd_over += len - asoc->rwnd;
1564 		asoc->rwnd = 0;
1565 	}
1566 
1567 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1568 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1569 		 asoc->rwnd_press);
1570 }
1571 
1572 /* Build the bind address list for the association based on info from the
1573  * local endpoint and the remote peer.
1574  */
1575 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1576 				     enum sctp_scope scope, gfp_t gfp)
1577 {
1578 	struct sock *sk = asoc->base.sk;
1579 	int flags;
1580 
1581 	/* Use scoping rules to determine the subset of addresses from
1582 	 * the endpoint.
1583 	 */
1584 	flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1585 	if (!inet_v6_ipv6only(sk))
1586 		flags |= SCTP_ADDR4_ALLOWED;
1587 	if (asoc->peer.ipv4_address)
1588 		flags |= SCTP_ADDR4_PEERSUPP;
1589 	if (asoc->peer.ipv6_address)
1590 		flags |= SCTP_ADDR6_PEERSUPP;
1591 
1592 	return sctp_bind_addr_copy(asoc->base.net,
1593 				   &asoc->base.bind_addr,
1594 				   &asoc->ep->base.bind_addr,
1595 				   scope, gfp, flags);
1596 }
1597 
1598 /* Build the association's bind address list from the cookie.  */
1599 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1600 					 struct sctp_cookie *cookie,
1601 					 gfp_t gfp)
1602 {
1603 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1604 	int var_size3 = cookie->raw_addr_list_len;
1605 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1606 
1607 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1608 				      asoc->ep->base.bind_addr.port, gfp);
1609 }
1610 
1611 /* Lookup laddr in the bind address list of an association. */
1612 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1613 			    const union sctp_addr *laddr)
1614 {
1615 	int found = 0;
1616 
1617 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1618 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1619 				 sctp_sk(asoc->base.sk)))
1620 		found = 1;
1621 
1622 	return found;
1623 }
1624 
1625 /* Set an association id for a given association */
1626 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1627 {
1628 	bool preload = gfpflags_allow_blocking(gfp);
1629 	int ret;
1630 
1631 	/* If the id is already assigned, keep it. */
1632 	if (asoc->assoc_id)
1633 		return 0;
1634 
1635 	if (preload)
1636 		idr_preload(gfp);
1637 	spin_lock_bh(&sctp_assocs_id_lock);
1638 	/* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1639 	 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1640 	 */
1641 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1642 			       GFP_NOWAIT);
1643 	spin_unlock_bh(&sctp_assocs_id_lock);
1644 	if (preload)
1645 		idr_preload_end();
1646 	if (ret < 0)
1647 		return ret;
1648 
1649 	asoc->assoc_id = (sctp_assoc_t)ret;
1650 	return 0;
1651 }
1652 
1653 /* Free the ASCONF queue */
1654 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1655 {
1656 	struct sctp_chunk *asconf;
1657 	struct sctp_chunk *tmp;
1658 
1659 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1660 		list_del_init(&asconf->list);
1661 		sctp_chunk_free(asconf);
1662 	}
1663 }
1664 
1665 /* Free asconf_ack cache */
1666 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1667 {
1668 	struct sctp_chunk *ack;
1669 	struct sctp_chunk *tmp;
1670 
1671 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1672 				transmitted_list) {
1673 		list_del_init(&ack->transmitted_list);
1674 		sctp_chunk_free(ack);
1675 	}
1676 }
1677 
1678 /* Clean up the ASCONF_ACK queue */
1679 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1680 {
1681 	struct sctp_chunk *ack;
1682 	struct sctp_chunk *tmp;
1683 
1684 	/* We can remove all the entries from the queue up to
1685 	 * the "Peer-Sequence-Number".
1686 	 */
1687 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1688 				transmitted_list) {
1689 		if (ack->subh.addip_hdr->serial ==
1690 				htonl(asoc->peer.addip_serial))
1691 			break;
1692 
1693 		list_del_init(&ack->transmitted_list);
1694 		sctp_chunk_free(ack);
1695 	}
1696 }
1697 
1698 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1699 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1700 					const struct sctp_association *asoc,
1701 					__be32 serial)
1702 {
1703 	struct sctp_chunk *ack;
1704 
1705 	/* Walk through the list of cached ASCONF-ACKs and find the
1706 	 * ack chunk whose serial number matches that of the request.
1707 	 */
1708 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1709 		if (sctp_chunk_pending(ack))
1710 			continue;
1711 		if (ack->subh.addip_hdr->serial == serial) {
1712 			sctp_chunk_hold(ack);
1713 			return ack;
1714 		}
1715 	}
1716 
1717 	return NULL;
1718 }
1719 
1720 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1721 {
1722 	/* Free any cached ASCONF_ACK chunk. */
1723 	sctp_assoc_free_asconf_acks(asoc);
1724 
1725 	/* Free the ASCONF queue. */
1726 	sctp_assoc_free_asconf_queue(asoc);
1727 
1728 	/* Free any cached ASCONF chunk. */
1729 	if (asoc->addip_last_asconf)
1730 		sctp_chunk_free(asoc->addip_last_asconf);
1731 }
1732