1 /* 2 * net/sched/sch_tbf.c Token Bucket Filter queue. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs - 11 * original idea by Martin Devera 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/string.h> 19 #include <linux/errno.h> 20 #include <linux/skbuff.h> 21 #include <net/netlink.h> 22 #include <net/sch_generic.h> 23 #include <net/pkt_sched.h> 24 25 26 /* Simple Token Bucket Filter. 27 ======================================= 28 29 SOURCE. 30 ------- 31 32 None. 33 34 Description. 35 ------------ 36 37 A data flow obeys TBF with rate R and depth B, if for any 38 time interval t_i...t_f the number of transmitted bits 39 does not exceed B + R*(t_f-t_i). 40 41 Packetized version of this definition: 42 The sequence of packets of sizes s_i served at moments t_i 43 obeys TBF, if for any i<=k: 44 45 s_i+....+s_k <= B + R*(t_k - t_i) 46 47 Algorithm. 48 ---------- 49 50 Let N(t_i) be B/R initially and N(t) grow continuously with time as: 51 52 N(t+delta) = min{B/R, N(t) + delta} 53 54 If the first packet in queue has length S, it may be 55 transmitted only at the time t_* when S/R <= N(t_*), 56 and in this case N(t) jumps: 57 58 N(t_* + 0) = N(t_* - 0) - S/R. 59 60 61 62 Actually, QoS requires two TBF to be applied to a data stream. 63 One of them controls steady state burst size, another 64 one with rate P (peak rate) and depth M (equal to link MTU) 65 limits bursts at a smaller time scale. 66 67 It is easy to see that P>R, and B>M. If P is infinity, this double 68 TBF is equivalent to a single one. 69 70 When TBF works in reshaping mode, latency is estimated as: 71 72 lat = max ((L-B)/R, (L-M)/P) 73 74 75 NOTES. 76 ------ 77 78 If TBF throttles, it starts a watchdog timer, which will wake it up 79 when it is ready to transmit. 80 Note that the minimal timer resolution is 1/HZ. 81 If no new packets arrive during this period, 82 or if the device is not awaken by EOI for some previous packet, 83 TBF can stop its activity for 1/HZ. 84 85 86 This means, that with depth B, the maximal rate is 87 88 R_crit = B*HZ 89 90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes. 91 92 Note that the peak rate TBF is much more tough: with MTU 1500 93 P_crit = 150Kbytes/sec. So, if you need greater peak 94 rates, use alpha with HZ=1000 :-) 95 96 With classful TBF, limit is just kept for backwards compatibility. 97 It is passed to the default bfifo qdisc - if the inner qdisc is 98 changed the limit is not effective anymore. 99 */ 100 101 struct tbf_sched_data { 102 /* Parameters */ 103 u32 limit; /* Maximal length of backlog: bytes */ 104 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */ 105 s64 mtu; 106 u32 max_size; 107 struct psched_ratecfg rate; 108 struct psched_ratecfg peak; 109 bool peak_present; 110 111 /* Variables */ 112 s64 tokens; /* Current number of B tokens */ 113 s64 ptokens; /* Current number of P tokens */ 114 s64 t_c; /* Time check-point */ 115 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */ 116 struct qdisc_watchdog watchdog; /* Watchdog timer */ 117 }; 118 119 120 /* GSO packet is too big, segment it so that tbf can transmit 121 * each segment in time 122 */ 123 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch) 124 { 125 struct tbf_sched_data *q = qdisc_priv(sch); 126 struct sk_buff *segs, *nskb; 127 netdev_features_t features = netif_skb_features(skb); 128 int ret, nb; 129 130 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 131 132 if (IS_ERR_OR_NULL(segs)) 133 return qdisc_reshape_fail(skb, sch); 134 135 nb = 0; 136 while (segs) { 137 nskb = segs->next; 138 segs->next = NULL; 139 if (likely(segs->len <= q->max_size)) { 140 qdisc_skb_cb(segs)->pkt_len = segs->len; 141 ret = qdisc_enqueue(segs, q->qdisc); 142 } else { 143 ret = qdisc_reshape_fail(skb, sch); 144 } 145 if (ret != NET_XMIT_SUCCESS) { 146 if (net_xmit_drop_count(ret)) 147 sch->qstats.drops++; 148 } else { 149 nb++; 150 } 151 segs = nskb; 152 } 153 sch->q.qlen += nb; 154 if (nb > 1) 155 qdisc_tree_decrease_qlen(sch, 1 - nb); 156 consume_skb(skb); 157 return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 158 } 159 160 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch) 161 { 162 struct tbf_sched_data *q = qdisc_priv(sch); 163 int ret; 164 165 if (qdisc_pkt_len(skb) > q->max_size) { 166 if (skb_is_gso(skb)) 167 return tbf_segment(skb, sch); 168 return qdisc_reshape_fail(skb, sch); 169 } 170 ret = qdisc_enqueue(skb, q->qdisc); 171 if (ret != NET_XMIT_SUCCESS) { 172 if (net_xmit_drop_count(ret)) 173 sch->qstats.drops++; 174 return ret; 175 } 176 177 sch->q.qlen++; 178 return NET_XMIT_SUCCESS; 179 } 180 181 static unsigned int tbf_drop(struct Qdisc *sch) 182 { 183 struct tbf_sched_data *q = qdisc_priv(sch); 184 unsigned int len = 0; 185 186 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) { 187 sch->q.qlen--; 188 sch->qstats.drops++; 189 } 190 return len; 191 } 192 193 static struct sk_buff *tbf_dequeue(struct Qdisc *sch) 194 { 195 struct tbf_sched_data *q = qdisc_priv(sch); 196 struct sk_buff *skb; 197 198 skb = q->qdisc->ops->peek(q->qdisc); 199 200 if (skb) { 201 s64 now; 202 s64 toks; 203 s64 ptoks = 0; 204 unsigned int len = qdisc_pkt_len(skb); 205 206 now = ktime_to_ns(ktime_get()); 207 toks = min_t(s64, now - q->t_c, q->buffer); 208 209 if (q->peak_present) { 210 ptoks = toks + q->ptokens; 211 if (ptoks > q->mtu) 212 ptoks = q->mtu; 213 ptoks -= (s64) psched_l2t_ns(&q->peak, len); 214 } 215 toks += q->tokens; 216 if (toks > q->buffer) 217 toks = q->buffer; 218 toks -= (s64) psched_l2t_ns(&q->rate, len); 219 220 if ((toks|ptoks) >= 0) { 221 skb = qdisc_dequeue_peeked(q->qdisc); 222 if (unlikely(!skb)) 223 return NULL; 224 225 q->t_c = now; 226 q->tokens = toks; 227 q->ptokens = ptoks; 228 sch->q.qlen--; 229 qdisc_unthrottled(sch); 230 qdisc_bstats_update(sch, skb); 231 return skb; 232 } 233 234 qdisc_watchdog_schedule_ns(&q->watchdog, 235 now + max_t(long, -toks, -ptoks)); 236 237 /* Maybe we have a shorter packet in the queue, 238 which can be sent now. It sounds cool, 239 but, however, this is wrong in principle. 240 We MUST NOT reorder packets under these circumstances. 241 242 Really, if we split the flow into independent 243 subflows, it would be a very good solution. 244 This is the main idea of all FQ algorithms 245 (cf. CSZ, HPFQ, HFSC) 246 */ 247 248 sch->qstats.overlimits++; 249 } 250 return NULL; 251 } 252 253 static void tbf_reset(struct Qdisc *sch) 254 { 255 struct tbf_sched_data *q = qdisc_priv(sch); 256 257 qdisc_reset(q->qdisc); 258 sch->q.qlen = 0; 259 q->t_c = ktime_to_ns(ktime_get()); 260 q->tokens = q->buffer; 261 q->ptokens = q->mtu; 262 qdisc_watchdog_cancel(&q->watchdog); 263 } 264 265 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = { 266 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) }, 267 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 268 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 269 }; 270 271 static int tbf_change(struct Qdisc *sch, struct nlattr *opt) 272 { 273 int err; 274 struct tbf_sched_data *q = qdisc_priv(sch); 275 struct nlattr *tb[TCA_TBF_PTAB + 1]; 276 struct tc_tbf_qopt *qopt; 277 struct qdisc_rate_table *rtab = NULL; 278 struct qdisc_rate_table *ptab = NULL; 279 struct Qdisc *child = NULL; 280 int max_size, n; 281 282 err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy); 283 if (err < 0) 284 return err; 285 286 err = -EINVAL; 287 if (tb[TCA_TBF_PARMS] == NULL) 288 goto done; 289 290 qopt = nla_data(tb[TCA_TBF_PARMS]); 291 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]); 292 if (rtab == NULL) 293 goto done; 294 295 if (qopt->peakrate.rate) { 296 if (qopt->peakrate.rate > qopt->rate.rate) 297 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]); 298 if (ptab == NULL) 299 goto done; 300 } 301 302 for (n = 0; n < 256; n++) 303 if (rtab->data[n] > qopt->buffer) 304 break; 305 max_size = (n << qopt->rate.cell_log) - 1; 306 if (ptab) { 307 int size; 308 309 for (n = 0; n < 256; n++) 310 if (ptab->data[n] > qopt->mtu) 311 break; 312 size = (n << qopt->peakrate.cell_log) - 1; 313 if (size < max_size) 314 max_size = size; 315 } 316 if (max_size < 0) 317 goto done; 318 319 if (q->qdisc != &noop_qdisc) { 320 err = fifo_set_limit(q->qdisc, qopt->limit); 321 if (err) 322 goto done; 323 } else if (qopt->limit > 0) { 324 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit); 325 if (IS_ERR(child)) { 326 err = PTR_ERR(child); 327 goto done; 328 } 329 } 330 331 sch_tree_lock(sch); 332 if (child) { 333 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen); 334 qdisc_destroy(q->qdisc); 335 q->qdisc = child; 336 } 337 q->limit = qopt->limit; 338 q->mtu = PSCHED_TICKS2NS(qopt->mtu); 339 q->max_size = max_size; 340 q->buffer = PSCHED_TICKS2NS(qopt->buffer); 341 q->tokens = q->buffer; 342 q->ptokens = q->mtu; 343 344 psched_ratecfg_precompute(&q->rate, &rtab->rate); 345 if (ptab) { 346 psched_ratecfg_precompute(&q->peak, &ptab->rate); 347 q->peak_present = true; 348 } else { 349 q->peak_present = false; 350 } 351 352 sch_tree_unlock(sch); 353 err = 0; 354 done: 355 if (rtab) 356 qdisc_put_rtab(rtab); 357 if (ptab) 358 qdisc_put_rtab(ptab); 359 return err; 360 } 361 362 static int tbf_init(struct Qdisc *sch, struct nlattr *opt) 363 { 364 struct tbf_sched_data *q = qdisc_priv(sch); 365 366 if (opt == NULL) 367 return -EINVAL; 368 369 q->t_c = ktime_to_ns(ktime_get()); 370 qdisc_watchdog_init(&q->watchdog, sch); 371 q->qdisc = &noop_qdisc; 372 373 return tbf_change(sch, opt); 374 } 375 376 static void tbf_destroy(struct Qdisc *sch) 377 { 378 struct tbf_sched_data *q = qdisc_priv(sch); 379 380 qdisc_watchdog_cancel(&q->watchdog); 381 qdisc_destroy(q->qdisc); 382 } 383 384 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb) 385 { 386 struct tbf_sched_data *q = qdisc_priv(sch); 387 struct nlattr *nest; 388 struct tc_tbf_qopt opt; 389 390 sch->qstats.backlog = q->qdisc->qstats.backlog; 391 nest = nla_nest_start(skb, TCA_OPTIONS); 392 if (nest == NULL) 393 goto nla_put_failure; 394 395 opt.limit = q->limit; 396 psched_ratecfg_getrate(&opt.rate, &q->rate); 397 if (q->peak_present) 398 psched_ratecfg_getrate(&opt.peakrate, &q->peak); 399 else 400 memset(&opt.peakrate, 0, sizeof(opt.peakrate)); 401 opt.mtu = PSCHED_NS2TICKS(q->mtu); 402 opt.buffer = PSCHED_NS2TICKS(q->buffer); 403 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt)) 404 goto nla_put_failure; 405 406 nla_nest_end(skb, nest); 407 return skb->len; 408 409 nla_put_failure: 410 nla_nest_cancel(skb, nest); 411 return -1; 412 } 413 414 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl, 415 struct sk_buff *skb, struct tcmsg *tcm) 416 { 417 struct tbf_sched_data *q = qdisc_priv(sch); 418 419 tcm->tcm_handle |= TC_H_MIN(1); 420 tcm->tcm_info = q->qdisc->handle; 421 422 return 0; 423 } 424 425 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 426 struct Qdisc **old) 427 { 428 struct tbf_sched_data *q = qdisc_priv(sch); 429 430 if (new == NULL) 431 new = &noop_qdisc; 432 433 sch_tree_lock(sch); 434 *old = q->qdisc; 435 q->qdisc = new; 436 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen); 437 qdisc_reset(*old); 438 sch_tree_unlock(sch); 439 440 return 0; 441 } 442 443 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg) 444 { 445 struct tbf_sched_data *q = qdisc_priv(sch); 446 return q->qdisc; 447 } 448 449 static unsigned long tbf_get(struct Qdisc *sch, u32 classid) 450 { 451 return 1; 452 } 453 454 static void tbf_put(struct Qdisc *sch, unsigned long arg) 455 { 456 } 457 458 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker) 459 { 460 if (!walker->stop) { 461 if (walker->count >= walker->skip) 462 if (walker->fn(sch, 1, walker) < 0) { 463 walker->stop = 1; 464 return; 465 } 466 walker->count++; 467 } 468 } 469 470 static const struct Qdisc_class_ops tbf_class_ops = { 471 .graft = tbf_graft, 472 .leaf = tbf_leaf, 473 .get = tbf_get, 474 .put = tbf_put, 475 .walk = tbf_walk, 476 .dump = tbf_dump_class, 477 }; 478 479 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = { 480 .next = NULL, 481 .cl_ops = &tbf_class_ops, 482 .id = "tbf", 483 .priv_size = sizeof(struct tbf_sched_data), 484 .enqueue = tbf_enqueue, 485 .dequeue = tbf_dequeue, 486 .peek = qdisc_peek_dequeued, 487 .drop = tbf_drop, 488 .init = tbf_init, 489 .reset = tbf_reset, 490 .destroy = tbf_destroy, 491 .change = tbf_change, 492 .dump = tbf_dump, 493 .owner = THIS_MODULE, 494 }; 495 496 static int __init tbf_module_init(void) 497 { 498 return register_qdisc(&tbf_qdisc_ops); 499 } 500 501 static void __exit tbf_module_exit(void) 502 { 503 unregister_qdisc(&tbf_qdisc_ops); 504 } 505 module_init(tbf_module_init) 506 module_exit(tbf_module_exit) 507 MODULE_LICENSE("GPL"); 508