1 /* 2 * net/sched/sch_tbf.c Token Bucket Filter queue. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs - 11 * original idea by Martin Devera 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/string.h> 19 #include <linux/errno.h> 20 #include <linux/skbuff.h> 21 #include <net/netlink.h> 22 #include <net/sch_generic.h> 23 #include <net/pkt_sched.h> 24 25 26 /* Simple Token Bucket Filter. 27 ======================================= 28 29 SOURCE. 30 ------- 31 32 None. 33 34 Description. 35 ------------ 36 37 A data flow obeys TBF with rate R and depth B, if for any 38 time interval t_i...t_f the number of transmitted bits 39 does not exceed B + R*(t_f-t_i). 40 41 Packetized version of this definition: 42 The sequence of packets of sizes s_i served at moments t_i 43 obeys TBF, if for any i<=k: 44 45 s_i+....+s_k <= B + R*(t_k - t_i) 46 47 Algorithm. 48 ---------- 49 50 Let N(t_i) be B/R initially and N(t) grow continuously with time as: 51 52 N(t+delta) = min{B/R, N(t) + delta} 53 54 If the first packet in queue has length S, it may be 55 transmitted only at the time t_* when S/R <= N(t_*), 56 and in this case N(t) jumps: 57 58 N(t_* + 0) = N(t_* - 0) - S/R. 59 60 61 62 Actually, QoS requires two TBF to be applied to a data stream. 63 One of them controls steady state burst size, another 64 one with rate P (peak rate) and depth M (equal to link MTU) 65 limits bursts at a smaller time scale. 66 67 It is easy to see that P>R, and B>M. If P is infinity, this double 68 TBF is equivalent to a single one. 69 70 When TBF works in reshaping mode, latency is estimated as: 71 72 lat = max ((L-B)/R, (L-M)/P) 73 74 75 NOTES. 76 ------ 77 78 If TBF throttles, it starts a watchdog timer, which will wake it up 79 when it is ready to transmit. 80 Note that the minimal timer resolution is 1/HZ. 81 If no new packets arrive during this period, 82 or if the device is not awaken by EOI for some previous packet, 83 TBF can stop its activity for 1/HZ. 84 85 86 This means, that with depth B, the maximal rate is 87 88 R_crit = B*HZ 89 90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes. 91 92 Note that the peak rate TBF is much more tough: with MTU 1500 93 P_crit = 150Kbytes/sec. So, if you need greater peak 94 rates, use alpha with HZ=1000 :-) 95 96 With classful TBF, limit is just kept for backwards compatibility. 97 It is passed to the default bfifo qdisc - if the inner qdisc is 98 changed the limit is not effective anymore. 99 */ 100 101 struct tbf_sched_data { 102 /* Parameters */ 103 u32 limit; /* Maximal length of backlog: bytes */ 104 u32 max_size; 105 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */ 106 s64 mtu; 107 struct psched_ratecfg rate; 108 struct psched_ratecfg peak; 109 110 /* Variables */ 111 s64 tokens; /* Current number of B tokens */ 112 s64 ptokens; /* Current number of P tokens */ 113 s64 t_c; /* Time check-point */ 114 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */ 115 struct qdisc_watchdog watchdog; /* Watchdog timer */ 116 }; 117 118 119 /* Time to Length, convert time in ns to length in bytes 120 * to determinate how many bytes can be sent in given time. 121 */ 122 static u64 psched_ns_t2l(const struct psched_ratecfg *r, 123 u64 time_in_ns) 124 { 125 /* The formula is : 126 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC 127 */ 128 u64 len = time_in_ns * r->rate_bytes_ps; 129 130 do_div(len, NSEC_PER_SEC); 131 132 if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) { 133 do_div(len, 53); 134 len = len * 48; 135 } 136 137 if (len > r->overhead) 138 len -= r->overhead; 139 else 140 len = 0; 141 142 return len; 143 } 144 145 /* GSO packet is too big, segment it so that tbf can transmit 146 * each segment in time 147 */ 148 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch, 149 struct sk_buff **to_free) 150 { 151 struct tbf_sched_data *q = qdisc_priv(sch); 152 struct sk_buff *segs, *nskb; 153 netdev_features_t features = netif_skb_features(skb); 154 unsigned int len = 0, prev_len = qdisc_pkt_len(skb); 155 int ret, nb; 156 157 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 158 159 if (IS_ERR_OR_NULL(segs)) 160 return qdisc_drop(skb, sch, to_free); 161 162 nb = 0; 163 while (segs) { 164 nskb = segs->next; 165 segs->next = NULL; 166 qdisc_skb_cb(segs)->pkt_len = segs->len; 167 len += segs->len; 168 ret = qdisc_enqueue(segs, q->qdisc, to_free); 169 if (ret != NET_XMIT_SUCCESS) { 170 if (net_xmit_drop_count(ret)) 171 qdisc_qstats_drop(sch); 172 } else { 173 nb++; 174 } 175 segs = nskb; 176 } 177 sch->q.qlen += nb; 178 if (nb > 1) 179 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len); 180 consume_skb(skb); 181 return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 182 } 183 184 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch, 185 struct sk_buff **to_free) 186 { 187 struct tbf_sched_data *q = qdisc_priv(sch); 188 int ret; 189 190 if (qdisc_pkt_len(skb) > q->max_size) { 191 if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size) 192 return tbf_segment(skb, sch, to_free); 193 return qdisc_drop(skb, sch, to_free); 194 } 195 ret = qdisc_enqueue(skb, q->qdisc, to_free); 196 if (ret != NET_XMIT_SUCCESS) { 197 if (net_xmit_drop_count(ret)) 198 qdisc_qstats_drop(sch); 199 return ret; 200 } 201 202 qdisc_qstats_backlog_inc(sch, skb); 203 sch->q.qlen++; 204 return NET_XMIT_SUCCESS; 205 } 206 207 static bool tbf_peak_present(const struct tbf_sched_data *q) 208 { 209 return q->peak.rate_bytes_ps; 210 } 211 212 static struct sk_buff *tbf_dequeue(struct Qdisc *sch) 213 { 214 struct tbf_sched_data *q = qdisc_priv(sch); 215 struct sk_buff *skb; 216 217 skb = q->qdisc->ops->peek(q->qdisc); 218 219 if (skb) { 220 s64 now; 221 s64 toks; 222 s64 ptoks = 0; 223 unsigned int len = qdisc_pkt_len(skb); 224 225 now = ktime_get_ns(); 226 toks = min_t(s64, now - q->t_c, q->buffer); 227 228 if (tbf_peak_present(q)) { 229 ptoks = toks + q->ptokens; 230 if (ptoks > q->mtu) 231 ptoks = q->mtu; 232 ptoks -= (s64) psched_l2t_ns(&q->peak, len); 233 } 234 toks += q->tokens; 235 if (toks > q->buffer) 236 toks = q->buffer; 237 toks -= (s64) psched_l2t_ns(&q->rate, len); 238 239 if ((toks|ptoks) >= 0) { 240 skb = qdisc_dequeue_peeked(q->qdisc); 241 if (unlikely(!skb)) 242 return NULL; 243 244 q->t_c = now; 245 q->tokens = toks; 246 q->ptokens = ptoks; 247 qdisc_qstats_backlog_dec(sch, skb); 248 sch->q.qlen--; 249 qdisc_bstats_update(sch, skb); 250 return skb; 251 } 252 253 qdisc_watchdog_schedule_ns(&q->watchdog, 254 now + max_t(long, -toks, -ptoks)); 255 256 /* Maybe we have a shorter packet in the queue, 257 which can be sent now. It sounds cool, 258 but, however, this is wrong in principle. 259 We MUST NOT reorder packets under these circumstances. 260 261 Really, if we split the flow into independent 262 subflows, it would be a very good solution. 263 This is the main idea of all FQ algorithms 264 (cf. CSZ, HPFQ, HFSC) 265 */ 266 267 qdisc_qstats_overlimit(sch); 268 } 269 return NULL; 270 } 271 272 static void tbf_reset(struct Qdisc *sch) 273 { 274 struct tbf_sched_data *q = qdisc_priv(sch); 275 276 qdisc_reset(q->qdisc); 277 sch->qstats.backlog = 0; 278 sch->q.qlen = 0; 279 q->t_c = ktime_get_ns(); 280 q->tokens = q->buffer; 281 q->ptokens = q->mtu; 282 qdisc_watchdog_cancel(&q->watchdog); 283 } 284 285 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = { 286 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) }, 287 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 288 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 289 [TCA_TBF_RATE64] = { .type = NLA_U64 }, 290 [TCA_TBF_PRATE64] = { .type = NLA_U64 }, 291 [TCA_TBF_BURST] = { .type = NLA_U32 }, 292 [TCA_TBF_PBURST] = { .type = NLA_U32 }, 293 }; 294 295 static int tbf_change(struct Qdisc *sch, struct nlattr *opt, 296 struct netlink_ext_ack *extack) 297 { 298 int err; 299 struct tbf_sched_data *q = qdisc_priv(sch); 300 struct nlattr *tb[TCA_TBF_MAX + 1]; 301 struct tc_tbf_qopt *qopt; 302 struct Qdisc *child = NULL; 303 struct psched_ratecfg rate; 304 struct psched_ratecfg peak; 305 u64 max_size; 306 s64 buffer, mtu; 307 u64 rate64 = 0, prate64 = 0; 308 309 err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy, NULL); 310 if (err < 0) 311 return err; 312 313 err = -EINVAL; 314 if (tb[TCA_TBF_PARMS] == NULL) 315 goto done; 316 317 qopt = nla_data(tb[TCA_TBF_PARMS]); 318 if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE) 319 qdisc_put_rtab(qdisc_get_rtab(&qopt->rate, 320 tb[TCA_TBF_RTAB], 321 NULL)); 322 323 if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE) 324 qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate, 325 tb[TCA_TBF_PTAB], 326 NULL)); 327 328 buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U); 329 mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U); 330 331 if (tb[TCA_TBF_RATE64]) 332 rate64 = nla_get_u64(tb[TCA_TBF_RATE64]); 333 psched_ratecfg_precompute(&rate, &qopt->rate, rate64); 334 335 if (tb[TCA_TBF_BURST]) { 336 max_size = nla_get_u32(tb[TCA_TBF_BURST]); 337 buffer = psched_l2t_ns(&rate, max_size); 338 } else { 339 max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U); 340 } 341 342 if (qopt->peakrate.rate) { 343 if (tb[TCA_TBF_PRATE64]) 344 prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]); 345 psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64); 346 if (peak.rate_bytes_ps <= rate.rate_bytes_ps) { 347 pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n", 348 peak.rate_bytes_ps, rate.rate_bytes_ps); 349 err = -EINVAL; 350 goto done; 351 } 352 353 if (tb[TCA_TBF_PBURST]) { 354 u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]); 355 max_size = min_t(u32, max_size, pburst); 356 mtu = psched_l2t_ns(&peak, pburst); 357 } else { 358 max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu)); 359 } 360 } else { 361 memset(&peak, 0, sizeof(peak)); 362 } 363 364 if (max_size < psched_mtu(qdisc_dev(sch))) 365 pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n", 366 max_size, qdisc_dev(sch)->name, 367 psched_mtu(qdisc_dev(sch))); 368 369 if (!max_size) { 370 err = -EINVAL; 371 goto done; 372 } 373 374 if (q->qdisc != &noop_qdisc) { 375 err = fifo_set_limit(q->qdisc, qopt->limit); 376 if (err) 377 goto done; 378 } else if (qopt->limit > 0) { 379 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit, 380 extack); 381 if (IS_ERR(child)) { 382 err = PTR_ERR(child); 383 goto done; 384 } 385 } 386 387 sch_tree_lock(sch); 388 if (child) { 389 qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen, 390 q->qdisc->qstats.backlog); 391 qdisc_destroy(q->qdisc); 392 q->qdisc = child; 393 if (child != &noop_qdisc) 394 qdisc_hash_add(child, true); 395 } 396 q->limit = qopt->limit; 397 if (tb[TCA_TBF_PBURST]) 398 q->mtu = mtu; 399 else 400 q->mtu = PSCHED_TICKS2NS(qopt->mtu); 401 q->max_size = max_size; 402 if (tb[TCA_TBF_BURST]) 403 q->buffer = buffer; 404 else 405 q->buffer = PSCHED_TICKS2NS(qopt->buffer); 406 q->tokens = q->buffer; 407 q->ptokens = q->mtu; 408 409 memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg)); 410 memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg)); 411 412 sch_tree_unlock(sch); 413 err = 0; 414 done: 415 return err; 416 } 417 418 static int tbf_init(struct Qdisc *sch, struct nlattr *opt, 419 struct netlink_ext_ack *extack) 420 { 421 struct tbf_sched_data *q = qdisc_priv(sch); 422 423 qdisc_watchdog_init(&q->watchdog, sch); 424 q->qdisc = &noop_qdisc; 425 426 if (!opt) 427 return -EINVAL; 428 429 q->t_c = ktime_get_ns(); 430 431 return tbf_change(sch, opt, extack); 432 } 433 434 static void tbf_destroy(struct Qdisc *sch) 435 { 436 struct tbf_sched_data *q = qdisc_priv(sch); 437 438 qdisc_watchdog_cancel(&q->watchdog); 439 qdisc_destroy(q->qdisc); 440 } 441 442 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb) 443 { 444 struct tbf_sched_data *q = qdisc_priv(sch); 445 struct nlattr *nest; 446 struct tc_tbf_qopt opt; 447 448 sch->qstats.backlog = q->qdisc->qstats.backlog; 449 nest = nla_nest_start(skb, TCA_OPTIONS); 450 if (nest == NULL) 451 goto nla_put_failure; 452 453 opt.limit = q->limit; 454 psched_ratecfg_getrate(&opt.rate, &q->rate); 455 if (tbf_peak_present(q)) 456 psched_ratecfg_getrate(&opt.peakrate, &q->peak); 457 else 458 memset(&opt.peakrate, 0, sizeof(opt.peakrate)); 459 opt.mtu = PSCHED_NS2TICKS(q->mtu); 460 opt.buffer = PSCHED_NS2TICKS(q->buffer); 461 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt)) 462 goto nla_put_failure; 463 if (q->rate.rate_bytes_ps >= (1ULL << 32) && 464 nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps, 465 TCA_TBF_PAD)) 466 goto nla_put_failure; 467 if (tbf_peak_present(q) && 468 q->peak.rate_bytes_ps >= (1ULL << 32) && 469 nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps, 470 TCA_TBF_PAD)) 471 goto nla_put_failure; 472 473 return nla_nest_end(skb, nest); 474 475 nla_put_failure: 476 nla_nest_cancel(skb, nest); 477 return -1; 478 } 479 480 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl, 481 struct sk_buff *skb, struct tcmsg *tcm) 482 { 483 struct tbf_sched_data *q = qdisc_priv(sch); 484 485 tcm->tcm_handle |= TC_H_MIN(1); 486 tcm->tcm_info = q->qdisc->handle; 487 488 return 0; 489 } 490 491 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 492 struct Qdisc **old, struct netlink_ext_ack *extack) 493 { 494 struct tbf_sched_data *q = qdisc_priv(sch); 495 496 if (new == NULL) 497 new = &noop_qdisc; 498 499 *old = qdisc_replace(sch, new, &q->qdisc); 500 return 0; 501 } 502 503 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg) 504 { 505 struct tbf_sched_data *q = qdisc_priv(sch); 506 return q->qdisc; 507 } 508 509 static unsigned long tbf_find(struct Qdisc *sch, u32 classid) 510 { 511 return 1; 512 } 513 514 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker) 515 { 516 if (!walker->stop) { 517 if (walker->count >= walker->skip) 518 if (walker->fn(sch, 1, walker) < 0) { 519 walker->stop = 1; 520 return; 521 } 522 walker->count++; 523 } 524 } 525 526 static const struct Qdisc_class_ops tbf_class_ops = { 527 .graft = tbf_graft, 528 .leaf = tbf_leaf, 529 .find = tbf_find, 530 .walk = tbf_walk, 531 .dump = tbf_dump_class, 532 }; 533 534 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = { 535 .next = NULL, 536 .cl_ops = &tbf_class_ops, 537 .id = "tbf", 538 .priv_size = sizeof(struct tbf_sched_data), 539 .enqueue = tbf_enqueue, 540 .dequeue = tbf_dequeue, 541 .peek = qdisc_peek_dequeued, 542 .init = tbf_init, 543 .reset = tbf_reset, 544 .destroy = tbf_destroy, 545 .change = tbf_change, 546 .dump = tbf_dump, 547 .owner = THIS_MODULE, 548 }; 549 550 static int __init tbf_module_init(void) 551 { 552 return register_qdisc(&tbf_qdisc_ops); 553 } 554 555 static void __exit tbf_module_exit(void) 556 { 557 unregister_qdisc(&tbf_qdisc_ops); 558 } 559 module_init(tbf_module_init) 560 module_exit(tbf_module_exit) 561 MODULE_LICENSE("GPL"); 562