xref: /openbmc/linux/net/sched/sch_tbf.c (revision 8a10bc9d)
1 /*
2  * net/sched/sch_tbf.c	Token Bucket Filter queue.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10  *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11  *						 original idea by Martin Devera
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
24 
25 
26 /*	Simple Token Bucket Filter.
27 	=======================================
28 
29 	SOURCE.
30 	-------
31 
32 	None.
33 
34 	Description.
35 	------------
36 
37 	A data flow obeys TBF with rate R and depth B, if for any
38 	time interval t_i...t_f the number of transmitted bits
39 	does not exceed B + R*(t_f-t_i).
40 
41 	Packetized version of this definition:
42 	The sequence of packets of sizes s_i served at moments t_i
43 	obeys TBF, if for any i<=k:
44 
45 	s_i+....+s_k <= B + R*(t_k - t_i)
46 
47 	Algorithm.
48 	----------
49 
50 	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51 
52 	N(t+delta) = min{B/R, N(t) + delta}
53 
54 	If the first packet in queue has length S, it may be
55 	transmitted only at the time t_* when S/R <= N(t_*),
56 	and in this case N(t) jumps:
57 
58 	N(t_* + 0) = N(t_* - 0) - S/R.
59 
60 
61 
62 	Actually, QoS requires two TBF to be applied to a data stream.
63 	One of them controls steady state burst size, another
64 	one with rate P (peak rate) and depth M (equal to link MTU)
65 	limits bursts at a smaller time scale.
66 
67 	It is easy to see that P>R, and B>M. If P is infinity, this double
68 	TBF is equivalent to a single one.
69 
70 	When TBF works in reshaping mode, latency is estimated as:
71 
72 	lat = max ((L-B)/R, (L-M)/P)
73 
74 
75 	NOTES.
76 	------
77 
78 	If TBF throttles, it starts a watchdog timer, which will wake it up
79 	when it is ready to transmit.
80 	Note that the minimal timer resolution is 1/HZ.
81 	If no new packets arrive during this period,
82 	or if the device is not awaken by EOI for some previous packet,
83 	TBF can stop its activity for 1/HZ.
84 
85 
86 	This means, that with depth B, the maximal rate is
87 
88 	R_crit = B*HZ
89 
90 	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91 
92 	Note that the peak rate TBF is much more tough: with MTU 1500
93 	P_crit = 150Kbytes/sec. So, if you need greater peak
94 	rates, use alpha with HZ=1000 :-)
95 
96 	With classful TBF, limit is just kept for backwards compatibility.
97 	It is passed to the default bfifo qdisc - if the inner qdisc is
98 	changed the limit is not effective anymore.
99 */
100 
101 struct tbf_sched_data {
102 /* Parameters */
103 	u32		limit;		/* Maximal length of backlog: bytes */
104 	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
105 	s64		mtu;
106 	u32		max_size;
107 	struct psched_ratecfg rate;
108 	struct psched_ratecfg peak;
109 	bool peak_present;
110 
111 /* Variables */
112 	s64	tokens;			/* Current number of B tokens */
113 	s64	ptokens;		/* Current number of P tokens */
114 	s64	t_c;			/* Time check-point */
115 	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
116 	struct qdisc_watchdog watchdog;	/* Watchdog timer */
117 };
118 
119 
120 /* Time to Length, convert time in ns to length in bytes
121  * to determinate how many bytes can be sent in given time.
122  */
123 static u64 psched_ns_t2l(const struct psched_ratecfg *r,
124 			 u64 time_in_ns)
125 {
126 	/* The formula is :
127 	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
128 	 */
129 	u64 len = time_in_ns * r->rate_bytes_ps;
130 
131 	do_div(len, NSEC_PER_SEC);
132 
133 	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
134 		do_div(len, 53);
135 		len = len * 48;
136 	}
137 
138 	if (len > r->overhead)
139 		len -= r->overhead;
140 	else
141 		len = 0;
142 
143 	return len;
144 }
145 
146 /*
147  * Return length of individual segments of a gso packet,
148  * including all headers (MAC, IP, TCP/UDP)
149  */
150 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
151 {
152 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
153 	return hdr_len + skb_gso_transport_seglen(skb);
154 }
155 
156 /* GSO packet is too big, segment it so that tbf can transmit
157  * each segment in time
158  */
159 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
160 {
161 	struct tbf_sched_data *q = qdisc_priv(sch);
162 	struct sk_buff *segs, *nskb;
163 	netdev_features_t features = netif_skb_features(skb);
164 	int ret, nb;
165 
166 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
167 
168 	if (IS_ERR_OR_NULL(segs))
169 		return qdisc_reshape_fail(skb, sch);
170 
171 	nb = 0;
172 	while (segs) {
173 		nskb = segs->next;
174 		segs->next = NULL;
175 		qdisc_skb_cb(segs)->pkt_len = segs->len;
176 		ret = qdisc_enqueue(segs, q->qdisc);
177 		if (ret != NET_XMIT_SUCCESS) {
178 			if (net_xmit_drop_count(ret))
179 				sch->qstats.drops++;
180 		} else {
181 			nb++;
182 		}
183 		segs = nskb;
184 	}
185 	sch->q.qlen += nb;
186 	if (nb > 1)
187 		qdisc_tree_decrease_qlen(sch, 1 - nb);
188 	consume_skb(skb);
189 	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
190 }
191 
192 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
193 {
194 	struct tbf_sched_data *q = qdisc_priv(sch);
195 	int ret;
196 
197 	if (qdisc_pkt_len(skb) > q->max_size) {
198 		if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
199 			return tbf_segment(skb, sch);
200 		return qdisc_reshape_fail(skb, sch);
201 	}
202 	ret = qdisc_enqueue(skb, q->qdisc);
203 	if (ret != NET_XMIT_SUCCESS) {
204 		if (net_xmit_drop_count(ret))
205 			sch->qstats.drops++;
206 		return ret;
207 	}
208 
209 	sch->q.qlen++;
210 	return NET_XMIT_SUCCESS;
211 }
212 
213 static unsigned int tbf_drop(struct Qdisc *sch)
214 {
215 	struct tbf_sched_data *q = qdisc_priv(sch);
216 	unsigned int len = 0;
217 
218 	if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
219 		sch->q.qlen--;
220 		sch->qstats.drops++;
221 	}
222 	return len;
223 }
224 
225 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
226 {
227 	struct tbf_sched_data *q = qdisc_priv(sch);
228 	struct sk_buff *skb;
229 
230 	skb = q->qdisc->ops->peek(q->qdisc);
231 
232 	if (skb) {
233 		s64 now;
234 		s64 toks;
235 		s64 ptoks = 0;
236 		unsigned int len = qdisc_pkt_len(skb);
237 
238 		now = ktime_to_ns(ktime_get());
239 		toks = min_t(s64, now - q->t_c, q->buffer);
240 
241 		if (q->peak_present) {
242 			ptoks = toks + q->ptokens;
243 			if (ptoks > q->mtu)
244 				ptoks = q->mtu;
245 			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
246 		}
247 		toks += q->tokens;
248 		if (toks > q->buffer)
249 			toks = q->buffer;
250 		toks -= (s64) psched_l2t_ns(&q->rate, len);
251 
252 		if ((toks|ptoks) >= 0) {
253 			skb = qdisc_dequeue_peeked(q->qdisc);
254 			if (unlikely(!skb))
255 				return NULL;
256 
257 			q->t_c = now;
258 			q->tokens = toks;
259 			q->ptokens = ptoks;
260 			sch->q.qlen--;
261 			qdisc_unthrottled(sch);
262 			qdisc_bstats_update(sch, skb);
263 			return skb;
264 		}
265 
266 		qdisc_watchdog_schedule_ns(&q->watchdog,
267 					   now + max_t(long, -toks, -ptoks));
268 
269 		/* Maybe we have a shorter packet in the queue,
270 		   which can be sent now. It sounds cool,
271 		   but, however, this is wrong in principle.
272 		   We MUST NOT reorder packets under these circumstances.
273 
274 		   Really, if we split the flow into independent
275 		   subflows, it would be a very good solution.
276 		   This is the main idea of all FQ algorithms
277 		   (cf. CSZ, HPFQ, HFSC)
278 		 */
279 
280 		sch->qstats.overlimits++;
281 	}
282 	return NULL;
283 }
284 
285 static void tbf_reset(struct Qdisc *sch)
286 {
287 	struct tbf_sched_data *q = qdisc_priv(sch);
288 
289 	qdisc_reset(q->qdisc);
290 	sch->q.qlen = 0;
291 	q->t_c = ktime_to_ns(ktime_get());
292 	q->tokens = q->buffer;
293 	q->ptokens = q->mtu;
294 	qdisc_watchdog_cancel(&q->watchdog);
295 }
296 
297 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
298 	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
299 	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
300 	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
301 	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
302 	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
303 	[TCA_TBF_BURST] = { .type = NLA_U32 },
304 	[TCA_TBF_PBURST] = { .type = NLA_U32 },
305 };
306 
307 static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
308 {
309 	int err;
310 	struct tbf_sched_data *q = qdisc_priv(sch);
311 	struct nlattr *tb[TCA_TBF_MAX + 1];
312 	struct tc_tbf_qopt *qopt;
313 	struct Qdisc *child = NULL;
314 	struct psched_ratecfg rate;
315 	struct psched_ratecfg peak;
316 	u64 max_size;
317 	s64 buffer, mtu;
318 	u64 rate64 = 0, prate64 = 0;
319 
320 	err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
321 	if (err < 0)
322 		return err;
323 
324 	err = -EINVAL;
325 	if (tb[TCA_TBF_PARMS] == NULL)
326 		goto done;
327 
328 	qopt = nla_data(tb[TCA_TBF_PARMS]);
329 	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
330 		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
331 					      tb[TCA_TBF_RTAB]));
332 
333 	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
334 			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
335 						      tb[TCA_TBF_PTAB]));
336 
337 	if (q->qdisc != &noop_qdisc) {
338 		err = fifo_set_limit(q->qdisc, qopt->limit);
339 		if (err)
340 			goto done;
341 	} else if (qopt->limit > 0) {
342 		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
343 		if (IS_ERR(child)) {
344 			err = PTR_ERR(child);
345 			goto done;
346 		}
347 	}
348 
349 	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
350 	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
351 
352 	if (tb[TCA_TBF_RATE64])
353 		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
354 	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
355 
356 	if (tb[TCA_TBF_BURST]) {
357 		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
358 		buffer = psched_l2t_ns(&rate, max_size);
359 	} else {
360 		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
361 	}
362 
363 	if (qopt->peakrate.rate) {
364 		if (tb[TCA_TBF_PRATE64])
365 			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
366 		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
367 		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
368 			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
369 					peak.rate_bytes_ps, rate.rate_bytes_ps);
370 			err = -EINVAL;
371 			goto done;
372 		}
373 
374 		if (tb[TCA_TBF_PBURST]) {
375 			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
376 			max_size = min_t(u32, max_size, pburst);
377 			mtu = psched_l2t_ns(&peak, pburst);
378 		} else {
379 			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
380 		}
381 	}
382 
383 	if (max_size < psched_mtu(qdisc_dev(sch)))
384 		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
385 				    max_size, qdisc_dev(sch)->name,
386 				    psched_mtu(qdisc_dev(sch)));
387 
388 	if (!max_size) {
389 		err = -EINVAL;
390 		goto done;
391 	}
392 
393 	sch_tree_lock(sch);
394 	if (child) {
395 		qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
396 		qdisc_destroy(q->qdisc);
397 		q->qdisc = child;
398 	}
399 	q->limit = qopt->limit;
400 	if (tb[TCA_TBF_PBURST])
401 		q->mtu = mtu;
402 	else
403 		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
404 	q->max_size = max_size;
405 	if (tb[TCA_TBF_BURST])
406 		q->buffer = buffer;
407 	else
408 		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
409 	q->tokens = q->buffer;
410 	q->ptokens = q->mtu;
411 
412 	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
413 	if (qopt->peakrate.rate) {
414 		memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
415 		q->peak_present = true;
416 	} else {
417 		q->peak_present = false;
418 	}
419 
420 	sch_tree_unlock(sch);
421 	err = 0;
422 done:
423 	return err;
424 }
425 
426 static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
427 {
428 	struct tbf_sched_data *q = qdisc_priv(sch);
429 
430 	if (opt == NULL)
431 		return -EINVAL;
432 
433 	q->t_c = ktime_to_ns(ktime_get());
434 	qdisc_watchdog_init(&q->watchdog, sch);
435 	q->qdisc = &noop_qdisc;
436 
437 	return tbf_change(sch, opt);
438 }
439 
440 static void tbf_destroy(struct Qdisc *sch)
441 {
442 	struct tbf_sched_data *q = qdisc_priv(sch);
443 
444 	qdisc_watchdog_cancel(&q->watchdog);
445 	qdisc_destroy(q->qdisc);
446 }
447 
448 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
449 {
450 	struct tbf_sched_data *q = qdisc_priv(sch);
451 	struct nlattr *nest;
452 	struct tc_tbf_qopt opt;
453 
454 	sch->qstats.backlog = q->qdisc->qstats.backlog;
455 	nest = nla_nest_start(skb, TCA_OPTIONS);
456 	if (nest == NULL)
457 		goto nla_put_failure;
458 
459 	opt.limit = q->limit;
460 	psched_ratecfg_getrate(&opt.rate, &q->rate);
461 	if (q->peak_present)
462 		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
463 	else
464 		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
465 	opt.mtu = PSCHED_NS2TICKS(q->mtu);
466 	opt.buffer = PSCHED_NS2TICKS(q->buffer);
467 	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
468 		goto nla_put_failure;
469 	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
470 	    nla_put_u64(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps))
471 		goto nla_put_failure;
472 	if (q->peak_present &&
473 	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
474 	    nla_put_u64(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps))
475 		goto nla_put_failure;
476 
477 	nla_nest_end(skb, nest);
478 	return skb->len;
479 
480 nla_put_failure:
481 	nla_nest_cancel(skb, nest);
482 	return -1;
483 }
484 
485 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
486 			  struct sk_buff *skb, struct tcmsg *tcm)
487 {
488 	struct tbf_sched_data *q = qdisc_priv(sch);
489 
490 	tcm->tcm_handle |= TC_H_MIN(1);
491 	tcm->tcm_info = q->qdisc->handle;
492 
493 	return 0;
494 }
495 
496 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
497 		     struct Qdisc **old)
498 {
499 	struct tbf_sched_data *q = qdisc_priv(sch);
500 
501 	if (new == NULL)
502 		new = &noop_qdisc;
503 
504 	sch_tree_lock(sch);
505 	*old = q->qdisc;
506 	q->qdisc = new;
507 	qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
508 	qdisc_reset(*old);
509 	sch_tree_unlock(sch);
510 
511 	return 0;
512 }
513 
514 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
515 {
516 	struct tbf_sched_data *q = qdisc_priv(sch);
517 	return q->qdisc;
518 }
519 
520 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
521 {
522 	return 1;
523 }
524 
525 static void tbf_put(struct Qdisc *sch, unsigned long arg)
526 {
527 }
528 
529 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
530 {
531 	if (!walker->stop) {
532 		if (walker->count >= walker->skip)
533 			if (walker->fn(sch, 1, walker) < 0) {
534 				walker->stop = 1;
535 				return;
536 			}
537 		walker->count++;
538 	}
539 }
540 
541 static const struct Qdisc_class_ops tbf_class_ops = {
542 	.graft		=	tbf_graft,
543 	.leaf		=	tbf_leaf,
544 	.get		=	tbf_get,
545 	.put		=	tbf_put,
546 	.walk		=	tbf_walk,
547 	.dump		=	tbf_dump_class,
548 };
549 
550 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
551 	.next		=	NULL,
552 	.cl_ops		=	&tbf_class_ops,
553 	.id		=	"tbf",
554 	.priv_size	=	sizeof(struct tbf_sched_data),
555 	.enqueue	=	tbf_enqueue,
556 	.dequeue	=	tbf_dequeue,
557 	.peek		=	qdisc_peek_dequeued,
558 	.drop		=	tbf_drop,
559 	.init		=	tbf_init,
560 	.reset		=	tbf_reset,
561 	.destroy	=	tbf_destroy,
562 	.change		=	tbf_change,
563 	.dump		=	tbf_dump,
564 	.owner		=	THIS_MODULE,
565 };
566 
567 static int __init tbf_module_init(void)
568 {
569 	return register_qdisc(&tbf_qdisc_ops);
570 }
571 
572 static void __exit tbf_module_exit(void)
573 {
574 	unregister_qdisc(&tbf_qdisc_ops);
575 }
576 module_init(tbf_module_init)
577 module_exit(tbf_module_exit)
578 MODULE_LICENSE("GPL");
579