1 /* 2 * net/sched/sch_tbf.c Token Bucket Filter queue. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs - 11 * original idea by Martin Devera 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/string.h> 19 #include <linux/errno.h> 20 #include <linux/skbuff.h> 21 #include <net/netlink.h> 22 #include <net/pkt_sched.h> 23 24 25 /* Simple Token Bucket Filter. 26 ======================================= 27 28 SOURCE. 29 ------- 30 31 None. 32 33 Description. 34 ------------ 35 36 A data flow obeys TBF with rate R and depth B, if for any 37 time interval t_i...t_f the number of transmitted bits 38 does not exceed B + R*(t_f-t_i). 39 40 Packetized version of this definition: 41 The sequence of packets of sizes s_i served at moments t_i 42 obeys TBF, if for any i<=k: 43 44 s_i+....+s_k <= B + R*(t_k - t_i) 45 46 Algorithm. 47 ---------- 48 49 Let N(t_i) be B/R initially and N(t) grow continuously with time as: 50 51 N(t+delta) = min{B/R, N(t) + delta} 52 53 If the first packet in queue has length S, it may be 54 transmitted only at the time t_* when S/R <= N(t_*), 55 and in this case N(t) jumps: 56 57 N(t_* + 0) = N(t_* - 0) - S/R. 58 59 60 61 Actually, QoS requires two TBF to be applied to a data stream. 62 One of them controls steady state burst size, another 63 one with rate P (peak rate) and depth M (equal to link MTU) 64 limits bursts at a smaller time scale. 65 66 It is easy to see that P>R, and B>M. If P is infinity, this double 67 TBF is equivalent to a single one. 68 69 When TBF works in reshaping mode, latency is estimated as: 70 71 lat = max ((L-B)/R, (L-M)/P) 72 73 74 NOTES. 75 ------ 76 77 If TBF throttles, it starts a watchdog timer, which will wake it up 78 when it is ready to transmit. 79 Note that the minimal timer resolution is 1/HZ. 80 If no new packets arrive during this period, 81 or if the device is not awaken by EOI for some previous packet, 82 TBF can stop its activity for 1/HZ. 83 84 85 This means, that with depth B, the maximal rate is 86 87 R_crit = B*HZ 88 89 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes. 90 91 Note that the peak rate TBF is much more tough: with MTU 1500 92 P_crit = 150Kbytes/sec. So, if you need greater peak 93 rates, use alpha with HZ=1000 :-) 94 95 With classful TBF, limit is just kept for backwards compatibility. 96 It is passed to the default bfifo qdisc - if the inner qdisc is 97 changed the limit is not effective anymore. 98 */ 99 100 struct tbf_sched_data { 101 /* Parameters */ 102 u32 limit; /* Maximal length of backlog: bytes */ 103 u32 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */ 104 u32 mtu; 105 u32 max_size; 106 struct qdisc_rate_table *R_tab; 107 struct qdisc_rate_table *P_tab; 108 109 /* Variables */ 110 long tokens; /* Current number of B tokens */ 111 long ptokens; /* Current number of P tokens */ 112 psched_time_t t_c; /* Time check-point */ 113 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */ 114 struct qdisc_watchdog watchdog; /* Watchdog timer */ 115 }; 116 117 #define L2T(q, L) qdisc_l2t((q)->R_tab, L) 118 #define L2T_P(q, L) qdisc_l2t((q)->P_tab, L) 119 120 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch) 121 { 122 struct tbf_sched_data *q = qdisc_priv(sch); 123 int ret; 124 125 if (qdisc_pkt_len(skb) > q->max_size) 126 return qdisc_reshape_fail(skb, sch); 127 128 ret = qdisc_enqueue(skb, q->qdisc); 129 if (ret != NET_XMIT_SUCCESS) { 130 if (net_xmit_drop_count(ret)) 131 sch->qstats.drops++; 132 return ret; 133 } 134 135 sch->q.qlen++; 136 return NET_XMIT_SUCCESS; 137 } 138 139 static unsigned int tbf_drop(struct Qdisc *sch) 140 { 141 struct tbf_sched_data *q = qdisc_priv(sch); 142 unsigned int len = 0; 143 144 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) { 145 sch->q.qlen--; 146 sch->qstats.drops++; 147 } 148 return len; 149 } 150 151 static struct sk_buff *tbf_dequeue(struct Qdisc *sch) 152 { 153 struct tbf_sched_data *q = qdisc_priv(sch); 154 struct sk_buff *skb; 155 156 skb = q->qdisc->ops->peek(q->qdisc); 157 158 if (skb) { 159 psched_time_t now; 160 long toks; 161 long ptoks = 0; 162 unsigned int len = qdisc_pkt_len(skb); 163 164 now = psched_get_time(); 165 toks = psched_tdiff_bounded(now, q->t_c, q->buffer); 166 167 if (q->P_tab) { 168 ptoks = toks + q->ptokens; 169 if (ptoks > (long)q->mtu) 170 ptoks = q->mtu; 171 ptoks -= L2T_P(q, len); 172 } 173 toks += q->tokens; 174 if (toks > (long)q->buffer) 175 toks = q->buffer; 176 toks -= L2T(q, len); 177 178 if ((toks|ptoks) >= 0) { 179 skb = qdisc_dequeue_peeked(q->qdisc); 180 if (unlikely(!skb)) 181 return NULL; 182 183 q->t_c = now; 184 q->tokens = toks; 185 q->ptokens = ptoks; 186 sch->q.qlen--; 187 qdisc_unthrottled(sch); 188 qdisc_bstats_update(sch, skb); 189 return skb; 190 } 191 192 qdisc_watchdog_schedule(&q->watchdog, 193 now + max_t(long, -toks, -ptoks)); 194 195 /* Maybe we have a shorter packet in the queue, 196 which can be sent now. It sounds cool, 197 but, however, this is wrong in principle. 198 We MUST NOT reorder packets under these circumstances. 199 200 Really, if we split the flow into independent 201 subflows, it would be a very good solution. 202 This is the main idea of all FQ algorithms 203 (cf. CSZ, HPFQ, HFSC) 204 */ 205 206 sch->qstats.overlimits++; 207 } 208 return NULL; 209 } 210 211 static void tbf_reset(struct Qdisc *sch) 212 { 213 struct tbf_sched_data *q = qdisc_priv(sch); 214 215 qdisc_reset(q->qdisc); 216 sch->q.qlen = 0; 217 q->t_c = psched_get_time(); 218 q->tokens = q->buffer; 219 q->ptokens = q->mtu; 220 qdisc_watchdog_cancel(&q->watchdog); 221 } 222 223 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = { 224 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) }, 225 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 226 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 227 }; 228 229 static int tbf_change(struct Qdisc *sch, struct nlattr *opt) 230 { 231 int err; 232 struct tbf_sched_data *q = qdisc_priv(sch); 233 struct nlattr *tb[TCA_TBF_PTAB + 1]; 234 struct tc_tbf_qopt *qopt; 235 struct qdisc_rate_table *rtab = NULL; 236 struct qdisc_rate_table *ptab = NULL; 237 struct Qdisc *child = NULL; 238 int max_size, n; 239 240 err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy); 241 if (err < 0) 242 return err; 243 244 err = -EINVAL; 245 if (tb[TCA_TBF_PARMS] == NULL) 246 goto done; 247 248 qopt = nla_data(tb[TCA_TBF_PARMS]); 249 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]); 250 if (rtab == NULL) 251 goto done; 252 253 if (qopt->peakrate.rate) { 254 if (qopt->peakrate.rate > qopt->rate.rate) 255 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]); 256 if (ptab == NULL) 257 goto done; 258 } 259 260 for (n = 0; n < 256; n++) 261 if (rtab->data[n] > qopt->buffer) 262 break; 263 max_size = (n << qopt->rate.cell_log) - 1; 264 if (ptab) { 265 int size; 266 267 for (n = 0; n < 256; n++) 268 if (ptab->data[n] > qopt->mtu) 269 break; 270 size = (n << qopt->peakrate.cell_log) - 1; 271 if (size < max_size) 272 max_size = size; 273 } 274 if (max_size < 0) 275 goto done; 276 277 if (q->qdisc != &noop_qdisc) { 278 err = fifo_set_limit(q->qdisc, qopt->limit); 279 if (err) 280 goto done; 281 } else if (qopt->limit > 0) { 282 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit); 283 if (IS_ERR(child)) { 284 err = PTR_ERR(child); 285 goto done; 286 } 287 } 288 289 sch_tree_lock(sch); 290 if (child) { 291 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen); 292 qdisc_destroy(q->qdisc); 293 q->qdisc = child; 294 } 295 q->limit = qopt->limit; 296 q->mtu = qopt->mtu; 297 q->max_size = max_size; 298 q->buffer = qopt->buffer; 299 q->tokens = q->buffer; 300 q->ptokens = q->mtu; 301 302 swap(q->R_tab, rtab); 303 swap(q->P_tab, ptab); 304 305 sch_tree_unlock(sch); 306 err = 0; 307 done: 308 if (rtab) 309 qdisc_put_rtab(rtab); 310 if (ptab) 311 qdisc_put_rtab(ptab); 312 return err; 313 } 314 315 static int tbf_init(struct Qdisc *sch, struct nlattr *opt) 316 { 317 struct tbf_sched_data *q = qdisc_priv(sch); 318 319 if (opt == NULL) 320 return -EINVAL; 321 322 q->t_c = psched_get_time(); 323 qdisc_watchdog_init(&q->watchdog, sch); 324 q->qdisc = &noop_qdisc; 325 326 return tbf_change(sch, opt); 327 } 328 329 static void tbf_destroy(struct Qdisc *sch) 330 { 331 struct tbf_sched_data *q = qdisc_priv(sch); 332 333 qdisc_watchdog_cancel(&q->watchdog); 334 335 if (q->P_tab) 336 qdisc_put_rtab(q->P_tab); 337 if (q->R_tab) 338 qdisc_put_rtab(q->R_tab); 339 340 qdisc_destroy(q->qdisc); 341 } 342 343 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb) 344 { 345 struct tbf_sched_data *q = qdisc_priv(sch); 346 struct nlattr *nest; 347 struct tc_tbf_qopt opt; 348 349 sch->qstats.backlog = q->qdisc->qstats.backlog; 350 nest = nla_nest_start(skb, TCA_OPTIONS); 351 if (nest == NULL) 352 goto nla_put_failure; 353 354 opt.limit = q->limit; 355 opt.rate = q->R_tab->rate; 356 if (q->P_tab) 357 opt.peakrate = q->P_tab->rate; 358 else 359 memset(&opt.peakrate, 0, sizeof(opt.peakrate)); 360 opt.mtu = q->mtu; 361 opt.buffer = q->buffer; 362 NLA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt); 363 364 nla_nest_end(skb, nest); 365 return skb->len; 366 367 nla_put_failure: 368 nla_nest_cancel(skb, nest); 369 return -1; 370 } 371 372 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl, 373 struct sk_buff *skb, struct tcmsg *tcm) 374 { 375 struct tbf_sched_data *q = qdisc_priv(sch); 376 377 tcm->tcm_handle |= TC_H_MIN(1); 378 tcm->tcm_info = q->qdisc->handle; 379 380 return 0; 381 } 382 383 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 384 struct Qdisc **old) 385 { 386 struct tbf_sched_data *q = qdisc_priv(sch); 387 388 if (new == NULL) 389 new = &noop_qdisc; 390 391 sch_tree_lock(sch); 392 *old = q->qdisc; 393 q->qdisc = new; 394 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen); 395 qdisc_reset(*old); 396 sch_tree_unlock(sch); 397 398 return 0; 399 } 400 401 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg) 402 { 403 struct tbf_sched_data *q = qdisc_priv(sch); 404 return q->qdisc; 405 } 406 407 static unsigned long tbf_get(struct Qdisc *sch, u32 classid) 408 { 409 return 1; 410 } 411 412 static void tbf_put(struct Qdisc *sch, unsigned long arg) 413 { 414 } 415 416 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker) 417 { 418 if (!walker->stop) { 419 if (walker->count >= walker->skip) 420 if (walker->fn(sch, 1, walker) < 0) { 421 walker->stop = 1; 422 return; 423 } 424 walker->count++; 425 } 426 } 427 428 static const struct Qdisc_class_ops tbf_class_ops = { 429 .graft = tbf_graft, 430 .leaf = tbf_leaf, 431 .get = tbf_get, 432 .put = tbf_put, 433 .walk = tbf_walk, 434 .dump = tbf_dump_class, 435 }; 436 437 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = { 438 .next = NULL, 439 .cl_ops = &tbf_class_ops, 440 .id = "tbf", 441 .priv_size = sizeof(struct tbf_sched_data), 442 .enqueue = tbf_enqueue, 443 .dequeue = tbf_dequeue, 444 .peek = qdisc_peek_dequeued, 445 .drop = tbf_drop, 446 .init = tbf_init, 447 .reset = tbf_reset, 448 .destroy = tbf_destroy, 449 .change = tbf_change, 450 .dump = tbf_dump, 451 .owner = THIS_MODULE, 452 }; 453 454 static int __init tbf_module_init(void) 455 { 456 return register_qdisc(&tbf_qdisc_ops); 457 } 458 459 static void __exit tbf_module_exit(void) 460 { 461 unregister_qdisc(&tbf_qdisc_ops); 462 } 463 module_init(tbf_module_init) 464 module_exit(tbf_module_exit) 465 MODULE_LICENSE("GPL"); 466