xref: /openbmc/linux/net/sched/sch_tbf.c (revision 293d5b43)
1 /*
2  * net/sched/sch_tbf.c	Token Bucket Filter queue.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10  *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11  *						 original idea by Martin Devera
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
24 
25 
26 /*	Simple Token Bucket Filter.
27 	=======================================
28 
29 	SOURCE.
30 	-------
31 
32 	None.
33 
34 	Description.
35 	------------
36 
37 	A data flow obeys TBF with rate R and depth B, if for any
38 	time interval t_i...t_f the number of transmitted bits
39 	does not exceed B + R*(t_f-t_i).
40 
41 	Packetized version of this definition:
42 	The sequence of packets of sizes s_i served at moments t_i
43 	obeys TBF, if for any i<=k:
44 
45 	s_i+....+s_k <= B + R*(t_k - t_i)
46 
47 	Algorithm.
48 	----------
49 
50 	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51 
52 	N(t+delta) = min{B/R, N(t) + delta}
53 
54 	If the first packet in queue has length S, it may be
55 	transmitted only at the time t_* when S/R <= N(t_*),
56 	and in this case N(t) jumps:
57 
58 	N(t_* + 0) = N(t_* - 0) - S/R.
59 
60 
61 
62 	Actually, QoS requires two TBF to be applied to a data stream.
63 	One of them controls steady state burst size, another
64 	one with rate P (peak rate) and depth M (equal to link MTU)
65 	limits bursts at a smaller time scale.
66 
67 	It is easy to see that P>R, and B>M. If P is infinity, this double
68 	TBF is equivalent to a single one.
69 
70 	When TBF works in reshaping mode, latency is estimated as:
71 
72 	lat = max ((L-B)/R, (L-M)/P)
73 
74 
75 	NOTES.
76 	------
77 
78 	If TBF throttles, it starts a watchdog timer, which will wake it up
79 	when it is ready to transmit.
80 	Note that the minimal timer resolution is 1/HZ.
81 	If no new packets arrive during this period,
82 	or if the device is not awaken by EOI for some previous packet,
83 	TBF can stop its activity for 1/HZ.
84 
85 
86 	This means, that with depth B, the maximal rate is
87 
88 	R_crit = B*HZ
89 
90 	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91 
92 	Note that the peak rate TBF is much more tough: with MTU 1500
93 	P_crit = 150Kbytes/sec. So, if you need greater peak
94 	rates, use alpha with HZ=1000 :-)
95 
96 	With classful TBF, limit is just kept for backwards compatibility.
97 	It is passed to the default bfifo qdisc - if the inner qdisc is
98 	changed the limit is not effective anymore.
99 */
100 
101 struct tbf_sched_data {
102 /* Parameters */
103 	u32		limit;		/* Maximal length of backlog: bytes */
104 	u32		max_size;
105 	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
106 	s64		mtu;
107 	struct psched_ratecfg rate;
108 	struct psched_ratecfg peak;
109 
110 /* Variables */
111 	s64	tokens;			/* Current number of B tokens */
112 	s64	ptokens;		/* Current number of P tokens */
113 	s64	t_c;			/* Time check-point */
114 	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
115 	struct qdisc_watchdog watchdog;	/* Watchdog timer */
116 };
117 
118 
119 /* Time to Length, convert time in ns to length in bytes
120  * to determinate how many bytes can be sent in given time.
121  */
122 static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123 			 u64 time_in_ns)
124 {
125 	/* The formula is :
126 	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
127 	 */
128 	u64 len = time_in_ns * r->rate_bytes_ps;
129 
130 	do_div(len, NSEC_PER_SEC);
131 
132 	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133 		do_div(len, 53);
134 		len = len * 48;
135 	}
136 
137 	if (len > r->overhead)
138 		len -= r->overhead;
139 	else
140 		len = 0;
141 
142 	return len;
143 }
144 
145 /*
146  * Return length of individual segments of a gso packet,
147  * including all headers (MAC, IP, TCP/UDP)
148  */
149 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
150 {
151 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
152 	return hdr_len + skb_gso_transport_seglen(skb);
153 }
154 
155 /* GSO packet is too big, segment it so that tbf can transmit
156  * each segment in time
157  */
158 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
159 		       struct sk_buff **to_free)
160 {
161 	struct tbf_sched_data *q = qdisc_priv(sch);
162 	struct sk_buff *segs, *nskb;
163 	netdev_features_t features = netif_skb_features(skb);
164 	unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
165 	int ret, nb;
166 
167 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
168 
169 	if (IS_ERR_OR_NULL(segs))
170 		return qdisc_drop(skb, sch, to_free);
171 
172 	nb = 0;
173 	while (segs) {
174 		nskb = segs->next;
175 		segs->next = NULL;
176 		qdisc_skb_cb(segs)->pkt_len = segs->len;
177 		len += segs->len;
178 		ret = qdisc_enqueue(segs, q->qdisc, to_free);
179 		if (ret != NET_XMIT_SUCCESS) {
180 			if (net_xmit_drop_count(ret))
181 				qdisc_qstats_drop(sch);
182 		} else {
183 			nb++;
184 		}
185 		segs = nskb;
186 	}
187 	sch->q.qlen += nb;
188 	if (nb > 1)
189 		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
190 	consume_skb(skb);
191 	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
192 }
193 
194 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
195 		       struct sk_buff **to_free)
196 {
197 	struct tbf_sched_data *q = qdisc_priv(sch);
198 	int ret;
199 
200 	if (qdisc_pkt_len(skb) > q->max_size) {
201 		if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
202 			return tbf_segment(skb, sch, to_free);
203 		return qdisc_drop(skb, sch, to_free);
204 	}
205 	ret = qdisc_enqueue(skb, q->qdisc, to_free);
206 	if (ret != NET_XMIT_SUCCESS) {
207 		if (net_xmit_drop_count(ret))
208 			qdisc_qstats_drop(sch);
209 		return ret;
210 	}
211 
212 	qdisc_qstats_backlog_inc(sch, skb);
213 	sch->q.qlen++;
214 	return NET_XMIT_SUCCESS;
215 }
216 
217 static bool tbf_peak_present(const struct tbf_sched_data *q)
218 {
219 	return q->peak.rate_bytes_ps;
220 }
221 
222 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
223 {
224 	struct tbf_sched_data *q = qdisc_priv(sch);
225 	struct sk_buff *skb;
226 
227 	skb = q->qdisc->ops->peek(q->qdisc);
228 
229 	if (skb) {
230 		s64 now;
231 		s64 toks;
232 		s64 ptoks = 0;
233 		unsigned int len = qdisc_pkt_len(skb);
234 
235 		now = ktime_get_ns();
236 		toks = min_t(s64, now - q->t_c, q->buffer);
237 
238 		if (tbf_peak_present(q)) {
239 			ptoks = toks + q->ptokens;
240 			if (ptoks > q->mtu)
241 				ptoks = q->mtu;
242 			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
243 		}
244 		toks += q->tokens;
245 		if (toks > q->buffer)
246 			toks = q->buffer;
247 		toks -= (s64) psched_l2t_ns(&q->rate, len);
248 
249 		if ((toks|ptoks) >= 0) {
250 			skb = qdisc_dequeue_peeked(q->qdisc);
251 			if (unlikely(!skb))
252 				return NULL;
253 
254 			q->t_c = now;
255 			q->tokens = toks;
256 			q->ptokens = ptoks;
257 			qdisc_qstats_backlog_dec(sch, skb);
258 			sch->q.qlen--;
259 			qdisc_bstats_update(sch, skb);
260 			return skb;
261 		}
262 
263 		qdisc_watchdog_schedule_ns(&q->watchdog,
264 					   now + max_t(long, -toks, -ptoks));
265 
266 		/* Maybe we have a shorter packet in the queue,
267 		   which can be sent now. It sounds cool,
268 		   but, however, this is wrong in principle.
269 		   We MUST NOT reorder packets under these circumstances.
270 
271 		   Really, if we split the flow into independent
272 		   subflows, it would be a very good solution.
273 		   This is the main idea of all FQ algorithms
274 		   (cf. CSZ, HPFQ, HFSC)
275 		 */
276 
277 		qdisc_qstats_overlimit(sch);
278 	}
279 	return NULL;
280 }
281 
282 static void tbf_reset(struct Qdisc *sch)
283 {
284 	struct tbf_sched_data *q = qdisc_priv(sch);
285 
286 	qdisc_reset(q->qdisc);
287 	sch->qstats.backlog = 0;
288 	sch->q.qlen = 0;
289 	q->t_c = ktime_get_ns();
290 	q->tokens = q->buffer;
291 	q->ptokens = q->mtu;
292 	qdisc_watchdog_cancel(&q->watchdog);
293 }
294 
295 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
296 	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
297 	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
298 	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
299 	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
300 	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
301 	[TCA_TBF_BURST] = { .type = NLA_U32 },
302 	[TCA_TBF_PBURST] = { .type = NLA_U32 },
303 };
304 
305 static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
306 {
307 	int err;
308 	struct tbf_sched_data *q = qdisc_priv(sch);
309 	struct nlattr *tb[TCA_TBF_MAX + 1];
310 	struct tc_tbf_qopt *qopt;
311 	struct Qdisc *child = NULL;
312 	struct psched_ratecfg rate;
313 	struct psched_ratecfg peak;
314 	u64 max_size;
315 	s64 buffer, mtu;
316 	u64 rate64 = 0, prate64 = 0;
317 
318 	err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
319 	if (err < 0)
320 		return err;
321 
322 	err = -EINVAL;
323 	if (tb[TCA_TBF_PARMS] == NULL)
324 		goto done;
325 
326 	qopt = nla_data(tb[TCA_TBF_PARMS]);
327 	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
328 		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
329 					      tb[TCA_TBF_RTAB]));
330 
331 	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
332 			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
333 						      tb[TCA_TBF_PTAB]));
334 
335 	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
336 	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
337 
338 	if (tb[TCA_TBF_RATE64])
339 		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
340 	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
341 
342 	if (tb[TCA_TBF_BURST]) {
343 		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
344 		buffer = psched_l2t_ns(&rate, max_size);
345 	} else {
346 		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
347 	}
348 
349 	if (qopt->peakrate.rate) {
350 		if (tb[TCA_TBF_PRATE64])
351 			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
352 		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
353 		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
354 			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
355 					peak.rate_bytes_ps, rate.rate_bytes_ps);
356 			err = -EINVAL;
357 			goto done;
358 		}
359 
360 		if (tb[TCA_TBF_PBURST]) {
361 			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
362 			max_size = min_t(u32, max_size, pburst);
363 			mtu = psched_l2t_ns(&peak, pburst);
364 		} else {
365 			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
366 		}
367 	} else {
368 		memset(&peak, 0, sizeof(peak));
369 	}
370 
371 	if (max_size < psched_mtu(qdisc_dev(sch)))
372 		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
373 				    max_size, qdisc_dev(sch)->name,
374 				    psched_mtu(qdisc_dev(sch)));
375 
376 	if (!max_size) {
377 		err = -EINVAL;
378 		goto done;
379 	}
380 
381 	if (q->qdisc != &noop_qdisc) {
382 		err = fifo_set_limit(q->qdisc, qopt->limit);
383 		if (err)
384 			goto done;
385 	} else if (qopt->limit > 0) {
386 		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
387 		if (IS_ERR(child)) {
388 			err = PTR_ERR(child);
389 			goto done;
390 		}
391 	}
392 
393 	sch_tree_lock(sch);
394 	if (child) {
395 		qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
396 					  q->qdisc->qstats.backlog);
397 		qdisc_destroy(q->qdisc);
398 		q->qdisc = child;
399 	}
400 	q->limit = qopt->limit;
401 	if (tb[TCA_TBF_PBURST])
402 		q->mtu = mtu;
403 	else
404 		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
405 	q->max_size = max_size;
406 	if (tb[TCA_TBF_BURST])
407 		q->buffer = buffer;
408 	else
409 		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
410 	q->tokens = q->buffer;
411 	q->ptokens = q->mtu;
412 
413 	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
414 	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
415 
416 	sch_tree_unlock(sch);
417 	err = 0;
418 done:
419 	return err;
420 }
421 
422 static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
423 {
424 	struct tbf_sched_data *q = qdisc_priv(sch);
425 
426 	if (opt == NULL)
427 		return -EINVAL;
428 
429 	q->t_c = ktime_get_ns();
430 	qdisc_watchdog_init(&q->watchdog, sch);
431 	q->qdisc = &noop_qdisc;
432 
433 	return tbf_change(sch, opt);
434 }
435 
436 static void tbf_destroy(struct Qdisc *sch)
437 {
438 	struct tbf_sched_data *q = qdisc_priv(sch);
439 
440 	qdisc_watchdog_cancel(&q->watchdog);
441 	qdisc_destroy(q->qdisc);
442 }
443 
444 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
445 {
446 	struct tbf_sched_data *q = qdisc_priv(sch);
447 	struct nlattr *nest;
448 	struct tc_tbf_qopt opt;
449 
450 	sch->qstats.backlog = q->qdisc->qstats.backlog;
451 	nest = nla_nest_start(skb, TCA_OPTIONS);
452 	if (nest == NULL)
453 		goto nla_put_failure;
454 
455 	opt.limit = q->limit;
456 	psched_ratecfg_getrate(&opt.rate, &q->rate);
457 	if (tbf_peak_present(q))
458 		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
459 	else
460 		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
461 	opt.mtu = PSCHED_NS2TICKS(q->mtu);
462 	opt.buffer = PSCHED_NS2TICKS(q->buffer);
463 	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
464 		goto nla_put_failure;
465 	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
466 	    nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
467 			      TCA_TBF_PAD))
468 		goto nla_put_failure;
469 	if (tbf_peak_present(q) &&
470 	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
471 	    nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
472 			      TCA_TBF_PAD))
473 		goto nla_put_failure;
474 
475 	return nla_nest_end(skb, nest);
476 
477 nla_put_failure:
478 	nla_nest_cancel(skb, nest);
479 	return -1;
480 }
481 
482 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
483 			  struct sk_buff *skb, struct tcmsg *tcm)
484 {
485 	struct tbf_sched_data *q = qdisc_priv(sch);
486 
487 	tcm->tcm_handle |= TC_H_MIN(1);
488 	tcm->tcm_info = q->qdisc->handle;
489 
490 	return 0;
491 }
492 
493 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
494 		     struct Qdisc **old)
495 {
496 	struct tbf_sched_data *q = qdisc_priv(sch);
497 
498 	if (new == NULL)
499 		new = &noop_qdisc;
500 
501 	*old = qdisc_replace(sch, new, &q->qdisc);
502 	return 0;
503 }
504 
505 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
506 {
507 	struct tbf_sched_data *q = qdisc_priv(sch);
508 	return q->qdisc;
509 }
510 
511 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
512 {
513 	return 1;
514 }
515 
516 static void tbf_put(struct Qdisc *sch, unsigned long arg)
517 {
518 }
519 
520 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
521 {
522 	if (!walker->stop) {
523 		if (walker->count >= walker->skip)
524 			if (walker->fn(sch, 1, walker) < 0) {
525 				walker->stop = 1;
526 				return;
527 			}
528 		walker->count++;
529 	}
530 }
531 
532 static const struct Qdisc_class_ops tbf_class_ops = {
533 	.graft		=	tbf_graft,
534 	.leaf		=	tbf_leaf,
535 	.get		=	tbf_get,
536 	.put		=	tbf_put,
537 	.walk		=	tbf_walk,
538 	.dump		=	tbf_dump_class,
539 };
540 
541 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
542 	.next		=	NULL,
543 	.cl_ops		=	&tbf_class_ops,
544 	.id		=	"tbf",
545 	.priv_size	=	sizeof(struct tbf_sched_data),
546 	.enqueue	=	tbf_enqueue,
547 	.dequeue	=	tbf_dequeue,
548 	.peek		=	qdisc_peek_dequeued,
549 	.init		=	tbf_init,
550 	.reset		=	tbf_reset,
551 	.destroy	=	tbf_destroy,
552 	.change		=	tbf_change,
553 	.dump		=	tbf_dump,
554 	.owner		=	THIS_MODULE,
555 };
556 
557 static int __init tbf_module_init(void)
558 {
559 	return register_qdisc(&tbf_qdisc_ops);
560 }
561 
562 static void __exit tbf_module_exit(void)
563 {
564 	unregister_qdisc(&tbf_qdisc_ops);
565 }
566 module_init(tbf_module_init)
567 module_exit(tbf_module_exit)
568 MODULE_LICENSE("GPL");
569