xref: /openbmc/linux/net/sched/sch_taprio.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26 
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29 
30 #define TAPRIO_ALL_GATES_OPEN -1
31 
32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
34 #define TAPRIO_FLAGS_INVALID U32_MAX
35 
36 struct sched_entry {
37 	struct list_head list;
38 
39 	/* The instant that this entry "closes" and the next one
40 	 * should open, the qdisc will make some effort so that no
41 	 * packet leaves after this time.
42 	 */
43 	ktime_t close_time;
44 	ktime_t next_txtime;
45 	atomic_t budget;
46 	int index;
47 	u32 gate_mask;
48 	u32 interval;
49 	u8 command;
50 };
51 
52 struct sched_gate_list {
53 	struct rcu_head rcu;
54 	struct list_head entries;
55 	size_t num_entries;
56 	ktime_t cycle_close_time;
57 	s64 cycle_time;
58 	s64 cycle_time_extension;
59 	s64 base_time;
60 };
61 
62 struct taprio_sched {
63 	struct Qdisc **qdiscs;
64 	struct Qdisc *root;
65 	u32 flags;
66 	enum tk_offsets tk_offset;
67 	int clockid;
68 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
69 				    * speeds it's sub-nanoseconds per byte
70 				    */
71 
72 	/* Protects the update side of the RCU protected current_entry */
73 	spinlock_t current_entry_lock;
74 	struct sched_entry __rcu *current_entry;
75 	struct sched_gate_list __rcu *oper_sched;
76 	struct sched_gate_list __rcu *admin_sched;
77 	struct hrtimer advance_timer;
78 	struct list_head taprio_list;
79 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
80 	struct sk_buff *(*peek)(struct Qdisc *sch);
81 	u32 txtime_delay;
82 };
83 
84 struct __tc_taprio_qopt_offload {
85 	refcount_t users;
86 	struct tc_taprio_qopt_offload offload;
87 };
88 
89 static ktime_t sched_base_time(const struct sched_gate_list *sched)
90 {
91 	if (!sched)
92 		return KTIME_MAX;
93 
94 	return ns_to_ktime(sched->base_time);
95 }
96 
97 static ktime_t taprio_get_time(struct taprio_sched *q)
98 {
99 	ktime_t mono = ktime_get();
100 
101 	switch (q->tk_offset) {
102 	case TK_OFFS_MAX:
103 		return mono;
104 	default:
105 		return ktime_mono_to_any(mono, q->tk_offset);
106 	}
107 
108 	return KTIME_MAX;
109 }
110 
111 static void taprio_free_sched_cb(struct rcu_head *head)
112 {
113 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
114 	struct sched_entry *entry, *n;
115 
116 	if (!sched)
117 		return;
118 
119 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
120 		list_del(&entry->list);
121 		kfree(entry);
122 	}
123 
124 	kfree(sched);
125 }
126 
127 static void switch_schedules(struct taprio_sched *q,
128 			     struct sched_gate_list **admin,
129 			     struct sched_gate_list **oper)
130 {
131 	rcu_assign_pointer(q->oper_sched, *admin);
132 	rcu_assign_pointer(q->admin_sched, NULL);
133 
134 	if (*oper)
135 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
136 
137 	*oper = *admin;
138 	*admin = NULL;
139 }
140 
141 /* Get how much time has been already elapsed in the current cycle. */
142 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
143 {
144 	ktime_t time_since_sched_start;
145 	s32 time_elapsed;
146 
147 	time_since_sched_start = ktime_sub(time, sched->base_time);
148 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
149 
150 	return time_elapsed;
151 }
152 
153 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
154 				     struct sched_gate_list *admin,
155 				     struct sched_entry *entry,
156 				     ktime_t intv_start)
157 {
158 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
159 	ktime_t intv_end, cycle_ext_end, cycle_end;
160 
161 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
162 	intv_end = ktime_add_ns(intv_start, entry->interval);
163 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
164 
165 	if (ktime_before(intv_end, cycle_end))
166 		return intv_end;
167 	else if (admin && admin != sched &&
168 		 ktime_after(admin->base_time, cycle_end) &&
169 		 ktime_before(admin->base_time, cycle_ext_end))
170 		return admin->base_time;
171 	else
172 		return cycle_end;
173 }
174 
175 static int length_to_duration(struct taprio_sched *q, int len)
176 {
177 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
178 }
179 
180 /* Returns the entry corresponding to next available interval. If
181  * validate_interval is set, it only validates whether the timestamp occurs
182  * when the gate corresponding to the skb's traffic class is open.
183  */
184 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
185 						  struct Qdisc *sch,
186 						  struct sched_gate_list *sched,
187 						  struct sched_gate_list *admin,
188 						  ktime_t time,
189 						  ktime_t *interval_start,
190 						  ktime_t *interval_end,
191 						  bool validate_interval)
192 {
193 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
194 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
195 	struct sched_entry *entry = NULL, *entry_found = NULL;
196 	struct taprio_sched *q = qdisc_priv(sch);
197 	struct net_device *dev = qdisc_dev(sch);
198 	bool entry_available = false;
199 	s32 cycle_elapsed;
200 	int tc, n;
201 
202 	tc = netdev_get_prio_tc_map(dev, skb->priority);
203 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
204 
205 	*interval_start = 0;
206 	*interval_end = 0;
207 
208 	if (!sched)
209 		return NULL;
210 
211 	cycle = sched->cycle_time;
212 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
213 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
214 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
215 
216 	list_for_each_entry(entry, &sched->entries, list) {
217 		curr_intv_start = curr_intv_end;
218 		curr_intv_end = get_interval_end_time(sched, admin, entry,
219 						      curr_intv_start);
220 
221 		if (ktime_after(curr_intv_start, cycle_end))
222 			break;
223 
224 		if (!(entry->gate_mask & BIT(tc)) ||
225 		    packet_transmit_time > entry->interval)
226 			continue;
227 
228 		txtime = entry->next_txtime;
229 
230 		if (ktime_before(txtime, time) || validate_interval) {
231 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
232 			if ((ktime_before(curr_intv_start, time) &&
233 			     ktime_before(transmit_end_time, curr_intv_end)) ||
234 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
235 				entry_found = entry;
236 				*interval_start = curr_intv_start;
237 				*interval_end = curr_intv_end;
238 				break;
239 			} else if (!entry_available && !validate_interval) {
240 				/* Here, we are just trying to find out the
241 				 * first available interval in the next cycle.
242 				 */
243 				entry_available = 1;
244 				entry_found = entry;
245 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
246 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
247 			}
248 		} else if (ktime_before(txtime, earliest_txtime) &&
249 			   !entry_available) {
250 			earliest_txtime = txtime;
251 			entry_found = entry;
252 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
253 			*interval_start = ktime_add(curr_intv_start, n * cycle);
254 			*interval_end = ktime_add(curr_intv_end, n * cycle);
255 		}
256 	}
257 
258 	return entry_found;
259 }
260 
261 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
262 {
263 	struct taprio_sched *q = qdisc_priv(sch);
264 	struct sched_gate_list *sched, *admin;
265 	ktime_t interval_start, interval_end;
266 	struct sched_entry *entry;
267 
268 	rcu_read_lock();
269 	sched = rcu_dereference(q->oper_sched);
270 	admin = rcu_dereference(q->admin_sched);
271 
272 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
273 				       &interval_start, &interval_end, true);
274 	rcu_read_unlock();
275 
276 	return entry;
277 }
278 
279 static bool taprio_flags_valid(u32 flags)
280 {
281 	/* Make sure no other flag bits are set. */
282 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
283 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
284 		return false;
285 	/* txtime-assist and full offload are mutually exclusive */
286 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
287 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
288 		return false;
289 	return true;
290 }
291 
292 /* This returns the tstamp value set by TCP in terms of the set clock. */
293 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
294 {
295 	unsigned int offset = skb_network_offset(skb);
296 	const struct ipv6hdr *ipv6h;
297 	const struct iphdr *iph;
298 	struct ipv6hdr _ipv6h;
299 
300 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
301 	if (!ipv6h)
302 		return 0;
303 
304 	if (ipv6h->version == 4) {
305 		iph = (struct iphdr *)ipv6h;
306 		offset += iph->ihl * 4;
307 
308 		/* special-case 6in4 tunnelling, as that is a common way to get
309 		 * v6 connectivity in the home
310 		 */
311 		if (iph->protocol == IPPROTO_IPV6) {
312 			ipv6h = skb_header_pointer(skb, offset,
313 						   sizeof(_ipv6h), &_ipv6h);
314 
315 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
316 				return 0;
317 		} else if (iph->protocol != IPPROTO_TCP) {
318 			return 0;
319 		}
320 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
321 		return 0;
322 	}
323 
324 	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
325 }
326 
327 /* There are a few scenarios where we will have to modify the txtime from
328  * what is read from next_txtime in sched_entry. They are:
329  * 1. If txtime is in the past,
330  *    a. The gate for the traffic class is currently open and packet can be
331  *       transmitted before it closes, schedule the packet right away.
332  *    b. If the gate corresponding to the traffic class is going to open later
333  *       in the cycle, set the txtime of packet to the interval start.
334  * 2. If txtime is in the future, there are packets corresponding to the
335  *    current traffic class waiting to be transmitted. So, the following
336  *    possibilities exist:
337  *    a. We can transmit the packet before the window containing the txtime
338  *       closes.
339  *    b. The window might close before the transmission can be completed
340  *       successfully. So, schedule the packet in the next open window.
341  */
342 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
343 {
344 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
345 	struct taprio_sched *q = qdisc_priv(sch);
346 	struct sched_gate_list *sched, *admin;
347 	ktime_t minimum_time, now, txtime;
348 	int len, packet_transmit_time;
349 	struct sched_entry *entry;
350 	bool sched_changed;
351 
352 	now = taprio_get_time(q);
353 	minimum_time = ktime_add_ns(now, q->txtime_delay);
354 
355 	tcp_tstamp = get_tcp_tstamp(q, skb);
356 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
357 
358 	rcu_read_lock();
359 	admin = rcu_dereference(q->admin_sched);
360 	sched = rcu_dereference(q->oper_sched);
361 	if (admin && ktime_after(minimum_time, admin->base_time))
362 		switch_schedules(q, &admin, &sched);
363 
364 	/* Until the schedule starts, all the queues are open */
365 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
366 		txtime = minimum_time;
367 		goto done;
368 	}
369 
370 	len = qdisc_pkt_len(skb);
371 	packet_transmit_time = length_to_duration(q, len);
372 
373 	do {
374 		sched_changed = 0;
375 
376 		entry = find_entry_to_transmit(skb, sch, sched, admin,
377 					       minimum_time,
378 					       &interval_start, &interval_end,
379 					       false);
380 		if (!entry) {
381 			txtime = 0;
382 			goto done;
383 		}
384 
385 		txtime = entry->next_txtime;
386 		txtime = max_t(ktime_t, txtime, minimum_time);
387 		txtime = max_t(ktime_t, txtime, interval_start);
388 
389 		if (admin && admin != sched &&
390 		    ktime_after(txtime, admin->base_time)) {
391 			sched = admin;
392 			sched_changed = 1;
393 			continue;
394 		}
395 
396 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
397 		minimum_time = transmit_end_time;
398 
399 		/* Update the txtime of current entry to the next time it's
400 		 * interval starts.
401 		 */
402 		if (ktime_after(transmit_end_time, interval_end))
403 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
404 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
405 
406 	entry->next_txtime = transmit_end_time;
407 
408 done:
409 	rcu_read_unlock();
410 	return txtime;
411 }
412 
413 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
414 			  struct sk_buff **to_free)
415 {
416 	struct taprio_sched *q = qdisc_priv(sch);
417 	struct Qdisc *child;
418 	int queue;
419 
420 	queue = skb_get_queue_mapping(skb);
421 
422 	child = q->qdiscs[queue];
423 	if (unlikely(!child))
424 		return qdisc_drop(skb, sch, to_free);
425 
426 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
427 		if (!is_valid_interval(skb, sch))
428 			return qdisc_drop(skb, sch, to_free);
429 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
430 		skb->tstamp = get_packet_txtime(skb, sch);
431 		if (!skb->tstamp)
432 			return qdisc_drop(skb, sch, to_free);
433 	}
434 
435 	qdisc_qstats_backlog_inc(sch, skb);
436 	sch->q.qlen++;
437 
438 	return qdisc_enqueue(skb, child, to_free);
439 }
440 
441 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
442 {
443 	struct taprio_sched *q = qdisc_priv(sch);
444 	struct net_device *dev = qdisc_dev(sch);
445 	struct sched_entry *entry;
446 	struct sk_buff *skb;
447 	u32 gate_mask;
448 	int i;
449 
450 	rcu_read_lock();
451 	entry = rcu_dereference(q->current_entry);
452 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
453 	rcu_read_unlock();
454 
455 	if (!gate_mask)
456 		return NULL;
457 
458 	for (i = 0; i < dev->num_tx_queues; i++) {
459 		struct Qdisc *child = q->qdiscs[i];
460 		int prio;
461 		u8 tc;
462 
463 		if (unlikely(!child))
464 			continue;
465 
466 		skb = child->ops->peek(child);
467 		if (!skb)
468 			continue;
469 
470 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
471 			return skb;
472 
473 		prio = skb->priority;
474 		tc = netdev_get_prio_tc_map(dev, prio);
475 
476 		if (!(gate_mask & BIT(tc)))
477 			continue;
478 
479 		return skb;
480 	}
481 
482 	return NULL;
483 }
484 
485 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
486 {
487 	struct taprio_sched *q = qdisc_priv(sch);
488 	struct net_device *dev = qdisc_dev(sch);
489 	struct sk_buff *skb;
490 	int i;
491 
492 	for (i = 0; i < dev->num_tx_queues; i++) {
493 		struct Qdisc *child = q->qdiscs[i];
494 
495 		if (unlikely(!child))
496 			continue;
497 
498 		skb = child->ops->peek(child);
499 		if (!skb)
500 			continue;
501 
502 		return skb;
503 	}
504 
505 	return NULL;
506 }
507 
508 static struct sk_buff *taprio_peek(struct Qdisc *sch)
509 {
510 	struct taprio_sched *q = qdisc_priv(sch);
511 
512 	return q->peek(sch);
513 }
514 
515 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
516 {
517 	atomic_set(&entry->budget,
518 		   div64_u64((u64)entry->interval * 1000,
519 			     atomic64_read(&q->picos_per_byte)));
520 }
521 
522 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
523 {
524 	struct taprio_sched *q = qdisc_priv(sch);
525 	struct net_device *dev = qdisc_dev(sch);
526 	struct sk_buff *skb = NULL;
527 	struct sched_entry *entry;
528 	u32 gate_mask;
529 	int i;
530 
531 	rcu_read_lock();
532 	entry = rcu_dereference(q->current_entry);
533 	/* if there's no entry, it means that the schedule didn't
534 	 * start yet, so force all gates to be open, this is in
535 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
536 	 * "AdminGateSates"
537 	 */
538 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
539 
540 	if (!gate_mask)
541 		goto done;
542 
543 	for (i = 0; i < dev->num_tx_queues; i++) {
544 		struct Qdisc *child = q->qdiscs[i];
545 		ktime_t guard;
546 		int prio;
547 		int len;
548 		u8 tc;
549 
550 		if (unlikely(!child))
551 			continue;
552 
553 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
554 			skb = child->ops->dequeue(child);
555 			if (!skb)
556 				continue;
557 			goto skb_found;
558 		}
559 
560 		skb = child->ops->peek(child);
561 		if (!skb)
562 			continue;
563 
564 		prio = skb->priority;
565 		tc = netdev_get_prio_tc_map(dev, prio);
566 
567 		if (!(gate_mask & BIT(tc))) {
568 			skb = NULL;
569 			continue;
570 		}
571 
572 		len = qdisc_pkt_len(skb);
573 		guard = ktime_add_ns(taprio_get_time(q),
574 				     length_to_duration(q, len));
575 
576 		/* In the case that there's no gate entry, there's no
577 		 * guard band ...
578 		 */
579 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
580 		    ktime_after(guard, entry->close_time)) {
581 			skb = NULL;
582 			continue;
583 		}
584 
585 		/* ... and no budget. */
586 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
587 		    atomic_sub_return(len, &entry->budget) < 0) {
588 			skb = NULL;
589 			continue;
590 		}
591 
592 		skb = child->ops->dequeue(child);
593 		if (unlikely(!skb))
594 			goto done;
595 
596 skb_found:
597 		qdisc_bstats_update(sch, skb);
598 		qdisc_qstats_backlog_dec(sch, skb);
599 		sch->q.qlen--;
600 
601 		goto done;
602 	}
603 
604 done:
605 	rcu_read_unlock();
606 
607 	return skb;
608 }
609 
610 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
611 {
612 	struct taprio_sched *q = qdisc_priv(sch);
613 	struct net_device *dev = qdisc_dev(sch);
614 	struct sk_buff *skb;
615 	int i;
616 
617 	for (i = 0; i < dev->num_tx_queues; i++) {
618 		struct Qdisc *child = q->qdiscs[i];
619 
620 		if (unlikely(!child))
621 			continue;
622 
623 		skb = child->ops->dequeue(child);
624 		if (unlikely(!skb))
625 			continue;
626 
627 		qdisc_bstats_update(sch, skb);
628 		qdisc_qstats_backlog_dec(sch, skb);
629 		sch->q.qlen--;
630 
631 		return skb;
632 	}
633 
634 	return NULL;
635 }
636 
637 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
638 {
639 	struct taprio_sched *q = qdisc_priv(sch);
640 
641 	return q->dequeue(sch);
642 }
643 
644 static bool should_restart_cycle(const struct sched_gate_list *oper,
645 				 const struct sched_entry *entry)
646 {
647 	if (list_is_last(&entry->list, &oper->entries))
648 		return true;
649 
650 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
651 		return true;
652 
653 	return false;
654 }
655 
656 static bool should_change_schedules(const struct sched_gate_list *admin,
657 				    const struct sched_gate_list *oper,
658 				    ktime_t close_time)
659 {
660 	ktime_t next_base_time, extension_time;
661 
662 	if (!admin)
663 		return false;
664 
665 	next_base_time = sched_base_time(admin);
666 
667 	/* This is the simple case, the close_time would fall after
668 	 * the next schedule base_time.
669 	 */
670 	if (ktime_compare(next_base_time, close_time) <= 0)
671 		return true;
672 
673 	/* This is the cycle_time_extension case, if the close_time
674 	 * plus the amount that can be extended would fall after the
675 	 * next schedule base_time, we can extend the current schedule
676 	 * for that amount.
677 	 */
678 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
679 
680 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
681 	 * how precisely the extension should be made. So after
682 	 * conformance testing, this logic may change.
683 	 */
684 	if (ktime_compare(next_base_time, extension_time) <= 0)
685 		return true;
686 
687 	return false;
688 }
689 
690 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
691 {
692 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
693 					      advance_timer);
694 	struct sched_gate_list *oper, *admin;
695 	struct sched_entry *entry, *next;
696 	struct Qdisc *sch = q->root;
697 	ktime_t close_time;
698 
699 	spin_lock(&q->current_entry_lock);
700 	entry = rcu_dereference_protected(q->current_entry,
701 					  lockdep_is_held(&q->current_entry_lock));
702 	oper = rcu_dereference_protected(q->oper_sched,
703 					 lockdep_is_held(&q->current_entry_lock));
704 	admin = rcu_dereference_protected(q->admin_sched,
705 					  lockdep_is_held(&q->current_entry_lock));
706 
707 	if (!oper)
708 		switch_schedules(q, &admin, &oper);
709 
710 	/* This can happen in two cases: 1. this is the very first run
711 	 * of this function (i.e. we weren't running any schedule
712 	 * previously); 2. The previous schedule just ended. The first
713 	 * entry of all schedules are pre-calculated during the
714 	 * schedule initialization.
715 	 */
716 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
717 		next = list_first_entry(&oper->entries, struct sched_entry,
718 					list);
719 		close_time = next->close_time;
720 		goto first_run;
721 	}
722 
723 	if (should_restart_cycle(oper, entry)) {
724 		next = list_first_entry(&oper->entries, struct sched_entry,
725 					list);
726 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
727 						      oper->cycle_time);
728 	} else {
729 		next = list_next_entry(entry, list);
730 	}
731 
732 	close_time = ktime_add_ns(entry->close_time, next->interval);
733 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
734 
735 	if (should_change_schedules(admin, oper, close_time)) {
736 		/* Set things so the next time this runs, the new
737 		 * schedule runs.
738 		 */
739 		close_time = sched_base_time(admin);
740 		switch_schedules(q, &admin, &oper);
741 	}
742 
743 	next->close_time = close_time;
744 	taprio_set_budget(q, next);
745 
746 first_run:
747 	rcu_assign_pointer(q->current_entry, next);
748 	spin_unlock(&q->current_entry_lock);
749 
750 	hrtimer_set_expires(&q->advance_timer, close_time);
751 
752 	rcu_read_lock();
753 	__netif_schedule(sch);
754 	rcu_read_unlock();
755 
756 	return HRTIMER_RESTART;
757 }
758 
759 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
760 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
761 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
762 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
763 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
764 };
765 
766 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
767 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
768 		.len = sizeof(struct tc_mqprio_qopt)
769 	},
770 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
771 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
772 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
773 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
774 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
775 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
776 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
777 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
778 };
779 
780 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
781 			    struct netlink_ext_ack *extack)
782 {
783 	u32 interval = 0;
784 
785 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
786 		entry->command = nla_get_u8(
787 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
788 
789 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
790 		entry->gate_mask = nla_get_u32(
791 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
792 
793 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
794 		interval = nla_get_u32(
795 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
796 
797 	if (interval == 0) {
798 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
799 		return -EINVAL;
800 	}
801 
802 	entry->interval = interval;
803 
804 	return 0;
805 }
806 
807 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
808 			     int index, struct netlink_ext_ack *extack)
809 {
810 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
811 	int err;
812 
813 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
814 					  entry_policy, NULL);
815 	if (err < 0) {
816 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
817 		return -EINVAL;
818 	}
819 
820 	entry->index = index;
821 
822 	return fill_sched_entry(tb, entry, extack);
823 }
824 
825 static int parse_sched_list(struct nlattr *list,
826 			    struct sched_gate_list *sched,
827 			    struct netlink_ext_ack *extack)
828 {
829 	struct nlattr *n;
830 	int err, rem;
831 	int i = 0;
832 
833 	if (!list)
834 		return -EINVAL;
835 
836 	nla_for_each_nested(n, list, rem) {
837 		struct sched_entry *entry;
838 
839 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
840 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
841 			continue;
842 		}
843 
844 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
845 		if (!entry) {
846 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
847 			return -ENOMEM;
848 		}
849 
850 		err = parse_sched_entry(n, entry, i, extack);
851 		if (err < 0) {
852 			kfree(entry);
853 			return err;
854 		}
855 
856 		list_add_tail(&entry->list, &sched->entries);
857 		i++;
858 	}
859 
860 	sched->num_entries = i;
861 
862 	return i;
863 }
864 
865 static int parse_taprio_schedule(struct nlattr **tb,
866 				 struct sched_gate_list *new,
867 				 struct netlink_ext_ack *extack)
868 {
869 	int err = 0;
870 
871 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
872 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
873 		return -ENOTSUPP;
874 	}
875 
876 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
877 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
878 
879 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
880 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
881 
882 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
883 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
884 
885 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
886 		err = parse_sched_list(
887 			tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
888 	if (err < 0)
889 		return err;
890 
891 	if (!new->cycle_time) {
892 		struct sched_entry *entry;
893 		ktime_t cycle = 0;
894 
895 		list_for_each_entry(entry, &new->entries, list)
896 			cycle = ktime_add_ns(cycle, entry->interval);
897 		new->cycle_time = cycle;
898 	}
899 
900 	return 0;
901 }
902 
903 static int taprio_parse_mqprio_opt(struct net_device *dev,
904 				   struct tc_mqprio_qopt *qopt,
905 				   struct netlink_ext_ack *extack,
906 				   u32 taprio_flags)
907 {
908 	int i, j;
909 
910 	if (!qopt && !dev->num_tc) {
911 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
912 		return -EINVAL;
913 	}
914 
915 	/* If num_tc is already set, it means that the user already
916 	 * configured the mqprio part
917 	 */
918 	if (dev->num_tc)
919 		return 0;
920 
921 	/* Verify num_tc is not out of max range */
922 	if (qopt->num_tc > TC_MAX_QUEUE) {
923 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
924 		return -EINVAL;
925 	}
926 
927 	/* taprio imposes that traffic classes map 1:n to tx queues */
928 	if (qopt->num_tc > dev->num_tx_queues) {
929 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
930 		return -EINVAL;
931 	}
932 
933 	/* Verify priority mapping uses valid tcs */
934 	for (i = 0; i <= TC_BITMASK; i++) {
935 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
936 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
937 			return -EINVAL;
938 		}
939 	}
940 
941 	for (i = 0; i < qopt->num_tc; i++) {
942 		unsigned int last = qopt->offset[i] + qopt->count[i];
943 
944 		/* Verify the queue count is in tx range being equal to the
945 		 * real_num_tx_queues indicates the last queue is in use.
946 		 */
947 		if (qopt->offset[i] >= dev->num_tx_queues ||
948 		    !qopt->count[i] ||
949 		    last > dev->real_num_tx_queues) {
950 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
951 			return -EINVAL;
952 		}
953 
954 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
955 			continue;
956 
957 		/* Verify that the offset and counts do not overlap */
958 		for (j = i + 1; j < qopt->num_tc; j++) {
959 			if (last > qopt->offset[j]) {
960 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
961 				return -EINVAL;
962 			}
963 		}
964 	}
965 
966 	return 0;
967 }
968 
969 static int taprio_get_start_time(struct Qdisc *sch,
970 				 struct sched_gate_list *sched,
971 				 ktime_t *start)
972 {
973 	struct taprio_sched *q = qdisc_priv(sch);
974 	ktime_t now, base, cycle;
975 	s64 n;
976 
977 	base = sched_base_time(sched);
978 	now = taprio_get_time(q);
979 
980 	if (ktime_after(base, now)) {
981 		*start = base;
982 		return 0;
983 	}
984 
985 	cycle = sched->cycle_time;
986 
987 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
988 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
989 	 * something went really wrong. In that case, we should warn about this
990 	 * inconsistent state and return error.
991 	 */
992 	if (WARN_ON(!cycle))
993 		return -EFAULT;
994 
995 	/* Schedule the start time for the beginning of the next
996 	 * cycle.
997 	 */
998 	n = div64_s64(ktime_sub_ns(now, base), cycle);
999 	*start = ktime_add_ns(base, (n + 1) * cycle);
1000 	return 0;
1001 }
1002 
1003 static void setup_first_close_time(struct taprio_sched *q,
1004 				   struct sched_gate_list *sched, ktime_t base)
1005 {
1006 	struct sched_entry *first;
1007 	ktime_t cycle;
1008 
1009 	first = list_first_entry(&sched->entries,
1010 				 struct sched_entry, list);
1011 
1012 	cycle = sched->cycle_time;
1013 
1014 	/* FIXME: find a better place to do this */
1015 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1016 
1017 	first->close_time = ktime_add_ns(base, first->interval);
1018 	taprio_set_budget(q, first);
1019 	rcu_assign_pointer(q->current_entry, NULL);
1020 }
1021 
1022 static void taprio_start_sched(struct Qdisc *sch,
1023 			       ktime_t start, struct sched_gate_list *new)
1024 {
1025 	struct taprio_sched *q = qdisc_priv(sch);
1026 	ktime_t expires;
1027 
1028 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1029 		return;
1030 
1031 	expires = hrtimer_get_expires(&q->advance_timer);
1032 	if (expires == 0)
1033 		expires = KTIME_MAX;
1034 
1035 	/* If the new schedule starts before the next expiration, we
1036 	 * reprogram it to the earliest one, so we change the admin
1037 	 * schedule to the operational one at the right time.
1038 	 */
1039 	start = min_t(ktime_t, start, expires);
1040 
1041 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1042 }
1043 
1044 static void taprio_set_picos_per_byte(struct net_device *dev,
1045 				      struct taprio_sched *q)
1046 {
1047 	struct ethtool_link_ksettings ecmd;
1048 	int speed = SPEED_10;
1049 	int picos_per_byte;
1050 	int err;
1051 
1052 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1053 	if (err < 0)
1054 		goto skip;
1055 
1056 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1057 		speed = ecmd.base.speed;
1058 
1059 skip:
1060 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1061 
1062 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1063 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1064 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1065 		   ecmd.base.speed);
1066 }
1067 
1068 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1069 			       void *ptr)
1070 {
1071 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1072 	struct net_device *qdev;
1073 	struct taprio_sched *q;
1074 	bool found = false;
1075 
1076 	ASSERT_RTNL();
1077 
1078 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1079 		return NOTIFY_DONE;
1080 
1081 	spin_lock(&taprio_list_lock);
1082 	list_for_each_entry(q, &taprio_list, taprio_list) {
1083 		qdev = qdisc_dev(q->root);
1084 		if (qdev == dev) {
1085 			found = true;
1086 			break;
1087 		}
1088 	}
1089 	spin_unlock(&taprio_list_lock);
1090 
1091 	if (found)
1092 		taprio_set_picos_per_byte(dev, q);
1093 
1094 	return NOTIFY_DONE;
1095 }
1096 
1097 static void setup_txtime(struct taprio_sched *q,
1098 			 struct sched_gate_list *sched, ktime_t base)
1099 {
1100 	struct sched_entry *entry;
1101 	u32 interval = 0;
1102 
1103 	list_for_each_entry(entry, &sched->entries, list) {
1104 		entry->next_txtime = ktime_add_ns(base, interval);
1105 		interval += entry->interval;
1106 	}
1107 }
1108 
1109 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1110 {
1111 	struct __tc_taprio_qopt_offload *__offload;
1112 
1113 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1114 			    GFP_KERNEL);
1115 	if (!__offload)
1116 		return NULL;
1117 
1118 	refcount_set(&__offload->users, 1);
1119 
1120 	return &__offload->offload;
1121 }
1122 
1123 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1124 						  *offload)
1125 {
1126 	struct __tc_taprio_qopt_offload *__offload;
1127 
1128 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1129 				 offload);
1130 
1131 	refcount_inc(&__offload->users);
1132 
1133 	return offload;
1134 }
1135 EXPORT_SYMBOL_GPL(taprio_offload_get);
1136 
1137 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1138 {
1139 	struct __tc_taprio_qopt_offload *__offload;
1140 
1141 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1142 				 offload);
1143 
1144 	if (!refcount_dec_and_test(&__offload->users))
1145 		return;
1146 
1147 	kfree(__offload);
1148 }
1149 EXPORT_SYMBOL_GPL(taprio_offload_free);
1150 
1151 /* The function will only serve to keep the pointers to the "oper" and "admin"
1152  * schedules valid in relation to their base times, so when calling dump() the
1153  * users looks at the right schedules.
1154  * When using full offload, the admin configuration is promoted to oper at the
1155  * base_time in the PHC time domain.  But because the system time is not
1156  * necessarily in sync with that, we can't just trigger a hrtimer to call
1157  * switch_schedules at the right hardware time.
1158  * At the moment we call this by hand right away from taprio, but in the future
1159  * it will be useful to create a mechanism for drivers to notify taprio of the
1160  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1161  * This is left as TODO.
1162  */
1163 static void taprio_offload_config_changed(struct taprio_sched *q)
1164 {
1165 	struct sched_gate_list *oper, *admin;
1166 
1167 	spin_lock(&q->current_entry_lock);
1168 
1169 	oper = rcu_dereference_protected(q->oper_sched,
1170 					 lockdep_is_held(&q->current_entry_lock));
1171 	admin = rcu_dereference_protected(q->admin_sched,
1172 					  lockdep_is_held(&q->current_entry_lock));
1173 
1174 	switch_schedules(q, &admin, &oper);
1175 
1176 	spin_unlock(&q->current_entry_lock);
1177 }
1178 
1179 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1180 {
1181 	u32 i, queue_mask = 0;
1182 
1183 	for (i = 0; i < dev->num_tc; i++) {
1184 		u32 offset, count;
1185 
1186 		if (!(tc_mask & BIT(i)))
1187 			continue;
1188 
1189 		offset = dev->tc_to_txq[i].offset;
1190 		count = dev->tc_to_txq[i].count;
1191 
1192 		queue_mask |= GENMASK(offset + count - 1, offset);
1193 	}
1194 
1195 	return queue_mask;
1196 }
1197 
1198 static void taprio_sched_to_offload(struct net_device *dev,
1199 				    struct sched_gate_list *sched,
1200 				    struct tc_taprio_qopt_offload *offload)
1201 {
1202 	struct sched_entry *entry;
1203 	int i = 0;
1204 
1205 	offload->base_time = sched->base_time;
1206 	offload->cycle_time = sched->cycle_time;
1207 	offload->cycle_time_extension = sched->cycle_time_extension;
1208 
1209 	list_for_each_entry(entry, &sched->entries, list) {
1210 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1211 
1212 		e->command = entry->command;
1213 		e->interval = entry->interval;
1214 		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1215 
1216 		i++;
1217 	}
1218 
1219 	offload->num_entries = i;
1220 }
1221 
1222 static int taprio_enable_offload(struct net_device *dev,
1223 				 struct taprio_sched *q,
1224 				 struct sched_gate_list *sched,
1225 				 struct netlink_ext_ack *extack)
1226 {
1227 	const struct net_device_ops *ops = dev->netdev_ops;
1228 	struct tc_taprio_qopt_offload *offload;
1229 	int err = 0;
1230 
1231 	if (!ops->ndo_setup_tc) {
1232 		NL_SET_ERR_MSG(extack,
1233 			       "Device does not support taprio offload");
1234 		return -EOPNOTSUPP;
1235 	}
1236 
1237 	offload = taprio_offload_alloc(sched->num_entries);
1238 	if (!offload) {
1239 		NL_SET_ERR_MSG(extack,
1240 			       "Not enough memory for enabling offload mode");
1241 		return -ENOMEM;
1242 	}
1243 	offload->enable = 1;
1244 	taprio_sched_to_offload(dev, sched, offload);
1245 
1246 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1247 	if (err < 0) {
1248 		NL_SET_ERR_MSG(extack,
1249 			       "Device failed to setup taprio offload");
1250 		goto done;
1251 	}
1252 
1253 done:
1254 	taprio_offload_free(offload);
1255 
1256 	return err;
1257 }
1258 
1259 static int taprio_disable_offload(struct net_device *dev,
1260 				  struct taprio_sched *q,
1261 				  struct netlink_ext_ack *extack)
1262 {
1263 	const struct net_device_ops *ops = dev->netdev_ops;
1264 	struct tc_taprio_qopt_offload *offload;
1265 	int err;
1266 
1267 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1268 		return 0;
1269 
1270 	if (!ops->ndo_setup_tc)
1271 		return -EOPNOTSUPP;
1272 
1273 	offload = taprio_offload_alloc(0);
1274 	if (!offload) {
1275 		NL_SET_ERR_MSG(extack,
1276 			       "Not enough memory to disable offload mode");
1277 		return -ENOMEM;
1278 	}
1279 	offload->enable = 0;
1280 
1281 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1282 	if (err < 0) {
1283 		NL_SET_ERR_MSG(extack,
1284 			       "Device failed to disable offload");
1285 		goto out;
1286 	}
1287 
1288 out:
1289 	taprio_offload_free(offload);
1290 
1291 	return err;
1292 }
1293 
1294 /* If full offload is enabled, the only possible clockid is the net device's
1295  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1296  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1297  * in sync with the specified clockid via a user space daemon such as phc2sys.
1298  * For both software taprio and txtime-assist, the clockid is used for the
1299  * hrtimer that advances the schedule and hence mandatory.
1300  */
1301 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1302 				struct netlink_ext_ack *extack)
1303 {
1304 	struct taprio_sched *q = qdisc_priv(sch);
1305 	struct net_device *dev = qdisc_dev(sch);
1306 	int err = -EINVAL;
1307 
1308 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1309 		const struct ethtool_ops *ops = dev->ethtool_ops;
1310 		struct ethtool_ts_info info = {
1311 			.cmd = ETHTOOL_GET_TS_INFO,
1312 			.phc_index = -1,
1313 		};
1314 
1315 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1316 			NL_SET_ERR_MSG(extack,
1317 				       "The 'clockid' cannot be specified for full offload");
1318 			goto out;
1319 		}
1320 
1321 		if (ops && ops->get_ts_info)
1322 			err = ops->get_ts_info(dev, &info);
1323 
1324 		if (err || info.phc_index < 0) {
1325 			NL_SET_ERR_MSG(extack,
1326 				       "Device does not have a PTP clock");
1327 			err = -ENOTSUPP;
1328 			goto out;
1329 		}
1330 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1331 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1332 
1333 		/* We only support static clockids and we don't allow
1334 		 * for it to be modified after the first init.
1335 		 */
1336 		if (clockid < 0 ||
1337 		    (q->clockid != -1 && q->clockid != clockid)) {
1338 			NL_SET_ERR_MSG(extack,
1339 				       "Changing the 'clockid' of a running schedule is not supported");
1340 			err = -ENOTSUPP;
1341 			goto out;
1342 		}
1343 
1344 		switch (clockid) {
1345 		case CLOCK_REALTIME:
1346 			q->tk_offset = TK_OFFS_REAL;
1347 			break;
1348 		case CLOCK_MONOTONIC:
1349 			q->tk_offset = TK_OFFS_MAX;
1350 			break;
1351 		case CLOCK_BOOTTIME:
1352 			q->tk_offset = TK_OFFS_BOOT;
1353 			break;
1354 		case CLOCK_TAI:
1355 			q->tk_offset = TK_OFFS_TAI;
1356 			break;
1357 		default:
1358 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1359 			err = -EINVAL;
1360 			goto out;
1361 		}
1362 
1363 		q->clockid = clockid;
1364 	} else {
1365 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1366 		goto out;
1367 	}
1368 
1369 	/* Everything went ok, return success. */
1370 	err = 0;
1371 
1372 out:
1373 	return err;
1374 }
1375 
1376 static int taprio_mqprio_cmp(const struct net_device *dev,
1377 			     const struct tc_mqprio_qopt *mqprio)
1378 {
1379 	int i;
1380 
1381 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1382 		return -1;
1383 
1384 	for (i = 0; i < mqprio->num_tc; i++)
1385 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1386 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1387 			return -1;
1388 
1389 	for (i = 0; i <= TC_BITMASK; i++)
1390 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1391 			return -1;
1392 
1393 	return 0;
1394 }
1395 
1396 /* The semantics of the 'flags' argument in relation to 'change()'
1397  * requests, are interpreted following two rules (which are applied in
1398  * this order): (1) an omitted 'flags' argument is interpreted as
1399  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1400  * changed.
1401  */
1402 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1403 			    struct netlink_ext_ack *extack)
1404 {
1405 	u32 new = 0;
1406 
1407 	if (attr)
1408 		new = nla_get_u32(attr);
1409 
1410 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1411 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1412 		return -EOPNOTSUPP;
1413 	}
1414 
1415 	if (!taprio_flags_valid(new)) {
1416 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1417 		return -EINVAL;
1418 	}
1419 
1420 	return new;
1421 }
1422 
1423 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1424 			 struct netlink_ext_ack *extack)
1425 {
1426 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1427 	struct sched_gate_list *oper, *admin, *new_admin;
1428 	struct taprio_sched *q = qdisc_priv(sch);
1429 	struct net_device *dev = qdisc_dev(sch);
1430 	struct tc_mqprio_qopt *mqprio = NULL;
1431 	unsigned long flags;
1432 	ktime_t start;
1433 	int i, err;
1434 
1435 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1436 					  taprio_policy, extack);
1437 	if (err < 0)
1438 		return err;
1439 
1440 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1441 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1442 
1443 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1444 			       q->flags, extack);
1445 	if (err < 0)
1446 		return err;
1447 
1448 	q->flags = err;
1449 
1450 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1451 	if (err < 0)
1452 		return err;
1453 
1454 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1455 	if (!new_admin) {
1456 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1457 		return -ENOMEM;
1458 	}
1459 	INIT_LIST_HEAD(&new_admin->entries);
1460 
1461 	rcu_read_lock();
1462 	oper = rcu_dereference(q->oper_sched);
1463 	admin = rcu_dereference(q->admin_sched);
1464 	rcu_read_unlock();
1465 
1466 	/* no changes - no new mqprio settings */
1467 	if (!taprio_mqprio_cmp(dev, mqprio))
1468 		mqprio = NULL;
1469 
1470 	if (mqprio && (oper || admin)) {
1471 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1472 		err = -ENOTSUPP;
1473 		goto free_sched;
1474 	}
1475 
1476 	err = parse_taprio_schedule(tb, new_admin, extack);
1477 	if (err < 0)
1478 		goto free_sched;
1479 
1480 	if (new_admin->num_entries == 0) {
1481 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1482 		err = -EINVAL;
1483 		goto free_sched;
1484 	}
1485 
1486 	err = taprio_parse_clockid(sch, tb, extack);
1487 	if (err < 0)
1488 		goto free_sched;
1489 
1490 	taprio_set_picos_per_byte(dev, q);
1491 
1492 	if (mqprio) {
1493 		netdev_set_num_tc(dev, mqprio->num_tc);
1494 		for (i = 0; i < mqprio->num_tc; i++)
1495 			netdev_set_tc_queue(dev, i,
1496 					    mqprio->count[i],
1497 					    mqprio->offset[i]);
1498 
1499 		/* Always use supplied priority mappings */
1500 		for (i = 0; i <= TC_BITMASK; i++)
1501 			netdev_set_prio_tc_map(dev, i,
1502 					       mqprio->prio_tc_map[i]);
1503 	}
1504 
1505 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1506 		err = taprio_enable_offload(dev, q, new_admin, extack);
1507 	else
1508 		err = taprio_disable_offload(dev, q, extack);
1509 	if (err)
1510 		goto free_sched;
1511 
1512 	/* Protects against enqueue()/dequeue() */
1513 	spin_lock_bh(qdisc_lock(sch));
1514 
1515 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1516 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1517 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1518 			err = -EINVAL;
1519 			goto unlock;
1520 		}
1521 
1522 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1523 	}
1524 
1525 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1526 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1527 	    !hrtimer_active(&q->advance_timer)) {
1528 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1529 		q->advance_timer.function = advance_sched;
1530 	}
1531 
1532 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1533 		q->dequeue = taprio_dequeue_offload;
1534 		q->peek = taprio_peek_offload;
1535 	} else {
1536 		/* Be sure to always keep the function pointers
1537 		 * in a consistent state.
1538 		 */
1539 		q->dequeue = taprio_dequeue_soft;
1540 		q->peek = taprio_peek_soft;
1541 	}
1542 
1543 	err = taprio_get_start_time(sch, new_admin, &start);
1544 	if (err < 0) {
1545 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1546 		goto unlock;
1547 	}
1548 
1549 	setup_txtime(q, new_admin, start);
1550 
1551 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1552 		if (!oper) {
1553 			rcu_assign_pointer(q->oper_sched, new_admin);
1554 			err = 0;
1555 			new_admin = NULL;
1556 			goto unlock;
1557 		}
1558 
1559 		rcu_assign_pointer(q->admin_sched, new_admin);
1560 		if (admin)
1561 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1562 	} else {
1563 		setup_first_close_time(q, new_admin, start);
1564 
1565 		/* Protects against advance_sched() */
1566 		spin_lock_irqsave(&q->current_entry_lock, flags);
1567 
1568 		taprio_start_sched(sch, start, new_admin);
1569 
1570 		rcu_assign_pointer(q->admin_sched, new_admin);
1571 		if (admin)
1572 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1573 
1574 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1575 
1576 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1577 			taprio_offload_config_changed(q);
1578 	}
1579 
1580 	new_admin = NULL;
1581 	err = 0;
1582 
1583 unlock:
1584 	spin_unlock_bh(qdisc_lock(sch));
1585 
1586 free_sched:
1587 	if (new_admin)
1588 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1589 
1590 	return err;
1591 }
1592 
1593 static void taprio_destroy(struct Qdisc *sch)
1594 {
1595 	struct taprio_sched *q = qdisc_priv(sch);
1596 	struct net_device *dev = qdisc_dev(sch);
1597 	unsigned int i;
1598 
1599 	spin_lock(&taprio_list_lock);
1600 	list_del(&q->taprio_list);
1601 	spin_unlock(&taprio_list_lock);
1602 
1603 	hrtimer_cancel(&q->advance_timer);
1604 
1605 	taprio_disable_offload(dev, q, NULL);
1606 
1607 	if (q->qdiscs) {
1608 		for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1609 			qdisc_put(q->qdiscs[i]);
1610 
1611 		kfree(q->qdiscs);
1612 	}
1613 	q->qdiscs = NULL;
1614 
1615 	netdev_reset_tc(dev);
1616 
1617 	if (q->oper_sched)
1618 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1619 
1620 	if (q->admin_sched)
1621 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1622 }
1623 
1624 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1625 		       struct netlink_ext_ack *extack)
1626 {
1627 	struct taprio_sched *q = qdisc_priv(sch);
1628 	struct net_device *dev = qdisc_dev(sch);
1629 	int i;
1630 
1631 	spin_lock_init(&q->current_entry_lock);
1632 
1633 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1634 	q->advance_timer.function = advance_sched;
1635 
1636 	q->dequeue = taprio_dequeue_soft;
1637 	q->peek = taprio_peek_soft;
1638 
1639 	q->root = sch;
1640 
1641 	/* We only support static clockids. Use an invalid value as default
1642 	 * and get the valid one on taprio_change().
1643 	 */
1644 	q->clockid = -1;
1645 	q->flags = TAPRIO_FLAGS_INVALID;
1646 
1647 	spin_lock(&taprio_list_lock);
1648 	list_add(&q->taprio_list, &taprio_list);
1649 	spin_unlock(&taprio_list_lock);
1650 
1651 	if (sch->parent != TC_H_ROOT)
1652 		return -EOPNOTSUPP;
1653 
1654 	if (!netif_is_multiqueue(dev))
1655 		return -EOPNOTSUPP;
1656 
1657 	/* pre-allocate qdisc, attachment can't fail */
1658 	q->qdiscs = kcalloc(dev->num_tx_queues,
1659 			    sizeof(q->qdiscs[0]),
1660 			    GFP_KERNEL);
1661 
1662 	if (!q->qdiscs)
1663 		return -ENOMEM;
1664 
1665 	if (!opt)
1666 		return -EINVAL;
1667 
1668 	for (i = 0; i < dev->num_tx_queues; i++) {
1669 		struct netdev_queue *dev_queue;
1670 		struct Qdisc *qdisc;
1671 
1672 		dev_queue = netdev_get_tx_queue(dev, i);
1673 		qdisc = qdisc_create_dflt(dev_queue,
1674 					  &pfifo_qdisc_ops,
1675 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1676 						    TC_H_MIN(i + 1)),
1677 					  extack);
1678 		if (!qdisc)
1679 			return -ENOMEM;
1680 
1681 		if (i < dev->real_num_tx_queues)
1682 			qdisc_hash_add(qdisc, false);
1683 
1684 		q->qdiscs[i] = qdisc;
1685 	}
1686 
1687 	return taprio_change(sch, opt, extack);
1688 }
1689 
1690 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1691 					     unsigned long cl)
1692 {
1693 	struct net_device *dev = qdisc_dev(sch);
1694 	unsigned long ntx = cl - 1;
1695 
1696 	if (ntx >= dev->num_tx_queues)
1697 		return NULL;
1698 
1699 	return netdev_get_tx_queue(dev, ntx);
1700 }
1701 
1702 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1703 			struct Qdisc *new, struct Qdisc **old,
1704 			struct netlink_ext_ack *extack)
1705 {
1706 	struct taprio_sched *q = qdisc_priv(sch);
1707 	struct net_device *dev = qdisc_dev(sch);
1708 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1709 
1710 	if (!dev_queue)
1711 		return -EINVAL;
1712 
1713 	if (dev->flags & IFF_UP)
1714 		dev_deactivate(dev);
1715 
1716 	*old = q->qdiscs[cl - 1];
1717 	q->qdiscs[cl - 1] = new;
1718 
1719 	if (new)
1720 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1721 
1722 	if (dev->flags & IFF_UP)
1723 		dev_activate(dev);
1724 
1725 	return 0;
1726 }
1727 
1728 static int dump_entry(struct sk_buff *msg,
1729 		      const struct sched_entry *entry)
1730 {
1731 	struct nlattr *item;
1732 
1733 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1734 	if (!item)
1735 		return -ENOSPC;
1736 
1737 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1738 		goto nla_put_failure;
1739 
1740 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1741 		goto nla_put_failure;
1742 
1743 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1744 			entry->gate_mask))
1745 		goto nla_put_failure;
1746 
1747 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1748 			entry->interval))
1749 		goto nla_put_failure;
1750 
1751 	return nla_nest_end(msg, item);
1752 
1753 nla_put_failure:
1754 	nla_nest_cancel(msg, item);
1755 	return -1;
1756 }
1757 
1758 static int dump_schedule(struct sk_buff *msg,
1759 			 const struct sched_gate_list *root)
1760 {
1761 	struct nlattr *entry_list;
1762 	struct sched_entry *entry;
1763 
1764 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1765 			root->base_time, TCA_TAPRIO_PAD))
1766 		return -1;
1767 
1768 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1769 			root->cycle_time, TCA_TAPRIO_PAD))
1770 		return -1;
1771 
1772 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1773 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1774 		return -1;
1775 
1776 	entry_list = nla_nest_start_noflag(msg,
1777 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1778 	if (!entry_list)
1779 		goto error_nest;
1780 
1781 	list_for_each_entry(entry, &root->entries, list) {
1782 		if (dump_entry(msg, entry) < 0)
1783 			goto error_nest;
1784 	}
1785 
1786 	nla_nest_end(msg, entry_list);
1787 	return 0;
1788 
1789 error_nest:
1790 	nla_nest_cancel(msg, entry_list);
1791 	return -1;
1792 }
1793 
1794 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1795 {
1796 	struct taprio_sched *q = qdisc_priv(sch);
1797 	struct net_device *dev = qdisc_dev(sch);
1798 	struct sched_gate_list *oper, *admin;
1799 	struct tc_mqprio_qopt opt = { 0 };
1800 	struct nlattr *nest, *sched_nest;
1801 	unsigned int i;
1802 
1803 	rcu_read_lock();
1804 	oper = rcu_dereference(q->oper_sched);
1805 	admin = rcu_dereference(q->admin_sched);
1806 
1807 	opt.num_tc = netdev_get_num_tc(dev);
1808 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1809 
1810 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1811 		opt.count[i] = dev->tc_to_txq[i].count;
1812 		opt.offset[i] = dev->tc_to_txq[i].offset;
1813 	}
1814 
1815 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1816 	if (!nest)
1817 		goto start_error;
1818 
1819 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1820 		goto options_error;
1821 
1822 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1823 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1824 		goto options_error;
1825 
1826 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1827 		goto options_error;
1828 
1829 	if (q->txtime_delay &&
1830 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1831 		goto options_error;
1832 
1833 	if (oper && dump_schedule(skb, oper))
1834 		goto options_error;
1835 
1836 	if (!admin)
1837 		goto done;
1838 
1839 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1840 	if (!sched_nest)
1841 		goto options_error;
1842 
1843 	if (dump_schedule(skb, admin))
1844 		goto admin_error;
1845 
1846 	nla_nest_end(skb, sched_nest);
1847 
1848 done:
1849 	rcu_read_unlock();
1850 
1851 	return nla_nest_end(skb, nest);
1852 
1853 admin_error:
1854 	nla_nest_cancel(skb, sched_nest);
1855 
1856 options_error:
1857 	nla_nest_cancel(skb, nest);
1858 
1859 start_error:
1860 	rcu_read_unlock();
1861 	return -ENOSPC;
1862 }
1863 
1864 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1865 {
1866 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1867 
1868 	if (!dev_queue)
1869 		return NULL;
1870 
1871 	return dev_queue->qdisc_sleeping;
1872 }
1873 
1874 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1875 {
1876 	unsigned int ntx = TC_H_MIN(classid);
1877 
1878 	if (!taprio_queue_get(sch, ntx))
1879 		return 0;
1880 	return ntx;
1881 }
1882 
1883 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1884 			     struct sk_buff *skb, struct tcmsg *tcm)
1885 {
1886 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1887 
1888 	tcm->tcm_parent = TC_H_ROOT;
1889 	tcm->tcm_handle |= TC_H_MIN(cl);
1890 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1891 
1892 	return 0;
1893 }
1894 
1895 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1896 				   struct gnet_dump *d)
1897 	__releases(d->lock)
1898 	__acquires(d->lock)
1899 {
1900 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1901 
1902 	sch = dev_queue->qdisc_sleeping;
1903 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1904 	    qdisc_qstats_copy(d, sch) < 0)
1905 		return -1;
1906 	return 0;
1907 }
1908 
1909 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1910 {
1911 	struct net_device *dev = qdisc_dev(sch);
1912 	unsigned long ntx;
1913 
1914 	if (arg->stop)
1915 		return;
1916 
1917 	arg->count = arg->skip;
1918 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1919 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1920 			arg->stop = 1;
1921 			break;
1922 		}
1923 		arg->count++;
1924 	}
1925 }
1926 
1927 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1928 						struct tcmsg *tcm)
1929 {
1930 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1931 }
1932 
1933 static const struct Qdisc_class_ops taprio_class_ops = {
1934 	.graft		= taprio_graft,
1935 	.leaf		= taprio_leaf,
1936 	.find		= taprio_find,
1937 	.walk		= taprio_walk,
1938 	.dump		= taprio_dump_class,
1939 	.dump_stats	= taprio_dump_class_stats,
1940 	.select_queue	= taprio_select_queue,
1941 };
1942 
1943 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1944 	.cl_ops		= &taprio_class_ops,
1945 	.id		= "taprio",
1946 	.priv_size	= sizeof(struct taprio_sched),
1947 	.init		= taprio_init,
1948 	.change		= taprio_change,
1949 	.destroy	= taprio_destroy,
1950 	.peek		= taprio_peek,
1951 	.dequeue	= taprio_dequeue,
1952 	.enqueue	= taprio_enqueue,
1953 	.dump		= taprio_dump,
1954 	.owner		= THIS_MODULE,
1955 };
1956 
1957 static struct notifier_block taprio_device_notifier = {
1958 	.notifier_call = taprio_dev_notifier,
1959 };
1960 
1961 static int __init taprio_module_init(void)
1962 {
1963 	int err = register_netdevice_notifier(&taprio_device_notifier);
1964 
1965 	if (err)
1966 		return err;
1967 
1968 	return register_qdisc(&taprio_qdisc_ops);
1969 }
1970 
1971 static void __exit taprio_module_exit(void)
1972 {
1973 	unregister_qdisc(&taprio_qdisc_ops);
1974 	unregister_netdevice_notifier(&taprio_device_notifier);
1975 }
1976 
1977 module_init(taprio_module_init);
1978 module_exit(taprio_module_exit);
1979 MODULE_LICENSE("GPL");
1980