1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/list.h> 14 #include <linux/errno.h> 15 #include <linux/skbuff.h> 16 #include <linux/math64.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/rcupdate.h> 20 #include <net/netlink.h> 21 #include <net/pkt_sched.h> 22 #include <net/pkt_cls.h> 23 #include <net/sch_generic.h> 24 #include <net/sock.h> 25 #include <net/tcp.h> 26 27 static LIST_HEAD(taprio_list); 28 static DEFINE_SPINLOCK(taprio_list_lock); 29 30 #define TAPRIO_ALL_GATES_OPEN -1 31 32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 34 #define TAPRIO_FLAGS_INVALID U32_MAX 35 36 struct sched_entry { 37 struct list_head list; 38 39 /* The instant that this entry "closes" and the next one 40 * should open, the qdisc will make some effort so that no 41 * packet leaves after this time. 42 */ 43 ktime_t close_time; 44 ktime_t next_txtime; 45 atomic_t budget; 46 int index; 47 u32 gate_mask; 48 u32 interval; 49 u8 command; 50 }; 51 52 struct sched_gate_list { 53 struct rcu_head rcu; 54 struct list_head entries; 55 size_t num_entries; 56 ktime_t cycle_close_time; 57 s64 cycle_time; 58 s64 cycle_time_extension; 59 s64 base_time; 60 }; 61 62 struct taprio_sched { 63 struct Qdisc **qdiscs; 64 struct Qdisc *root; 65 u32 flags; 66 enum tk_offsets tk_offset; 67 int clockid; 68 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 69 * speeds it's sub-nanoseconds per byte 70 */ 71 72 /* Protects the update side of the RCU protected current_entry */ 73 spinlock_t current_entry_lock; 74 struct sched_entry __rcu *current_entry; 75 struct sched_gate_list __rcu *oper_sched; 76 struct sched_gate_list __rcu *admin_sched; 77 struct hrtimer advance_timer; 78 struct list_head taprio_list; 79 struct sk_buff *(*dequeue)(struct Qdisc *sch); 80 struct sk_buff *(*peek)(struct Qdisc *sch); 81 u32 txtime_delay; 82 }; 83 84 struct __tc_taprio_qopt_offload { 85 refcount_t users; 86 struct tc_taprio_qopt_offload offload; 87 }; 88 89 static ktime_t sched_base_time(const struct sched_gate_list *sched) 90 { 91 if (!sched) 92 return KTIME_MAX; 93 94 return ns_to_ktime(sched->base_time); 95 } 96 97 static ktime_t taprio_get_time(struct taprio_sched *q) 98 { 99 ktime_t mono = ktime_get(); 100 101 switch (q->tk_offset) { 102 case TK_OFFS_MAX: 103 return mono; 104 default: 105 return ktime_mono_to_any(mono, q->tk_offset); 106 } 107 108 return KTIME_MAX; 109 } 110 111 static void taprio_free_sched_cb(struct rcu_head *head) 112 { 113 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 114 struct sched_entry *entry, *n; 115 116 if (!sched) 117 return; 118 119 list_for_each_entry_safe(entry, n, &sched->entries, list) { 120 list_del(&entry->list); 121 kfree(entry); 122 } 123 124 kfree(sched); 125 } 126 127 static void switch_schedules(struct taprio_sched *q, 128 struct sched_gate_list **admin, 129 struct sched_gate_list **oper) 130 { 131 rcu_assign_pointer(q->oper_sched, *admin); 132 rcu_assign_pointer(q->admin_sched, NULL); 133 134 if (*oper) 135 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 136 137 *oper = *admin; 138 *admin = NULL; 139 } 140 141 /* Get how much time has been already elapsed in the current cycle. */ 142 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 143 { 144 ktime_t time_since_sched_start; 145 s32 time_elapsed; 146 147 time_since_sched_start = ktime_sub(time, sched->base_time); 148 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 149 150 return time_elapsed; 151 } 152 153 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 154 struct sched_gate_list *admin, 155 struct sched_entry *entry, 156 ktime_t intv_start) 157 { 158 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 159 ktime_t intv_end, cycle_ext_end, cycle_end; 160 161 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 162 intv_end = ktime_add_ns(intv_start, entry->interval); 163 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 164 165 if (ktime_before(intv_end, cycle_end)) 166 return intv_end; 167 else if (admin && admin != sched && 168 ktime_after(admin->base_time, cycle_end) && 169 ktime_before(admin->base_time, cycle_ext_end)) 170 return admin->base_time; 171 else 172 return cycle_end; 173 } 174 175 static int length_to_duration(struct taprio_sched *q, int len) 176 { 177 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); 178 } 179 180 /* Returns the entry corresponding to next available interval. If 181 * validate_interval is set, it only validates whether the timestamp occurs 182 * when the gate corresponding to the skb's traffic class is open. 183 */ 184 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 185 struct Qdisc *sch, 186 struct sched_gate_list *sched, 187 struct sched_gate_list *admin, 188 ktime_t time, 189 ktime_t *interval_start, 190 ktime_t *interval_end, 191 bool validate_interval) 192 { 193 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 194 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 195 struct sched_entry *entry = NULL, *entry_found = NULL; 196 struct taprio_sched *q = qdisc_priv(sch); 197 struct net_device *dev = qdisc_dev(sch); 198 bool entry_available = false; 199 s32 cycle_elapsed; 200 int tc, n; 201 202 tc = netdev_get_prio_tc_map(dev, skb->priority); 203 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 204 205 *interval_start = 0; 206 *interval_end = 0; 207 208 if (!sched) 209 return NULL; 210 211 cycle = sched->cycle_time; 212 cycle_elapsed = get_cycle_time_elapsed(sched, time); 213 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 214 cycle_end = ktime_add_ns(curr_intv_end, cycle); 215 216 list_for_each_entry(entry, &sched->entries, list) { 217 curr_intv_start = curr_intv_end; 218 curr_intv_end = get_interval_end_time(sched, admin, entry, 219 curr_intv_start); 220 221 if (ktime_after(curr_intv_start, cycle_end)) 222 break; 223 224 if (!(entry->gate_mask & BIT(tc)) || 225 packet_transmit_time > entry->interval) 226 continue; 227 228 txtime = entry->next_txtime; 229 230 if (ktime_before(txtime, time) || validate_interval) { 231 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 232 if ((ktime_before(curr_intv_start, time) && 233 ktime_before(transmit_end_time, curr_intv_end)) || 234 (ktime_after(curr_intv_start, time) && !validate_interval)) { 235 entry_found = entry; 236 *interval_start = curr_intv_start; 237 *interval_end = curr_intv_end; 238 break; 239 } else if (!entry_available && !validate_interval) { 240 /* Here, we are just trying to find out the 241 * first available interval in the next cycle. 242 */ 243 entry_available = 1; 244 entry_found = entry; 245 *interval_start = ktime_add_ns(curr_intv_start, cycle); 246 *interval_end = ktime_add_ns(curr_intv_end, cycle); 247 } 248 } else if (ktime_before(txtime, earliest_txtime) && 249 !entry_available) { 250 earliest_txtime = txtime; 251 entry_found = entry; 252 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 253 *interval_start = ktime_add(curr_intv_start, n * cycle); 254 *interval_end = ktime_add(curr_intv_end, n * cycle); 255 } 256 } 257 258 return entry_found; 259 } 260 261 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 262 { 263 struct taprio_sched *q = qdisc_priv(sch); 264 struct sched_gate_list *sched, *admin; 265 ktime_t interval_start, interval_end; 266 struct sched_entry *entry; 267 268 rcu_read_lock(); 269 sched = rcu_dereference(q->oper_sched); 270 admin = rcu_dereference(q->admin_sched); 271 272 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 273 &interval_start, &interval_end, true); 274 rcu_read_unlock(); 275 276 return entry; 277 } 278 279 static bool taprio_flags_valid(u32 flags) 280 { 281 /* Make sure no other flag bits are set. */ 282 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 283 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 284 return false; 285 /* txtime-assist and full offload are mutually exclusive */ 286 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 287 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 288 return false; 289 return true; 290 } 291 292 /* This returns the tstamp value set by TCP in terms of the set clock. */ 293 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 294 { 295 unsigned int offset = skb_network_offset(skb); 296 const struct ipv6hdr *ipv6h; 297 const struct iphdr *iph; 298 struct ipv6hdr _ipv6h; 299 300 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 301 if (!ipv6h) 302 return 0; 303 304 if (ipv6h->version == 4) { 305 iph = (struct iphdr *)ipv6h; 306 offset += iph->ihl * 4; 307 308 /* special-case 6in4 tunnelling, as that is a common way to get 309 * v6 connectivity in the home 310 */ 311 if (iph->protocol == IPPROTO_IPV6) { 312 ipv6h = skb_header_pointer(skb, offset, 313 sizeof(_ipv6h), &_ipv6h); 314 315 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 316 return 0; 317 } else if (iph->protocol != IPPROTO_TCP) { 318 return 0; 319 } 320 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 321 return 0; 322 } 323 324 return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset); 325 } 326 327 /* There are a few scenarios where we will have to modify the txtime from 328 * what is read from next_txtime in sched_entry. They are: 329 * 1. If txtime is in the past, 330 * a. The gate for the traffic class is currently open and packet can be 331 * transmitted before it closes, schedule the packet right away. 332 * b. If the gate corresponding to the traffic class is going to open later 333 * in the cycle, set the txtime of packet to the interval start. 334 * 2. If txtime is in the future, there are packets corresponding to the 335 * current traffic class waiting to be transmitted. So, the following 336 * possibilities exist: 337 * a. We can transmit the packet before the window containing the txtime 338 * closes. 339 * b. The window might close before the transmission can be completed 340 * successfully. So, schedule the packet in the next open window. 341 */ 342 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 343 { 344 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 345 struct taprio_sched *q = qdisc_priv(sch); 346 struct sched_gate_list *sched, *admin; 347 ktime_t minimum_time, now, txtime; 348 int len, packet_transmit_time; 349 struct sched_entry *entry; 350 bool sched_changed; 351 352 now = taprio_get_time(q); 353 minimum_time = ktime_add_ns(now, q->txtime_delay); 354 355 tcp_tstamp = get_tcp_tstamp(q, skb); 356 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 357 358 rcu_read_lock(); 359 admin = rcu_dereference(q->admin_sched); 360 sched = rcu_dereference(q->oper_sched); 361 if (admin && ktime_after(minimum_time, admin->base_time)) 362 switch_schedules(q, &admin, &sched); 363 364 /* Until the schedule starts, all the queues are open */ 365 if (!sched || ktime_before(minimum_time, sched->base_time)) { 366 txtime = minimum_time; 367 goto done; 368 } 369 370 len = qdisc_pkt_len(skb); 371 packet_transmit_time = length_to_duration(q, len); 372 373 do { 374 sched_changed = 0; 375 376 entry = find_entry_to_transmit(skb, sch, sched, admin, 377 minimum_time, 378 &interval_start, &interval_end, 379 false); 380 if (!entry) { 381 txtime = 0; 382 goto done; 383 } 384 385 txtime = entry->next_txtime; 386 txtime = max_t(ktime_t, txtime, minimum_time); 387 txtime = max_t(ktime_t, txtime, interval_start); 388 389 if (admin && admin != sched && 390 ktime_after(txtime, admin->base_time)) { 391 sched = admin; 392 sched_changed = 1; 393 continue; 394 } 395 396 transmit_end_time = ktime_add(txtime, packet_transmit_time); 397 minimum_time = transmit_end_time; 398 399 /* Update the txtime of current entry to the next time it's 400 * interval starts. 401 */ 402 if (ktime_after(transmit_end_time, interval_end)) 403 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 404 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 405 406 entry->next_txtime = transmit_end_time; 407 408 done: 409 rcu_read_unlock(); 410 return txtime; 411 } 412 413 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 414 struct sk_buff **to_free) 415 { 416 struct taprio_sched *q = qdisc_priv(sch); 417 struct Qdisc *child; 418 int queue; 419 420 queue = skb_get_queue_mapping(skb); 421 422 child = q->qdiscs[queue]; 423 if (unlikely(!child)) 424 return qdisc_drop(skb, sch, to_free); 425 426 if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) { 427 if (!is_valid_interval(skb, sch)) 428 return qdisc_drop(skb, sch, to_free); 429 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 430 skb->tstamp = get_packet_txtime(skb, sch); 431 if (!skb->tstamp) 432 return qdisc_drop(skb, sch, to_free); 433 } 434 435 qdisc_qstats_backlog_inc(sch, skb); 436 sch->q.qlen++; 437 438 return qdisc_enqueue(skb, child, to_free); 439 } 440 441 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch) 442 { 443 struct taprio_sched *q = qdisc_priv(sch); 444 struct net_device *dev = qdisc_dev(sch); 445 struct sched_entry *entry; 446 struct sk_buff *skb; 447 u32 gate_mask; 448 int i; 449 450 rcu_read_lock(); 451 entry = rcu_dereference(q->current_entry); 452 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 453 rcu_read_unlock(); 454 455 if (!gate_mask) 456 return NULL; 457 458 for (i = 0; i < dev->num_tx_queues; i++) { 459 struct Qdisc *child = q->qdiscs[i]; 460 int prio; 461 u8 tc; 462 463 if (unlikely(!child)) 464 continue; 465 466 skb = child->ops->peek(child); 467 if (!skb) 468 continue; 469 470 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 471 return skb; 472 473 prio = skb->priority; 474 tc = netdev_get_prio_tc_map(dev, prio); 475 476 if (!(gate_mask & BIT(tc))) 477 continue; 478 479 return skb; 480 } 481 482 return NULL; 483 } 484 485 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch) 486 { 487 struct taprio_sched *q = qdisc_priv(sch); 488 struct net_device *dev = qdisc_dev(sch); 489 struct sk_buff *skb; 490 int i; 491 492 for (i = 0; i < dev->num_tx_queues; i++) { 493 struct Qdisc *child = q->qdiscs[i]; 494 495 if (unlikely(!child)) 496 continue; 497 498 skb = child->ops->peek(child); 499 if (!skb) 500 continue; 501 502 return skb; 503 } 504 505 return NULL; 506 } 507 508 static struct sk_buff *taprio_peek(struct Qdisc *sch) 509 { 510 struct taprio_sched *q = qdisc_priv(sch); 511 512 return q->peek(sch); 513 } 514 515 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) 516 { 517 atomic_set(&entry->budget, 518 div64_u64((u64)entry->interval * 1000, 519 atomic64_read(&q->picos_per_byte))); 520 } 521 522 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch) 523 { 524 struct taprio_sched *q = qdisc_priv(sch); 525 struct net_device *dev = qdisc_dev(sch); 526 struct sk_buff *skb = NULL; 527 struct sched_entry *entry; 528 u32 gate_mask; 529 int i; 530 531 rcu_read_lock(); 532 entry = rcu_dereference(q->current_entry); 533 /* if there's no entry, it means that the schedule didn't 534 * start yet, so force all gates to be open, this is in 535 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 536 * "AdminGateSates" 537 */ 538 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 539 540 if (!gate_mask) 541 goto done; 542 543 for (i = 0; i < dev->num_tx_queues; i++) { 544 struct Qdisc *child = q->qdiscs[i]; 545 ktime_t guard; 546 int prio; 547 int len; 548 u8 tc; 549 550 if (unlikely(!child)) 551 continue; 552 553 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 554 skb = child->ops->dequeue(child); 555 if (!skb) 556 continue; 557 goto skb_found; 558 } 559 560 skb = child->ops->peek(child); 561 if (!skb) 562 continue; 563 564 prio = skb->priority; 565 tc = netdev_get_prio_tc_map(dev, prio); 566 567 if (!(gate_mask & BIT(tc))) 568 continue; 569 570 len = qdisc_pkt_len(skb); 571 guard = ktime_add_ns(taprio_get_time(q), 572 length_to_duration(q, len)); 573 574 /* In the case that there's no gate entry, there's no 575 * guard band ... 576 */ 577 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 578 ktime_after(guard, entry->close_time)) 579 continue; 580 581 /* ... and no budget. */ 582 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 583 atomic_sub_return(len, &entry->budget) < 0) 584 continue; 585 586 skb = child->ops->dequeue(child); 587 if (unlikely(!skb)) 588 goto done; 589 590 skb_found: 591 qdisc_bstats_update(sch, skb); 592 qdisc_qstats_backlog_dec(sch, skb); 593 sch->q.qlen--; 594 595 goto done; 596 } 597 598 done: 599 rcu_read_unlock(); 600 601 return skb; 602 } 603 604 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch) 605 { 606 struct taprio_sched *q = qdisc_priv(sch); 607 struct net_device *dev = qdisc_dev(sch); 608 struct sk_buff *skb; 609 int i; 610 611 for (i = 0; i < dev->num_tx_queues; i++) { 612 struct Qdisc *child = q->qdiscs[i]; 613 614 if (unlikely(!child)) 615 continue; 616 617 skb = child->ops->dequeue(child); 618 if (unlikely(!skb)) 619 continue; 620 621 qdisc_bstats_update(sch, skb); 622 qdisc_qstats_backlog_dec(sch, skb); 623 sch->q.qlen--; 624 625 return skb; 626 } 627 628 return NULL; 629 } 630 631 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 632 { 633 struct taprio_sched *q = qdisc_priv(sch); 634 635 return q->dequeue(sch); 636 } 637 638 static bool should_restart_cycle(const struct sched_gate_list *oper, 639 const struct sched_entry *entry) 640 { 641 if (list_is_last(&entry->list, &oper->entries)) 642 return true; 643 644 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) 645 return true; 646 647 return false; 648 } 649 650 static bool should_change_schedules(const struct sched_gate_list *admin, 651 const struct sched_gate_list *oper, 652 ktime_t close_time) 653 { 654 ktime_t next_base_time, extension_time; 655 656 if (!admin) 657 return false; 658 659 next_base_time = sched_base_time(admin); 660 661 /* This is the simple case, the close_time would fall after 662 * the next schedule base_time. 663 */ 664 if (ktime_compare(next_base_time, close_time) <= 0) 665 return true; 666 667 /* This is the cycle_time_extension case, if the close_time 668 * plus the amount that can be extended would fall after the 669 * next schedule base_time, we can extend the current schedule 670 * for that amount. 671 */ 672 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); 673 674 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 675 * how precisely the extension should be made. So after 676 * conformance testing, this logic may change. 677 */ 678 if (ktime_compare(next_base_time, extension_time) <= 0) 679 return true; 680 681 return false; 682 } 683 684 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 685 { 686 struct taprio_sched *q = container_of(timer, struct taprio_sched, 687 advance_timer); 688 struct sched_gate_list *oper, *admin; 689 struct sched_entry *entry, *next; 690 struct Qdisc *sch = q->root; 691 ktime_t close_time; 692 693 spin_lock(&q->current_entry_lock); 694 entry = rcu_dereference_protected(q->current_entry, 695 lockdep_is_held(&q->current_entry_lock)); 696 oper = rcu_dereference_protected(q->oper_sched, 697 lockdep_is_held(&q->current_entry_lock)); 698 admin = rcu_dereference_protected(q->admin_sched, 699 lockdep_is_held(&q->current_entry_lock)); 700 701 if (!oper) 702 switch_schedules(q, &admin, &oper); 703 704 /* This can happen in two cases: 1. this is the very first run 705 * of this function (i.e. we weren't running any schedule 706 * previously); 2. The previous schedule just ended. The first 707 * entry of all schedules are pre-calculated during the 708 * schedule initialization. 709 */ 710 if (unlikely(!entry || entry->close_time == oper->base_time)) { 711 next = list_first_entry(&oper->entries, struct sched_entry, 712 list); 713 close_time = next->close_time; 714 goto first_run; 715 } 716 717 if (should_restart_cycle(oper, entry)) { 718 next = list_first_entry(&oper->entries, struct sched_entry, 719 list); 720 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, 721 oper->cycle_time); 722 } else { 723 next = list_next_entry(entry, list); 724 } 725 726 close_time = ktime_add_ns(entry->close_time, next->interval); 727 close_time = min_t(ktime_t, close_time, oper->cycle_close_time); 728 729 if (should_change_schedules(admin, oper, close_time)) { 730 /* Set things so the next time this runs, the new 731 * schedule runs. 732 */ 733 close_time = sched_base_time(admin); 734 switch_schedules(q, &admin, &oper); 735 } 736 737 next->close_time = close_time; 738 taprio_set_budget(q, next); 739 740 first_run: 741 rcu_assign_pointer(q->current_entry, next); 742 spin_unlock(&q->current_entry_lock); 743 744 hrtimer_set_expires(&q->advance_timer, close_time); 745 746 rcu_read_lock(); 747 __netif_schedule(sch); 748 rcu_read_unlock(); 749 750 return HRTIMER_RESTART; 751 } 752 753 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 754 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 755 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 756 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 757 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 758 }; 759 760 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 761 [TCA_TAPRIO_ATTR_PRIOMAP] = { 762 .len = sizeof(struct tc_mqprio_qopt) 763 }, 764 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 765 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 766 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 767 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 768 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 769 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 770 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 771 }; 772 773 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry, 774 struct netlink_ext_ack *extack) 775 { 776 u32 interval = 0; 777 778 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 779 entry->command = nla_get_u8( 780 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 781 782 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 783 entry->gate_mask = nla_get_u32( 784 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 785 786 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 787 interval = nla_get_u32( 788 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 789 790 if (interval == 0) { 791 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 792 return -EINVAL; 793 } 794 795 entry->interval = interval; 796 797 return 0; 798 } 799 800 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry, 801 int index, struct netlink_ext_ack *extack) 802 { 803 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 804 int err; 805 806 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 807 entry_policy, NULL); 808 if (err < 0) { 809 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 810 return -EINVAL; 811 } 812 813 entry->index = index; 814 815 return fill_sched_entry(tb, entry, extack); 816 } 817 818 static int parse_sched_list(struct nlattr *list, 819 struct sched_gate_list *sched, 820 struct netlink_ext_ack *extack) 821 { 822 struct nlattr *n; 823 int err, rem; 824 int i = 0; 825 826 if (!list) 827 return -EINVAL; 828 829 nla_for_each_nested(n, list, rem) { 830 struct sched_entry *entry; 831 832 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 833 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 834 continue; 835 } 836 837 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 838 if (!entry) { 839 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 840 return -ENOMEM; 841 } 842 843 err = parse_sched_entry(n, entry, i, extack); 844 if (err < 0) { 845 kfree(entry); 846 return err; 847 } 848 849 list_add_tail(&entry->list, &sched->entries); 850 i++; 851 } 852 853 sched->num_entries = i; 854 855 return i; 856 } 857 858 static int parse_taprio_schedule(struct nlattr **tb, 859 struct sched_gate_list *new, 860 struct netlink_ext_ack *extack) 861 { 862 int err = 0; 863 864 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 865 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 866 return -ENOTSUPP; 867 } 868 869 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 870 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 871 872 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 873 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 874 875 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 876 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 877 878 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 879 err = parse_sched_list( 880 tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack); 881 if (err < 0) 882 return err; 883 884 if (!new->cycle_time) { 885 struct sched_entry *entry; 886 ktime_t cycle = 0; 887 888 list_for_each_entry(entry, &new->entries, list) 889 cycle = ktime_add_ns(cycle, entry->interval); 890 new->cycle_time = cycle; 891 } 892 893 return 0; 894 } 895 896 static int taprio_parse_mqprio_opt(struct net_device *dev, 897 struct tc_mqprio_qopt *qopt, 898 struct netlink_ext_ack *extack, 899 u32 taprio_flags) 900 { 901 int i, j; 902 903 if (!qopt && !dev->num_tc) { 904 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 905 return -EINVAL; 906 } 907 908 /* If num_tc is already set, it means that the user already 909 * configured the mqprio part 910 */ 911 if (dev->num_tc) 912 return 0; 913 914 /* Verify num_tc is not out of max range */ 915 if (qopt->num_tc > TC_MAX_QUEUE) { 916 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); 917 return -EINVAL; 918 } 919 920 /* taprio imposes that traffic classes map 1:n to tx queues */ 921 if (qopt->num_tc > dev->num_tx_queues) { 922 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 923 return -EINVAL; 924 } 925 926 /* Verify priority mapping uses valid tcs */ 927 for (i = 0; i <= TC_BITMASK; i++) { 928 if (qopt->prio_tc_map[i] >= qopt->num_tc) { 929 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); 930 return -EINVAL; 931 } 932 } 933 934 for (i = 0; i < qopt->num_tc; i++) { 935 unsigned int last = qopt->offset[i] + qopt->count[i]; 936 937 /* Verify the queue count is in tx range being equal to the 938 * real_num_tx_queues indicates the last queue is in use. 939 */ 940 if (qopt->offset[i] >= dev->num_tx_queues || 941 !qopt->count[i] || 942 last > dev->real_num_tx_queues) { 943 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); 944 return -EINVAL; 945 } 946 947 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) 948 continue; 949 950 /* Verify that the offset and counts do not overlap */ 951 for (j = i + 1; j < qopt->num_tc; j++) { 952 if (last > qopt->offset[j]) { 953 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); 954 return -EINVAL; 955 } 956 } 957 } 958 959 return 0; 960 } 961 962 static int taprio_get_start_time(struct Qdisc *sch, 963 struct sched_gate_list *sched, 964 ktime_t *start) 965 { 966 struct taprio_sched *q = qdisc_priv(sch); 967 ktime_t now, base, cycle; 968 s64 n; 969 970 base = sched_base_time(sched); 971 now = taprio_get_time(q); 972 973 if (ktime_after(base, now)) { 974 *start = base; 975 return 0; 976 } 977 978 cycle = sched->cycle_time; 979 980 /* The qdisc is expected to have at least one sched_entry. Moreover, 981 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 982 * something went really wrong. In that case, we should warn about this 983 * inconsistent state and return error. 984 */ 985 if (WARN_ON(!cycle)) 986 return -EFAULT; 987 988 /* Schedule the start time for the beginning of the next 989 * cycle. 990 */ 991 n = div64_s64(ktime_sub_ns(now, base), cycle); 992 *start = ktime_add_ns(base, (n + 1) * cycle); 993 return 0; 994 } 995 996 static void setup_first_close_time(struct taprio_sched *q, 997 struct sched_gate_list *sched, ktime_t base) 998 { 999 struct sched_entry *first; 1000 ktime_t cycle; 1001 1002 first = list_first_entry(&sched->entries, 1003 struct sched_entry, list); 1004 1005 cycle = sched->cycle_time; 1006 1007 /* FIXME: find a better place to do this */ 1008 sched->cycle_close_time = ktime_add_ns(base, cycle); 1009 1010 first->close_time = ktime_add_ns(base, first->interval); 1011 taprio_set_budget(q, first); 1012 rcu_assign_pointer(q->current_entry, NULL); 1013 } 1014 1015 static void taprio_start_sched(struct Qdisc *sch, 1016 ktime_t start, struct sched_gate_list *new) 1017 { 1018 struct taprio_sched *q = qdisc_priv(sch); 1019 ktime_t expires; 1020 1021 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1022 return; 1023 1024 expires = hrtimer_get_expires(&q->advance_timer); 1025 if (expires == 0) 1026 expires = KTIME_MAX; 1027 1028 /* If the new schedule starts before the next expiration, we 1029 * reprogram it to the earliest one, so we change the admin 1030 * schedule to the operational one at the right time. 1031 */ 1032 start = min_t(ktime_t, start, expires); 1033 1034 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1035 } 1036 1037 static void taprio_set_picos_per_byte(struct net_device *dev, 1038 struct taprio_sched *q) 1039 { 1040 struct ethtool_link_ksettings ecmd; 1041 int speed = SPEED_10; 1042 int picos_per_byte; 1043 int err; 1044 1045 err = __ethtool_get_link_ksettings(dev, &ecmd); 1046 if (err < 0) 1047 goto skip; 1048 1049 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1050 speed = ecmd.base.speed; 1051 1052 skip: 1053 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1054 1055 atomic64_set(&q->picos_per_byte, picos_per_byte); 1056 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1057 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1058 ecmd.base.speed); 1059 } 1060 1061 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1062 void *ptr) 1063 { 1064 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1065 struct net_device *qdev; 1066 struct taprio_sched *q; 1067 bool found = false; 1068 1069 ASSERT_RTNL(); 1070 1071 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1072 return NOTIFY_DONE; 1073 1074 spin_lock(&taprio_list_lock); 1075 list_for_each_entry(q, &taprio_list, taprio_list) { 1076 qdev = qdisc_dev(q->root); 1077 if (qdev == dev) { 1078 found = true; 1079 break; 1080 } 1081 } 1082 spin_unlock(&taprio_list_lock); 1083 1084 if (found) 1085 taprio_set_picos_per_byte(dev, q); 1086 1087 return NOTIFY_DONE; 1088 } 1089 1090 static void setup_txtime(struct taprio_sched *q, 1091 struct sched_gate_list *sched, ktime_t base) 1092 { 1093 struct sched_entry *entry; 1094 u32 interval = 0; 1095 1096 list_for_each_entry(entry, &sched->entries, list) { 1097 entry->next_txtime = ktime_add_ns(base, interval); 1098 interval += entry->interval; 1099 } 1100 } 1101 1102 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1103 { 1104 size_t size = sizeof(struct tc_taprio_sched_entry) * num_entries + 1105 sizeof(struct __tc_taprio_qopt_offload); 1106 struct __tc_taprio_qopt_offload *__offload; 1107 1108 __offload = kzalloc(size, GFP_KERNEL); 1109 if (!__offload) 1110 return NULL; 1111 1112 refcount_set(&__offload->users, 1); 1113 1114 return &__offload->offload; 1115 } 1116 1117 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1118 *offload) 1119 { 1120 struct __tc_taprio_qopt_offload *__offload; 1121 1122 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1123 offload); 1124 1125 refcount_inc(&__offload->users); 1126 1127 return offload; 1128 } 1129 EXPORT_SYMBOL_GPL(taprio_offload_get); 1130 1131 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1132 { 1133 struct __tc_taprio_qopt_offload *__offload; 1134 1135 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1136 offload); 1137 1138 if (!refcount_dec_and_test(&__offload->users)) 1139 return; 1140 1141 kfree(__offload); 1142 } 1143 EXPORT_SYMBOL_GPL(taprio_offload_free); 1144 1145 /* The function will only serve to keep the pointers to the "oper" and "admin" 1146 * schedules valid in relation to their base times, so when calling dump() the 1147 * users looks at the right schedules. 1148 * When using full offload, the admin configuration is promoted to oper at the 1149 * base_time in the PHC time domain. But because the system time is not 1150 * necessarily in sync with that, we can't just trigger a hrtimer to call 1151 * switch_schedules at the right hardware time. 1152 * At the moment we call this by hand right away from taprio, but in the future 1153 * it will be useful to create a mechanism for drivers to notify taprio of the 1154 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1155 * This is left as TODO. 1156 */ 1157 static void taprio_offload_config_changed(struct taprio_sched *q) 1158 { 1159 struct sched_gate_list *oper, *admin; 1160 1161 spin_lock(&q->current_entry_lock); 1162 1163 oper = rcu_dereference_protected(q->oper_sched, 1164 lockdep_is_held(&q->current_entry_lock)); 1165 admin = rcu_dereference_protected(q->admin_sched, 1166 lockdep_is_held(&q->current_entry_lock)); 1167 1168 switch_schedules(q, &admin, &oper); 1169 1170 spin_unlock(&q->current_entry_lock); 1171 } 1172 1173 static void taprio_sched_to_offload(struct taprio_sched *q, 1174 struct sched_gate_list *sched, 1175 const struct tc_mqprio_qopt *mqprio, 1176 struct tc_taprio_qopt_offload *offload) 1177 { 1178 struct sched_entry *entry; 1179 int i = 0; 1180 1181 offload->base_time = sched->base_time; 1182 offload->cycle_time = sched->cycle_time; 1183 offload->cycle_time_extension = sched->cycle_time_extension; 1184 1185 list_for_each_entry(entry, &sched->entries, list) { 1186 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1187 1188 e->command = entry->command; 1189 e->interval = entry->interval; 1190 e->gate_mask = entry->gate_mask; 1191 i++; 1192 } 1193 1194 offload->num_entries = i; 1195 } 1196 1197 static int taprio_enable_offload(struct net_device *dev, 1198 struct tc_mqprio_qopt *mqprio, 1199 struct taprio_sched *q, 1200 struct sched_gate_list *sched, 1201 struct netlink_ext_ack *extack) 1202 { 1203 const struct net_device_ops *ops = dev->netdev_ops; 1204 struct tc_taprio_qopt_offload *offload; 1205 int err = 0; 1206 1207 if (!ops->ndo_setup_tc) { 1208 NL_SET_ERR_MSG(extack, 1209 "Device does not support taprio offload"); 1210 return -EOPNOTSUPP; 1211 } 1212 1213 offload = taprio_offload_alloc(sched->num_entries); 1214 if (!offload) { 1215 NL_SET_ERR_MSG(extack, 1216 "Not enough memory for enabling offload mode"); 1217 return -ENOMEM; 1218 } 1219 offload->enable = 1; 1220 taprio_sched_to_offload(q, sched, mqprio, offload); 1221 1222 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1223 if (err < 0) { 1224 NL_SET_ERR_MSG(extack, 1225 "Device failed to setup taprio offload"); 1226 goto done; 1227 } 1228 1229 done: 1230 taprio_offload_free(offload); 1231 1232 return err; 1233 } 1234 1235 static int taprio_disable_offload(struct net_device *dev, 1236 struct taprio_sched *q, 1237 struct netlink_ext_ack *extack) 1238 { 1239 const struct net_device_ops *ops = dev->netdev_ops; 1240 struct tc_taprio_qopt_offload *offload; 1241 int err; 1242 1243 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) 1244 return 0; 1245 1246 if (!ops->ndo_setup_tc) 1247 return -EOPNOTSUPP; 1248 1249 offload = taprio_offload_alloc(0); 1250 if (!offload) { 1251 NL_SET_ERR_MSG(extack, 1252 "Not enough memory to disable offload mode"); 1253 return -ENOMEM; 1254 } 1255 offload->enable = 0; 1256 1257 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1258 if (err < 0) { 1259 NL_SET_ERR_MSG(extack, 1260 "Device failed to disable offload"); 1261 goto out; 1262 } 1263 1264 out: 1265 taprio_offload_free(offload); 1266 1267 return err; 1268 } 1269 1270 /* If full offload is enabled, the only possible clockid is the net device's 1271 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1272 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1273 * in sync with the specified clockid via a user space daemon such as phc2sys. 1274 * For both software taprio and txtime-assist, the clockid is used for the 1275 * hrtimer that advances the schedule and hence mandatory. 1276 */ 1277 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1278 struct netlink_ext_ack *extack) 1279 { 1280 struct taprio_sched *q = qdisc_priv(sch); 1281 struct net_device *dev = qdisc_dev(sch); 1282 int err = -EINVAL; 1283 1284 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1285 const struct ethtool_ops *ops = dev->ethtool_ops; 1286 struct ethtool_ts_info info = { 1287 .cmd = ETHTOOL_GET_TS_INFO, 1288 .phc_index = -1, 1289 }; 1290 1291 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1292 NL_SET_ERR_MSG(extack, 1293 "The 'clockid' cannot be specified for full offload"); 1294 goto out; 1295 } 1296 1297 if (ops && ops->get_ts_info) 1298 err = ops->get_ts_info(dev, &info); 1299 1300 if (err || info.phc_index < 0) { 1301 NL_SET_ERR_MSG(extack, 1302 "Device does not have a PTP clock"); 1303 err = -ENOTSUPP; 1304 goto out; 1305 } 1306 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1307 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1308 1309 /* We only support static clockids and we don't allow 1310 * for it to be modified after the first init. 1311 */ 1312 if (clockid < 0 || 1313 (q->clockid != -1 && q->clockid != clockid)) { 1314 NL_SET_ERR_MSG(extack, 1315 "Changing the 'clockid' of a running schedule is not supported"); 1316 err = -ENOTSUPP; 1317 goto out; 1318 } 1319 1320 switch (clockid) { 1321 case CLOCK_REALTIME: 1322 q->tk_offset = TK_OFFS_REAL; 1323 break; 1324 case CLOCK_MONOTONIC: 1325 q->tk_offset = TK_OFFS_MAX; 1326 break; 1327 case CLOCK_BOOTTIME: 1328 q->tk_offset = TK_OFFS_BOOT; 1329 break; 1330 case CLOCK_TAI: 1331 q->tk_offset = TK_OFFS_TAI; 1332 break; 1333 default: 1334 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1335 err = -EINVAL; 1336 goto out; 1337 } 1338 1339 q->clockid = clockid; 1340 } else { 1341 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1342 goto out; 1343 } 1344 1345 /* Everything went ok, return success. */ 1346 err = 0; 1347 1348 out: 1349 return err; 1350 } 1351 1352 static int taprio_mqprio_cmp(const struct net_device *dev, 1353 const struct tc_mqprio_qopt *mqprio) 1354 { 1355 int i; 1356 1357 if (!mqprio || mqprio->num_tc != dev->num_tc) 1358 return -1; 1359 1360 for (i = 0; i < mqprio->num_tc; i++) 1361 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1362 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1363 return -1; 1364 1365 for (i = 0; i <= TC_BITMASK; i++) 1366 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1367 return -1; 1368 1369 return 0; 1370 } 1371 1372 /* The semantics of the 'flags' argument in relation to 'change()' 1373 * requests, are interpreted following two rules (which are applied in 1374 * this order): (1) an omitted 'flags' argument is interpreted as 1375 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1376 * changed. 1377 */ 1378 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1379 struct netlink_ext_ack *extack) 1380 { 1381 u32 new = 0; 1382 1383 if (attr) 1384 new = nla_get_u32(attr); 1385 1386 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1387 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1388 return -EOPNOTSUPP; 1389 } 1390 1391 if (!taprio_flags_valid(new)) { 1392 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1393 return -EINVAL; 1394 } 1395 1396 return new; 1397 } 1398 1399 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1400 struct netlink_ext_ack *extack) 1401 { 1402 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1403 struct sched_gate_list *oper, *admin, *new_admin; 1404 struct taprio_sched *q = qdisc_priv(sch); 1405 struct net_device *dev = qdisc_dev(sch); 1406 struct tc_mqprio_qopt *mqprio = NULL; 1407 unsigned long flags; 1408 ktime_t start; 1409 int i, err; 1410 1411 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1412 taprio_policy, extack); 1413 if (err < 0) 1414 return err; 1415 1416 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1417 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1418 1419 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1420 q->flags, extack); 1421 if (err < 0) 1422 return err; 1423 1424 q->flags = err; 1425 1426 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1427 if (err < 0) 1428 return err; 1429 1430 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1431 if (!new_admin) { 1432 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1433 return -ENOMEM; 1434 } 1435 INIT_LIST_HEAD(&new_admin->entries); 1436 1437 rcu_read_lock(); 1438 oper = rcu_dereference(q->oper_sched); 1439 admin = rcu_dereference(q->admin_sched); 1440 rcu_read_unlock(); 1441 1442 /* no changes - no new mqprio settings */ 1443 if (!taprio_mqprio_cmp(dev, mqprio)) 1444 mqprio = NULL; 1445 1446 if (mqprio && (oper || admin)) { 1447 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1448 err = -ENOTSUPP; 1449 goto free_sched; 1450 } 1451 1452 err = parse_taprio_schedule(tb, new_admin, extack); 1453 if (err < 0) 1454 goto free_sched; 1455 1456 if (new_admin->num_entries == 0) { 1457 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1458 err = -EINVAL; 1459 goto free_sched; 1460 } 1461 1462 err = taprio_parse_clockid(sch, tb, extack); 1463 if (err < 0) 1464 goto free_sched; 1465 1466 taprio_set_picos_per_byte(dev, q); 1467 1468 if (mqprio) { 1469 netdev_set_num_tc(dev, mqprio->num_tc); 1470 for (i = 0; i < mqprio->num_tc; i++) 1471 netdev_set_tc_queue(dev, i, 1472 mqprio->count[i], 1473 mqprio->offset[i]); 1474 1475 /* Always use supplied priority mappings */ 1476 for (i = 0; i <= TC_BITMASK; i++) 1477 netdev_set_prio_tc_map(dev, i, 1478 mqprio->prio_tc_map[i]); 1479 } 1480 1481 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1482 err = taprio_enable_offload(dev, mqprio, q, new_admin, extack); 1483 else 1484 err = taprio_disable_offload(dev, q, extack); 1485 if (err) 1486 goto free_sched; 1487 1488 /* Protects against enqueue()/dequeue() */ 1489 spin_lock_bh(qdisc_lock(sch)); 1490 1491 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1492 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1493 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1494 err = -EINVAL; 1495 goto unlock; 1496 } 1497 1498 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1499 } 1500 1501 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1502 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1503 !hrtimer_active(&q->advance_timer)) { 1504 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1505 q->advance_timer.function = advance_sched; 1506 } 1507 1508 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1509 q->dequeue = taprio_dequeue_offload; 1510 q->peek = taprio_peek_offload; 1511 } else { 1512 /* Be sure to always keep the function pointers 1513 * in a consistent state. 1514 */ 1515 q->dequeue = taprio_dequeue_soft; 1516 q->peek = taprio_peek_soft; 1517 } 1518 1519 err = taprio_get_start_time(sch, new_admin, &start); 1520 if (err < 0) { 1521 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1522 goto unlock; 1523 } 1524 1525 setup_txtime(q, new_admin, start); 1526 1527 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1528 if (!oper) { 1529 rcu_assign_pointer(q->oper_sched, new_admin); 1530 err = 0; 1531 new_admin = NULL; 1532 goto unlock; 1533 } 1534 1535 rcu_assign_pointer(q->admin_sched, new_admin); 1536 if (admin) 1537 call_rcu(&admin->rcu, taprio_free_sched_cb); 1538 } else { 1539 setup_first_close_time(q, new_admin, start); 1540 1541 /* Protects against advance_sched() */ 1542 spin_lock_irqsave(&q->current_entry_lock, flags); 1543 1544 taprio_start_sched(sch, start, new_admin); 1545 1546 rcu_assign_pointer(q->admin_sched, new_admin); 1547 if (admin) 1548 call_rcu(&admin->rcu, taprio_free_sched_cb); 1549 1550 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1551 1552 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1553 taprio_offload_config_changed(q); 1554 } 1555 1556 new_admin = NULL; 1557 err = 0; 1558 1559 unlock: 1560 spin_unlock_bh(qdisc_lock(sch)); 1561 1562 free_sched: 1563 if (new_admin) 1564 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1565 1566 return err; 1567 } 1568 1569 static void taprio_destroy(struct Qdisc *sch) 1570 { 1571 struct taprio_sched *q = qdisc_priv(sch); 1572 struct net_device *dev = qdisc_dev(sch); 1573 unsigned int i; 1574 1575 spin_lock(&taprio_list_lock); 1576 list_del(&q->taprio_list); 1577 spin_unlock(&taprio_list_lock); 1578 1579 hrtimer_cancel(&q->advance_timer); 1580 1581 taprio_disable_offload(dev, q, NULL); 1582 1583 if (q->qdiscs) { 1584 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++) 1585 qdisc_put(q->qdiscs[i]); 1586 1587 kfree(q->qdiscs); 1588 } 1589 q->qdiscs = NULL; 1590 1591 netdev_reset_tc(dev); 1592 1593 if (q->oper_sched) 1594 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); 1595 1596 if (q->admin_sched) 1597 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); 1598 } 1599 1600 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 1601 struct netlink_ext_ack *extack) 1602 { 1603 struct taprio_sched *q = qdisc_priv(sch); 1604 struct net_device *dev = qdisc_dev(sch); 1605 int i; 1606 1607 spin_lock_init(&q->current_entry_lock); 1608 1609 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 1610 q->advance_timer.function = advance_sched; 1611 1612 q->dequeue = taprio_dequeue_soft; 1613 q->peek = taprio_peek_soft; 1614 1615 q->root = sch; 1616 1617 /* We only support static clockids. Use an invalid value as default 1618 * and get the valid one on taprio_change(). 1619 */ 1620 q->clockid = -1; 1621 q->flags = TAPRIO_FLAGS_INVALID; 1622 1623 spin_lock(&taprio_list_lock); 1624 list_add(&q->taprio_list, &taprio_list); 1625 spin_unlock(&taprio_list_lock); 1626 1627 if (sch->parent != TC_H_ROOT) 1628 return -EOPNOTSUPP; 1629 1630 if (!netif_is_multiqueue(dev)) 1631 return -EOPNOTSUPP; 1632 1633 /* pre-allocate qdisc, attachment can't fail */ 1634 q->qdiscs = kcalloc(dev->num_tx_queues, 1635 sizeof(q->qdiscs[0]), 1636 GFP_KERNEL); 1637 1638 if (!q->qdiscs) 1639 return -ENOMEM; 1640 1641 if (!opt) 1642 return -EINVAL; 1643 1644 for (i = 0; i < dev->num_tx_queues; i++) { 1645 struct netdev_queue *dev_queue; 1646 struct Qdisc *qdisc; 1647 1648 dev_queue = netdev_get_tx_queue(dev, i); 1649 qdisc = qdisc_create_dflt(dev_queue, 1650 &pfifo_qdisc_ops, 1651 TC_H_MAKE(TC_H_MAJ(sch->handle), 1652 TC_H_MIN(i + 1)), 1653 extack); 1654 if (!qdisc) 1655 return -ENOMEM; 1656 1657 if (i < dev->real_num_tx_queues) 1658 qdisc_hash_add(qdisc, false); 1659 1660 q->qdiscs[i] = qdisc; 1661 } 1662 1663 return taprio_change(sch, opt, extack); 1664 } 1665 1666 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 1667 unsigned long cl) 1668 { 1669 struct net_device *dev = qdisc_dev(sch); 1670 unsigned long ntx = cl - 1; 1671 1672 if (ntx >= dev->num_tx_queues) 1673 return NULL; 1674 1675 return netdev_get_tx_queue(dev, ntx); 1676 } 1677 1678 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 1679 struct Qdisc *new, struct Qdisc **old, 1680 struct netlink_ext_ack *extack) 1681 { 1682 struct taprio_sched *q = qdisc_priv(sch); 1683 struct net_device *dev = qdisc_dev(sch); 1684 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1685 1686 if (!dev_queue) 1687 return -EINVAL; 1688 1689 if (dev->flags & IFF_UP) 1690 dev_deactivate(dev); 1691 1692 *old = q->qdiscs[cl - 1]; 1693 q->qdiscs[cl - 1] = new; 1694 1695 if (new) 1696 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1697 1698 if (dev->flags & IFF_UP) 1699 dev_activate(dev); 1700 1701 return 0; 1702 } 1703 1704 static int dump_entry(struct sk_buff *msg, 1705 const struct sched_entry *entry) 1706 { 1707 struct nlattr *item; 1708 1709 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 1710 if (!item) 1711 return -ENOSPC; 1712 1713 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 1714 goto nla_put_failure; 1715 1716 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 1717 goto nla_put_failure; 1718 1719 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 1720 entry->gate_mask)) 1721 goto nla_put_failure; 1722 1723 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 1724 entry->interval)) 1725 goto nla_put_failure; 1726 1727 return nla_nest_end(msg, item); 1728 1729 nla_put_failure: 1730 nla_nest_cancel(msg, item); 1731 return -1; 1732 } 1733 1734 static int dump_schedule(struct sk_buff *msg, 1735 const struct sched_gate_list *root) 1736 { 1737 struct nlattr *entry_list; 1738 struct sched_entry *entry; 1739 1740 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 1741 root->base_time, TCA_TAPRIO_PAD)) 1742 return -1; 1743 1744 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 1745 root->cycle_time, TCA_TAPRIO_PAD)) 1746 return -1; 1747 1748 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 1749 root->cycle_time_extension, TCA_TAPRIO_PAD)) 1750 return -1; 1751 1752 entry_list = nla_nest_start_noflag(msg, 1753 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 1754 if (!entry_list) 1755 goto error_nest; 1756 1757 list_for_each_entry(entry, &root->entries, list) { 1758 if (dump_entry(msg, entry) < 0) 1759 goto error_nest; 1760 } 1761 1762 nla_nest_end(msg, entry_list); 1763 return 0; 1764 1765 error_nest: 1766 nla_nest_cancel(msg, entry_list); 1767 return -1; 1768 } 1769 1770 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 1771 { 1772 struct taprio_sched *q = qdisc_priv(sch); 1773 struct net_device *dev = qdisc_dev(sch); 1774 struct sched_gate_list *oper, *admin; 1775 struct tc_mqprio_qopt opt = { 0 }; 1776 struct nlattr *nest, *sched_nest; 1777 unsigned int i; 1778 1779 rcu_read_lock(); 1780 oper = rcu_dereference(q->oper_sched); 1781 admin = rcu_dereference(q->admin_sched); 1782 1783 opt.num_tc = netdev_get_num_tc(dev); 1784 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); 1785 1786 for (i = 0; i < netdev_get_num_tc(dev); i++) { 1787 opt.count[i] = dev->tc_to_txq[i].count; 1788 opt.offset[i] = dev->tc_to_txq[i].offset; 1789 } 1790 1791 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1792 if (!nest) 1793 goto start_error; 1794 1795 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 1796 goto options_error; 1797 1798 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 1799 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 1800 goto options_error; 1801 1802 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 1803 goto options_error; 1804 1805 if (q->txtime_delay && 1806 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 1807 goto options_error; 1808 1809 if (oper && dump_schedule(skb, oper)) 1810 goto options_error; 1811 1812 if (!admin) 1813 goto done; 1814 1815 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 1816 if (!sched_nest) 1817 goto options_error; 1818 1819 if (dump_schedule(skb, admin)) 1820 goto admin_error; 1821 1822 nla_nest_end(skb, sched_nest); 1823 1824 done: 1825 rcu_read_unlock(); 1826 1827 return nla_nest_end(skb, nest); 1828 1829 admin_error: 1830 nla_nest_cancel(skb, sched_nest); 1831 1832 options_error: 1833 nla_nest_cancel(skb, nest); 1834 1835 start_error: 1836 rcu_read_unlock(); 1837 return -ENOSPC; 1838 } 1839 1840 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 1841 { 1842 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1843 1844 if (!dev_queue) 1845 return NULL; 1846 1847 return dev_queue->qdisc_sleeping; 1848 } 1849 1850 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 1851 { 1852 unsigned int ntx = TC_H_MIN(classid); 1853 1854 if (!taprio_queue_get(sch, ntx)) 1855 return 0; 1856 return ntx; 1857 } 1858 1859 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 1860 struct sk_buff *skb, struct tcmsg *tcm) 1861 { 1862 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1863 1864 tcm->tcm_parent = TC_H_ROOT; 1865 tcm->tcm_handle |= TC_H_MIN(cl); 1866 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 1867 1868 return 0; 1869 } 1870 1871 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 1872 struct gnet_dump *d) 1873 __releases(d->lock) 1874 __acquires(d->lock) 1875 { 1876 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1877 1878 sch = dev_queue->qdisc_sleeping; 1879 if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 || 1880 qdisc_qstats_copy(d, sch) < 0) 1881 return -1; 1882 return 0; 1883 } 1884 1885 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1886 { 1887 struct net_device *dev = qdisc_dev(sch); 1888 unsigned long ntx; 1889 1890 if (arg->stop) 1891 return; 1892 1893 arg->count = arg->skip; 1894 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 1895 if (arg->fn(sch, ntx + 1, arg) < 0) { 1896 arg->stop = 1; 1897 break; 1898 } 1899 arg->count++; 1900 } 1901 } 1902 1903 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 1904 struct tcmsg *tcm) 1905 { 1906 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 1907 } 1908 1909 static const struct Qdisc_class_ops taprio_class_ops = { 1910 .graft = taprio_graft, 1911 .leaf = taprio_leaf, 1912 .find = taprio_find, 1913 .walk = taprio_walk, 1914 .dump = taprio_dump_class, 1915 .dump_stats = taprio_dump_class_stats, 1916 .select_queue = taprio_select_queue, 1917 }; 1918 1919 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 1920 .cl_ops = &taprio_class_ops, 1921 .id = "taprio", 1922 .priv_size = sizeof(struct taprio_sched), 1923 .init = taprio_init, 1924 .change = taprio_change, 1925 .destroy = taprio_destroy, 1926 .peek = taprio_peek, 1927 .dequeue = taprio_dequeue, 1928 .enqueue = taprio_enqueue, 1929 .dump = taprio_dump, 1930 .owner = THIS_MODULE, 1931 }; 1932 1933 static struct notifier_block taprio_device_notifier = { 1934 .notifier_call = taprio_dev_notifier, 1935 }; 1936 1937 static int __init taprio_module_init(void) 1938 { 1939 int err = register_netdevice_notifier(&taprio_device_notifier); 1940 1941 if (err) 1942 return err; 1943 1944 return register_qdisc(&taprio_qdisc_ops); 1945 } 1946 1947 static void __exit taprio_module_exit(void) 1948 { 1949 unregister_qdisc(&taprio_qdisc_ops); 1950 unregister_netdevice_notifier(&taprio_device_notifier); 1951 } 1952 1953 module_init(taprio_module_init); 1954 module_exit(taprio_module_exit); 1955 MODULE_LICENSE("GPL"); 1956