1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/ethtool_netlink.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/string.h> 15 #include <linux/list.h> 16 #include <linux/errno.h> 17 #include <linux/skbuff.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/time.h> 23 #include <net/gso.h> 24 #include <net/netlink.h> 25 #include <net/pkt_sched.h> 26 #include <net/pkt_cls.h> 27 #include <net/sch_generic.h> 28 #include <net/sock.h> 29 #include <net/tcp.h> 30 31 #define TAPRIO_STAT_NOT_SET (~0ULL) 32 33 #include "sch_mqprio_lib.h" 34 35 static LIST_HEAD(taprio_list); 36 static struct static_key_false taprio_have_broken_mqprio; 37 static struct static_key_false taprio_have_working_mqprio; 38 39 #define TAPRIO_ALL_GATES_OPEN -1 40 41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 43 #define TAPRIO_FLAGS_INVALID U32_MAX 44 45 struct sched_entry { 46 /* Durations between this GCL entry and the GCL entry where the 47 * respective traffic class gate closes 48 */ 49 u64 gate_duration[TC_MAX_QUEUE]; 50 atomic_t budget[TC_MAX_QUEUE]; 51 /* The qdisc makes some effort so that no packet leaves 52 * after this time 53 */ 54 ktime_t gate_close_time[TC_MAX_QUEUE]; 55 struct list_head list; 56 /* Used to calculate when to advance the schedule */ 57 ktime_t end_time; 58 ktime_t next_txtime; 59 int index; 60 u32 gate_mask; 61 u32 interval; 62 u8 command; 63 }; 64 65 struct sched_gate_list { 66 /* Longest non-zero contiguous gate durations per traffic class, 67 * or 0 if a traffic class gate never opens during the schedule. 68 */ 69 u64 max_open_gate_duration[TC_MAX_QUEUE]; 70 u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ 71 u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ 72 struct rcu_head rcu; 73 struct list_head entries; 74 size_t num_entries; 75 ktime_t cycle_end_time; 76 s64 cycle_time; 77 s64 cycle_time_extension; 78 s64 base_time; 79 }; 80 81 struct taprio_sched { 82 struct Qdisc **qdiscs; 83 struct Qdisc *root; 84 u32 flags; 85 enum tk_offsets tk_offset; 86 int clockid; 87 bool offloaded; 88 bool detected_mqprio; 89 bool broken_mqprio; 90 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 91 * speeds it's sub-nanoseconds per byte 92 */ 93 94 /* Protects the update side of the RCU protected current_entry */ 95 spinlock_t current_entry_lock; 96 struct sched_entry __rcu *current_entry; 97 struct sched_gate_list __rcu *oper_sched; 98 struct sched_gate_list __rcu *admin_sched; 99 struct hrtimer advance_timer; 100 struct list_head taprio_list; 101 int cur_txq[TC_MAX_QUEUE]; 102 u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ 103 u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ 104 u32 txtime_delay; 105 }; 106 107 struct __tc_taprio_qopt_offload { 108 refcount_t users; 109 struct tc_taprio_qopt_offload offload; 110 }; 111 112 static void taprio_calculate_gate_durations(struct taprio_sched *q, 113 struct sched_gate_list *sched) 114 { 115 struct net_device *dev = qdisc_dev(q->root); 116 int num_tc = netdev_get_num_tc(dev); 117 struct sched_entry *entry, *cur; 118 int tc; 119 120 list_for_each_entry(entry, &sched->entries, list) { 121 u32 gates_still_open = entry->gate_mask; 122 123 /* For each traffic class, calculate each open gate duration, 124 * starting at this schedule entry and ending at the schedule 125 * entry containing a gate close event for that TC. 126 */ 127 cur = entry; 128 129 do { 130 if (!gates_still_open) 131 break; 132 133 for (tc = 0; tc < num_tc; tc++) { 134 if (!(gates_still_open & BIT(tc))) 135 continue; 136 137 if (cur->gate_mask & BIT(tc)) 138 entry->gate_duration[tc] += cur->interval; 139 else 140 gates_still_open &= ~BIT(tc); 141 } 142 143 cur = list_next_entry_circular(cur, &sched->entries, list); 144 } while (cur != entry); 145 146 /* Keep track of the maximum gate duration for each traffic 147 * class, taking care to not confuse a traffic class which is 148 * temporarily closed with one that is always closed. 149 */ 150 for (tc = 0; tc < num_tc; tc++) 151 if (entry->gate_duration[tc] && 152 sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) 153 sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; 154 } 155 } 156 157 static bool taprio_entry_allows_tx(ktime_t skb_end_time, 158 struct sched_entry *entry, int tc) 159 { 160 return ktime_before(skb_end_time, entry->gate_close_time[tc]); 161 } 162 163 static ktime_t sched_base_time(const struct sched_gate_list *sched) 164 { 165 if (!sched) 166 return KTIME_MAX; 167 168 return ns_to_ktime(sched->base_time); 169 } 170 171 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 172 { 173 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 174 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 175 176 switch (tk_offset) { 177 case TK_OFFS_MAX: 178 return mono; 179 default: 180 return ktime_mono_to_any(mono, tk_offset); 181 } 182 } 183 184 static ktime_t taprio_get_time(const struct taprio_sched *q) 185 { 186 return taprio_mono_to_any(q, ktime_get()); 187 } 188 189 static void taprio_free_sched_cb(struct rcu_head *head) 190 { 191 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 192 struct sched_entry *entry, *n; 193 194 list_for_each_entry_safe(entry, n, &sched->entries, list) { 195 list_del(&entry->list); 196 kfree(entry); 197 } 198 199 kfree(sched); 200 } 201 202 static void switch_schedules(struct taprio_sched *q, 203 struct sched_gate_list **admin, 204 struct sched_gate_list **oper) 205 { 206 rcu_assign_pointer(q->oper_sched, *admin); 207 rcu_assign_pointer(q->admin_sched, NULL); 208 209 if (*oper) 210 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 211 212 *oper = *admin; 213 *admin = NULL; 214 } 215 216 /* Get how much time has been already elapsed in the current cycle. */ 217 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 218 { 219 ktime_t time_since_sched_start; 220 s32 time_elapsed; 221 222 time_since_sched_start = ktime_sub(time, sched->base_time); 223 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 224 225 return time_elapsed; 226 } 227 228 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 229 struct sched_gate_list *admin, 230 struct sched_entry *entry, 231 ktime_t intv_start) 232 { 233 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 234 ktime_t intv_end, cycle_ext_end, cycle_end; 235 236 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 237 intv_end = ktime_add_ns(intv_start, entry->interval); 238 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 239 240 if (ktime_before(intv_end, cycle_end)) 241 return intv_end; 242 else if (admin && admin != sched && 243 ktime_after(admin->base_time, cycle_end) && 244 ktime_before(admin->base_time, cycle_ext_end)) 245 return admin->base_time; 246 else 247 return cycle_end; 248 } 249 250 static int length_to_duration(struct taprio_sched *q, int len) 251 { 252 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); 253 } 254 255 static int duration_to_length(struct taprio_sched *q, u64 duration) 256 { 257 return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); 258 } 259 260 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the 261 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by 262 * the maximum open gate durations at the given link speed. 263 */ 264 static void taprio_update_queue_max_sdu(struct taprio_sched *q, 265 struct sched_gate_list *sched, 266 struct qdisc_size_table *stab) 267 { 268 struct net_device *dev = qdisc_dev(q->root); 269 int num_tc = netdev_get_num_tc(dev); 270 u32 max_sdu_from_user; 271 u32 max_sdu_dynamic; 272 u32 max_sdu; 273 int tc; 274 275 for (tc = 0; tc < num_tc; tc++) { 276 max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; 277 278 /* TC gate never closes => keep the queueMaxSDU 279 * selected by the user 280 */ 281 if (sched->max_open_gate_duration[tc] == sched->cycle_time) { 282 max_sdu_dynamic = U32_MAX; 283 } else { 284 u32 max_frm_len; 285 286 max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); 287 /* Compensate for L1 overhead from size table, 288 * but don't let the frame size go negative 289 */ 290 if (stab) { 291 max_frm_len -= stab->szopts.overhead; 292 max_frm_len = max_t(int, max_frm_len, 293 dev->hard_header_len + 1); 294 } 295 max_sdu_dynamic = max_frm_len - dev->hard_header_len; 296 if (max_sdu_dynamic > dev->max_mtu) 297 max_sdu_dynamic = U32_MAX; 298 } 299 300 max_sdu = min(max_sdu_dynamic, max_sdu_from_user); 301 302 if (max_sdu != U32_MAX) { 303 sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; 304 sched->max_sdu[tc] = max_sdu; 305 } else { 306 sched->max_frm_len[tc] = U32_MAX; /* never oversized */ 307 sched->max_sdu[tc] = 0; 308 } 309 } 310 } 311 312 /* Returns the entry corresponding to next available interval. If 313 * validate_interval is set, it only validates whether the timestamp occurs 314 * when the gate corresponding to the skb's traffic class is open. 315 */ 316 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 317 struct Qdisc *sch, 318 struct sched_gate_list *sched, 319 struct sched_gate_list *admin, 320 ktime_t time, 321 ktime_t *interval_start, 322 ktime_t *interval_end, 323 bool validate_interval) 324 { 325 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 326 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 327 struct sched_entry *entry = NULL, *entry_found = NULL; 328 struct taprio_sched *q = qdisc_priv(sch); 329 struct net_device *dev = qdisc_dev(sch); 330 bool entry_available = false; 331 s32 cycle_elapsed; 332 int tc, n; 333 334 tc = netdev_get_prio_tc_map(dev, skb->priority); 335 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 336 337 *interval_start = 0; 338 *interval_end = 0; 339 340 if (!sched) 341 return NULL; 342 343 cycle = sched->cycle_time; 344 cycle_elapsed = get_cycle_time_elapsed(sched, time); 345 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 346 cycle_end = ktime_add_ns(curr_intv_end, cycle); 347 348 list_for_each_entry(entry, &sched->entries, list) { 349 curr_intv_start = curr_intv_end; 350 curr_intv_end = get_interval_end_time(sched, admin, entry, 351 curr_intv_start); 352 353 if (ktime_after(curr_intv_start, cycle_end)) 354 break; 355 356 if (!(entry->gate_mask & BIT(tc)) || 357 packet_transmit_time > entry->interval) 358 continue; 359 360 txtime = entry->next_txtime; 361 362 if (ktime_before(txtime, time) || validate_interval) { 363 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 364 if ((ktime_before(curr_intv_start, time) && 365 ktime_before(transmit_end_time, curr_intv_end)) || 366 (ktime_after(curr_intv_start, time) && !validate_interval)) { 367 entry_found = entry; 368 *interval_start = curr_intv_start; 369 *interval_end = curr_intv_end; 370 break; 371 } else if (!entry_available && !validate_interval) { 372 /* Here, we are just trying to find out the 373 * first available interval in the next cycle. 374 */ 375 entry_available = true; 376 entry_found = entry; 377 *interval_start = ktime_add_ns(curr_intv_start, cycle); 378 *interval_end = ktime_add_ns(curr_intv_end, cycle); 379 } 380 } else if (ktime_before(txtime, earliest_txtime) && 381 !entry_available) { 382 earliest_txtime = txtime; 383 entry_found = entry; 384 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 385 *interval_start = ktime_add(curr_intv_start, n * cycle); 386 *interval_end = ktime_add(curr_intv_end, n * cycle); 387 } 388 } 389 390 return entry_found; 391 } 392 393 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 394 { 395 struct taprio_sched *q = qdisc_priv(sch); 396 struct sched_gate_list *sched, *admin; 397 ktime_t interval_start, interval_end; 398 struct sched_entry *entry; 399 400 rcu_read_lock(); 401 sched = rcu_dereference(q->oper_sched); 402 admin = rcu_dereference(q->admin_sched); 403 404 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 405 &interval_start, &interval_end, true); 406 rcu_read_unlock(); 407 408 return entry; 409 } 410 411 static bool taprio_flags_valid(u32 flags) 412 { 413 /* Make sure no other flag bits are set. */ 414 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 415 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 416 return false; 417 /* txtime-assist and full offload are mutually exclusive */ 418 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 419 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 420 return false; 421 return true; 422 } 423 424 /* This returns the tstamp value set by TCP in terms of the set clock. */ 425 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 426 { 427 unsigned int offset = skb_network_offset(skb); 428 const struct ipv6hdr *ipv6h; 429 const struct iphdr *iph; 430 struct ipv6hdr _ipv6h; 431 432 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 433 if (!ipv6h) 434 return 0; 435 436 if (ipv6h->version == 4) { 437 iph = (struct iphdr *)ipv6h; 438 offset += iph->ihl * 4; 439 440 /* special-case 6in4 tunnelling, as that is a common way to get 441 * v6 connectivity in the home 442 */ 443 if (iph->protocol == IPPROTO_IPV6) { 444 ipv6h = skb_header_pointer(skb, offset, 445 sizeof(_ipv6h), &_ipv6h); 446 447 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 448 return 0; 449 } else if (iph->protocol != IPPROTO_TCP) { 450 return 0; 451 } 452 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 453 return 0; 454 } 455 456 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 457 } 458 459 /* There are a few scenarios where we will have to modify the txtime from 460 * what is read from next_txtime in sched_entry. They are: 461 * 1. If txtime is in the past, 462 * a. The gate for the traffic class is currently open and packet can be 463 * transmitted before it closes, schedule the packet right away. 464 * b. If the gate corresponding to the traffic class is going to open later 465 * in the cycle, set the txtime of packet to the interval start. 466 * 2. If txtime is in the future, there are packets corresponding to the 467 * current traffic class waiting to be transmitted. So, the following 468 * possibilities exist: 469 * a. We can transmit the packet before the window containing the txtime 470 * closes. 471 * b. The window might close before the transmission can be completed 472 * successfully. So, schedule the packet in the next open window. 473 */ 474 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 475 { 476 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 477 struct taprio_sched *q = qdisc_priv(sch); 478 struct sched_gate_list *sched, *admin; 479 ktime_t minimum_time, now, txtime; 480 int len, packet_transmit_time; 481 struct sched_entry *entry; 482 bool sched_changed; 483 484 now = taprio_get_time(q); 485 minimum_time = ktime_add_ns(now, q->txtime_delay); 486 487 tcp_tstamp = get_tcp_tstamp(q, skb); 488 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 489 490 rcu_read_lock(); 491 admin = rcu_dereference(q->admin_sched); 492 sched = rcu_dereference(q->oper_sched); 493 if (admin && ktime_after(minimum_time, admin->base_time)) 494 switch_schedules(q, &admin, &sched); 495 496 /* Until the schedule starts, all the queues are open */ 497 if (!sched || ktime_before(minimum_time, sched->base_time)) { 498 txtime = minimum_time; 499 goto done; 500 } 501 502 len = qdisc_pkt_len(skb); 503 packet_transmit_time = length_to_duration(q, len); 504 505 do { 506 sched_changed = false; 507 508 entry = find_entry_to_transmit(skb, sch, sched, admin, 509 minimum_time, 510 &interval_start, &interval_end, 511 false); 512 if (!entry) { 513 txtime = 0; 514 goto done; 515 } 516 517 txtime = entry->next_txtime; 518 txtime = max_t(ktime_t, txtime, minimum_time); 519 txtime = max_t(ktime_t, txtime, interval_start); 520 521 if (admin && admin != sched && 522 ktime_after(txtime, admin->base_time)) { 523 sched = admin; 524 sched_changed = true; 525 continue; 526 } 527 528 transmit_end_time = ktime_add(txtime, packet_transmit_time); 529 minimum_time = transmit_end_time; 530 531 /* Update the txtime of current entry to the next time it's 532 * interval starts. 533 */ 534 if (ktime_after(transmit_end_time, interval_end)) 535 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 536 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 537 538 entry->next_txtime = transmit_end_time; 539 540 done: 541 rcu_read_unlock(); 542 return txtime; 543 } 544 545 /* Devices with full offload are expected to honor this in hardware */ 546 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, 547 struct sk_buff *skb) 548 { 549 struct taprio_sched *q = qdisc_priv(sch); 550 struct net_device *dev = qdisc_dev(sch); 551 struct sched_gate_list *sched; 552 int prio = skb->priority; 553 bool exceeds = false; 554 u8 tc; 555 556 tc = netdev_get_prio_tc_map(dev, prio); 557 558 rcu_read_lock(); 559 sched = rcu_dereference(q->oper_sched); 560 if (sched && skb->len > sched->max_frm_len[tc]) 561 exceeds = true; 562 rcu_read_unlock(); 563 564 return exceeds; 565 } 566 567 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 568 struct Qdisc *child, struct sk_buff **to_free) 569 { 570 struct taprio_sched *q = qdisc_priv(sch); 571 572 /* sk_flags are only safe to use on full sockets. */ 573 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { 574 if (!is_valid_interval(skb, sch)) 575 return qdisc_drop(skb, sch, to_free); 576 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 577 skb->tstamp = get_packet_txtime(skb, sch); 578 if (!skb->tstamp) 579 return qdisc_drop(skb, sch, to_free); 580 } 581 582 qdisc_qstats_backlog_inc(sch, skb); 583 sch->q.qlen++; 584 585 return qdisc_enqueue(skb, child, to_free); 586 } 587 588 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, 589 struct Qdisc *child, 590 struct sk_buff **to_free) 591 { 592 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 593 netdev_features_t features = netif_skb_features(skb); 594 struct sk_buff *segs, *nskb; 595 int ret; 596 597 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 598 if (IS_ERR_OR_NULL(segs)) 599 return qdisc_drop(skb, sch, to_free); 600 601 skb_list_walk_safe(segs, segs, nskb) { 602 skb_mark_not_on_list(segs); 603 qdisc_skb_cb(segs)->pkt_len = segs->len; 604 slen += segs->len; 605 606 /* FIXME: we should be segmenting to a smaller size 607 * rather than dropping these 608 */ 609 if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) 610 ret = qdisc_drop(segs, sch, to_free); 611 else 612 ret = taprio_enqueue_one(segs, sch, child, to_free); 613 614 if (ret != NET_XMIT_SUCCESS) { 615 if (net_xmit_drop_count(ret)) 616 qdisc_qstats_drop(sch); 617 } else { 618 numsegs++; 619 } 620 } 621 622 if (numsegs > 1) 623 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 624 consume_skb(skb); 625 626 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 627 } 628 629 /* Will not be called in the full offload case, since the TX queues are 630 * attached to the Qdisc created using qdisc_create_dflt() 631 */ 632 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 633 struct sk_buff **to_free) 634 { 635 struct taprio_sched *q = qdisc_priv(sch); 636 struct Qdisc *child; 637 int queue; 638 639 queue = skb_get_queue_mapping(skb); 640 641 child = q->qdiscs[queue]; 642 if (unlikely(!child)) 643 return qdisc_drop(skb, sch, to_free); 644 645 if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { 646 /* Large packets might not be transmitted when the transmission 647 * duration exceeds any configured interval. Therefore, segment 648 * the skb into smaller chunks. Drivers with full offload are 649 * expected to handle this in hardware. 650 */ 651 if (skb_is_gso(skb)) 652 return taprio_enqueue_segmented(skb, sch, child, 653 to_free); 654 655 return qdisc_drop(skb, sch, to_free); 656 } 657 658 return taprio_enqueue_one(skb, sch, child, to_free); 659 } 660 661 static struct sk_buff *taprio_peek(struct Qdisc *sch) 662 { 663 WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); 664 return NULL; 665 } 666 667 static void taprio_set_budgets(struct taprio_sched *q, 668 struct sched_gate_list *sched, 669 struct sched_entry *entry) 670 { 671 struct net_device *dev = qdisc_dev(q->root); 672 int num_tc = netdev_get_num_tc(dev); 673 int tc, budget; 674 675 for (tc = 0; tc < num_tc; tc++) { 676 /* Traffic classes which never close have infinite budget */ 677 if (entry->gate_duration[tc] == sched->cycle_time) 678 budget = INT_MAX; 679 else 680 budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, 681 atomic64_read(&q->picos_per_byte)); 682 683 atomic_set(&entry->budget[tc], budget); 684 } 685 } 686 687 /* When an skb is sent, it consumes from the budget of all traffic classes */ 688 static int taprio_update_budgets(struct sched_entry *entry, size_t len, 689 int tc_consumed, int num_tc) 690 { 691 int tc, budget, new_budget = 0; 692 693 for (tc = 0; tc < num_tc; tc++) { 694 budget = atomic_read(&entry->budget[tc]); 695 /* Don't consume from infinite budget */ 696 if (budget == INT_MAX) { 697 if (tc == tc_consumed) 698 new_budget = budget; 699 continue; 700 } 701 702 if (tc == tc_consumed) 703 new_budget = atomic_sub_return(len, &entry->budget[tc]); 704 else 705 atomic_sub(len, &entry->budget[tc]); 706 } 707 708 return new_budget; 709 } 710 711 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, 712 struct sched_entry *entry, 713 u32 gate_mask) 714 { 715 struct taprio_sched *q = qdisc_priv(sch); 716 struct net_device *dev = qdisc_dev(sch); 717 struct Qdisc *child = q->qdiscs[txq]; 718 int num_tc = netdev_get_num_tc(dev); 719 struct sk_buff *skb; 720 ktime_t guard; 721 int prio; 722 int len; 723 u8 tc; 724 725 if (unlikely(!child)) 726 return NULL; 727 728 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 729 goto skip_peek_checks; 730 731 skb = child->ops->peek(child); 732 if (!skb) 733 return NULL; 734 735 prio = skb->priority; 736 tc = netdev_get_prio_tc_map(dev, prio); 737 738 if (!(gate_mask & BIT(tc))) 739 return NULL; 740 741 len = qdisc_pkt_len(skb); 742 guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); 743 744 /* In the case that there's no gate entry, there's no 745 * guard band ... 746 */ 747 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 748 !taprio_entry_allows_tx(guard, entry, tc)) 749 return NULL; 750 751 /* ... and no budget. */ 752 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 753 taprio_update_budgets(entry, len, tc, num_tc) < 0) 754 return NULL; 755 756 skip_peek_checks: 757 skb = child->ops->dequeue(child); 758 if (unlikely(!skb)) 759 return NULL; 760 761 qdisc_bstats_update(sch, skb); 762 qdisc_qstats_backlog_dec(sch, skb); 763 sch->q.qlen--; 764 765 return skb; 766 } 767 768 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) 769 { 770 int offset = dev->tc_to_txq[tc].offset; 771 int count = dev->tc_to_txq[tc].count; 772 773 (*txq)++; 774 if (*txq == offset + count) 775 *txq = offset; 776 } 777 778 /* Prioritize higher traffic classes, and select among TXQs belonging to the 779 * same TC using round robin 780 */ 781 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, 782 struct sched_entry *entry, 783 u32 gate_mask) 784 { 785 struct taprio_sched *q = qdisc_priv(sch); 786 struct net_device *dev = qdisc_dev(sch); 787 int num_tc = netdev_get_num_tc(dev); 788 struct sk_buff *skb; 789 int tc; 790 791 for (tc = num_tc - 1; tc >= 0; tc--) { 792 int first_txq = q->cur_txq[tc]; 793 794 if (!(gate_mask & BIT(tc))) 795 continue; 796 797 do { 798 skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], 799 entry, gate_mask); 800 801 taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); 802 803 if (q->cur_txq[tc] >= dev->num_tx_queues) 804 q->cur_txq[tc] = first_txq; 805 806 if (skb) 807 return skb; 808 } while (q->cur_txq[tc] != first_txq); 809 } 810 811 return NULL; 812 } 813 814 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic 815 * class other than to determine whether the gate is open or not 816 */ 817 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, 818 struct sched_entry *entry, 819 u32 gate_mask) 820 { 821 struct net_device *dev = qdisc_dev(sch); 822 struct sk_buff *skb; 823 int i; 824 825 for (i = 0; i < dev->num_tx_queues; i++) { 826 skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); 827 if (skb) 828 return skb; 829 } 830 831 return NULL; 832 } 833 834 /* Will not be called in the full offload case, since the TX queues are 835 * attached to the Qdisc created using qdisc_create_dflt() 836 */ 837 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 838 { 839 struct taprio_sched *q = qdisc_priv(sch); 840 struct sk_buff *skb = NULL; 841 struct sched_entry *entry; 842 u32 gate_mask; 843 844 rcu_read_lock(); 845 entry = rcu_dereference(q->current_entry); 846 /* if there's no entry, it means that the schedule didn't 847 * start yet, so force all gates to be open, this is in 848 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 849 * "AdminGateStates" 850 */ 851 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 852 if (!gate_mask) 853 goto done; 854 855 if (static_branch_unlikely(&taprio_have_broken_mqprio) && 856 !static_branch_likely(&taprio_have_working_mqprio)) { 857 /* Single NIC kind which is broken */ 858 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 859 } else if (static_branch_likely(&taprio_have_working_mqprio) && 860 !static_branch_unlikely(&taprio_have_broken_mqprio)) { 861 /* Single NIC kind which prioritizes properly */ 862 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 863 } else { 864 /* Mixed NIC kinds present in system, need dynamic testing */ 865 if (q->broken_mqprio) 866 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 867 else 868 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 869 } 870 871 done: 872 rcu_read_unlock(); 873 874 return skb; 875 } 876 877 static bool should_restart_cycle(const struct sched_gate_list *oper, 878 const struct sched_entry *entry) 879 { 880 if (list_is_last(&entry->list, &oper->entries)) 881 return true; 882 883 if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) 884 return true; 885 886 return false; 887 } 888 889 static bool should_change_schedules(const struct sched_gate_list *admin, 890 const struct sched_gate_list *oper, 891 ktime_t end_time) 892 { 893 ktime_t next_base_time, extension_time; 894 895 if (!admin) 896 return false; 897 898 next_base_time = sched_base_time(admin); 899 900 /* This is the simple case, the end_time would fall after 901 * the next schedule base_time. 902 */ 903 if (ktime_compare(next_base_time, end_time) <= 0) 904 return true; 905 906 /* This is the cycle_time_extension case, if the end_time 907 * plus the amount that can be extended would fall after the 908 * next schedule base_time, we can extend the current schedule 909 * for that amount. 910 */ 911 extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); 912 913 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 914 * how precisely the extension should be made. So after 915 * conformance testing, this logic may change. 916 */ 917 if (ktime_compare(next_base_time, extension_time) <= 0) 918 return true; 919 920 return false; 921 } 922 923 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 924 { 925 struct taprio_sched *q = container_of(timer, struct taprio_sched, 926 advance_timer); 927 struct net_device *dev = qdisc_dev(q->root); 928 struct sched_gate_list *oper, *admin; 929 int num_tc = netdev_get_num_tc(dev); 930 struct sched_entry *entry, *next; 931 struct Qdisc *sch = q->root; 932 ktime_t end_time; 933 int tc; 934 935 spin_lock(&q->current_entry_lock); 936 entry = rcu_dereference_protected(q->current_entry, 937 lockdep_is_held(&q->current_entry_lock)); 938 oper = rcu_dereference_protected(q->oper_sched, 939 lockdep_is_held(&q->current_entry_lock)); 940 admin = rcu_dereference_protected(q->admin_sched, 941 lockdep_is_held(&q->current_entry_lock)); 942 943 if (!oper) 944 switch_schedules(q, &admin, &oper); 945 946 /* This can happen in two cases: 1. this is the very first run 947 * of this function (i.e. we weren't running any schedule 948 * previously); 2. The previous schedule just ended. The first 949 * entry of all schedules are pre-calculated during the 950 * schedule initialization. 951 */ 952 if (unlikely(!entry || entry->end_time == oper->base_time)) { 953 next = list_first_entry(&oper->entries, struct sched_entry, 954 list); 955 end_time = next->end_time; 956 goto first_run; 957 } 958 959 if (should_restart_cycle(oper, entry)) { 960 next = list_first_entry(&oper->entries, struct sched_entry, 961 list); 962 oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, 963 oper->cycle_time); 964 } else { 965 next = list_next_entry(entry, list); 966 } 967 968 end_time = ktime_add_ns(entry->end_time, next->interval); 969 end_time = min_t(ktime_t, end_time, oper->cycle_end_time); 970 971 for (tc = 0; tc < num_tc; tc++) { 972 if (next->gate_duration[tc] == oper->cycle_time) 973 next->gate_close_time[tc] = KTIME_MAX; 974 else 975 next->gate_close_time[tc] = ktime_add_ns(entry->end_time, 976 next->gate_duration[tc]); 977 } 978 979 if (should_change_schedules(admin, oper, end_time)) { 980 /* Set things so the next time this runs, the new 981 * schedule runs. 982 */ 983 end_time = sched_base_time(admin); 984 switch_schedules(q, &admin, &oper); 985 } 986 987 next->end_time = end_time; 988 taprio_set_budgets(q, oper, next); 989 990 first_run: 991 rcu_assign_pointer(q->current_entry, next); 992 spin_unlock(&q->current_entry_lock); 993 994 hrtimer_set_expires(&q->advance_timer, end_time); 995 996 rcu_read_lock(); 997 __netif_schedule(sch); 998 rcu_read_unlock(); 999 1000 return HRTIMER_RESTART; 1001 } 1002 1003 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 1004 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 1005 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 1006 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 1007 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 1008 }; 1009 1010 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { 1011 [TCA_TAPRIO_TC_ENTRY_INDEX] = NLA_POLICY_MAX(NLA_U32, 1012 TC_QOPT_MAX_QUEUE), 1013 [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, 1014 [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, 1015 TC_FP_EXPRESS, 1016 TC_FP_PREEMPTIBLE), 1017 }; 1018 1019 static struct netlink_range_validation_signed taprio_cycle_time_range = { 1020 .min = 0, 1021 .max = INT_MAX, 1022 }; 1023 1024 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 1025 [TCA_TAPRIO_ATTR_PRIOMAP] = { 1026 .len = sizeof(struct tc_mqprio_qopt) 1027 }, 1028 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 1029 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 1030 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 1031 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 1032 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = 1033 NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range), 1034 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 1035 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 1036 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 1037 [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, 1038 }; 1039 1040 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 1041 struct sched_entry *entry, 1042 struct netlink_ext_ack *extack) 1043 { 1044 int min_duration = length_to_duration(q, ETH_ZLEN); 1045 u32 interval = 0; 1046 1047 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 1048 entry->command = nla_get_u8( 1049 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 1050 1051 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 1052 entry->gate_mask = nla_get_u32( 1053 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 1054 1055 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 1056 interval = nla_get_u32( 1057 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 1058 1059 /* The interval should allow at least the minimum ethernet 1060 * frame to go out. 1061 */ 1062 if (interval < min_duration) { 1063 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 1064 return -EINVAL; 1065 } 1066 1067 entry->interval = interval; 1068 1069 return 0; 1070 } 1071 1072 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 1073 struct sched_entry *entry, int index, 1074 struct netlink_ext_ack *extack) 1075 { 1076 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 1077 int err; 1078 1079 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 1080 entry_policy, NULL); 1081 if (err < 0) { 1082 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 1083 return -EINVAL; 1084 } 1085 1086 entry->index = index; 1087 1088 return fill_sched_entry(q, tb, entry, extack); 1089 } 1090 1091 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 1092 struct sched_gate_list *sched, 1093 struct netlink_ext_ack *extack) 1094 { 1095 struct nlattr *n; 1096 int err, rem; 1097 int i = 0; 1098 1099 if (!list) 1100 return -EINVAL; 1101 1102 nla_for_each_nested(n, list, rem) { 1103 struct sched_entry *entry; 1104 1105 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 1106 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 1107 continue; 1108 } 1109 1110 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1111 if (!entry) { 1112 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 1113 return -ENOMEM; 1114 } 1115 1116 err = parse_sched_entry(q, n, entry, i, extack); 1117 if (err < 0) { 1118 kfree(entry); 1119 return err; 1120 } 1121 1122 list_add_tail(&entry->list, &sched->entries); 1123 i++; 1124 } 1125 1126 sched->num_entries = i; 1127 1128 return i; 1129 } 1130 1131 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 1132 struct sched_gate_list *new, 1133 struct netlink_ext_ack *extack) 1134 { 1135 int err = 0; 1136 1137 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 1138 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 1139 return -ENOTSUPP; 1140 } 1141 1142 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 1143 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 1144 1145 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 1146 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 1147 1148 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 1149 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 1150 1151 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 1152 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 1153 new, extack); 1154 if (err < 0) 1155 return err; 1156 1157 if (!new->cycle_time) { 1158 struct sched_entry *entry; 1159 ktime_t cycle = 0; 1160 1161 list_for_each_entry(entry, &new->entries, list) 1162 cycle = ktime_add_ns(cycle, entry->interval); 1163 1164 if (!cycle) { 1165 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 1166 return -EINVAL; 1167 } 1168 1169 if (cycle < 0 || cycle > INT_MAX) { 1170 NL_SET_ERR_MSG(extack, "'cycle_time' is too big"); 1171 return -EINVAL; 1172 } 1173 1174 new->cycle_time = cycle; 1175 } 1176 1177 taprio_calculate_gate_durations(q, new); 1178 1179 return 0; 1180 } 1181 1182 static int taprio_parse_mqprio_opt(struct net_device *dev, 1183 struct tc_mqprio_qopt *qopt, 1184 struct netlink_ext_ack *extack, 1185 u32 taprio_flags) 1186 { 1187 bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); 1188 1189 if (!qopt && !dev->num_tc) { 1190 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 1191 return -EINVAL; 1192 } 1193 1194 /* If num_tc is already set, it means that the user already 1195 * configured the mqprio part 1196 */ 1197 if (dev->num_tc) 1198 return 0; 1199 1200 /* taprio imposes that traffic classes map 1:n to tx queues */ 1201 if (qopt->num_tc > dev->num_tx_queues) { 1202 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 1203 return -EINVAL; 1204 } 1205 1206 /* For some reason, in txtime-assist mode, we allow TXQ ranges for 1207 * different TCs to overlap, and just validate the TXQ ranges. 1208 */ 1209 return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, 1210 extack); 1211 } 1212 1213 static int taprio_get_start_time(struct Qdisc *sch, 1214 struct sched_gate_list *sched, 1215 ktime_t *start) 1216 { 1217 struct taprio_sched *q = qdisc_priv(sch); 1218 ktime_t now, base, cycle; 1219 s64 n; 1220 1221 base = sched_base_time(sched); 1222 now = taprio_get_time(q); 1223 1224 if (ktime_after(base, now)) { 1225 *start = base; 1226 return 0; 1227 } 1228 1229 cycle = sched->cycle_time; 1230 1231 /* The qdisc is expected to have at least one sched_entry. Moreover, 1232 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1233 * something went really wrong. In that case, we should warn about this 1234 * inconsistent state and return error. 1235 */ 1236 if (WARN_ON(!cycle)) 1237 return -EFAULT; 1238 1239 /* Schedule the start time for the beginning of the next 1240 * cycle. 1241 */ 1242 n = div64_s64(ktime_sub_ns(now, base), cycle); 1243 *start = ktime_add_ns(base, (n + 1) * cycle); 1244 return 0; 1245 } 1246 1247 static void setup_first_end_time(struct taprio_sched *q, 1248 struct sched_gate_list *sched, ktime_t base) 1249 { 1250 struct net_device *dev = qdisc_dev(q->root); 1251 int num_tc = netdev_get_num_tc(dev); 1252 struct sched_entry *first; 1253 ktime_t cycle; 1254 int tc; 1255 1256 first = list_first_entry(&sched->entries, 1257 struct sched_entry, list); 1258 1259 cycle = sched->cycle_time; 1260 1261 /* FIXME: find a better place to do this */ 1262 sched->cycle_end_time = ktime_add_ns(base, cycle); 1263 1264 first->end_time = ktime_add_ns(base, first->interval); 1265 taprio_set_budgets(q, sched, first); 1266 1267 for (tc = 0; tc < num_tc; tc++) { 1268 if (first->gate_duration[tc] == sched->cycle_time) 1269 first->gate_close_time[tc] = KTIME_MAX; 1270 else 1271 first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); 1272 } 1273 1274 rcu_assign_pointer(q->current_entry, NULL); 1275 } 1276 1277 static void taprio_start_sched(struct Qdisc *sch, 1278 ktime_t start, struct sched_gate_list *new) 1279 { 1280 struct taprio_sched *q = qdisc_priv(sch); 1281 ktime_t expires; 1282 1283 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1284 return; 1285 1286 expires = hrtimer_get_expires(&q->advance_timer); 1287 if (expires == 0) 1288 expires = KTIME_MAX; 1289 1290 /* If the new schedule starts before the next expiration, we 1291 * reprogram it to the earliest one, so we change the admin 1292 * schedule to the operational one at the right time. 1293 */ 1294 start = min_t(ktime_t, start, expires); 1295 1296 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1297 } 1298 1299 static void taprio_set_picos_per_byte(struct net_device *dev, 1300 struct taprio_sched *q) 1301 { 1302 struct ethtool_link_ksettings ecmd; 1303 int speed = SPEED_10; 1304 int picos_per_byte; 1305 int err; 1306 1307 err = __ethtool_get_link_ksettings(dev, &ecmd); 1308 if (err < 0) 1309 goto skip; 1310 1311 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1312 speed = ecmd.base.speed; 1313 1314 skip: 1315 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1316 1317 atomic64_set(&q->picos_per_byte, picos_per_byte); 1318 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1319 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1320 ecmd.base.speed); 1321 } 1322 1323 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1324 void *ptr) 1325 { 1326 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1327 struct sched_gate_list *oper, *admin; 1328 struct qdisc_size_table *stab; 1329 struct taprio_sched *q; 1330 1331 ASSERT_RTNL(); 1332 1333 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1334 return NOTIFY_DONE; 1335 1336 list_for_each_entry(q, &taprio_list, taprio_list) { 1337 if (dev != qdisc_dev(q->root)) 1338 continue; 1339 1340 taprio_set_picos_per_byte(dev, q); 1341 1342 stab = rtnl_dereference(q->root->stab); 1343 1344 oper = rtnl_dereference(q->oper_sched); 1345 if (oper) 1346 taprio_update_queue_max_sdu(q, oper, stab); 1347 1348 admin = rtnl_dereference(q->admin_sched); 1349 if (admin) 1350 taprio_update_queue_max_sdu(q, admin, stab); 1351 1352 break; 1353 } 1354 1355 return NOTIFY_DONE; 1356 } 1357 1358 static void setup_txtime(struct taprio_sched *q, 1359 struct sched_gate_list *sched, ktime_t base) 1360 { 1361 struct sched_entry *entry; 1362 u64 interval = 0; 1363 1364 list_for_each_entry(entry, &sched->entries, list) { 1365 entry->next_txtime = ktime_add_ns(base, interval); 1366 interval += entry->interval; 1367 } 1368 } 1369 1370 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1371 { 1372 struct __tc_taprio_qopt_offload *__offload; 1373 1374 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1375 GFP_KERNEL); 1376 if (!__offload) 1377 return NULL; 1378 1379 refcount_set(&__offload->users, 1); 1380 1381 return &__offload->offload; 1382 } 1383 1384 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1385 *offload) 1386 { 1387 struct __tc_taprio_qopt_offload *__offload; 1388 1389 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1390 offload); 1391 1392 refcount_inc(&__offload->users); 1393 1394 return offload; 1395 } 1396 EXPORT_SYMBOL_GPL(taprio_offload_get); 1397 1398 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1399 { 1400 struct __tc_taprio_qopt_offload *__offload; 1401 1402 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1403 offload); 1404 1405 if (!refcount_dec_and_test(&__offload->users)) 1406 return; 1407 1408 kfree(__offload); 1409 } 1410 EXPORT_SYMBOL_GPL(taprio_offload_free); 1411 1412 /* The function will only serve to keep the pointers to the "oper" and "admin" 1413 * schedules valid in relation to their base times, so when calling dump() the 1414 * users looks at the right schedules. 1415 * When using full offload, the admin configuration is promoted to oper at the 1416 * base_time in the PHC time domain. But because the system time is not 1417 * necessarily in sync with that, we can't just trigger a hrtimer to call 1418 * switch_schedules at the right hardware time. 1419 * At the moment we call this by hand right away from taprio, but in the future 1420 * it will be useful to create a mechanism for drivers to notify taprio of the 1421 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1422 * This is left as TODO. 1423 */ 1424 static void taprio_offload_config_changed(struct taprio_sched *q) 1425 { 1426 struct sched_gate_list *oper, *admin; 1427 1428 oper = rtnl_dereference(q->oper_sched); 1429 admin = rtnl_dereference(q->admin_sched); 1430 1431 switch_schedules(q, &admin, &oper); 1432 } 1433 1434 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1435 { 1436 u32 i, queue_mask = 0; 1437 1438 for (i = 0; i < dev->num_tc; i++) { 1439 u32 offset, count; 1440 1441 if (!(tc_mask & BIT(i))) 1442 continue; 1443 1444 offset = dev->tc_to_txq[i].offset; 1445 count = dev->tc_to_txq[i].count; 1446 1447 queue_mask |= GENMASK(offset + count - 1, offset); 1448 } 1449 1450 return queue_mask; 1451 } 1452 1453 static void taprio_sched_to_offload(struct net_device *dev, 1454 struct sched_gate_list *sched, 1455 struct tc_taprio_qopt_offload *offload, 1456 const struct tc_taprio_caps *caps) 1457 { 1458 struct sched_entry *entry; 1459 int i = 0; 1460 1461 offload->base_time = sched->base_time; 1462 offload->cycle_time = sched->cycle_time; 1463 offload->cycle_time_extension = sched->cycle_time_extension; 1464 1465 list_for_each_entry(entry, &sched->entries, list) { 1466 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1467 1468 e->command = entry->command; 1469 e->interval = entry->interval; 1470 if (caps->gate_mask_per_txq) 1471 e->gate_mask = tc_map_to_queue_mask(dev, 1472 entry->gate_mask); 1473 else 1474 e->gate_mask = entry->gate_mask; 1475 1476 i++; 1477 } 1478 1479 offload->num_entries = i; 1480 } 1481 1482 static void taprio_detect_broken_mqprio(struct taprio_sched *q) 1483 { 1484 struct net_device *dev = qdisc_dev(q->root); 1485 struct tc_taprio_caps caps; 1486 1487 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1488 &caps, sizeof(caps)); 1489 1490 q->broken_mqprio = caps.broken_mqprio; 1491 if (q->broken_mqprio) 1492 static_branch_inc(&taprio_have_broken_mqprio); 1493 else 1494 static_branch_inc(&taprio_have_working_mqprio); 1495 1496 q->detected_mqprio = true; 1497 } 1498 1499 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) 1500 { 1501 if (!q->detected_mqprio) 1502 return; 1503 1504 if (q->broken_mqprio) 1505 static_branch_dec(&taprio_have_broken_mqprio); 1506 else 1507 static_branch_dec(&taprio_have_working_mqprio); 1508 } 1509 1510 static int taprio_enable_offload(struct net_device *dev, 1511 struct taprio_sched *q, 1512 struct sched_gate_list *sched, 1513 struct netlink_ext_ack *extack) 1514 { 1515 const struct net_device_ops *ops = dev->netdev_ops; 1516 struct tc_taprio_qopt_offload *offload; 1517 struct tc_taprio_caps caps; 1518 int tc, err = 0; 1519 1520 if (!ops->ndo_setup_tc) { 1521 NL_SET_ERR_MSG(extack, 1522 "Device does not support taprio offload"); 1523 return -EOPNOTSUPP; 1524 } 1525 1526 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1527 &caps, sizeof(caps)); 1528 1529 if (!caps.supports_queue_max_sdu) { 1530 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 1531 if (q->max_sdu[tc]) { 1532 NL_SET_ERR_MSG_MOD(extack, 1533 "Device does not handle queueMaxSDU"); 1534 return -EOPNOTSUPP; 1535 } 1536 } 1537 } 1538 1539 offload = taprio_offload_alloc(sched->num_entries); 1540 if (!offload) { 1541 NL_SET_ERR_MSG(extack, 1542 "Not enough memory for enabling offload mode"); 1543 return -ENOMEM; 1544 } 1545 offload->cmd = TAPRIO_CMD_REPLACE; 1546 offload->extack = extack; 1547 mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); 1548 offload->mqprio.extack = extack; 1549 taprio_sched_to_offload(dev, sched, offload, &caps); 1550 mqprio_fp_to_offload(q->fp, &offload->mqprio); 1551 1552 for (tc = 0; tc < TC_MAX_QUEUE; tc++) 1553 offload->max_sdu[tc] = q->max_sdu[tc]; 1554 1555 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1556 if (err < 0) { 1557 NL_SET_ERR_MSG_WEAK(extack, 1558 "Device failed to setup taprio offload"); 1559 goto done; 1560 } 1561 1562 q->offloaded = true; 1563 1564 done: 1565 /* The offload structure may linger around via a reference taken by the 1566 * device driver, so clear up the netlink extack pointer so that the 1567 * driver isn't tempted to dereference data which stopped being valid 1568 */ 1569 offload->extack = NULL; 1570 offload->mqprio.extack = NULL; 1571 taprio_offload_free(offload); 1572 1573 return err; 1574 } 1575 1576 static int taprio_disable_offload(struct net_device *dev, 1577 struct taprio_sched *q, 1578 struct netlink_ext_ack *extack) 1579 { 1580 const struct net_device_ops *ops = dev->netdev_ops; 1581 struct tc_taprio_qopt_offload *offload; 1582 int err; 1583 1584 if (!q->offloaded) 1585 return 0; 1586 1587 offload = taprio_offload_alloc(0); 1588 if (!offload) { 1589 NL_SET_ERR_MSG(extack, 1590 "Not enough memory to disable offload mode"); 1591 return -ENOMEM; 1592 } 1593 offload->cmd = TAPRIO_CMD_DESTROY; 1594 1595 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1596 if (err < 0) { 1597 NL_SET_ERR_MSG(extack, 1598 "Device failed to disable offload"); 1599 goto out; 1600 } 1601 1602 q->offloaded = false; 1603 1604 out: 1605 taprio_offload_free(offload); 1606 1607 return err; 1608 } 1609 1610 /* If full offload is enabled, the only possible clockid is the net device's 1611 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1612 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1613 * in sync with the specified clockid via a user space daemon such as phc2sys. 1614 * For both software taprio and txtime-assist, the clockid is used for the 1615 * hrtimer that advances the schedule and hence mandatory. 1616 */ 1617 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1618 struct netlink_ext_ack *extack) 1619 { 1620 struct taprio_sched *q = qdisc_priv(sch); 1621 struct net_device *dev = qdisc_dev(sch); 1622 int err = -EINVAL; 1623 1624 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1625 const struct ethtool_ops *ops = dev->ethtool_ops; 1626 struct ethtool_ts_info info = { 1627 .cmd = ETHTOOL_GET_TS_INFO, 1628 .phc_index = -1, 1629 }; 1630 1631 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1632 NL_SET_ERR_MSG(extack, 1633 "The 'clockid' cannot be specified for full offload"); 1634 goto out; 1635 } 1636 1637 if (ops && ops->get_ts_info) 1638 err = ops->get_ts_info(dev, &info); 1639 1640 if (err || info.phc_index < 0) { 1641 NL_SET_ERR_MSG(extack, 1642 "Device does not have a PTP clock"); 1643 err = -ENOTSUPP; 1644 goto out; 1645 } 1646 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1647 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1648 enum tk_offsets tk_offset; 1649 1650 /* We only support static clockids and we don't allow 1651 * for it to be modified after the first init. 1652 */ 1653 if (clockid < 0 || 1654 (q->clockid != -1 && q->clockid != clockid)) { 1655 NL_SET_ERR_MSG(extack, 1656 "Changing the 'clockid' of a running schedule is not supported"); 1657 err = -ENOTSUPP; 1658 goto out; 1659 } 1660 1661 switch (clockid) { 1662 case CLOCK_REALTIME: 1663 tk_offset = TK_OFFS_REAL; 1664 break; 1665 case CLOCK_MONOTONIC: 1666 tk_offset = TK_OFFS_MAX; 1667 break; 1668 case CLOCK_BOOTTIME: 1669 tk_offset = TK_OFFS_BOOT; 1670 break; 1671 case CLOCK_TAI: 1672 tk_offset = TK_OFFS_TAI; 1673 break; 1674 default: 1675 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1676 err = -EINVAL; 1677 goto out; 1678 } 1679 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1680 WRITE_ONCE(q->tk_offset, tk_offset); 1681 1682 q->clockid = clockid; 1683 } else { 1684 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1685 goto out; 1686 } 1687 1688 /* Everything went ok, return success. */ 1689 err = 0; 1690 1691 out: 1692 return err; 1693 } 1694 1695 static int taprio_parse_tc_entry(struct Qdisc *sch, 1696 struct nlattr *opt, 1697 u32 max_sdu[TC_QOPT_MAX_QUEUE], 1698 u32 fp[TC_QOPT_MAX_QUEUE], 1699 unsigned long *seen_tcs, 1700 struct netlink_ext_ack *extack) 1701 { 1702 struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; 1703 struct net_device *dev = qdisc_dev(sch); 1704 int err, tc; 1705 u32 val; 1706 1707 err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, 1708 taprio_tc_policy, extack); 1709 if (err < 0) 1710 return err; 1711 1712 if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { 1713 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); 1714 return -EINVAL; 1715 } 1716 1717 tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); 1718 if (tc >= TC_QOPT_MAX_QUEUE) { 1719 NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); 1720 return -ERANGE; 1721 } 1722 1723 if (*seen_tcs & BIT(tc)) { 1724 NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); 1725 return -EINVAL; 1726 } 1727 1728 *seen_tcs |= BIT(tc); 1729 1730 if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { 1731 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); 1732 if (val > dev->max_mtu) { 1733 NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); 1734 return -ERANGE; 1735 } 1736 1737 max_sdu[tc] = val; 1738 } 1739 1740 if (tb[TCA_TAPRIO_TC_ENTRY_FP]) 1741 fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); 1742 1743 return 0; 1744 } 1745 1746 static int taprio_parse_tc_entries(struct Qdisc *sch, 1747 struct nlattr *opt, 1748 struct netlink_ext_ack *extack) 1749 { 1750 struct taprio_sched *q = qdisc_priv(sch); 1751 struct net_device *dev = qdisc_dev(sch); 1752 u32 max_sdu[TC_QOPT_MAX_QUEUE]; 1753 bool have_preemption = false; 1754 unsigned long seen_tcs = 0; 1755 u32 fp[TC_QOPT_MAX_QUEUE]; 1756 struct nlattr *n; 1757 int tc, rem; 1758 int err = 0; 1759 1760 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1761 max_sdu[tc] = q->max_sdu[tc]; 1762 fp[tc] = q->fp[tc]; 1763 } 1764 1765 nla_for_each_nested(n, opt, rem) { 1766 if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY) 1767 continue; 1768 1769 err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, 1770 extack); 1771 if (err) 1772 return err; 1773 } 1774 1775 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1776 q->max_sdu[tc] = max_sdu[tc]; 1777 q->fp[tc] = fp[tc]; 1778 if (fp[tc] != TC_FP_EXPRESS) 1779 have_preemption = true; 1780 } 1781 1782 if (have_preemption) { 1783 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1784 NL_SET_ERR_MSG(extack, 1785 "Preemption only supported with full offload"); 1786 return -EOPNOTSUPP; 1787 } 1788 1789 if (!ethtool_dev_mm_supported(dev)) { 1790 NL_SET_ERR_MSG(extack, 1791 "Device does not support preemption"); 1792 return -EOPNOTSUPP; 1793 } 1794 } 1795 1796 return err; 1797 } 1798 1799 static int taprio_mqprio_cmp(const struct net_device *dev, 1800 const struct tc_mqprio_qopt *mqprio) 1801 { 1802 int i; 1803 1804 if (!mqprio || mqprio->num_tc != dev->num_tc) 1805 return -1; 1806 1807 for (i = 0; i < mqprio->num_tc; i++) 1808 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1809 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1810 return -1; 1811 1812 for (i = 0; i <= TC_BITMASK; i++) 1813 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1814 return -1; 1815 1816 return 0; 1817 } 1818 1819 /* The semantics of the 'flags' argument in relation to 'change()' 1820 * requests, are interpreted following two rules (which are applied in 1821 * this order): (1) an omitted 'flags' argument is interpreted as 1822 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1823 * changed. 1824 */ 1825 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1826 struct netlink_ext_ack *extack) 1827 { 1828 u32 new = 0; 1829 1830 if (attr) 1831 new = nla_get_u32(attr); 1832 1833 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1834 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1835 return -EOPNOTSUPP; 1836 } 1837 1838 if (!taprio_flags_valid(new)) { 1839 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1840 return -EINVAL; 1841 } 1842 1843 return new; 1844 } 1845 1846 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1847 struct netlink_ext_ack *extack) 1848 { 1849 struct qdisc_size_table *stab = rtnl_dereference(sch->stab); 1850 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1851 struct sched_gate_list *oper, *admin, *new_admin; 1852 struct taprio_sched *q = qdisc_priv(sch); 1853 struct net_device *dev = qdisc_dev(sch); 1854 struct tc_mqprio_qopt *mqprio = NULL; 1855 unsigned long flags; 1856 ktime_t start; 1857 int i, err; 1858 1859 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1860 taprio_policy, extack); 1861 if (err < 0) 1862 return err; 1863 1864 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1865 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1866 1867 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1868 q->flags, extack); 1869 if (err < 0) 1870 return err; 1871 1872 q->flags = err; 1873 1874 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1875 if (err < 0) 1876 return err; 1877 1878 err = taprio_parse_tc_entries(sch, opt, extack); 1879 if (err) 1880 return err; 1881 1882 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1883 if (!new_admin) { 1884 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1885 return -ENOMEM; 1886 } 1887 INIT_LIST_HEAD(&new_admin->entries); 1888 1889 oper = rtnl_dereference(q->oper_sched); 1890 admin = rtnl_dereference(q->admin_sched); 1891 1892 /* no changes - no new mqprio settings */ 1893 if (!taprio_mqprio_cmp(dev, mqprio)) 1894 mqprio = NULL; 1895 1896 if (mqprio && (oper || admin)) { 1897 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1898 err = -ENOTSUPP; 1899 goto free_sched; 1900 } 1901 1902 if (mqprio) { 1903 err = netdev_set_num_tc(dev, mqprio->num_tc); 1904 if (err) 1905 goto free_sched; 1906 for (i = 0; i < mqprio->num_tc; i++) { 1907 netdev_set_tc_queue(dev, i, 1908 mqprio->count[i], 1909 mqprio->offset[i]); 1910 q->cur_txq[i] = mqprio->offset[i]; 1911 } 1912 1913 /* Always use supplied priority mappings */ 1914 for (i = 0; i <= TC_BITMASK; i++) 1915 netdev_set_prio_tc_map(dev, i, 1916 mqprio->prio_tc_map[i]); 1917 } 1918 1919 err = parse_taprio_schedule(q, tb, new_admin, extack); 1920 if (err < 0) 1921 goto free_sched; 1922 1923 if (new_admin->num_entries == 0) { 1924 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1925 err = -EINVAL; 1926 goto free_sched; 1927 } 1928 1929 err = taprio_parse_clockid(sch, tb, extack); 1930 if (err < 0) 1931 goto free_sched; 1932 1933 taprio_set_picos_per_byte(dev, q); 1934 taprio_update_queue_max_sdu(q, new_admin, stab); 1935 1936 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1937 err = taprio_enable_offload(dev, q, new_admin, extack); 1938 else 1939 err = taprio_disable_offload(dev, q, extack); 1940 if (err) 1941 goto free_sched; 1942 1943 /* Protects against enqueue()/dequeue() */ 1944 spin_lock_bh(qdisc_lock(sch)); 1945 1946 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1947 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1948 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1949 err = -EINVAL; 1950 goto unlock; 1951 } 1952 1953 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1954 } 1955 1956 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1957 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1958 !hrtimer_active(&q->advance_timer)) { 1959 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1960 q->advance_timer.function = advance_sched; 1961 } 1962 1963 err = taprio_get_start_time(sch, new_admin, &start); 1964 if (err < 0) { 1965 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1966 goto unlock; 1967 } 1968 1969 setup_txtime(q, new_admin, start); 1970 1971 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1972 if (!oper) { 1973 rcu_assign_pointer(q->oper_sched, new_admin); 1974 err = 0; 1975 new_admin = NULL; 1976 goto unlock; 1977 } 1978 1979 rcu_assign_pointer(q->admin_sched, new_admin); 1980 if (admin) 1981 call_rcu(&admin->rcu, taprio_free_sched_cb); 1982 } else { 1983 setup_first_end_time(q, new_admin, start); 1984 1985 /* Protects against advance_sched() */ 1986 spin_lock_irqsave(&q->current_entry_lock, flags); 1987 1988 taprio_start_sched(sch, start, new_admin); 1989 1990 rcu_assign_pointer(q->admin_sched, new_admin); 1991 if (admin) 1992 call_rcu(&admin->rcu, taprio_free_sched_cb); 1993 1994 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1995 1996 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1997 taprio_offload_config_changed(q); 1998 } 1999 2000 new_admin = NULL; 2001 err = 0; 2002 2003 if (!stab) 2004 NL_SET_ERR_MSG_MOD(extack, 2005 "Size table not specified, frame length estimations may be inaccurate"); 2006 2007 unlock: 2008 spin_unlock_bh(qdisc_lock(sch)); 2009 2010 free_sched: 2011 if (new_admin) 2012 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 2013 2014 return err; 2015 } 2016 2017 static void taprio_reset(struct Qdisc *sch) 2018 { 2019 struct taprio_sched *q = qdisc_priv(sch); 2020 struct net_device *dev = qdisc_dev(sch); 2021 int i; 2022 2023 hrtimer_cancel(&q->advance_timer); 2024 2025 if (q->qdiscs) { 2026 for (i = 0; i < dev->num_tx_queues; i++) 2027 if (q->qdiscs[i]) 2028 qdisc_reset(q->qdiscs[i]); 2029 } 2030 } 2031 2032 static void taprio_destroy(struct Qdisc *sch) 2033 { 2034 struct taprio_sched *q = qdisc_priv(sch); 2035 struct net_device *dev = qdisc_dev(sch); 2036 struct sched_gate_list *oper, *admin; 2037 unsigned int i; 2038 2039 list_del(&q->taprio_list); 2040 2041 /* Note that taprio_reset() might not be called if an error 2042 * happens in qdisc_create(), after taprio_init() has been called. 2043 */ 2044 hrtimer_cancel(&q->advance_timer); 2045 qdisc_synchronize(sch); 2046 2047 taprio_disable_offload(dev, q, NULL); 2048 2049 if (q->qdiscs) { 2050 for (i = 0; i < dev->num_tx_queues; i++) 2051 qdisc_put(q->qdiscs[i]); 2052 2053 kfree(q->qdiscs); 2054 } 2055 q->qdiscs = NULL; 2056 2057 netdev_reset_tc(dev); 2058 2059 oper = rtnl_dereference(q->oper_sched); 2060 admin = rtnl_dereference(q->admin_sched); 2061 2062 if (oper) 2063 call_rcu(&oper->rcu, taprio_free_sched_cb); 2064 2065 if (admin) 2066 call_rcu(&admin->rcu, taprio_free_sched_cb); 2067 2068 taprio_cleanup_broken_mqprio(q); 2069 } 2070 2071 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 2072 struct netlink_ext_ack *extack) 2073 { 2074 struct taprio_sched *q = qdisc_priv(sch); 2075 struct net_device *dev = qdisc_dev(sch); 2076 int i, tc; 2077 2078 spin_lock_init(&q->current_entry_lock); 2079 2080 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 2081 q->advance_timer.function = advance_sched; 2082 2083 q->root = sch; 2084 2085 /* We only support static clockids. Use an invalid value as default 2086 * and get the valid one on taprio_change(). 2087 */ 2088 q->clockid = -1; 2089 q->flags = TAPRIO_FLAGS_INVALID; 2090 2091 list_add(&q->taprio_list, &taprio_list); 2092 2093 if (sch->parent != TC_H_ROOT) { 2094 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); 2095 return -EOPNOTSUPP; 2096 } 2097 2098 if (!netif_is_multiqueue(dev)) { 2099 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); 2100 return -EOPNOTSUPP; 2101 } 2102 2103 q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]), 2104 GFP_KERNEL); 2105 if (!q->qdiscs) 2106 return -ENOMEM; 2107 2108 if (!opt) 2109 return -EINVAL; 2110 2111 for (i = 0; i < dev->num_tx_queues; i++) { 2112 struct netdev_queue *dev_queue; 2113 struct Qdisc *qdisc; 2114 2115 dev_queue = netdev_get_tx_queue(dev, i); 2116 qdisc = qdisc_create_dflt(dev_queue, 2117 &pfifo_qdisc_ops, 2118 TC_H_MAKE(TC_H_MAJ(sch->handle), 2119 TC_H_MIN(i + 1)), 2120 extack); 2121 if (!qdisc) 2122 return -ENOMEM; 2123 2124 if (i < dev->real_num_tx_queues) 2125 qdisc_hash_add(qdisc, false); 2126 2127 q->qdiscs[i] = qdisc; 2128 } 2129 2130 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) 2131 q->fp[tc] = TC_FP_EXPRESS; 2132 2133 taprio_detect_broken_mqprio(q); 2134 2135 return taprio_change(sch, opt, extack); 2136 } 2137 2138 static void taprio_attach(struct Qdisc *sch) 2139 { 2140 struct taprio_sched *q = qdisc_priv(sch); 2141 struct net_device *dev = qdisc_dev(sch); 2142 unsigned int ntx; 2143 2144 /* Attach underlying qdisc */ 2145 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 2146 struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx); 2147 struct Qdisc *old, *dev_queue_qdisc; 2148 2149 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2150 struct Qdisc *qdisc = q->qdiscs[ntx]; 2151 2152 /* In offload mode, the root taprio qdisc is bypassed 2153 * and the netdev TX queues see the children directly 2154 */ 2155 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2156 dev_queue_qdisc = qdisc; 2157 } else { 2158 /* In software mode, attach the root taprio qdisc 2159 * to all netdev TX queues, so that dev_qdisc_enqueue() 2160 * goes through taprio_enqueue(). 2161 */ 2162 dev_queue_qdisc = sch; 2163 } 2164 old = dev_graft_qdisc(dev_queue, dev_queue_qdisc); 2165 /* The qdisc's refcount requires to be elevated once 2166 * for each netdev TX queue it is grafted onto 2167 */ 2168 qdisc_refcount_inc(dev_queue_qdisc); 2169 if (old) 2170 qdisc_put(old); 2171 } 2172 } 2173 2174 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 2175 unsigned long cl) 2176 { 2177 struct net_device *dev = qdisc_dev(sch); 2178 unsigned long ntx = cl - 1; 2179 2180 if (ntx >= dev->num_tx_queues) 2181 return NULL; 2182 2183 return netdev_get_tx_queue(dev, ntx); 2184 } 2185 2186 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 2187 struct Qdisc *new, struct Qdisc **old, 2188 struct netlink_ext_ack *extack) 2189 { 2190 struct taprio_sched *q = qdisc_priv(sch); 2191 struct net_device *dev = qdisc_dev(sch); 2192 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2193 2194 if (!dev_queue) 2195 return -EINVAL; 2196 2197 if (dev->flags & IFF_UP) 2198 dev_deactivate(dev); 2199 2200 /* In offload mode, the child Qdisc is directly attached to the netdev 2201 * TX queue, and thus, we need to keep its refcount elevated in order 2202 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue. 2203 * However, save the reference to the new qdisc in the private array in 2204 * both software and offload cases, to have an up-to-date reference to 2205 * our children. 2206 */ 2207 *old = q->qdiscs[cl - 1]; 2208 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2209 WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old); 2210 if (new) 2211 qdisc_refcount_inc(new); 2212 if (*old) 2213 qdisc_put(*old); 2214 } 2215 2216 q->qdiscs[cl - 1] = new; 2217 if (new) 2218 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2219 2220 if (dev->flags & IFF_UP) 2221 dev_activate(dev); 2222 2223 return 0; 2224 } 2225 2226 static int dump_entry(struct sk_buff *msg, 2227 const struct sched_entry *entry) 2228 { 2229 struct nlattr *item; 2230 2231 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 2232 if (!item) 2233 return -ENOSPC; 2234 2235 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 2236 goto nla_put_failure; 2237 2238 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 2239 goto nla_put_failure; 2240 2241 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 2242 entry->gate_mask)) 2243 goto nla_put_failure; 2244 2245 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 2246 entry->interval)) 2247 goto nla_put_failure; 2248 2249 return nla_nest_end(msg, item); 2250 2251 nla_put_failure: 2252 nla_nest_cancel(msg, item); 2253 return -1; 2254 } 2255 2256 static int dump_schedule(struct sk_buff *msg, 2257 const struct sched_gate_list *root) 2258 { 2259 struct nlattr *entry_list; 2260 struct sched_entry *entry; 2261 2262 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 2263 root->base_time, TCA_TAPRIO_PAD)) 2264 return -1; 2265 2266 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 2267 root->cycle_time, TCA_TAPRIO_PAD)) 2268 return -1; 2269 2270 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 2271 root->cycle_time_extension, TCA_TAPRIO_PAD)) 2272 return -1; 2273 2274 entry_list = nla_nest_start_noflag(msg, 2275 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 2276 if (!entry_list) 2277 goto error_nest; 2278 2279 list_for_each_entry(entry, &root->entries, list) { 2280 if (dump_entry(msg, entry) < 0) 2281 goto error_nest; 2282 } 2283 2284 nla_nest_end(msg, entry_list); 2285 return 0; 2286 2287 error_nest: 2288 nla_nest_cancel(msg, entry_list); 2289 return -1; 2290 } 2291 2292 static int taprio_dump_tc_entries(struct sk_buff *skb, 2293 struct taprio_sched *q, 2294 struct sched_gate_list *sched) 2295 { 2296 struct nlattr *n; 2297 int tc; 2298 2299 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 2300 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); 2301 if (!n) 2302 return -EMSGSIZE; 2303 2304 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) 2305 goto nla_put_failure; 2306 2307 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, 2308 sched->max_sdu[tc])) 2309 goto nla_put_failure; 2310 2311 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) 2312 goto nla_put_failure; 2313 2314 nla_nest_end(skb, n); 2315 } 2316 2317 return 0; 2318 2319 nla_put_failure: 2320 nla_nest_cancel(skb, n); 2321 return -EMSGSIZE; 2322 } 2323 2324 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) 2325 { 2326 if (val == TAPRIO_STAT_NOT_SET) 2327 return 0; 2328 if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD)) 2329 return -EMSGSIZE; 2330 return 0; 2331 } 2332 2333 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d, 2334 struct tc_taprio_qopt_offload *offload, 2335 struct tc_taprio_qopt_stats *stats) 2336 { 2337 struct net_device *dev = qdisc_dev(sch); 2338 const struct net_device_ops *ops; 2339 struct sk_buff *skb = d->skb; 2340 struct nlattr *xstats; 2341 int err; 2342 2343 ops = qdisc_dev(sch)->netdev_ops; 2344 2345 /* FIXME I could use qdisc_offload_dump_helper(), but that messes 2346 * with sch->flags depending on whether the device reports taprio 2347 * stats, and I'm not sure whether that's a good idea, considering 2348 * that stats are optional to the offload itself 2349 */ 2350 if (!ops->ndo_setup_tc) 2351 return 0; 2352 2353 memset(stats, 0xff, sizeof(*stats)); 2354 2355 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 2356 if (err == -EOPNOTSUPP) 2357 return 0; 2358 if (err) 2359 return err; 2360 2361 xstats = nla_nest_start(skb, TCA_STATS_APP); 2362 if (!xstats) 2363 goto err; 2364 2365 if (taprio_put_stat(skb, stats->window_drops, 2366 TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) || 2367 taprio_put_stat(skb, stats->tx_overruns, 2368 TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS)) 2369 goto err_cancel; 2370 2371 nla_nest_end(skb, xstats); 2372 2373 return 0; 2374 2375 err_cancel: 2376 nla_nest_cancel(skb, xstats); 2377 err: 2378 return -EMSGSIZE; 2379 } 2380 2381 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 2382 { 2383 struct tc_taprio_qopt_offload offload = { 2384 .cmd = TAPRIO_CMD_STATS, 2385 }; 2386 2387 return taprio_dump_xstats(sch, d, &offload, &offload.stats); 2388 } 2389 2390 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 2391 { 2392 struct taprio_sched *q = qdisc_priv(sch); 2393 struct net_device *dev = qdisc_dev(sch); 2394 struct sched_gate_list *oper, *admin; 2395 struct tc_mqprio_qopt opt = { 0 }; 2396 struct nlattr *nest, *sched_nest; 2397 2398 oper = rtnl_dereference(q->oper_sched); 2399 admin = rtnl_dereference(q->admin_sched); 2400 2401 mqprio_qopt_reconstruct(dev, &opt); 2402 2403 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 2404 if (!nest) 2405 goto start_error; 2406 2407 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 2408 goto options_error; 2409 2410 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 2411 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 2412 goto options_error; 2413 2414 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 2415 goto options_error; 2416 2417 if (q->txtime_delay && 2418 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 2419 goto options_error; 2420 2421 if (oper && taprio_dump_tc_entries(skb, q, oper)) 2422 goto options_error; 2423 2424 if (oper && dump_schedule(skb, oper)) 2425 goto options_error; 2426 2427 if (!admin) 2428 goto done; 2429 2430 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 2431 if (!sched_nest) 2432 goto options_error; 2433 2434 if (dump_schedule(skb, admin)) 2435 goto admin_error; 2436 2437 nla_nest_end(skb, sched_nest); 2438 2439 done: 2440 return nla_nest_end(skb, nest); 2441 2442 admin_error: 2443 nla_nest_cancel(skb, sched_nest); 2444 2445 options_error: 2446 nla_nest_cancel(skb, nest); 2447 2448 start_error: 2449 return -ENOSPC; 2450 } 2451 2452 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 2453 { 2454 struct taprio_sched *q = qdisc_priv(sch); 2455 struct net_device *dev = qdisc_dev(sch); 2456 unsigned int ntx = cl - 1; 2457 2458 if (ntx >= dev->num_tx_queues) 2459 return NULL; 2460 2461 return q->qdiscs[ntx]; 2462 } 2463 2464 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 2465 { 2466 unsigned int ntx = TC_H_MIN(classid); 2467 2468 if (!taprio_queue_get(sch, ntx)) 2469 return 0; 2470 return ntx; 2471 } 2472 2473 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 2474 struct sk_buff *skb, struct tcmsg *tcm) 2475 { 2476 struct Qdisc *child = taprio_leaf(sch, cl); 2477 2478 tcm->tcm_parent = TC_H_ROOT; 2479 tcm->tcm_handle |= TC_H_MIN(cl); 2480 tcm->tcm_info = child->handle; 2481 2482 return 0; 2483 } 2484 2485 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 2486 struct gnet_dump *d) 2487 __releases(d->lock) 2488 __acquires(d->lock) 2489 { 2490 struct Qdisc *child = taprio_leaf(sch, cl); 2491 struct tc_taprio_qopt_offload offload = { 2492 .cmd = TAPRIO_CMD_QUEUE_STATS, 2493 .queue_stats = { 2494 .queue = cl - 1, 2495 }, 2496 }; 2497 2498 if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 || 2499 qdisc_qstats_copy(d, child) < 0) 2500 return -1; 2501 2502 return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats); 2503 } 2504 2505 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 2506 { 2507 struct net_device *dev = qdisc_dev(sch); 2508 unsigned long ntx; 2509 2510 if (arg->stop) 2511 return; 2512 2513 arg->count = arg->skip; 2514 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2515 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) 2516 break; 2517 } 2518 } 2519 2520 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2521 struct tcmsg *tcm) 2522 { 2523 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2524 } 2525 2526 static const struct Qdisc_class_ops taprio_class_ops = { 2527 .graft = taprio_graft, 2528 .leaf = taprio_leaf, 2529 .find = taprio_find, 2530 .walk = taprio_walk, 2531 .dump = taprio_dump_class, 2532 .dump_stats = taprio_dump_class_stats, 2533 .select_queue = taprio_select_queue, 2534 }; 2535 2536 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2537 .cl_ops = &taprio_class_ops, 2538 .id = "taprio", 2539 .priv_size = sizeof(struct taprio_sched), 2540 .init = taprio_init, 2541 .change = taprio_change, 2542 .destroy = taprio_destroy, 2543 .reset = taprio_reset, 2544 .attach = taprio_attach, 2545 .peek = taprio_peek, 2546 .dequeue = taprio_dequeue, 2547 .enqueue = taprio_enqueue, 2548 .dump = taprio_dump, 2549 .dump_stats = taprio_dump_stats, 2550 .owner = THIS_MODULE, 2551 }; 2552 2553 static struct notifier_block taprio_device_notifier = { 2554 .notifier_call = taprio_dev_notifier, 2555 }; 2556 2557 static int __init taprio_module_init(void) 2558 { 2559 int err = register_netdevice_notifier(&taprio_device_notifier); 2560 2561 if (err) 2562 return err; 2563 2564 return register_qdisc(&taprio_qdisc_ops); 2565 } 2566 2567 static void __exit taprio_module_exit(void) 2568 { 2569 unregister_qdisc(&taprio_qdisc_ops); 2570 unregister_netdevice_notifier(&taprio_device_notifier); 2571 } 2572 2573 module_init(taprio_module_init); 2574 module_exit(taprio_module_exit); 2575 MODULE_LICENSE("GPL"); 2576