1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/list.h> 14 #include <linux/errno.h> 15 #include <linux/skbuff.h> 16 #include <linux/math64.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/rcupdate.h> 20 #include <net/netlink.h> 21 #include <net/pkt_sched.h> 22 #include <net/pkt_cls.h> 23 #include <net/sch_generic.h> 24 #include <net/sock.h> 25 #include <net/tcp.h> 26 27 static LIST_HEAD(taprio_list); 28 static DEFINE_SPINLOCK(taprio_list_lock); 29 30 #define TAPRIO_ALL_GATES_OPEN -1 31 32 #define FLAGS_VALID(flags) (!((flags) & ~TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)) 33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 34 35 struct sched_entry { 36 struct list_head list; 37 38 /* The instant that this entry "closes" and the next one 39 * should open, the qdisc will make some effort so that no 40 * packet leaves after this time. 41 */ 42 ktime_t close_time; 43 ktime_t next_txtime; 44 atomic_t budget; 45 int index; 46 u32 gate_mask; 47 u32 interval; 48 u8 command; 49 }; 50 51 struct sched_gate_list { 52 struct rcu_head rcu; 53 struct list_head entries; 54 size_t num_entries; 55 ktime_t cycle_close_time; 56 s64 cycle_time; 57 s64 cycle_time_extension; 58 s64 base_time; 59 }; 60 61 struct taprio_sched { 62 struct Qdisc **qdiscs; 63 struct Qdisc *root; 64 u32 flags; 65 enum tk_offsets tk_offset; 66 int clockid; 67 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 68 * speeds it's sub-nanoseconds per byte 69 */ 70 71 /* Protects the update side of the RCU protected current_entry */ 72 spinlock_t current_entry_lock; 73 struct sched_entry __rcu *current_entry; 74 struct sched_gate_list __rcu *oper_sched; 75 struct sched_gate_list __rcu *admin_sched; 76 struct hrtimer advance_timer; 77 struct list_head taprio_list; 78 u32 txtime_delay; 79 }; 80 81 static ktime_t sched_base_time(const struct sched_gate_list *sched) 82 { 83 if (!sched) 84 return KTIME_MAX; 85 86 return ns_to_ktime(sched->base_time); 87 } 88 89 static ktime_t taprio_get_time(struct taprio_sched *q) 90 { 91 ktime_t mono = ktime_get(); 92 93 switch (q->tk_offset) { 94 case TK_OFFS_MAX: 95 return mono; 96 default: 97 return ktime_mono_to_any(mono, q->tk_offset); 98 } 99 100 return KTIME_MAX; 101 } 102 103 static void taprio_free_sched_cb(struct rcu_head *head) 104 { 105 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 106 struct sched_entry *entry, *n; 107 108 if (!sched) 109 return; 110 111 list_for_each_entry_safe(entry, n, &sched->entries, list) { 112 list_del(&entry->list); 113 kfree(entry); 114 } 115 116 kfree(sched); 117 } 118 119 static void switch_schedules(struct taprio_sched *q, 120 struct sched_gate_list **admin, 121 struct sched_gate_list **oper) 122 { 123 rcu_assign_pointer(q->oper_sched, *admin); 124 rcu_assign_pointer(q->admin_sched, NULL); 125 126 if (*oper) 127 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 128 129 *oper = *admin; 130 *admin = NULL; 131 } 132 133 /* Get how much time has been already elapsed in the current cycle. */ 134 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 135 { 136 ktime_t time_since_sched_start; 137 s32 time_elapsed; 138 139 time_since_sched_start = ktime_sub(time, sched->base_time); 140 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 141 142 return time_elapsed; 143 } 144 145 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 146 struct sched_gate_list *admin, 147 struct sched_entry *entry, 148 ktime_t intv_start) 149 { 150 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 151 ktime_t intv_end, cycle_ext_end, cycle_end; 152 153 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 154 intv_end = ktime_add_ns(intv_start, entry->interval); 155 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 156 157 if (ktime_before(intv_end, cycle_end)) 158 return intv_end; 159 else if (admin && admin != sched && 160 ktime_after(admin->base_time, cycle_end) && 161 ktime_before(admin->base_time, cycle_ext_end)) 162 return admin->base_time; 163 else 164 return cycle_end; 165 } 166 167 static int length_to_duration(struct taprio_sched *q, int len) 168 { 169 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); 170 } 171 172 /* Returns the entry corresponding to next available interval. If 173 * validate_interval is set, it only validates whether the timestamp occurs 174 * when the gate corresponding to the skb's traffic class is open. 175 */ 176 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 177 struct Qdisc *sch, 178 struct sched_gate_list *sched, 179 struct sched_gate_list *admin, 180 ktime_t time, 181 ktime_t *interval_start, 182 ktime_t *interval_end, 183 bool validate_interval) 184 { 185 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 186 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 187 struct sched_entry *entry = NULL, *entry_found = NULL; 188 struct taprio_sched *q = qdisc_priv(sch); 189 struct net_device *dev = qdisc_dev(sch); 190 bool entry_available = false; 191 s32 cycle_elapsed; 192 int tc, n; 193 194 tc = netdev_get_prio_tc_map(dev, skb->priority); 195 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 196 197 *interval_start = 0; 198 *interval_end = 0; 199 200 if (!sched) 201 return NULL; 202 203 cycle = sched->cycle_time; 204 cycle_elapsed = get_cycle_time_elapsed(sched, time); 205 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 206 cycle_end = ktime_add_ns(curr_intv_end, cycle); 207 208 list_for_each_entry(entry, &sched->entries, list) { 209 curr_intv_start = curr_intv_end; 210 curr_intv_end = get_interval_end_time(sched, admin, entry, 211 curr_intv_start); 212 213 if (ktime_after(curr_intv_start, cycle_end)) 214 break; 215 216 if (!(entry->gate_mask & BIT(tc)) || 217 packet_transmit_time > entry->interval) 218 continue; 219 220 txtime = entry->next_txtime; 221 222 if (ktime_before(txtime, time) || validate_interval) { 223 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 224 if ((ktime_before(curr_intv_start, time) && 225 ktime_before(transmit_end_time, curr_intv_end)) || 226 (ktime_after(curr_intv_start, time) && !validate_interval)) { 227 entry_found = entry; 228 *interval_start = curr_intv_start; 229 *interval_end = curr_intv_end; 230 break; 231 } else if (!entry_available && !validate_interval) { 232 /* Here, we are just trying to find out the 233 * first available interval in the next cycle. 234 */ 235 entry_available = 1; 236 entry_found = entry; 237 *interval_start = ktime_add_ns(curr_intv_start, cycle); 238 *interval_end = ktime_add_ns(curr_intv_end, cycle); 239 } 240 } else if (ktime_before(txtime, earliest_txtime) && 241 !entry_available) { 242 earliest_txtime = txtime; 243 entry_found = entry; 244 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 245 *interval_start = ktime_add(curr_intv_start, n * cycle); 246 *interval_end = ktime_add(curr_intv_end, n * cycle); 247 } 248 } 249 250 return entry_found; 251 } 252 253 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 254 { 255 struct taprio_sched *q = qdisc_priv(sch); 256 struct sched_gate_list *sched, *admin; 257 ktime_t interval_start, interval_end; 258 struct sched_entry *entry; 259 260 rcu_read_lock(); 261 sched = rcu_dereference(q->oper_sched); 262 admin = rcu_dereference(q->admin_sched); 263 264 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 265 &interval_start, &interval_end, true); 266 rcu_read_unlock(); 267 268 return entry; 269 } 270 271 /* This returns the tstamp value set by TCP in terms of the set clock. */ 272 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 273 { 274 unsigned int offset = skb_network_offset(skb); 275 const struct ipv6hdr *ipv6h; 276 const struct iphdr *iph; 277 struct ipv6hdr _ipv6h; 278 279 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 280 if (!ipv6h) 281 return 0; 282 283 if (ipv6h->version == 4) { 284 iph = (struct iphdr *)ipv6h; 285 offset += iph->ihl * 4; 286 287 /* special-case 6in4 tunnelling, as that is a common way to get 288 * v6 connectivity in the home 289 */ 290 if (iph->protocol == IPPROTO_IPV6) { 291 ipv6h = skb_header_pointer(skb, offset, 292 sizeof(_ipv6h), &_ipv6h); 293 294 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 295 return 0; 296 } else if (iph->protocol != IPPROTO_TCP) { 297 return 0; 298 } 299 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 300 return 0; 301 } 302 303 return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset); 304 } 305 306 /* There are a few scenarios where we will have to modify the txtime from 307 * what is read from next_txtime in sched_entry. They are: 308 * 1. If txtime is in the past, 309 * a. The gate for the traffic class is currently open and packet can be 310 * transmitted before it closes, schedule the packet right away. 311 * b. If the gate corresponding to the traffic class is going to open later 312 * in the cycle, set the txtime of packet to the interval start. 313 * 2. If txtime is in the future, there are packets corresponding to the 314 * current traffic class waiting to be transmitted. So, the following 315 * possibilities exist: 316 * a. We can transmit the packet before the window containing the txtime 317 * closes. 318 * b. The window might close before the transmission can be completed 319 * successfully. So, schedule the packet in the next open window. 320 */ 321 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 322 { 323 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 324 struct taprio_sched *q = qdisc_priv(sch); 325 struct sched_gate_list *sched, *admin; 326 ktime_t minimum_time, now, txtime; 327 int len, packet_transmit_time; 328 struct sched_entry *entry; 329 bool sched_changed; 330 331 now = taprio_get_time(q); 332 minimum_time = ktime_add_ns(now, q->txtime_delay); 333 334 tcp_tstamp = get_tcp_tstamp(q, skb); 335 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 336 337 rcu_read_lock(); 338 admin = rcu_dereference(q->admin_sched); 339 sched = rcu_dereference(q->oper_sched); 340 if (admin && ktime_after(minimum_time, admin->base_time)) 341 switch_schedules(q, &admin, &sched); 342 343 /* Until the schedule starts, all the queues are open */ 344 if (!sched || ktime_before(minimum_time, sched->base_time)) { 345 txtime = minimum_time; 346 goto done; 347 } 348 349 len = qdisc_pkt_len(skb); 350 packet_transmit_time = length_to_duration(q, len); 351 352 do { 353 sched_changed = 0; 354 355 entry = find_entry_to_transmit(skb, sch, sched, admin, 356 minimum_time, 357 &interval_start, &interval_end, 358 false); 359 if (!entry) { 360 txtime = 0; 361 goto done; 362 } 363 364 txtime = entry->next_txtime; 365 txtime = max_t(ktime_t, txtime, minimum_time); 366 txtime = max_t(ktime_t, txtime, interval_start); 367 368 if (admin && admin != sched && 369 ktime_after(txtime, admin->base_time)) { 370 sched = admin; 371 sched_changed = 1; 372 continue; 373 } 374 375 transmit_end_time = ktime_add(txtime, packet_transmit_time); 376 minimum_time = transmit_end_time; 377 378 /* Update the txtime of current entry to the next time it's 379 * interval starts. 380 */ 381 if (ktime_after(transmit_end_time, interval_end)) 382 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 383 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 384 385 entry->next_txtime = transmit_end_time; 386 387 done: 388 rcu_read_unlock(); 389 return txtime; 390 } 391 392 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 393 struct sk_buff **to_free) 394 { 395 struct taprio_sched *q = qdisc_priv(sch); 396 struct Qdisc *child; 397 int queue; 398 399 queue = skb_get_queue_mapping(skb); 400 401 child = q->qdiscs[queue]; 402 if (unlikely(!child)) 403 return qdisc_drop(skb, sch, to_free); 404 405 if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) { 406 if (!is_valid_interval(skb, sch)) 407 return qdisc_drop(skb, sch, to_free); 408 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 409 skb->tstamp = get_packet_txtime(skb, sch); 410 if (!skb->tstamp) 411 return qdisc_drop(skb, sch, to_free); 412 } 413 414 qdisc_qstats_backlog_inc(sch, skb); 415 sch->q.qlen++; 416 417 return qdisc_enqueue(skb, child, to_free); 418 } 419 420 static struct sk_buff *taprio_peek(struct Qdisc *sch) 421 { 422 struct taprio_sched *q = qdisc_priv(sch); 423 struct net_device *dev = qdisc_dev(sch); 424 struct sched_entry *entry; 425 struct sk_buff *skb; 426 u32 gate_mask; 427 int i; 428 429 rcu_read_lock(); 430 entry = rcu_dereference(q->current_entry); 431 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 432 rcu_read_unlock(); 433 434 if (!gate_mask) 435 return NULL; 436 437 for (i = 0; i < dev->num_tx_queues; i++) { 438 struct Qdisc *child = q->qdiscs[i]; 439 int prio; 440 u8 tc; 441 442 if (unlikely(!child)) 443 continue; 444 445 skb = child->ops->peek(child); 446 if (!skb) 447 continue; 448 449 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 450 return skb; 451 452 prio = skb->priority; 453 tc = netdev_get_prio_tc_map(dev, prio); 454 455 if (!(gate_mask & BIT(tc))) 456 continue; 457 458 return skb; 459 } 460 461 return NULL; 462 } 463 464 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) 465 { 466 atomic_set(&entry->budget, 467 div64_u64((u64)entry->interval * 1000, 468 atomic64_read(&q->picos_per_byte))); 469 } 470 471 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 472 { 473 struct taprio_sched *q = qdisc_priv(sch); 474 struct net_device *dev = qdisc_dev(sch); 475 struct sk_buff *skb = NULL; 476 struct sched_entry *entry; 477 u32 gate_mask; 478 int i; 479 480 if (atomic64_read(&q->picos_per_byte) == -1) { 481 WARN_ONCE(1, "taprio: dequeue() called with unknown picos per byte."); 482 return NULL; 483 } 484 485 rcu_read_lock(); 486 entry = rcu_dereference(q->current_entry); 487 /* if there's no entry, it means that the schedule didn't 488 * start yet, so force all gates to be open, this is in 489 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 490 * "AdminGateSates" 491 */ 492 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 493 494 if (!gate_mask) 495 goto done; 496 497 for (i = 0; i < dev->num_tx_queues; i++) { 498 struct Qdisc *child = q->qdiscs[i]; 499 ktime_t guard; 500 int prio; 501 int len; 502 u8 tc; 503 504 if (unlikely(!child)) 505 continue; 506 507 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 508 skb = child->ops->dequeue(child); 509 if (!skb) 510 continue; 511 goto skb_found; 512 } 513 514 skb = child->ops->peek(child); 515 if (!skb) 516 continue; 517 518 prio = skb->priority; 519 tc = netdev_get_prio_tc_map(dev, prio); 520 521 if (!(gate_mask & BIT(tc))) 522 continue; 523 524 len = qdisc_pkt_len(skb); 525 guard = ktime_add_ns(taprio_get_time(q), 526 length_to_duration(q, len)); 527 528 /* In the case that there's no gate entry, there's no 529 * guard band ... 530 */ 531 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 532 ktime_after(guard, entry->close_time)) 533 continue; 534 535 /* ... and no budget. */ 536 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 537 atomic_sub_return(len, &entry->budget) < 0) 538 continue; 539 540 skb = child->ops->dequeue(child); 541 if (unlikely(!skb)) 542 goto done; 543 544 skb_found: 545 qdisc_bstats_update(sch, skb); 546 qdisc_qstats_backlog_dec(sch, skb); 547 sch->q.qlen--; 548 549 goto done; 550 } 551 552 done: 553 rcu_read_unlock(); 554 555 return skb; 556 } 557 558 static bool should_restart_cycle(const struct sched_gate_list *oper, 559 const struct sched_entry *entry) 560 { 561 if (list_is_last(&entry->list, &oper->entries)) 562 return true; 563 564 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) 565 return true; 566 567 return false; 568 } 569 570 static bool should_change_schedules(const struct sched_gate_list *admin, 571 const struct sched_gate_list *oper, 572 ktime_t close_time) 573 { 574 ktime_t next_base_time, extension_time; 575 576 if (!admin) 577 return false; 578 579 next_base_time = sched_base_time(admin); 580 581 /* This is the simple case, the close_time would fall after 582 * the next schedule base_time. 583 */ 584 if (ktime_compare(next_base_time, close_time) <= 0) 585 return true; 586 587 /* This is the cycle_time_extension case, if the close_time 588 * plus the amount that can be extended would fall after the 589 * next schedule base_time, we can extend the current schedule 590 * for that amount. 591 */ 592 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); 593 594 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 595 * how precisely the extension should be made. So after 596 * conformance testing, this logic may change. 597 */ 598 if (ktime_compare(next_base_time, extension_time) <= 0) 599 return true; 600 601 return false; 602 } 603 604 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 605 { 606 struct taprio_sched *q = container_of(timer, struct taprio_sched, 607 advance_timer); 608 struct sched_gate_list *oper, *admin; 609 struct sched_entry *entry, *next; 610 struct Qdisc *sch = q->root; 611 ktime_t close_time; 612 613 spin_lock(&q->current_entry_lock); 614 entry = rcu_dereference_protected(q->current_entry, 615 lockdep_is_held(&q->current_entry_lock)); 616 oper = rcu_dereference_protected(q->oper_sched, 617 lockdep_is_held(&q->current_entry_lock)); 618 admin = rcu_dereference_protected(q->admin_sched, 619 lockdep_is_held(&q->current_entry_lock)); 620 621 if (!oper) 622 switch_schedules(q, &admin, &oper); 623 624 /* This can happen in two cases: 1. this is the very first run 625 * of this function (i.e. we weren't running any schedule 626 * previously); 2. The previous schedule just ended. The first 627 * entry of all schedules are pre-calculated during the 628 * schedule initialization. 629 */ 630 if (unlikely(!entry || entry->close_time == oper->base_time)) { 631 next = list_first_entry(&oper->entries, struct sched_entry, 632 list); 633 close_time = next->close_time; 634 goto first_run; 635 } 636 637 if (should_restart_cycle(oper, entry)) { 638 next = list_first_entry(&oper->entries, struct sched_entry, 639 list); 640 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, 641 oper->cycle_time); 642 } else { 643 next = list_next_entry(entry, list); 644 } 645 646 close_time = ktime_add_ns(entry->close_time, next->interval); 647 close_time = min_t(ktime_t, close_time, oper->cycle_close_time); 648 649 if (should_change_schedules(admin, oper, close_time)) { 650 /* Set things so the next time this runs, the new 651 * schedule runs. 652 */ 653 close_time = sched_base_time(admin); 654 switch_schedules(q, &admin, &oper); 655 } 656 657 next->close_time = close_time; 658 taprio_set_budget(q, next); 659 660 first_run: 661 rcu_assign_pointer(q->current_entry, next); 662 spin_unlock(&q->current_entry_lock); 663 664 hrtimer_set_expires(&q->advance_timer, close_time); 665 666 rcu_read_lock(); 667 __netif_schedule(sch); 668 rcu_read_unlock(); 669 670 return HRTIMER_RESTART; 671 } 672 673 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 674 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 675 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 676 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 677 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 678 }; 679 680 static const struct nla_policy entry_list_policy[TCA_TAPRIO_SCHED_MAX + 1] = { 681 [TCA_TAPRIO_SCHED_ENTRY] = { .type = NLA_NESTED }, 682 }; 683 684 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 685 [TCA_TAPRIO_ATTR_PRIOMAP] = { 686 .len = sizeof(struct tc_mqprio_qopt) 687 }, 688 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 689 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 690 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 691 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 692 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 693 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 694 }; 695 696 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry, 697 struct netlink_ext_ack *extack) 698 { 699 u32 interval = 0; 700 701 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 702 entry->command = nla_get_u8( 703 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 704 705 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 706 entry->gate_mask = nla_get_u32( 707 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 708 709 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 710 interval = nla_get_u32( 711 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 712 713 if (interval == 0) { 714 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 715 return -EINVAL; 716 } 717 718 entry->interval = interval; 719 720 return 0; 721 } 722 723 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry, 724 int index, struct netlink_ext_ack *extack) 725 { 726 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 727 int err; 728 729 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 730 entry_policy, NULL); 731 if (err < 0) { 732 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 733 return -EINVAL; 734 } 735 736 entry->index = index; 737 738 return fill_sched_entry(tb, entry, extack); 739 } 740 741 static int parse_sched_list(struct nlattr *list, 742 struct sched_gate_list *sched, 743 struct netlink_ext_ack *extack) 744 { 745 struct nlattr *n; 746 int err, rem; 747 int i = 0; 748 749 if (!list) 750 return -EINVAL; 751 752 nla_for_each_nested(n, list, rem) { 753 struct sched_entry *entry; 754 755 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 756 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 757 continue; 758 } 759 760 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 761 if (!entry) { 762 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 763 return -ENOMEM; 764 } 765 766 err = parse_sched_entry(n, entry, i, extack); 767 if (err < 0) { 768 kfree(entry); 769 return err; 770 } 771 772 list_add_tail(&entry->list, &sched->entries); 773 i++; 774 } 775 776 sched->num_entries = i; 777 778 return i; 779 } 780 781 static int parse_taprio_schedule(struct nlattr **tb, 782 struct sched_gate_list *new, 783 struct netlink_ext_ack *extack) 784 { 785 int err = 0; 786 787 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 788 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 789 return -ENOTSUPP; 790 } 791 792 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 793 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 794 795 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 796 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 797 798 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 799 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 800 801 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 802 err = parse_sched_list( 803 tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack); 804 if (err < 0) 805 return err; 806 807 if (!new->cycle_time) { 808 struct sched_entry *entry; 809 ktime_t cycle = 0; 810 811 list_for_each_entry(entry, &new->entries, list) 812 cycle = ktime_add_ns(cycle, entry->interval); 813 new->cycle_time = cycle; 814 } 815 816 return 0; 817 } 818 819 static int taprio_parse_mqprio_opt(struct net_device *dev, 820 struct tc_mqprio_qopt *qopt, 821 struct netlink_ext_ack *extack, 822 u32 taprio_flags) 823 { 824 int i, j; 825 826 if (!qopt && !dev->num_tc) { 827 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 828 return -EINVAL; 829 } 830 831 /* If num_tc is already set, it means that the user already 832 * configured the mqprio part 833 */ 834 if (dev->num_tc) 835 return 0; 836 837 /* Verify num_tc is not out of max range */ 838 if (qopt->num_tc > TC_MAX_QUEUE) { 839 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); 840 return -EINVAL; 841 } 842 843 /* taprio imposes that traffic classes map 1:n to tx queues */ 844 if (qopt->num_tc > dev->num_tx_queues) { 845 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 846 return -EINVAL; 847 } 848 849 /* Verify priority mapping uses valid tcs */ 850 for (i = 0; i < TC_BITMASK + 1; i++) { 851 if (qopt->prio_tc_map[i] >= qopt->num_tc) { 852 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); 853 return -EINVAL; 854 } 855 } 856 857 for (i = 0; i < qopt->num_tc; i++) { 858 unsigned int last = qopt->offset[i] + qopt->count[i]; 859 860 /* Verify the queue count is in tx range being equal to the 861 * real_num_tx_queues indicates the last queue is in use. 862 */ 863 if (qopt->offset[i] >= dev->num_tx_queues || 864 !qopt->count[i] || 865 last > dev->real_num_tx_queues) { 866 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); 867 return -EINVAL; 868 } 869 870 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) 871 continue; 872 873 /* Verify that the offset and counts do not overlap */ 874 for (j = i + 1; j < qopt->num_tc; j++) { 875 if (last > qopt->offset[j]) { 876 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); 877 return -EINVAL; 878 } 879 } 880 } 881 882 return 0; 883 } 884 885 static int taprio_get_start_time(struct Qdisc *sch, 886 struct sched_gate_list *sched, 887 ktime_t *start) 888 { 889 struct taprio_sched *q = qdisc_priv(sch); 890 ktime_t now, base, cycle; 891 s64 n; 892 893 base = sched_base_time(sched); 894 now = taprio_get_time(q); 895 896 if (ktime_after(base, now)) { 897 *start = base; 898 return 0; 899 } 900 901 cycle = sched->cycle_time; 902 903 /* The qdisc is expected to have at least one sched_entry. Moreover, 904 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 905 * something went really wrong. In that case, we should warn about this 906 * inconsistent state and return error. 907 */ 908 if (WARN_ON(!cycle)) 909 return -EFAULT; 910 911 /* Schedule the start time for the beginning of the next 912 * cycle. 913 */ 914 n = div64_s64(ktime_sub_ns(now, base), cycle); 915 *start = ktime_add_ns(base, (n + 1) * cycle); 916 return 0; 917 } 918 919 static void setup_first_close_time(struct taprio_sched *q, 920 struct sched_gate_list *sched, ktime_t base) 921 { 922 struct sched_entry *first; 923 ktime_t cycle; 924 925 first = list_first_entry(&sched->entries, 926 struct sched_entry, list); 927 928 cycle = sched->cycle_time; 929 930 /* FIXME: find a better place to do this */ 931 sched->cycle_close_time = ktime_add_ns(base, cycle); 932 933 first->close_time = ktime_add_ns(base, first->interval); 934 taprio_set_budget(q, first); 935 rcu_assign_pointer(q->current_entry, NULL); 936 } 937 938 static void taprio_start_sched(struct Qdisc *sch, 939 ktime_t start, struct sched_gate_list *new) 940 { 941 struct taprio_sched *q = qdisc_priv(sch); 942 ktime_t expires; 943 944 expires = hrtimer_get_expires(&q->advance_timer); 945 if (expires == 0) 946 expires = KTIME_MAX; 947 948 /* If the new schedule starts before the next expiration, we 949 * reprogram it to the earliest one, so we change the admin 950 * schedule to the operational one at the right time. 951 */ 952 start = min_t(ktime_t, start, expires); 953 954 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 955 } 956 957 static void taprio_set_picos_per_byte(struct net_device *dev, 958 struct taprio_sched *q) 959 { 960 struct ethtool_link_ksettings ecmd; 961 int picos_per_byte = -1; 962 963 if (!__ethtool_get_link_ksettings(dev, &ecmd) && 964 ecmd.base.speed != SPEED_UNKNOWN) 965 picos_per_byte = div64_s64(NSEC_PER_SEC * 1000LL * 8, 966 ecmd.base.speed * 1000 * 1000); 967 968 atomic64_set(&q->picos_per_byte, picos_per_byte); 969 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 970 dev->name, (long long)atomic64_read(&q->picos_per_byte), 971 ecmd.base.speed); 972 } 973 974 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 975 void *ptr) 976 { 977 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 978 struct net_device *qdev; 979 struct taprio_sched *q; 980 bool found = false; 981 982 ASSERT_RTNL(); 983 984 if (event != NETDEV_UP && event != NETDEV_CHANGE) 985 return NOTIFY_DONE; 986 987 spin_lock(&taprio_list_lock); 988 list_for_each_entry(q, &taprio_list, taprio_list) { 989 qdev = qdisc_dev(q->root); 990 if (qdev == dev) { 991 found = true; 992 break; 993 } 994 } 995 spin_unlock(&taprio_list_lock); 996 997 if (found) 998 taprio_set_picos_per_byte(dev, q); 999 1000 return NOTIFY_DONE; 1001 } 1002 1003 static void setup_txtime(struct taprio_sched *q, 1004 struct sched_gate_list *sched, ktime_t base) 1005 { 1006 struct sched_entry *entry; 1007 u32 interval = 0; 1008 1009 list_for_each_entry(entry, &sched->entries, list) { 1010 entry->next_txtime = ktime_add_ns(base, interval); 1011 interval += entry->interval; 1012 } 1013 } 1014 1015 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1016 struct netlink_ext_ack *extack) 1017 { 1018 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1019 struct sched_gate_list *oper, *admin, *new_admin; 1020 struct taprio_sched *q = qdisc_priv(sch); 1021 struct net_device *dev = qdisc_dev(sch); 1022 struct tc_mqprio_qopt *mqprio = NULL; 1023 u32 taprio_flags = 0; 1024 int i, err, clockid; 1025 unsigned long flags; 1026 ktime_t start; 1027 1028 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1029 taprio_policy, extack); 1030 if (err < 0) 1031 return err; 1032 1033 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1034 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1035 1036 if (tb[TCA_TAPRIO_ATTR_FLAGS]) { 1037 taprio_flags = nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]); 1038 1039 if (q->flags != 0 && q->flags != taprio_flags) { 1040 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1041 return -EOPNOTSUPP; 1042 } else if (!FLAGS_VALID(taprio_flags)) { 1043 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1044 return -EINVAL; 1045 } 1046 1047 q->flags = taprio_flags; 1048 } 1049 1050 err = taprio_parse_mqprio_opt(dev, mqprio, extack, taprio_flags); 1051 if (err < 0) 1052 return err; 1053 1054 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1055 if (!new_admin) { 1056 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1057 return -ENOMEM; 1058 } 1059 INIT_LIST_HEAD(&new_admin->entries); 1060 1061 rcu_read_lock(); 1062 oper = rcu_dereference(q->oper_sched); 1063 admin = rcu_dereference(q->admin_sched); 1064 rcu_read_unlock(); 1065 1066 if (mqprio && (oper || admin)) { 1067 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1068 err = -ENOTSUPP; 1069 goto free_sched; 1070 } 1071 1072 err = parse_taprio_schedule(tb, new_admin, extack); 1073 if (err < 0) 1074 goto free_sched; 1075 1076 if (new_admin->num_entries == 0) { 1077 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1078 err = -EINVAL; 1079 goto free_sched; 1080 } 1081 1082 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1083 clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1084 1085 /* We only support static clockids and we don't allow 1086 * for it to be modified after the first init. 1087 */ 1088 if (clockid < 0 || 1089 (q->clockid != -1 && q->clockid != clockid)) { 1090 NL_SET_ERR_MSG(extack, "Changing the 'clockid' of a running schedule is not supported"); 1091 err = -ENOTSUPP; 1092 goto free_sched; 1093 } 1094 1095 q->clockid = clockid; 1096 } 1097 1098 if (q->clockid == -1 && !tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1099 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1100 err = -EINVAL; 1101 goto free_sched; 1102 } 1103 1104 taprio_set_picos_per_byte(dev, q); 1105 1106 /* Protects against enqueue()/dequeue() */ 1107 spin_lock_bh(qdisc_lock(sch)); 1108 1109 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1110 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1111 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1112 err = -EINVAL; 1113 goto unlock; 1114 } 1115 1116 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1117 } 1118 1119 if (!TXTIME_ASSIST_IS_ENABLED(taprio_flags) && 1120 !hrtimer_active(&q->advance_timer)) { 1121 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1122 q->advance_timer.function = advance_sched; 1123 } 1124 1125 if (mqprio) { 1126 netdev_set_num_tc(dev, mqprio->num_tc); 1127 for (i = 0; i < mqprio->num_tc; i++) 1128 netdev_set_tc_queue(dev, i, 1129 mqprio->count[i], 1130 mqprio->offset[i]); 1131 1132 /* Always use supplied priority mappings */ 1133 for (i = 0; i < TC_BITMASK + 1; i++) 1134 netdev_set_prio_tc_map(dev, i, 1135 mqprio->prio_tc_map[i]); 1136 } 1137 1138 switch (q->clockid) { 1139 case CLOCK_REALTIME: 1140 q->tk_offset = TK_OFFS_REAL; 1141 break; 1142 case CLOCK_MONOTONIC: 1143 q->tk_offset = TK_OFFS_MAX; 1144 break; 1145 case CLOCK_BOOTTIME: 1146 q->tk_offset = TK_OFFS_BOOT; 1147 break; 1148 case CLOCK_TAI: 1149 q->tk_offset = TK_OFFS_TAI; 1150 break; 1151 default: 1152 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1153 err = -EINVAL; 1154 goto unlock; 1155 } 1156 1157 err = taprio_get_start_time(sch, new_admin, &start); 1158 if (err < 0) { 1159 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1160 goto unlock; 1161 } 1162 1163 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) { 1164 setup_txtime(q, new_admin, start); 1165 1166 if (!oper) { 1167 rcu_assign_pointer(q->oper_sched, new_admin); 1168 err = 0; 1169 new_admin = NULL; 1170 goto unlock; 1171 } 1172 1173 rcu_assign_pointer(q->admin_sched, new_admin); 1174 if (admin) 1175 call_rcu(&admin->rcu, taprio_free_sched_cb); 1176 } else { 1177 setup_first_close_time(q, new_admin, start); 1178 1179 /* Protects against advance_sched() */ 1180 spin_lock_irqsave(&q->current_entry_lock, flags); 1181 1182 taprio_start_sched(sch, start, new_admin); 1183 1184 rcu_assign_pointer(q->admin_sched, new_admin); 1185 if (admin) 1186 call_rcu(&admin->rcu, taprio_free_sched_cb); 1187 1188 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1189 } 1190 1191 new_admin = NULL; 1192 err = 0; 1193 1194 unlock: 1195 spin_unlock_bh(qdisc_lock(sch)); 1196 1197 free_sched: 1198 if (new_admin) 1199 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1200 1201 return err; 1202 } 1203 1204 static void taprio_destroy(struct Qdisc *sch) 1205 { 1206 struct taprio_sched *q = qdisc_priv(sch); 1207 struct net_device *dev = qdisc_dev(sch); 1208 unsigned int i; 1209 1210 spin_lock(&taprio_list_lock); 1211 list_del(&q->taprio_list); 1212 spin_unlock(&taprio_list_lock); 1213 1214 hrtimer_cancel(&q->advance_timer); 1215 1216 if (q->qdiscs) { 1217 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++) 1218 qdisc_put(q->qdiscs[i]); 1219 1220 kfree(q->qdiscs); 1221 } 1222 q->qdiscs = NULL; 1223 1224 netdev_set_num_tc(dev, 0); 1225 1226 if (q->oper_sched) 1227 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); 1228 1229 if (q->admin_sched) 1230 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); 1231 } 1232 1233 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 1234 struct netlink_ext_ack *extack) 1235 { 1236 struct taprio_sched *q = qdisc_priv(sch); 1237 struct net_device *dev = qdisc_dev(sch); 1238 int i; 1239 1240 spin_lock_init(&q->current_entry_lock); 1241 1242 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 1243 q->advance_timer.function = advance_sched; 1244 1245 q->root = sch; 1246 1247 /* We only support static clockids. Use an invalid value as default 1248 * and get the valid one on taprio_change(). 1249 */ 1250 q->clockid = -1; 1251 1252 if (sch->parent != TC_H_ROOT) 1253 return -EOPNOTSUPP; 1254 1255 if (!netif_is_multiqueue(dev)) 1256 return -EOPNOTSUPP; 1257 1258 /* pre-allocate qdisc, attachment can't fail */ 1259 q->qdiscs = kcalloc(dev->num_tx_queues, 1260 sizeof(q->qdiscs[0]), 1261 GFP_KERNEL); 1262 1263 if (!q->qdiscs) 1264 return -ENOMEM; 1265 1266 if (!opt) 1267 return -EINVAL; 1268 1269 spin_lock(&taprio_list_lock); 1270 list_add(&q->taprio_list, &taprio_list); 1271 spin_unlock(&taprio_list_lock); 1272 1273 for (i = 0; i < dev->num_tx_queues; i++) { 1274 struct netdev_queue *dev_queue; 1275 struct Qdisc *qdisc; 1276 1277 dev_queue = netdev_get_tx_queue(dev, i); 1278 qdisc = qdisc_create_dflt(dev_queue, 1279 &pfifo_qdisc_ops, 1280 TC_H_MAKE(TC_H_MAJ(sch->handle), 1281 TC_H_MIN(i + 1)), 1282 extack); 1283 if (!qdisc) 1284 return -ENOMEM; 1285 1286 if (i < dev->real_num_tx_queues) 1287 qdisc_hash_add(qdisc, false); 1288 1289 q->qdiscs[i] = qdisc; 1290 } 1291 1292 return taprio_change(sch, opt, extack); 1293 } 1294 1295 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 1296 unsigned long cl) 1297 { 1298 struct net_device *dev = qdisc_dev(sch); 1299 unsigned long ntx = cl - 1; 1300 1301 if (ntx >= dev->num_tx_queues) 1302 return NULL; 1303 1304 return netdev_get_tx_queue(dev, ntx); 1305 } 1306 1307 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 1308 struct Qdisc *new, struct Qdisc **old, 1309 struct netlink_ext_ack *extack) 1310 { 1311 struct taprio_sched *q = qdisc_priv(sch); 1312 struct net_device *dev = qdisc_dev(sch); 1313 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1314 1315 if (!dev_queue) 1316 return -EINVAL; 1317 1318 if (dev->flags & IFF_UP) 1319 dev_deactivate(dev); 1320 1321 *old = q->qdiscs[cl - 1]; 1322 q->qdiscs[cl - 1] = new; 1323 1324 if (new) 1325 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1326 1327 if (dev->flags & IFF_UP) 1328 dev_activate(dev); 1329 1330 return 0; 1331 } 1332 1333 static int dump_entry(struct sk_buff *msg, 1334 const struct sched_entry *entry) 1335 { 1336 struct nlattr *item; 1337 1338 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 1339 if (!item) 1340 return -ENOSPC; 1341 1342 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 1343 goto nla_put_failure; 1344 1345 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 1346 goto nla_put_failure; 1347 1348 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 1349 entry->gate_mask)) 1350 goto nla_put_failure; 1351 1352 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 1353 entry->interval)) 1354 goto nla_put_failure; 1355 1356 return nla_nest_end(msg, item); 1357 1358 nla_put_failure: 1359 nla_nest_cancel(msg, item); 1360 return -1; 1361 } 1362 1363 static int dump_schedule(struct sk_buff *msg, 1364 const struct sched_gate_list *root) 1365 { 1366 struct nlattr *entry_list; 1367 struct sched_entry *entry; 1368 1369 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 1370 root->base_time, TCA_TAPRIO_PAD)) 1371 return -1; 1372 1373 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 1374 root->cycle_time, TCA_TAPRIO_PAD)) 1375 return -1; 1376 1377 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 1378 root->cycle_time_extension, TCA_TAPRIO_PAD)) 1379 return -1; 1380 1381 entry_list = nla_nest_start_noflag(msg, 1382 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 1383 if (!entry_list) 1384 goto error_nest; 1385 1386 list_for_each_entry(entry, &root->entries, list) { 1387 if (dump_entry(msg, entry) < 0) 1388 goto error_nest; 1389 } 1390 1391 nla_nest_end(msg, entry_list); 1392 return 0; 1393 1394 error_nest: 1395 nla_nest_cancel(msg, entry_list); 1396 return -1; 1397 } 1398 1399 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 1400 { 1401 struct taprio_sched *q = qdisc_priv(sch); 1402 struct net_device *dev = qdisc_dev(sch); 1403 struct sched_gate_list *oper, *admin; 1404 struct tc_mqprio_qopt opt = { 0 }; 1405 struct nlattr *nest, *sched_nest; 1406 unsigned int i; 1407 1408 rcu_read_lock(); 1409 oper = rcu_dereference(q->oper_sched); 1410 admin = rcu_dereference(q->admin_sched); 1411 1412 opt.num_tc = netdev_get_num_tc(dev); 1413 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); 1414 1415 for (i = 0; i < netdev_get_num_tc(dev); i++) { 1416 opt.count[i] = dev->tc_to_txq[i].count; 1417 opt.offset[i] = dev->tc_to_txq[i].offset; 1418 } 1419 1420 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1421 if (!nest) 1422 goto start_error; 1423 1424 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 1425 goto options_error; 1426 1427 if (nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 1428 goto options_error; 1429 1430 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 1431 goto options_error; 1432 1433 if (q->txtime_delay && 1434 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 1435 goto options_error; 1436 1437 if (oper && dump_schedule(skb, oper)) 1438 goto options_error; 1439 1440 if (!admin) 1441 goto done; 1442 1443 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 1444 if (!sched_nest) 1445 goto options_error; 1446 1447 if (dump_schedule(skb, admin)) 1448 goto admin_error; 1449 1450 nla_nest_end(skb, sched_nest); 1451 1452 done: 1453 rcu_read_unlock(); 1454 1455 return nla_nest_end(skb, nest); 1456 1457 admin_error: 1458 nla_nest_cancel(skb, sched_nest); 1459 1460 options_error: 1461 nla_nest_cancel(skb, nest); 1462 1463 start_error: 1464 rcu_read_unlock(); 1465 return -ENOSPC; 1466 } 1467 1468 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 1469 { 1470 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1471 1472 if (!dev_queue) 1473 return NULL; 1474 1475 return dev_queue->qdisc_sleeping; 1476 } 1477 1478 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 1479 { 1480 unsigned int ntx = TC_H_MIN(classid); 1481 1482 if (!taprio_queue_get(sch, ntx)) 1483 return 0; 1484 return ntx; 1485 } 1486 1487 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 1488 struct sk_buff *skb, struct tcmsg *tcm) 1489 { 1490 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1491 1492 tcm->tcm_parent = TC_H_ROOT; 1493 tcm->tcm_handle |= TC_H_MIN(cl); 1494 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 1495 1496 return 0; 1497 } 1498 1499 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 1500 struct gnet_dump *d) 1501 __releases(d->lock) 1502 __acquires(d->lock) 1503 { 1504 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1505 1506 sch = dev_queue->qdisc_sleeping; 1507 if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 || 1508 qdisc_qstats_copy(d, sch) < 0) 1509 return -1; 1510 return 0; 1511 } 1512 1513 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1514 { 1515 struct net_device *dev = qdisc_dev(sch); 1516 unsigned long ntx; 1517 1518 if (arg->stop) 1519 return; 1520 1521 arg->count = arg->skip; 1522 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 1523 if (arg->fn(sch, ntx + 1, arg) < 0) { 1524 arg->stop = 1; 1525 break; 1526 } 1527 arg->count++; 1528 } 1529 } 1530 1531 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 1532 struct tcmsg *tcm) 1533 { 1534 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 1535 } 1536 1537 static const struct Qdisc_class_ops taprio_class_ops = { 1538 .graft = taprio_graft, 1539 .leaf = taprio_leaf, 1540 .find = taprio_find, 1541 .walk = taprio_walk, 1542 .dump = taprio_dump_class, 1543 .dump_stats = taprio_dump_class_stats, 1544 .select_queue = taprio_select_queue, 1545 }; 1546 1547 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 1548 .cl_ops = &taprio_class_ops, 1549 .id = "taprio", 1550 .priv_size = sizeof(struct taprio_sched), 1551 .init = taprio_init, 1552 .change = taprio_change, 1553 .destroy = taprio_destroy, 1554 .peek = taprio_peek, 1555 .dequeue = taprio_dequeue, 1556 .enqueue = taprio_enqueue, 1557 .dump = taprio_dump, 1558 .owner = THIS_MODULE, 1559 }; 1560 1561 static struct notifier_block taprio_device_notifier = { 1562 .notifier_call = taprio_dev_notifier, 1563 }; 1564 1565 static int __init taprio_module_init(void) 1566 { 1567 int err = register_netdevice_notifier(&taprio_device_notifier); 1568 1569 if (err) 1570 return err; 1571 1572 return register_qdisc(&taprio_qdisc_ops); 1573 } 1574 1575 static void __exit taprio_module_exit(void) 1576 { 1577 unregister_qdisc(&taprio_qdisc_ops); 1578 unregister_netdevice_notifier(&taprio_device_notifier); 1579 } 1580 1581 module_init(taprio_module_init); 1582 module_exit(taprio_module_exit); 1583 MODULE_LICENSE("GPL"); 1584