xref: /openbmc/linux/net/sched/sch_taprio.c (revision e8bd417a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26 
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29 
30 #define TAPRIO_ALL_GATES_OPEN -1
31 
32 #define FLAGS_VALID(flags) (!((flags) & ~TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST))
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 
35 struct sched_entry {
36 	struct list_head list;
37 
38 	/* The instant that this entry "closes" and the next one
39 	 * should open, the qdisc will make some effort so that no
40 	 * packet leaves after this time.
41 	 */
42 	ktime_t close_time;
43 	ktime_t next_txtime;
44 	atomic_t budget;
45 	int index;
46 	u32 gate_mask;
47 	u32 interval;
48 	u8 command;
49 };
50 
51 struct sched_gate_list {
52 	struct rcu_head rcu;
53 	struct list_head entries;
54 	size_t num_entries;
55 	ktime_t cycle_close_time;
56 	s64 cycle_time;
57 	s64 cycle_time_extension;
58 	s64 base_time;
59 };
60 
61 struct taprio_sched {
62 	struct Qdisc **qdiscs;
63 	struct Qdisc *root;
64 	u32 flags;
65 	enum tk_offsets tk_offset;
66 	int clockid;
67 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
68 				    * speeds it's sub-nanoseconds per byte
69 				    */
70 
71 	/* Protects the update side of the RCU protected current_entry */
72 	spinlock_t current_entry_lock;
73 	struct sched_entry __rcu *current_entry;
74 	struct sched_gate_list __rcu *oper_sched;
75 	struct sched_gate_list __rcu *admin_sched;
76 	struct hrtimer advance_timer;
77 	struct list_head taprio_list;
78 	u32 txtime_delay;
79 };
80 
81 static ktime_t sched_base_time(const struct sched_gate_list *sched)
82 {
83 	if (!sched)
84 		return KTIME_MAX;
85 
86 	return ns_to_ktime(sched->base_time);
87 }
88 
89 static ktime_t taprio_get_time(struct taprio_sched *q)
90 {
91 	ktime_t mono = ktime_get();
92 
93 	switch (q->tk_offset) {
94 	case TK_OFFS_MAX:
95 		return mono;
96 	default:
97 		return ktime_mono_to_any(mono, q->tk_offset);
98 	}
99 
100 	return KTIME_MAX;
101 }
102 
103 static void taprio_free_sched_cb(struct rcu_head *head)
104 {
105 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
106 	struct sched_entry *entry, *n;
107 
108 	if (!sched)
109 		return;
110 
111 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
112 		list_del(&entry->list);
113 		kfree(entry);
114 	}
115 
116 	kfree(sched);
117 }
118 
119 static void switch_schedules(struct taprio_sched *q,
120 			     struct sched_gate_list **admin,
121 			     struct sched_gate_list **oper)
122 {
123 	rcu_assign_pointer(q->oper_sched, *admin);
124 	rcu_assign_pointer(q->admin_sched, NULL);
125 
126 	if (*oper)
127 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
128 
129 	*oper = *admin;
130 	*admin = NULL;
131 }
132 
133 /* Get how much time has been already elapsed in the current cycle. */
134 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
135 {
136 	ktime_t time_since_sched_start;
137 	s32 time_elapsed;
138 
139 	time_since_sched_start = ktime_sub(time, sched->base_time);
140 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
141 
142 	return time_elapsed;
143 }
144 
145 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
146 				     struct sched_gate_list *admin,
147 				     struct sched_entry *entry,
148 				     ktime_t intv_start)
149 {
150 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
151 	ktime_t intv_end, cycle_ext_end, cycle_end;
152 
153 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
154 	intv_end = ktime_add_ns(intv_start, entry->interval);
155 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
156 
157 	if (ktime_before(intv_end, cycle_end))
158 		return intv_end;
159 	else if (admin && admin != sched &&
160 		 ktime_after(admin->base_time, cycle_end) &&
161 		 ktime_before(admin->base_time, cycle_ext_end))
162 		return admin->base_time;
163 	else
164 		return cycle_end;
165 }
166 
167 static int length_to_duration(struct taprio_sched *q, int len)
168 {
169 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
170 }
171 
172 /* Returns the entry corresponding to next available interval. If
173  * validate_interval is set, it only validates whether the timestamp occurs
174  * when the gate corresponding to the skb's traffic class is open.
175  */
176 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
177 						  struct Qdisc *sch,
178 						  struct sched_gate_list *sched,
179 						  struct sched_gate_list *admin,
180 						  ktime_t time,
181 						  ktime_t *interval_start,
182 						  ktime_t *interval_end,
183 						  bool validate_interval)
184 {
185 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
186 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
187 	struct sched_entry *entry = NULL, *entry_found = NULL;
188 	struct taprio_sched *q = qdisc_priv(sch);
189 	struct net_device *dev = qdisc_dev(sch);
190 	bool entry_available = false;
191 	s32 cycle_elapsed;
192 	int tc, n;
193 
194 	tc = netdev_get_prio_tc_map(dev, skb->priority);
195 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
196 
197 	*interval_start = 0;
198 	*interval_end = 0;
199 
200 	if (!sched)
201 		return NULL;
202 
203 	cycle = sched->cycle_time;
204 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
205 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
206 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
207 
208 	list_for_each_entry(entry, &sched->entries, list) {
209 		curr_intv_start = curr_intv_end;
210 		curr_intv_end = get_interval_end_time(sched, admin, entry,
211 						      curr_intv_start);
212 
213 		if (ktime_after(curr_intv_start, cycle_end))
214 			break;
215 
216 		if (!(entry->gate_mask & BIT(tc)) ||
217 		    packet_transmit_time > entry->interval)
218 			continue;
219 
220 		txtime = entry->next_txtime;
221 
222 		if (ktime_before(txtime, time) || validate_interval) {
223 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
224 			if ((ktime_before(curr_intv_start, time) &&
225 			     ktime_before(transmit_end_time, curr_intv_end)) ||
226 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
227 				entry_found = entry;
228 				*interval_start = curr_intv_start;
229 				*interval_end = curr_intv_end;
230 				break;
231 			} else if (!entry_available && !validate_interval) {
232 				/* Here, we are just trying to find out the
233 				 * first available interval in the next cycle.
234 				 */
235 				entry_available = 1;
236 				entry_found = entry;
237 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
238 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
239 			}
240 		} else if (ktime_before(txtime, earliest_txtime) &&
241 			   !entry_available) {
242 			earliest_txtime = txtime;
243 			entry_found = entry;
244 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
245 			*interval_start = ktime_add(curr_intv_start, n * cycle);
246 			*interval_end = ktime_add(curr_intv_end, n * cycle);
247 		}
248 	}
249 
250 	return entry_found;
251 }
252 
253 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
254 {
255 	struct taprio_sched *q = qdisc_priv(sch);
256 	struct sched_gate_list *sched, *admin;
257 	ktime_t interval_start, interval_end;
258 	struct sched_entry *entry;
259 
260 	rcu_read_lock();
261 	sched = rcu_dereference(q->oper_sched);
262 	admin = rcu_dereference(q->admin_sched);
263 
264 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
265 				       &interval_start, &interval_end, true);
266 	rcu_read_unlock();
267 
268 	return entry;
269 }
270 
271 /* This returns the tstamp value set by TCP in terms of the set clock. */
272 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
273 {
274 	unsigned int offset = skb_network_offset(skb);
275 	const struct ipv6hdr *ipv6h;
276 	const struct iphdr *iph;
277 	struct ipv6hdr _ipv6h;
278 
279 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
280 	if (!ipv6h)
281 		return 0;
282 
283 	if (ipv6h->version == 4) {
284 		iph = (struct iphdr *)ipv6h;
285 		offset += iph->ihl * 4;
286 
287 		/* special-case 6in4 tunnelling, as that is a common way to get
288 		 * v6 connectivity in the home
289 		 */
290 		if (iph->protocol == IPPROTO_IPV6) {
291 			ipv6h = skb_header_pointer(skb, offset,
292 						   sizeof(_ipv6h), &_ipv6h);
293 
294 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
295 				return 0;
296 		} else if (iph->protocol != IPPROTO_TCP) {
297 			return 0;
298 		}
299 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
300 		return 0;
301 	}
302 
303 	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
304 }
305 
306 /* There are a few scenarios where we will have to modify the txtime from
307  * what is read from next_txtime in sched_entry. They are:
308  * 1. If txtime is in the past,
309  *    a. The gate for the traffic class is currently open and packet can be
310  *       transmitted before it closes, schedule the packet right away.
311  *    b. If the gate corresponding to the traffic class is going to open later
312  *       in the cycle, set the txtime of packet to the interval start.
313  * 2. If txtime is in the future, there are packets corresponding to the
314  *    current traffic class waiting to be transmitted. So, the following
315  *    possibilities exist:
316  *    a. We can transmit the packet before the window containing the txtime
317  *       closes.
318  *    b. The window might close before the transmission can be completed
319  *       successfully. So, schedule the packet in the next open window.
320  */
321 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
322 {
323 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
324 	struct taprio_sched *q = qdisc_priv(sch);
325 	struct sched_gate_list *sched, *admin;
326 	ktime_t minimum_time, now, txtime;
327 	int len, packet_transmit_time;
328 	struct sched_entry *entry;
329 	bool sched_changed;
330 
331 	now = taprio_get_time(q);
332 	minimum_time = ktime_add_ns(now, q->txtime_delay);
333 
334 	tcp_tstamp = get_tcp_tstamp(q, skb);
335 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
336 
337 	rcu_read_lock();
338 	admin = rcu_dereference(q->admin_sched);
339 	sched = rcu_dereference(q->oper_sched);
340 	if (admin && ktime_after(minimum_time, admin->base_time))
341 		switch_schedules(q, &admin, &sched);
342 
343 	/* Until the schedule starts, all the queues are open */
344 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
345 		txtime = minimum_time;
346 		goto done;
347 	}
348 
349 	len = qdisc_pkt_len(skb);
350 	packet_transmit_time = length_to_duration(q, len);
351 
352 	do {
353 		sched_changed = 0;
354 
355 		entry = find_entry_to_transmit(skb, sch, sched, admin,
356 					       minimum_time,
357 					       &interval_start, &interval_end,
358 					       false);
359 		if (!entry) {
360 			txtime = 0;
361 			goto done;
362 		}
363 
364 		txtime = entry->next_txtime;
365 		txtime = max_t(ktime_t, txtime, minimum_time);
366 		txtime = max_t(ktime_t, txtime, interval_start);
367 
368 		if (admin && admin != sched &&
369 		    ktime_after(txtime, admin->base_time)) {
370 			sched = admin;
371 			sched_changed = 1;
372 			continue;
373 		}
374 
375 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
376 		minimum_time = transmit_end_time;
377 
378 		/* Update the txtime of current entry to the next time it's
379 		 * interval starts.
380 		 */
381 		if (ktime_after(transmit_end_time, interval_end))
382 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
383 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
384 
385 	entry->next_txtime = transmit_end_time;
386 
387 done:
388 	rcu_read_unlock();
389 	return txtime;
390 }
391 
392 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
393 			  struct sk_buff **to_free)
394 {
395 	struct taprio_sched *q = qdisc_priv(sch);
396 	struct Qdisc *child;
397 	int queue;
398 
399 	queue = skb_get_queue_mapping(skb);
400 
401 	child = q->qdiscs[queue];
402 	if (unlikely(!child))
403 		return qdisc_drop(skb, sch, to_free);
404 
405 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
406 		if (!is_valid_interval(skb, sch))
407 			return qdisc_drop(skb, sch, to_free);
408 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
409 		skb->tstamp = get_packet_txtime(skb, sch);
410 		if (!skb->tstamp)
411 			return qdisc_drop(skb, sch, to_free);
412 	}
413 
414 	qdisc_qstats_backlog_inc(sch, skb);
415 	sch->q.qlen++;
416 
417 	return qdisc_enqueue(skb, child, to_free);
418 }
419 
420 static struct sk_buff *taprio_peek(struct Qdisc *sch)
421 {
422 	struct taprio_sched *q = qdisc_priv(sch);
423 	struct net_device *dev = qdisc_dev(sch);
424 	struct sched_entry *entry;
425 	struct sk_buff *skb;
426 	u32 gate_mask;
427 	int i;
428 
429 	rcu_read_lock();
430 	entry = rcu_dereference(q->current_entry);
431 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
432 	rcu_read_unlock();
433 
434 	if (!gate_mask)
435 		return NULL;
436 
437 	for (i = 0; i < dev->num_tx_queues; i++) {
438 		struct Qdisc *child = q->qdiscs[i];
439 		int prio;
440 		u8 tc;
441 
442 		if (unlikely(!child))
443 			continue;
444 
445 		skb = child->ops->peek(child);
446 		if (!skb)
447 			continue;
448 
449 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
450 			return skb;
451 
452 		prio = skb->priority;
453 		tc = netdev_get_prio_tc_map(dev, prio);
454 
455 		if (!(gate_mask & BIT(tc)))
456 			continue;
457 
458 		return skb;
459 	}
460 
461 	return NULL;
462 }
463 
464 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
465 {
466 	atomic_set(&entry->budget,
467 		   div64_u64((u64)entry->interval * 1000,
468 			     atomic64_read(&q->picos_per_byte)));
469 }
470 
471 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
472 {
473 	struct taprio_sched *q = qdisc_priv(sch);
474 	struct net_device *dev = qdisc_dev(sch);
475 	struct sk_buff *skb = NULL;
476 	struct sched_entry *entry;
477 	u32 gate_mask;
478 	int i;
479 
480 	if (atomic64_read(&q->picos_per_byte) == -1) {
481 		WARN_ONCE(1, "taprio: dequeue() called with unknown picos per byte.");
482 		return NULL;
483 	}
484 
485 	rcu_read_lock();
486 	entry = rcu_dereference(q->current_entry);
487 	/* if there's no entry, it means that the schedule didn't
488 	 * start yet, so force all gates to be open, this is in
489 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
490 	 * "AdminGateSates"
491 	 */
492 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
493 
494 	if (!gate_mask)
495 		goto done;
496 
497 	for (i = 0; i < dev->num_tx_queues; i++) {
498 		struct Qdisc *child = q->qdiscs[i];
499 		ktime_t guard;
500 		int prio;
501 		int len;
502 		u8 tc;
503 
504 		if (unlikely(!child))
505 			continue;
506 
507 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
508 			skb = child->ops->dequeue(child);
509 			if (!skb)
510 				continue;
511 			goto skb_found;
512 		}
513 
514 		skb = child->ops->peek(child);
515 		if (!skb)
516 			continue;
517 
518 		prio = skb->priority;
519 		tc = netdev_get_prio_tc_map(dev, prio);
520 
521 		if (!(gate_mask & BIT(tc)))
522 			continue;
523 
524 		len = qdisc_pkt_len(skb);
525 		guard = ktime_add_ns(taprio_get_time(q),
526 				     length_to_duration(q, len));
527 
528 		/* In the case that there's no gate entry, there's no
529 		 * guard band ...
530 		 */
531 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
532 		    ktime_after(guard, entry->close_time))
533 			continue;
534 
535 		/* ... and no budget. */
536 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
537 		    atomic_sub_return(len, &entry->budget) < 0)
538 			continue;
539 
540 		skb = child->ops->dequeue(child);
541 		if (unlikely(!skb))
542 			goto done;
543 
544 skb_found:
545 		qdisc_bstats_update(sch, skb);
546 		qdisc_qstats_backlog_dec(sch, skb);
547 		sch->q.qlen--;
548 
549 		goto done;
550 	}
551 
552 done:
553 	rcu_read_unlock();
554 
555 	return skb;
556 }
557 
558 static bool should_restart_cycle(const struct sched_gate_list *oper,
559 				 const struct sched_entry *entry)
560 {
561 	if (list_is_last(&entry->list, &oper->entries))
562 		return true;
563 
564 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
565 		return true;
566 
567 	return false;
568 }
569 
570 static bool should_change_schedules(const struct sched_gate_list *admin,
571 				    const struct sched_gate_list *oper,
572 				    ktime_t close_time)
573 {
574 	ktime_t next_base_time, extension_time;
575 
576 	if (!admin)
577 		return false;
578 
579 	next_base_time = sched_base_time(admin);
580 
581 	/* This is the simple case, the close_time would fall after
582 	 * the next schedule base_time.
583 	 */
584 	if (ktime_compare(next_base_time, close_time) <= 0)
585 		return true;
586 
587 	/* This is the cycle_time_extension case, if the close_time
588 	 * plus the amount that can be extended would fall after the
589 	 * next schedule base_time, we can extend the current schedule
590 	 * for that amount.
591 	 */
592 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
593 
594 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
595 	 * how precisely the extension should be made. So after
596 	 * conformance testing, this logic may change.
597 	 */
598 	if (ktime_compare(next_base_time, extension_time) <= 0)
599 		return true;
600 
601 	return false;
602 }
603 
604 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
605 {
606 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
607 					      advance_timer);
608 	struct sched_gate_list *oper, *admin;
609 	struct sched_entry *entry, *next;
610 	struct Qdisc *sch = q->root;
611 	ktime_t close_time;
612 
613 	spin_lock(&q->current_entry_lock);
614 	entry = rcu_dereference_protected(q->current_entry,
615 					  lockdep_is_held(&q->current_entry_lock));
616 	oper = rcu_dereference_protected(q->oper_sched,
617 					 lockdep_is_held(&q->current_entry_lock));
618 	admin = rcu_dereference_protected(q->admin_sched,
619 					  lockdep_is_held(&q->current_entry_lock));
620 
621 	if (!oper)
622 		switch_schedules(q, &admin, &oper);
623 
624 	/* This can happen in two cases: 1. this is the very first run
625 	 * of this function (i.e. we weren't running any schedule
626 	 * previously); 2. The previous schedule just ended. The first
627 	 * entry of all schedules are pre-calculated during the
628 	 * schedule initialization.
629 	 */
630 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
631 		next = list_first_entry(&oper->entries, struct sched_entry,
632 					list);
633 		close_time = next->close_time;
634 		goto first_run;
635 	}
636 
637 	if (should_restart_cycle(oper, entry)) {
638 		next = list_first_entry(&oper->entries, struct sched_entry,
639 					list);
640 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
641 						      oper->cycle_time);
642 	} else {
643 		next = list_next_entry(entry, list);
644 	}
645 
646 	close_time = ktime_add_ns(entry->close_time, next->interval);
647 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
648 
649 	if (should_change_schedules(admin, oper, close_time)) {
650 		/* Set things so the next time this runs, the new
651 		 * schedule runs.
652 		 */
653 		close_time = sched_base_time(admin);
654 		switch_schedules(q, &admin, &oper);
655 	}
656 
657 	next->close_time = close_time;
658 	taprio_set_budget(q, next);
659 
660 first_run:
661 	rcu_assign_pointer(q->current_entry, next);
662 	spin_unlock(&q->current_entry_lock);
663 
664 	hrtimer_set_expires(&q->advance_timer, close_time);
665 
666 	rcu_read_lock();
667 	__netif_schedule(sch);
668 	rcu_read_unlock();
669 
670 	return HRTIMER_RESTART;
671 }
672 
673 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
674 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
675 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
676 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
677 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
678 };
679 
680 static const struct nla_policy entry_list_policy[TCA_TAPRIO_SCHED_MAX + 1] = {
681 	[TCA_TAPRIO_SCHED_ENTRY] = { .type = NLA_NESTED },
682 };
683 
684 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
685 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
686 		.len = sizeof(struct tc_mqprio_qopt)
687 	},
688 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
689 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
690 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
691 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
692 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
693 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
694 };
695 
696 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
697 			    struct netlink_ext_ack *extack)
698 {
699 	u32 interval = 0;
700 
701 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
702 		entry->command = nla_get_u8(
703 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
704 
705 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
706 		entry->gate_mask = nla_get_u32(
707 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
708 
709 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
710 		interval = nla_get_u32(
711 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
712 
713 	if (interval == 0) {
714 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
715 		return -EINVAL;
716 	}
717 
718 	entry->interval = interval;
719 
720 	return 0;
721 }
722 
723 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
724 			     int index, struct netlink_ext_ack *extack)
725 {
726 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
727 	int err;
728 
729 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
730 					  entry_policy, NULL);
731 	if (err < 0) {
732 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
733 		return -EINVAL;
734 	}
735 
736 	entry->index = index;
737 
738 	return fill_sched_entry(tb, entry, extack);
739 }
740 
741 static int parse_sched_list(struct nlattr *list,
742 			    struct sched_gate_list *sched,
743 			    struct netlink_ext_ack *extack)
744 {
745 	struct nlattr *n;
746 	int err, rem;
747 	int i = 0;
748 
749 	if (!list)
750 		return -EINVAL;
751 
752 	nla_for_each_nested(n, list, rem) {
753 		struct sched_entry *entry;
754 
755 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
756 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
757 			continue;
758 		}
759 
760 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
761 		if (!entry) {
762 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
763 			return -ENOMEM;
764 		}
765 
766 		err = parse_sched_entry(n, entry, i, extack);
767 		if (err < 0) {
768 			kfree(entry);
769 			return err;
770 		}
771 
772 		list_add_tail(&entry->list, &sched->entries);
773 		i++;
774 	}
775 
776 	sched->num_entries = i;
777 
778 	return i;
779 }
780 
781 static int parse_taprio_schedule(struct nlattr **tb,
782 				 struct sched_gate_list *new,
783 				 struct netlink_ext_ack *extack)
784 {
785 	int err = 0;
786 
787 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
788 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
789 		return -ENOTSUPP;
790 	}
791 
792 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
793 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
794 
795 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
796 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
797 
798 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
799 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
800 
801 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
802 		err = parse_sched_list(
803 			tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
804 	if (err < 0)
805 		return err;
806 
807 	if (!new->cycle_time) {
808 		struct sched_entry *entry;
809 		ktime_t cycle = 0;
810 
811 		list_for_each_entry(entry, &new->entries, list)
812 			cycle = ktime_add_ns(cycle, entry->interval);
813 		new->cycle_time = cycle;
814 	}
815 
816 	return 0;
817 }
818 
819 static int taprio_parse_mqprio_opt(struct net_device *dev,
820 				   struct tc_mqprio_qopt *qopt,
821 				   struct netlink_ext_ack *extack,
822 				   u32 taprio_flags)
823 {
824 	int i, j;
825 
826 	if (!qopt && !dev->num_tc) {
827 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
828 		return -EINVAL;
829 	}
830 
831 	/* If num_tc is already set, it means that the user already
832 	 * configured the mqprio part
833 	 */
834 	if (dev->num_tc)
835 		return 0;
836 
837 	/* Verify num_tc is not out of max range */
838 	if (qopt->num_tc > TC_MAX_QUEUE) {
839 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
840 		return -EINVAL;
841 	}
842 
843 	/* taprio imposes that traffic classes map 1:n to tx queues */
844 	if (qopt->num_tc > dev->num_tx_queues) {
845 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
846 		return -EINVAL;
847 	}
848 
849 	/* Verify priority mapping uses valid tcs */
850 	for (i = 0; i < TC_BITMASK + 1; i++) {
851 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
852 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
853 			return -EINVAL;
854 		}
855 	}
856 
857 	for (i = 0; i < qopt->num_tc; i++) {
858 		unsigned int last = qopt->offset[i] + qopt->count[i];
859 
860 		/* Verify the queue count is in tx range being equal to the
861 		 * real_num_tx_queues indicates the last queue is in use.
862 		 */
863 		if (qopt->offset[i] >= dev->num_tx_queues ||
864 		    !qopt->count[i] ||
865 		    last > dev->real_num_tx_queues) {
866 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
867 			return -EINVAL;
868 		}
869 
870 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
871 			continue;
872 
873 		/* Verify that the offset and counts do not overlap */
874 		for (j = i + 1; j < qopt->num_tc; j++) {
875 			if (last > qopt->offset[j]) {
876 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
877 				return -EINVAL;
878 			}
879 		}
880 	}
881 
882 	return 0;
883 }
884 
885 static int taprio_get_start_time(struct Qdisc *sch,
886 				 struct sched_gate_list *sched,
887 				 ktime_t *start)
888 {
889 	struct taprio_sched *q = qdisc_priv(sch);
890 	ktime_t now, base, cycle;
891 	s64 n;
892 
893 	base = sched_base_time(sched);
894 	now = taprio_get_time(q);
895 
896 	if (ktime_after(base, now)) {
897 		*start = base;
898 		return 0;
899 	}
900 
901 	cycle = sched->cycle_time;
902 
903 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
904 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
905 	 * something went really wrong. In that case, we should warn about this
906 	 * inconsistent state and return error.
907 	 */
908 	if (WARN_ON(!cycle))
909 		return -EFAULT;
910 
911 	/* Schedule the start time for the beginning of the next
912 	 * cycle.
913 	 */
914 	n = div64_s64(ktime_sub_ns(now, base), cycle);
915 	*start = ktime_add_ns(base, (n + 1) * cycle);
916 	return 0;
917 }
918 
919 static void setup_first_close_time(struct taprio_sched *q,
920 				   struct sched_gate_list *sched, ktime_t base)
921 {
922 	struct sched_entry *first;
923 	ktime_t cycle;
924 
925 	first = list_first_entry(&sched->entries,
926 				 struct sched_entry, list);
927 
928 	cycle = sched->cycle_time;
929 
930 	/* FIXME: find a better place to do this */
931 	sched->cycle_close_time = ktime_add_ns(base, cycle);
932 
933 	first->close_time = ktime_add_ns(base, first->interval);
934 	taprio_set_budget(q, first);
935 	rcu_assign_pointer(q->current_entry, NULL);
936 }
937 
938 static void taprio_start_sched(struct Qdisc *sch,
939 			       ktime_t start, struct sched_gate_list *new)
940 {
941 	struct taprio_sched *q = qdisc_priv(sch);
942 	ktime_t expires;
943 
944 	expires = hrtimer_get_expires(&q->advance_timer);
945 	if (expires == 0)
946 		expires = KTIME_MAX;
947 
948 	/* If the new schedule starts before the next expiration, we
949 	 * reprogram it to the earliest one, so we change the admin
950 	 * schedule to the operational one at the right time.
951 	 */
952 	start = min_t(ktime_t, start, expires);
953 
954 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
955 }
956 
957 static void taprio_set_picos_per_byte(struct net_device *dev,
958 				      struct taprio_sched *q)
959 {
960 	struct ethtool_link_ksettings ecmd;
961 	int picos_per_byte = -1;
962 
963 	if (!__ethtool_get_link_ksettings(dev, &ecmd) &&
964 	    ecmd.base.speed != SPEED_UNKNOWN)
965 		picos_per_byte = div64_s64(NSEC_PER_SEC * 1000LL * 8,
966 					   ecmd.base.speed * 1000 * 1000);
967 
968 	atomic64_set(&q->picos_per_byte, picos_per_byte);
969 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
970 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
971 		   ecmd.base.speed);
972 }
973 
974 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
975 			       void *ptr)
976 {
977 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
978 	struct net_device *qdev;
979 	struct taprio_sched *q;
980 	bool found = false;
981 
982 	ASSERT_RTNL();
983 
984 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
985 		return NOTIFY_DONE;
986 
987 	spin_lock(&taprio_list_lock);
988 	list_for_each_entry(q, &taprio_list, taprio_list) {
989 		qdev = qdisc_dev(q->root);
990 		if (qdev == dev) {
991 			found = true;
992 			break;
993 		}
994 	}
995 	spin_unlock(&taprio_list_lock);
996 
997 	if (found)
998 		taprio_set_picos_per_byte(dev, q);
999 
1000 	return NOTIFY_DONE;
1001 }
1002 
1003 static void setup_txtime(struct taprio_sched *q,
1004 			 struct sched_gate_list *sched, ktime_t base)
1005 {
1006 	struct sched_entry *entry;
1007 	u32 interval = 0;
1008 
1009 	list_for_each_entry(entry, &sched->entries, list) {
1010 		entry->next_txtime = ktime_add_ns(base, interval);
1011 		interval += entry->interval;
1012 	}
1013 }
1014 
1015 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1016 			 struct netlink_ext_ack *extack)
1017 {
1018 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1019 	struct sched_gate_list *oper, *admin, *new_admin;
1020 	struct taprio_sched *q = qdisc_priv(sch);
1021 	struct net_device *dev = qdisc_dev(sch);
1022 	struct tc_mqprio_qopt *mqprio = NULL;
1023 	u32 taprio_flags = 0;
1024 	int i, err, clockid;
1025 	unsigned long flags;
1026 	ktime_t start;
1027 
1028 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1029 					  taprio_policy, extack);
1030 	if (err < 0)
1031 		return err;
1032 
1033 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1034 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1035 
1036 	if (tb[TCA_TAPRIO_ATTR_FLAGS]) {
1037 		taprio_flags = nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]);
1038 
1039 		if (q->flags != 0 && q->flags != taprio_flags) {
1040 			NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1041 			return -EOPNOTSUPP;
1042 		} else if (!FLAGS_VALID(taprio_flags)) {
1043 			NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1044 			return -EINVAL;
1045 		}
1046 
1047 		q->flags = taprio_flags;
1048 	}
1049 
1050 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, taprio_flags);
1051 	if (err < 0)
1052 		return err;
1053 
1054 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1055 	if (!new_admin) {
1056 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1057 		return -ENOMEM;
1058 	}
1059 	INIT_LIST_HEAD(&new_admin->entries);
1060 
1061 	rcu_read_lock();
1062 	oper = rcu_dereference(q->oper_sched);
1063 	admin = rcu_dereference(q->admin_sched);
1064 	rcu_read_unlock();
1065 
1066 	if (mqprio && (oper || admin)) {
1067 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1068 		err = -ENOTSUPP;
1069 		goto free_sched;
1070 	}
1071 
1072 	err = parse_taprio_schedule(tb, new_admin, extack);
1073 	if (err < 0)
1074 		goto free_sched;
1075 
1076 	if (new_admin->num_entries == 0) {
1077 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1078 		err = -EINVAL;
1079 		goto free_sched;
1080 	}
1081 
1082 	if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1083 		clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1084 
1085 		/* We only support static clockids and we don't allow
1086 		 * for it to be modified after the first init.
1087 		 */
1088 		if (clockid < 0 ||
1089 		    (q->clockid != -1 && q->clockid != clockid)) {
1090 			NL_SET_ERR_MSG(extack, "Changing the 'clockid' of a running schedule is not supported");
1091 			err = -ENOTSUPP;
1092 			goto free_sched;
1093 		}
1094 
1095 		q->clockid = clockid;
1096 	}
1097 
1098 	if (q->clockid == -1 && !tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1099 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1100 		err = -EINVAL;
1101 		goto free_sched;
1102 	}
1103 
1104 	taprio_set_picos_per_byte(dev, q);
1105 
1106 	/* Protects against enqueue()/dequeue() */
1107 	spin_lock_bh(qdisc_lock(sch));
1108 
1109 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1110 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1111 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1112 			err = -EINVAL;
1113 			goto unlock;
1114 		}
1115 
1116 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1117 	}
1118 
1119 	if (!TXTIME_ASSIST_IS_ENABLED(taprio_flags) &&
1120 	    !hrtimer_active(&q->advance_timer)) {
1121 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1122 		q->advance_timer.function = advance_sched;
1123 	}
1124 
1125 	if (mqprio) {
1126 		netdev_set_num_tc(dev, mqprio->num_tc);
1127 		for (i = 0; i < mqprio->num_tc; i++)
1128 			netdev_set_tc_queue(dev, i,
1129 					    mqprio->count[i],
1130 					    mqprio->offset[i]);
1131 
1132 		/* Always use supplied priority mappings */
1133 		for (i = 0; i < TC_BITMASK + 1; i++)
1134 			netdev_set_prio_tc_map(dev, i,
1135 					       mqprio->prio_tc_map[i]);
1136 	}
1137 
1138 	switch (q->clockid) {
1139 	case CLOCK_REALTIME:
1140 		q->tk_offset = TK_OFFS_REAL;
1141 		break;
1142 	case CLOCK_MONOTONIC:
1143 		q->tk_offset = TK_OFFS_MAX;
1144 		break;
1145 	case CLOCK_BOOTTIME:
1146 		q->tk_offset = TK_OFFS_BOOT;
1147 		break;
1148 	case CLOCK_TAI:
1149 		q->tk_offset = TK_OFFS_TAI;
1150 		break;
1151 	default:
1152 		NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1153 		err = -EINVAL;
1154 		goto unlock;
1155 	}
1156 
1157 	err = taprio_get_start_time(sch, new_admin, &start);
1158 	if (err < 0) {
1159 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1160 		goto unlock;
1161 	}
1162 
1163 	if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) {
1164 		setup_txtime(q, new_admin, start);
1165 
1166 		if (!oper) {
1167 			rcu_assign_pointer(q->oper_sched, new_admin);
1168 			err = 0;
1169 			new_admin = NULL;
1170 			goto unlock;
1171 		}
1172 
1173 		rcu_assign_pointer(q->admin_sched, new_admin);
1174 		if (admin)
1175 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1176 	} else {
1177 		setup_first_close_time(q, new_admin, start);
1178 
1179 		/* Protects against advance_sched() */
1180 		spin_lock_irqsave(&q->current_entry_lock, flags);
1181 
1182 		taprio_start_sched(sch, start, new_admin);
1183 
1184 		rcu_assign_pointer(q->admin_sched, new_admin);
1185 		if (admin)
1186 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1187 
1188 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1189 	}
1190 
1191 	new_admin = NULL;
1192 	err = 0;
1193 
1194 unlock:
1195 	spin_unlock_bh(qdisc_lock(sch));
1196 
1197 free_sched:
1198 	if (new_admin)
1199 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1200 
1201 	return err;
1202 }
1203 
1204 static void taprio_destroy(struct Qdisc *sch)
1205 {
1206 	struct taprio_sched *q = qdisc_priv(sch);
1207 	struct net_device *dev = qdisc_dev(sch);
1208 	unsigned int i;
1209 
1210 	spin_lock(&taprio_list_lock);
1211 	list_del(&q->taprio_list);
1212 	spin_unlock(&taprio_list_lock);
1213 
1214 	hrtimer_cancel(&q->advance_timer);
1215 
1216 	if (q->qdiscs) {
1217 		for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1218 			qdisc_put(q->qdiscs[i]);
1219 
1220 		kfree(q->qdiscs);
1221 	}
1222 	q->qdiscs = NULL;
1223 
1224 	netdev_set_num_tc(dev, 0);
1225 
1226 	if (q->oper_sched)
1227 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1228 
1229 	if (q->admin_sched)
1230 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1231 }
1232 
1233 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1234 		       struct netlink_ext_ack *extack)
1235 {
1236 	struct taprio_sched *q = qdisc_priv(sch);
1237 	struct net_device *dev = qdisc_dev(sch);
1238 	int i;
1239 
1240 	spin_lock_init(&q->current_entry_lock);
1241 
1242 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1243 	q->advance_timer.function = advance_sched;
1244 
1245 	q->root = sch;
1246 
1247 	/* We only support static clockids. Use an invalid value as default
1248 	 * and get the valid one on taprio_change().
1249 	 */
1250 	q->clockid = -1;
1251 
1252 	if (sch->parent != TC_H_ROOT)
1253 		return -EOPNOTSUPP;
1254 
1255 	if (!netif_is_multiqueue(dev))
1256 		return -EOPNOTSUPP;
1257 
1258 	/* pre-allocate qdisc, attachment can't fail */
1259 	q->qdiscs = kcalloc(dev->num_tx_queues,
1260 			    sizeof(q->qdiscs[0]),
1261 			    GFP_KERNEL);
1262 
1263 	if (!q->qdiscs)
1264 		return -ENOMEM;
1265 
1266 	if (!opt)
1267 		return -EINVAL;
1268 
1269 	spin_lock(&taprio_list_lock);
1270 	list_add(&q->taprio_list, &taprio_list);
1271 	spin_unlock(&taprio_list_lock);
1272 
1273 	for (i = 0; i < dev->num_tx_queues; i++) {
1274 		struct netdev_queue *dev_queue;
1275 		struct Qdisc *qdisc;
1276 
1277 		dev_queue = netdev_get_tx_queue(dev, i);
1278 		qdisc = qdisc_create_dflt(dev_queue,
1279 					  &pfifo_qdisc_ops,
1280 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1281 						    TC_H_MIN(i + 1)),
1282 					  extack);
1283 		if (!qdisc)
1284 			return -ENOMEM;
1285 
1286 		if (i < dev->real_num_tx_queues)
1287 			qdisc_hash_add(qdisc, false);
1288 
1289 		q->qdiscs[i] = qdisc;
1290 	}
1291 
1292 	return taprio_change(sch, opt, extack);
1293 }
1294 
1295 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1296 					     unsigned long cl)
1297 {
1298 	struct net_device *dev = qdisc_dev(sch);
1299 	unsigned long ntx = cl - 1;
1300 
1301 	if (ntx >= dev->num_tx_queues)
1302 		return NULL;
1303 
1304 	return netdev_get_tx_queue(dev, ntx);
1305 }
1306 
1307 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1308 			struct Qdisc *new, struct Qdisc **old,
1309 			struct netlink_ext_ack *extack)
1310 {
1311 	struct taprio_sched *q = qdisc_priv(sch);
1312 	struct net_device *dev = qdisc_dev(sch);
1313 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1314 
1315 	if (!dev_queue)
1316 		return -EINVAL;
1317 
1318 	if (dev->flags & IFF_UP)
1319 		dev_deactivate(dev);
1320 
1321 	*old = q->qdiscs[cl - 1];
1322 	q->qdiscs[cl - 1] = new;
1323 
1324 	if (new)
1325 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1326 
1327 	if (dev->flags & IFF_UP)
1328 		dev_activate(dev);
1329 
1330 	return 0;
1331 }
1332 
1333 static int dump_entry(struct sk_buff *msg,
1334 		      const struct sched_entry *entry)
1335 {
1336 	struct nlattr *item;
1337 
1338 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1339 	if (!item)
1340 		return -ENOSPC;
1341 
1342 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1343 		goto nla_put_failure;
1344 
1345 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1346 		goto nla_put_failure;
1347 
1348 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1349 			entry->gate_mask))
1350 		goto nla_put_failure;
1351 
1352 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1353 			entry->interval))
1354 		goto nla_put_failure;
1355 
1356 	return nla_nest_end(msg, item);
1357 
1358 nla_put_failure:
1359 	nla_nest_cancel(msg, item);
1360 	return -1;
1361 }
1362 
1363 static int dump_schedule(struct sk_buff *msg,
1364 			 const struct sched_gate_list *root)
1365 {
1366 	struct nlattr *entry_list;
1367 	struct sched_entry *entry;
1368 
1369 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1370 			root->base_time, TCA_TAPRIO_PAD))
1371 		return -1;
1372 
1373 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1374 			root->cycle_time, TCA_TAPRIO_PAD))
1375 		return -1;
1376 
1377 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1378 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1379 		return -1;
1380 
1381 	entry_list = nla_nest_start_noflag(msg,
1382 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1383 	if (!entry_list)
1384 		goto error_nest;
1385 
1386 	list_for_each_entry(entry, &root->entries, list) {
1387 		if (dump_entry(msg, entry) < 0)
1388 			goto error_nest;
1389 	}
1390 
1391 	nla_nest_end(msg, entry_list);
1392 	return 0;
1393 
1394 error_nest:
1395 	nla_nest_cancel(msg, entry_list);
1396 	return -1;
1397 }
1398 
1399 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1400 {
1401 	struct taprio_sched *q = qdisc_priv(sch);
1402 	struct net_device *dev = qdisc_dev(sch);
1403 	struct sched_gate_list *oper, *admin;
1404 	struct tc_mqprio_qopt opt = { 0 };
1405 	struct nlattr *nest, *sched_nest;
1406 	unsigned int i;
1407 
1408 	rcu_read_lock();
1409 	oper = rcu_dereference(q->oper_sched);
1410 	admin = rcu_dereference(q->admin_sched);
1411 
1412 	opt.num_tc = netdev_get_num_tc(dev);
1413 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1414 
1415 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1416 		opt.count[i] = dev->tc_to_txq[i].count;
1417 		opt.offset[i] = dev->tc_to_txq[i].offset;
1418 	}
1419 
1420 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1421 	if (!nest)
1422 		goto start_error;
1423 
1424 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1425 		goto options_error;
1426 
1427 	if (nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1428 		goto options_error;
1429 
1430 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1431 		goto options_error;
1432 
1433 	if (q->txtime_delay &&
1434 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1435 		goto options_error;
1436 
1437 	if (oper && dump_schedule(skb, oper))
1438 		goto options_error;
1439 
1440 	if (!admin)
1441 		goto done;
1442 
1443 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1444 	if (!sched_nest)
1445 		goto options_error;
1446 
1447 	if (dump_schedule(skb, admin))
1448 		goto admin_error;
1449 
1450 	nla_nest_end(skb, sched_nest);
1451 
1452 done:
1453 	rcu_read_unlock();
1454 
1455 	return nla_nest_end(skb, nest);
1456 
1457 admin_error:
1458 	nla_nest_cancel(skb, sched_nest);
1459 
1460 options_error:
1461 	nla_nest_cancel(skb, nest);
1462 
1463 start_error:
1464 	rcu_read_unlock();
1465 	return -ENOSPC;
1466 }
1467 
1468 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1469 {
1470 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1471 
1472 	if (!dev_queue)
1473 		return NULL;
1474 
1475 	return dev_queue->qdisc_sleeping;
1476 }
1477 
1478 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1479 {
1480 	unsigned int ntx = TC_H_MIN(classid);
1481 
1482 	if (!taprio_queue_get(sch, ntx))
1483 		return 0;
1484 	return ntx;
1485 }
1486 
1487 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1488 			     struct sk_buff *skb, struct tcmsg *tcm)
1489 {
1490 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1491 
1492 	tcm->tcm_parent = TC_H_ROOT;
1493 	tcm->tcm_handle |= TC_H_MIN(cl);
1494 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1495 
1496 	return 0;
1497 }
1498 
1499 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1500 				   struct gnet_dump *d)
1501 	__releases(d->lock)
1502 	__acquires(d->lock)
1503 {
1504 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1505 
1506 	sch = dev_queue->qdisc_sleeping;
1507 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1508 	    qdisc_qstats_copy(d, sch) < 0)
1509 		return -1;
1510 	return 0;
1511 }
1512 
1513 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1514 {
1515 	struct net_device *dev = qdisc_dev(sch);
1516 	unsigned long ntx;
1517 
1518 	if (arg->stop)
1519 		return;
1520 
1521 	arg->count = arg->skip;
1522 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1523 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1524 			arg->stop = 1;
1525 			break;
1526 		}
1527 		arg->count++;
1528 	}
1529 }
1530 
1531 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1532 						struct tcmsg *tcm)
1533 {
1534 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1535 }
1536 
1537 static const struct Qdisc_class_ops taprio_class_ops = {
1538 	.graft		= taprio_graft,
1539 	.leaf		= taprio_leaf,
1540 	.find		= taprio_find,
1541 	.walk		= taprio_walk,
1542 	.dump		= taprio_dump_class,
1543 	.dump_stats	= taprio_dump_class_stats,
1544 	.select_queue	= taprio_select_queue,
1545 };
1546 
1547 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1548 	.cl_ops		= &taprio_class_ops,
1549 	.id		= "taprio",
1550 	.priv_size	= sizeof(struct taprio_sched),
1551 	.init		= taprio_init,
1552 	.change		= taprio_change,
1553 	.destroy	= taprio_destroy,
1554 	.peek		= taprio_peek,
1555 	.dequeue	= taprio_dequeue,
1556 	.enqueue	= taprio_enqueue,
1557 	.dump		= taprio_dump,
1558 	.owner		= THIS_MODULE,
1559 };
1560 
1561 static struct notifier_block taprio_device_notifier = {
1562 	.notifier_call = taprio_dev_notifier,
1563 };
1564 
1565 static int __init taprio_module_init(void)
1566 {
1567 	int err = register_netdevice_notifier(&taprio_device_notifier);
1568 
1569 	if (err)
1570 		return err;
1571 
1572 	return register_qdisc(&taprio_qdisc_ops);
1573 }
1574 
1575 static void __exit taprio_module_exit(void)
1576 {
1577 	unregister_qdisc(&taprio_qdisc_ops);
1578 	unregister_netdevice_notifier(&taprio_device_notifier);
1579 }
1580 
1581 module_init(taprio_module_init);
1582 module_exit(taprio_module_exit);
1583 MODULE_LICENSE("GPL");
1584