1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/ethtool_netlink.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/string.h> 15 #include <linux/list.h> 16 #include <linux/errno.h> 17 #include <linux/skbuff.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/time.h> 23 #include <net/gso.h> 24 #include <net/netlink.h> 25 #include <net/pkt_sched.h> 26 #include <net/pkt_cls.h> 27 #include <net/sch_generic.h> 28 #include <net/sock.h> 29 #include <net/tcp.h> 30 31 #define TAPRIO_STAT_NOT_SET (~0ULL) 32 33 #include "sch_mqprio_lib.h" 34 35 static LIST_HEAD(taprio_list); 36 static struct static_key_false taprio_have_broken_mqprio; 37 static struct static_key_false taprio_have_working_mqprio; 38 39 #define TAPRIO_ALL_GATES_OPEN -1 40 41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 43 #define TAPRIO_FLAGS_INVALID U32_MAX 44 45 struct sched_entry { 46 /* Durations between this GCL entry and the GCL entry where the 47 * respective traffic class gate closes 48 */ 49 u64 gate_duration[TC_MAX_QUEUE]; 50 atomic_t budget[TC_MAX_QUEUE]; 51 /* The qdisc makes some effort so that no packet leaves 52 * after this time 53 */ 54 ktime_t gate_close_time[TC_MAX_QUEUE]; 55 struct list_head list; 56 /* Used to calculate when to advance the schedule */ 57 ktime_t end_time; 58 ktime_t next_txtime; 59 int index; 60 u32 gate_mask; 61 u32 interval; 62 u8 command; 63 }; 64 65 struct sched_gate_list { 66 /* Longest non-zero contiguous gate durations per traffic class, 67 * or 0 if a traffic class gate never opens during the schedule. 68 */ 69 u64 max_open_gate_duration[TC_MAX_QUEUE]; 70 u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ 71 u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ 72 struct rcu_head rcu; 73 struct list_head entries; 74 size_t num_entries; 75 ktime_t cycle_end_time; 76 s64 cycle_time; 77 s64 cycle_time_extension; 78 s64 base_time; 79 }; 80 81 struct taprio_sched { 82 struct Qdisc **qdiscs; 83 struct Qdisc *root; 84 u32 flags; 85 enum tk_offsets tk_offset; 86 int clockid; 87 bool offloaded; 88 bool detected_mqprio; 89 bool broken_mqprio; 90 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 91 * speeds it's sub-nanoseconds per byte 92 */ 93 94 /* Protects the update side of the RCU protected current_entry */ 95 spinlock_t current_entry_lock; 96 struct sched_entry __rcu *current_entry; 97 struct sched_gate_list __rcu *oper_sched; 98 struct sched_gate_list __rcu *admin_sched; 99 struct hrtimer advance_timer; 100 struct list_head taprio_list; 101 int cur_txq[TC_MAX_QUEUE]; 102 u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ 103 u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ 104 u32 txtime_delay; 105 }; 106 107 struct __tc_taprio_qopt_offload { 108 refcount_t users; 109 struct tc_taprio_qopt_offload offload; 110 }; 111 112 static void taprio_calculate_gate_durations(struct taprio_sched *q, 113 struct sched_gate_list *sched) 114 { 115 struct net_device *dev = qdisc_dev(q->root); 116 int num_tc = netdev_get_num_tc(dev); 117 struct sched_entry *entry, *cur; 118 int tc; 119 120 list_for_each_entry(entry, &sched->entries, list) { 121 u32 gates_still_open = entry->gate_mask; 122 123 /* For each traffic class, calculate each open gate duration, 124 * starting at this schedule entry and ending at the schedule 125 * entry containing a gate close event for that TC. 126 */ 127 cur = entry; 128 129 do { 130 if (!gates_still_open) 131 break; 132 133 for (tc = 0; tc < num_tc; tc++) { 134 if (!(gates_still_open & BIT(tc))) 135 continue; 136 137 if (cur->gate_mask & BIT(tc)) 138 entry->gate_duration[tc] += cur->interval; 139 else 140 gates_still_open &= ~BIT(tc); 141 } 142 143 cur = list_next_entry_circular(cur, &sched->entries, list); 144 } while (cur != entry); 145 146 /* Keep track of the maximum gate duration for each traffic 147 * class, taking care to not confuse a traffic class which is 148 * temporarily closed with one that is always closed. 149 */ 150 for (tc = 0; tc < num_tc; tc++) 151 if (entry->gate_duration[tc] && 152 sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) 153 sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; 154 } 155 } 156 157 static bool taprio_entry_allows_tx(ktime_t skb_end_time, 158 struct sched_entry *entry, int tc) 159 { 160 return ktime_before(skb_end_time, entry->gate_close_time[tc]); 161 } 162 163 static ktime_t sched_base_time(const struct sched_gate_list *sched) 164 { 165 if (!sched) 166 return KTIME_MAX; 167 168 return ns_to_ktime(sched->base_time); 169 } 170 171 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 172 { 173 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 174 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 175 176 switch (tk_offset) { 177 case TK_OFFS_MAX: 178 return mono; 179 default: 180 return ktime_mono_to_any(mono, tk_offset); 181 } 182 } 183 184 static ktime_t taprio_get_time(const struct taprio_sched *q) 185 { 186 return taprio_mono_to_any(q, ktime_get()); 187 } 188 189 static void taprio_free_sched_cb(struct rcu_head *head) 190 { 191 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 192 struct sched_entry *entry, *n; 193 194 list_for_each_entry_safe(entry, n, &sched->entries, list) { 195 list_del(&entry->list); 196 kfree(entry); 197 } 198 199 kfree(sched); 200 } 201 202 static void switch_schedules(struct taprio_sched *q, 203 struct sched_gate_list **admin, 204 struct sched_gate_list **oper) 205 { 206 rcu_assign_pointer(q->oper_sched, *admin); 207 rcu_assign_pointer(q->admin_sched, NULL); 208 209 if (*oper) 210 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 211 212 *oper = *admin; 213 *admin = NULL; 214 } 215 216 /* Get how much time has been already elapsed in the current cycle. */ 217 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 218 { 219 ktime_t time_since_sched_start; 220 s32 time_elapsed; 221 222 time_since_sched_start = ktime_sub(time, sched->base_time); 223 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 224 225 return time_elapsed; 226 } 227 228 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 229 struct sched_gate_list *admin, 230 struct sched_entry *entry, 231 ktime_t intv_start) 232 { 233 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 234 ktime_t intv_end, cycle_ext_end, cycle_end; 235 236 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 237 intv_end = ktime_add_ns(intv_start, entry->interval); 238 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 239 240 if (ktime_before(intv_end, cycle_end)) 241 return intv_end; 242 else if (admin && admin != sched && 243 ktime_after(admin->base_time, cycle_end) && 244 ktime_before(admin->base_time, cycle_ext_end)) 245 return admin->base_time; 246 else 247 return cycle_end; 248 } 249 250 static int length_to_duration(struct taprio_sched *q, int len) 251 { 252 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); 253 } 254 255 static int duration_to_length(struct taprio_sched *q, u64 duration) 256 { 257 return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); 258 } 259 260 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the 261 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by 262 * the maximum open gate durations at the given link speed. 263 */ 264 static void taprio_update_queue_max_sdu(struct taprio_sched *q, 265 struct sched_gate_list *sched, 266 struct qdisc_size_table *stab) 267 { 268 struct net_device *dev = qdisc_dev(q->root); 269 int num_tc = netdev_get_num_tc(dev); 270 u32 max_sdu_from_user; 271 u32 max_sdu_dynamic; 272 u32 max_sdu; 273 int tc; 274 275 for (tc = 0; tc < num_tc; tc++) { 276 max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; 277 278 /* TC gate never closes => keep the queueMaxSDU 279 * selected by the user 280 */ 281 if (sched->max_open_gate_duration[tc] == sched->cycle_time) { 282 max_sdu_dynamic = U32_MAX; 283 } else { 284 u32 max_frm_len; 285 286 max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); 287 /* Compensate for L1 overhead from size table, 288 * but don't let the frame size go negative 289 */ 290 if (stab) { 291 max_frm_len -= stab->szopts.overhead; 292 max_frm_len = max_t(int, max_frm_len, 293 dev->hard_header_len + 1); 294 } 295 max_sdu_dynamic = max_frm_len - dev->hard_header_len; 296 if (max_sdu_dynamic > dev->max_mtu) 297 max_sdu_dynamic = U32_MAX; 298 } 299 300 max_sdu = min(max_sdu_dynamic, max_sdu_from_user); 301 302 if (max_sdu != U32_MAX) { 303 sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; 304 sched->max_sdu[tc] = max_sdu; 305 } else { 306 sched->max_frm_len[tc] = U32_MAX; /* never oversized */ 307 sched->max_sdu[tc] = 0; 308 } 309 } 310 } 311 312 /* Returns the entry corresponding to next available interval. If 313 * validate_interval is set, it only validates whether the timestamp occurs 314 * when the gate corresponding to the skb's traffic class is open. 315 */ 316 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 317 struct Qdisc *sch, 318 struct sched_gate_list *sched, 319 struct sched_gate_list *admin, 320 ktime_t time, 321 ktime_t *interval_start, 322 ktime_t *interval_end, 323 bool validate_interval) 324 { 325 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 326 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 327 struct sched_entry *entry = NULL, *entry_found = NULL; 328 struct taprio_sched *q = qdisc_priv(sch); 329 struct net_device *dev = qdisc_dev(sch); 330 bool entry_available = false; 331 s32 cycle_elapsed; 332 int tc, n; 333 334 tc = netdev_get_prio_tc_map(dev, skb->priority); 335 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 336 337 *interval_start = 0; 338 *interval_end = 0; 339 340 if (!sched) 341 return NULL; 342 343 cycle = sched->cycle_time; 344 cycle_elapsed = get_cycle_time_elapsed(sched, time); 345 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 346 cycle_end = ktime_add_ns(curr_intv_end, cycle); 347 348 list_for_each_entry(entry, &sched->entries, list) { 349 curr_intv_start = curr_intv_end; 350 curr_intv_end = get_interval_end_time(sched, admin, entry, 351 curr_intv_start); 352 353 if (ktime_after(curr_intv_start, cycle_end)) 354 break; 355 356 if (!(entry->gate_mask & BIT(tc)) || 357 packet_transmit_time > entry->interval) 358 continue; 359 360 txtime = entry->next_txtime; 361 362 if (ktime_before(txtime, time) || validate_interval) { 363 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 364 if ((ktime_before(curr_intv_start, time) && 365 ktime_before(transmit_end_time, curr_intv_end)) || 366 (ktime_after(curr_intv_start, time) && !validate_interval)) { 367 entry_found = entry; 368 *interval_start = curr_intv_start; 369 *interval_end = curr_intv_end; 370 break; 371 } else if (!entry_available && !validate_interval) { 372 /* Here, we are just trying to find out the 373 * first available interval in the next cycle. 374 */ 375 entry_available = true; 376 entry_found = entry; 377 *interval_start = ktime_add_ns(curr_intv_start, cycle); 378 *interval_end = ktime_add_ns(curr_intv_end, cycle); 379 } 380 } else if (ktime_before(txtime, earliest_txtime) && 381 !entry_available) { 382 earliest_txtime = txtime; 383 entry_found = entry; 384 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 385 *interval_start = ktime_add(curr_intv_start, n * cycle); 386 *interval_end = ktime_add(curr_intv_end, n * cycle); 387 } 388 } 389 390 return entry_found; 391 } 392 393 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 394 { 395 struct taprio_sched *q = qdisc_priv(sch); 396 struct sched_gate_list *sched, *admin; 397 ktime_t interval_start, interval_end; 398 struct sched_entry *entry; 399 400 rcu_read_lock(); 401 sched = rcu_dereference(q->oper_sched); 402 admin = rcu_dereference(q->admin_sched); 403 404 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 405 &interval_start, &interval_end, true); 406 rcu_read_unlock(); 407 408 return entry; 409 } 410 411 static bool taprio_flags_valid(u32 flags) 412 { 413 /* Make sure no other flag bits are set. */ 414 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 415 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 416 return false; 417 /* txtime-assist and full offload are mutually exclusive */ 418 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 419 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 420 return false; 421 return true; 422 } 423 424 /* This returns the tstamp value set by TCP in terms of the set clock. */ 425 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 426 { 427 unsigned int offset = skb_network_offset(skb); 428 const struct ipv6hdr *ipv6h; 429 const struct iphdr *iph; 430 struct ipv6hdr _ipv6h; 431 432 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 433 if (!ipv6h) 434 return 0; 435 436 if (ipv6h->version == 4) { 437 iph = (struct iphdr *)ipv6h; 438 offset += iph->ihl * 4; 439 440 /* special-case 6in4 tunnelling, as that is a common way to get 441 * v6 connectivity in the home 442 */ 443 if (iph->protocol == IPPROTO_IPV6) { 444 ipv6h = skb_header_pointer(skb, offset, 445 sizeof(_ipv6h), &_ipv6h); 446 447 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 448 return 0; 449 } else if (iph->protocol != IPPROTO_TCP) { 450 return 0; 451 } 452 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 453 return 0; 454 } 455 456 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 457 } 458 459 /* There are a few scenarios where we will have to modify the txtime from 460 * what is read from next_txtime in sched_entry. They are: 461 * 1. If txtime is in the past, 462 * a. The gate for the traffic class is currently open and packet can be 463 * transmitted before it closes, schedule the packet right away. 464 * b. If the gate corresponding to the traffic class is going to open later 465 * in the cycle, set the txtime of packet to the interval start. 466 * 2. If txtime is in the future, there are packets corresponding to the 467 * current traffic class waiting to be transmitted. So, the following 468 * possibilities exist: 469 * a. We can transmit the packet before the window containing the txtime 470 * closes. 471 * b. The window might close before the transmission can be completed 472 * successfully. So, schedule the packet in the next open window. 473 */ 474 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 475 { 476 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 477 struct taprio_sched *q = qdisc_priv(sch); 478 struct sched_gate_list *sched, *admin; 479 ktime_t minimum_time, now, txtime; 480 int len, packet_transmit_time; 481 struct sched_entry *entry; 482 bool sched_changed; 483 484 now = taprio_get_time(q); 485 minimum_time = ktime_add_ns(now, q->txtime_delay); 486 487 tcp_tstamp = get_tcp_tstamp(q, skb); 488 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 489 490 rcu_read_lock(); 491 admin = rcu_dereference(q->admin_sched); 492 sched = rcu_dereference(q->oper_sched); 493 if (admin && ktime_after(minimum_time, admin->base_time)) 494 switch_schedules(q, &admin, &sched); 495 496 /* Until the schedule starts, all the queues are open */ 497 if (!sched || ktime_before(minimum_time, sched->base_time)) { 498 txtime = minimum_time; 499 goto done; 500 } 501 502 len = qdisc_pkt_len(skb); 503 packet_transmit_time = length_to_duration(q, len); 504 505 do { 506 sched_changed = false; 507 508 entry = find_entry_to_transmit(skb, sch, sched, admin, 509 minimum_time, 510 &interval_start, &interval_end, 511 false); 512 if (!entry) { 513 txtime = 0; 514 goto done; 515 } 516 517 txtime = entry->next_txtime; 518 txtime = max_t(ktime_t, txtime, minimum_time); 519 txtime = max_t(ktime_t, txtime, interval_start); 520 521 if (admin && admin != sched && 522 ktime_after(txtime, admin->base_time)) { 523 sched = admin; 524 sched_changed = true; 525 continue; 526 } 527 528 transmit_end_time = ktime_add(txtime, packet_transmit_time); 529 minimum_time = transmit_end_time; 530 531 /* Update the txtime of current entry to the next time it's 532 * interval starts. 533 */ 534 if (ktime_after(transmit_end_time, interval_end)) 535 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 536 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 537 538 entry->next_txtime = transmit_end_time; 539 540 done: 541 rcu_read_unlock(); 542 return txtime; 543 } 544 545 /* Devices with full offload are expected to honor this in hardware */ 546 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, 547 struct sk_buff *skb) 548 { 549 struct taprio_sched *q = qdisc_priv(sch); 550 struct net_device *dev = qdisc_dev(sch); 551 struct sched_gate_list *sched; 552 int prio = skb->priority; 553 bool exceeds = false; 554 u8 tc; 555 556 tc = netdev_get_prio_tc_map(dev, prio); 557 558 rcu_read_lock(); 559 sched = rcu_dereference(q->oper_sched); 560 if (sched && skb->len > sched->max_frm_len[tc]) 561 exceeds = true; 562 rcu_read_unlock(); 563 564 return exceeds; 565 } 566 567 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 568 struct Qdisc *child, struct sk_buff **to_free) 569 { 570 struct taprio_sched *q = qdisc_priv(sch); 571 572 /* sk_flags are only safe to use on full sockets. */ 573 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { 574 if (!is_valid_interval(skb, sch)) 575 return qdisc_drop(skb, sch, to_free); 576 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 577 skb->tstamp = get_packet_txtime(skb, sch); 578 if (!skb->tstamp) 579 return qdisc_drop(skb, sch, to_free); 580 } 581 582 qdisc_qstats_backlog_inc(sch, skb); 583 sch->q.qlen++; 584 585 return qdisc_enqueue(skb, child, to_free); 586 } 587 588 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, 589 struct Qdisc *child, 590 struct sk_buff **to_free) 591 { 592 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 593 netdev_features_t features = netif_skb_features(skb); 594 struct sk_buff *segs, *nskb; 595 int ret; 596 597 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 598 if (IS_ERR_OR_NULL(segs)) 599 return qdisc_drop(skb, sch, to_free); 600 601 skb_list_walk_safe(segs, segs, nskb) { 602 skb_mark_not_on_list(segs); 603 qdisc_skb_cb(segs)->pkt_len = segs->len; 604 slen += segs->len; 605 606 /* FIXME: we should be segmenting to a smaller size 607 * rather than dropping these 608 */ 609 if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) 610 ret = qdisc_drop(segs, sch, to_free); 611 else 612 ret = taprio_enqueue_one(segs, sch, child, to_free); 613 614 if (ret != NET_XMIT_SUCCESS) { 615 if (net_xmit_drop_count(ret)) 616 qdisc_qstats_drop(sch); 617 } else { 618 numsegs++; 619 } 620 } 621 622 if (numsegs > 1) 623 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 624 consume_skb(skb); 625 626 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 627 } 628 629 /* Will not be called in the full offload case, since the TX queues are 630 * attached to the Qdisc created using qdisc_create_dflt() 631 */ 632 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 633 struct sk_buff **to_free) 634 { 635 struct taprio_sched *q = qdisc_priv(sch); 636 struct Qdisc *child; 637 int queue; 638 639 queue = skb_get_queue_mapping(skb); 640 641 child = q->qdiscs[queue]; 642 if (unlikely(!child)) 643 return qdisc_drop(skb, sch, to_free); 644 645 if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { 646 /* Large packets might not be transmitted when the transmission 647 * duration exceeds any configured interval. Therefore, segment 648 * the skb into smaller chunks. Drivers with full offload are 649 * expected to handle this in hardware. 650 */ 651 if (skb_is_gso(skb)) 652 return taprio_enqueue_segmented(skb, sch, child, 653 to_free); 654 655 return qdisc_drop(skb, sch, to_free); 656 } 657 658 return taprio_enqueue_one(skb, sch, child, to_free); 659 } 660 661 static struct sk_buff *taprio_peek(struct Qdisc *sch) 662 { 663 WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); 664 return NULL; 665 } 666 667 static void taprio_set_budgets(struct taprio_sched *q, 668 struct sched_gate_list *sched, 669 struct sched_entry *entry) 670 { 671 struct net_device *dev = qdisc_dev(q->root); 672 int num_tc = netdev_get_num_tc(dev); 673 int tc, budget; 674 675 for (tc = 0; tc < num_tc; tc++) { 676 /* Traffic classes which never close have infinite budget */ 677 if (entry->gate_duration[tc] == sched->cycle_time) 678 budget = INT_MAX; 679 else 680 budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, 681 atomic64_read(&q->picos_per_byte)); 682 683 atomic_set(&entry->budget[tc], budget); 684 } 685 } 686 687 /* When an skb is sent, it consumes from the budget of all traffic classes */ 688 static int taprio_update_budgets(struct sched_entry *entry, size_t len, 689 int tc_consumed, int num_tc) 690 { 691 int tc, budget, new_budget = 0; 692 693 for (tc = 0; tc < num_tc; tc++) { 694 budget = atomic_read(&entry->budget[tc]); 695 /* Don't consume from infinite budget */ 696 if (budget == INT_MAX) { 697 if (tc == tc_consumed) 698 new_budget = budget; 699 continue; 700 } 701 702 if (tc == tc_consumed) 703 new_budget = atomic_sub_return(len, &entry->budget[tc]); 704 else 705 atomic_sub(len, &entry->budget[tc]); 706 } 707 708 return new_budget; 709 } 710 711 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, 712 struct sched_entry *entry, 713 u32 gate_mask) 714 { 715 struct taprio_sched *q = qdisc_priv(sch); 716 struct net_device *dev = qdisc_dev(sch); 717 struct Qdisc *child = q->qdiscs[txq]; 718 int num_tc = netdev_get_num_tc(dev); 719 struct sk_buff *skb; 720 ktime_t guard; 721 int prio; 722 int len; 723 u8 tc; 724 725 if (unlikely(!child)) 726 return NULL; 727 728 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 729 goto skip_peek_checks; 730 731 skb = child->ops->peek(child); 732 if (!skb) 733 return NULL; 734 735 prio = skb->priority; 736 tc = netdev_get_prio_tc_map(dev, prio); 737 738 if (!(gate_mask & BIT(tc))) 739 return NULL; 740 741 len = qdisc_pkt_len(skb); 742 guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); 743 744 /* In the case that there's no gate entry, there's no 745 * guard band ... 746 */ 747 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 748 !taprio_entry_allows_tx(guard, entry, tc)) 749 return NULL; 750 751 /* ... and no budget. */ 752 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 753 taprio_update_budgets(entry, len, tc, num_tc) < 0) 754 return NULL; 755 756 skip_peek_checks: 757 skb = child->ops->dequeue(child); 758 if (unlikely(!skb)) 759 return NULL; 760 761 qdisc_bstats_update(sch, skb); 762 qdisc_qstats_backlog_dec(sch, skb); 763 sch->q.qlen--; 764 765 return skb; 766 } 767 768 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) 769 { 770 int offset = dev->tc_to_txq[tc].offset; 771 int count = dev->tc_to_txq[tc].count; 772 773 (*txq)++; 774 if (*txq == offset + count) 775 *txq = offset; 776 } 777 778 /* Prioritize higher traffic classes, and select among TXQs belonging to the 779 * same TC using round robin 780 */ 781 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, 782 struct sched_entry *entry, 783 u32 gate_mask) 784 { 785 struct taprio_sched *q = qdisc_priv(sch); 786 struct net_device *dev = qdisc_dev(sch); 787 int num_tc = netdev_get_num_tc(dev); 788 struct sk_buff *skb; 789 int tc; 790 791 for (tc = num_tc - 1; tc >= 0; tc--) { 792 int first_txq = q->cur_txq[tc]; 793 794 if (!(gate_mask & BIT(tc))) 795 continue; 796 797 do { 798 skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], 799 entry, gate_mask); 800 801 taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); 802 803 if (q->cur_txq[tc] >= dev->num_tx_queues) 804 q->cur_txq[tc] = first_txq; 805 806 if (skb) 807 return skb; 808 } while (q->cur_txq[tc] != first_txq); 809 } 810 811 return NULL; 812 } 813 814 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic 815 * class other than to determine whether the gate is open or not 816 */ 817 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, 818 struct sched_entry *entry, 819 u32 gate_mask) 820 { 821 struct net_device *dev = qdisc_dev(sch); 822 struct sk_buff *skb; 823 int i; 824 825 for (i = 0; i < dev->num_tx_queues; i++) { 826 skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); 827 if (skb) 828 return skb; 829 } 830 831 return NULL; 832 } 833 834 /* Will not be called in the full offload case, since the TX queues are 835 * attached to the Qdisc created using qdisc_create_dflt() 836 */ 837 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 838 { 839 struct taprio_sched *q = qdisc_priv(sch); 840 struct sk_buff *skb = NULL; 841 struct sched_entry *entry; 842 u32 gate_mask; 843 844 rcu_read_lock(); 845 entry = rcu_dereference(q->current_entry); 846 /* if there's no entry, it means that the schedule didn't 847 * start yet, so force all gates to be open, this is in 848 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 849 * "AdminGateStates" 850 */ 851 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 852 if (!gate_mask) 853 goto done; 854 855 if (static_branch_unlikely(&taprio_have_broken_mqprio) && 856 !static_branch_likely(&taprio_have_working_mqprio)) { 857 /* Single NIC kind which is broken */ 858 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 859 } else if (static_branch_likely(&taprio_have_working_mqprio) && 860 !static_branch_unlikely(&taprio_have_broken_mqprio)) { 861 /* Single NIC kind which prioritizes properly */ 862 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 863 } else { 864 /* Mixed NIC kinds present in system, need dynamic testing */ 865 if (q->broken_mqprio) 866 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 867 else 868 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 869 } 870 871 done: 872 rcu_read_unlock(); 873 874 return skb; 875 } 876 877 static bool should_restart_cycle(const struct sched_gate_list *oper, 878 const struct sched_entry *entry) 879 { 880 if (list_is_last(&entry->list, &oper->entries)) 881 return true; 882 883 if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) 884 return true; 885 886 return false; 887 } 888 889 static bool should_change_schedules(const struct sched_gate_list *admin, 890 const struct sched_gate_list *oper, 891 ktime_t end_time) 892 { 893 ktime_t next_base_time, extension_time; 894 895 if (!admin) 896 return false; 897 898 next_base_time = sched_base_time(admin); 899 900 /* This is the simple case, the end_time would fall after 901 * the next schedule base_time. 902 */ 903 if (ktime_compare(next_base_time, end_time) <= 0) 904 return true; 905 906 /* This is the cycle_time_extension case, if the end_time 907 * plus the amount that can be extended would fall after the 908 * next schedule base_time, we can extend the current schedule 909 * for that amount. 910 */ 911 extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); 912 913 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 914 * how precisely the extension should be made. So after 915 * conformance testing, this logic may change. 916 */ 917 if (ktime_compare(next_base_time, extension_time) <= 0) 918 return true; 919 920 return false; 921 } 922 923 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 924 { 925 struct taprio_sched *q = container_of(timer, struct taprio_sched, 926 advance_timer); 927 struct net_device *dev = qdisc_dev(q->root); 928 struct sched_gate_list *oper, *admin; 929 int num_tc = netdev_get_num_tc(dev); 930 struct sched_entry *entry, *next; 931 struct Qdisc *sch = q->root; 932 ktime_t end_time; 933 int tc; 934 935 spin_lock(&q->current_entry_lock); 936 entry = rcu_dereference_protected(q->current_entry, 937 lockdep_is_held(&q->current_entry_lock)); 938 oper = rcu_dereference_protected(q->oper_sched, 939 lockdep_is_held(&q->current_entry_lock)); 940 admin = rcu_dereference_protected(q->admin_sched, 941 lockdep_is_held(&q->current_entry_lock)); 942 943 if (!oper) 944 switch_schedules(q, &admin, &oper); 945 946 /* This can happen in two cases: 1. this is the very first run 947 * of this function (i.e. we weren't running any schedule 948 * previously); 2. The previous schedule just ended. The first 949 * entry of all schedules are pre-calculated during the 950 * schedule initialization. 951 */ 952 if (unlikely(!entry || entry->end_time == oper->base_time)) { 953 next = list_first_entry(&oper->entries, struct sched_entry, 954 list); 955 end_time = next->end_time; 956 goto first_run; 957 } 958 959 if (should_restart_cycle(oper, entry)) { 960 next = list_first_entry(&oper->entries, struct sched_entry, 961 list); 962 oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, 963 oper->cycle_time); 964 } else { 965 next = list_next_entry(entry, list); 966 } 967 968 end_time = ktime_add_ns(entry->end_time, next->interval); 969 end_time = min_t(ktime_t, end_time, oper->cycle_end_time); 970 971 for (tc = 0; tc < num_tc; tc++) { 972 if (next->gate_duration[tc] == oper->cycle_time) 973 next->gate_close_time[tc] = KTIME_MAX; 974 else 975 next->gate_close_time[tc] = ktime_add_ns(entry->end_time, 976 next->gate_duration[tc]); 977 } 978 979 if (should_change_schedules(admin, oper, end_time)) { 980 /* Set things so the next time this runs, the new 981 * schedule runs. 982 */ 983 end_time = sched_base_time(admin); 984 switch_schedules(q, &admin, &oper); 985 } 986 987 next->end_time = end_time; 988 taprio_set_budgets(q, oper, next); 989 990 first_run: 991 rcu_assign_pointer(q->current_entry, next); 992 spin_unlock(&q->current_entry_lock); 993 994 hrtimer_set_expires(&q->advance_timer, end_time); 995 996 rcu_read_lock(); 997 __netif_schedule(sch); 998 rcu_read_unlock(); 999 1000 return HRTIMER_RESTART; 1001 } 1002 1003 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 1004 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 1005 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 1006 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 1007 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 1008 }; 1009 1010 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { 1011 [TCA_TAPRIO_TC_ENTRY_INDEX] = { .type = NLA_U32 }, 1012 [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, 1013 [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, 1014 TC_FP_EXPRESS, 1015 TC_FP_PREEMPTIBLE), 1016 }; 1017 1018 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 1019 [TCA_TAPRIO_ATTR_PRIOMAP] = { 1020 .len = sizeof(struct tc_mqprio_qopt) 1021 }, 1022 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 1023 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 1024 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 1025 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 1026 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 1027 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 1028 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 1029 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 1030 [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, 1031 }; 1032 1033 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 1034 struct sched_entry *entry, 1035 struct netlink_ext_ack *extack) 1036 { 1037 int min_duration = length_to_duration(q, ETH_ZLEN); 1038 u32 interval = 0; 1039 1040 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 1041 entry->command = nla_get_u8( 1042 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 1043 1044 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 1045 entry->gate_mask = nla_get_u32( 1046 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 1047 1048 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 1049 interval = nla_get_u32( 1050 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 1051 1052 /* The interval should allow at least the minimum ethernet 1053 * frame to go out. 1054 */ 1055 if (interval < min_duration) { 1056 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 1057 return -EINVAL; 1058 } 1059 1060 entry->interval = interval; 1061 1062 return 0; 1063 } 1064 1065 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 1066 struct sched_entry *entry, int index, 1067 struct netlink_ext_ack *extack) 1068 { 1069 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 1070 int err; 1071 1072 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 1073 entry_policy, NULL); 1074 if (err < 0) { 1075 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 1076 return -EINVAL; 1077 } 1078 1079 entry->index = index; 1080 1081 return fill_sched_entry(q, tb, entry, extack); 1082 } 1083 1084 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 1085 struct sched_gate_list *sched, 1086 struct netlink_ext_ack *extack) 1087 { 1088 struct nlattr *n; 1089 int err, rem; 1090 int i = 0; 1091 1092 if (!list) 1093 return -EINVAL; 1094 1095 nla_for_each_nested(n, list, rem) { 1096 struct sched_entry *entry; 1097 1098 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 1099 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 1100 continue; 1101 } 1102 1103 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1104 if (!entry) { 1105 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 1106 return -ENOMEM; 1107 } 1108 1109 err = parse_sched_entry(q, n, entry, i, extack); 1110 if (err < 0) { 1111 kfree(entry); 1112 return err; 1113 } 1114 1115 list_add_tail(&entry->list, &sched->entries); 1116 i++; 1117 } 1118 1119 sched->num_entries = i; 1120 1121 return i; 1122 } 1123 1124 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 1125 struct sched_gate_list *new, 1126 struct netlink_ext_ack *extack) 1127 { 1128 int err = 0; 1129 1130 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 1131 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 1132 return -ENOTSUPP; 1133 } 1134 1135 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 1136 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 1137 1138 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 1139 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 1140 1141 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 1142 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 1143 1144 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 1145 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 1146 new, extack); 1147 if (err < 0) 1148 return err; 1149 1150 if (!new->cycle_time) { 1151 struct sched_entry *entry; 1152 ktime_t cycle = 0; 1153 1154 list_for_each_entry(entry, &new->entries, list) 1155 cycle = ktime_add_ns(cycle, entry->interval); 1156 1157 if (!cycle) { 1158 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 1159 return -EINVAL; 1160 } 1161 1162 new->cycle_time = cycle; 1163 } 1164 1165 taprio_calculate_gate_durations(q, new); 1166 1167 return 0; 1168 } 1169 1170 static int taprio_parse_mqprio_opt(struct net_device *dev, 1171 struct tc_mqprio_qopt *qopt, 1172 struct netlink_ext_ack *extack, 1173 u32 taprio_flags) 1174 { 1175 bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); 1176 1177 if (!qopt && !dev->num_tc) { 1178 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 1179 return -EINVAL; 1180 } 1181 1182 /* If num_tc is already set, it means that the user already 1183 * configured the mqprio part 1184 */ 1185 if (dev->num_tc) 1186 return 0; 1187 1188 /* taprio imposes that traffic classes map 1:n to tx queues */ 1189 if (qopt->num_tc > dev->num_tx_queues) { 1190 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 1191 return -EINVAL; 1192 } 1193 1194 /* For some reason, in txtime-assist mode, we allow TXQ ranges for 1195 * different TCs to overlap, and just validate the TXQ ranges. 1196 */ 1197 return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, 1198 extack); 1199 } 1200 1201 static int taprio_get_start_time(struct Qdisc *sch, 1202 struct sched_gate_list *sched, 1203 ktime_t *start) 1204 { 1205 struct taprio_sched *q = qdisc_priv(sch); 1206 ktime_t now, base, cycle; 1207 s64 n; 1208 1209 base = sched_base_time(sched); 1210 now = taprio_get_time(q); 1211 1212 if (ktime_after(base, now)) { 1213 *start = base; 1214 return 0; 1215 } 1216 1217 cycle = sched->cycle_time; 1218 1219 /* The qdisc is expected to have at least one sched_entry. Moreover, 1220 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1221 * something went really wrong. In that case, we should warn about this 1222 * inconsistent state and return error. 1223 */ 1224 if (WARN_ON(!cycle)) 1225 return -EFAULT; 1226 1227 /* Schedule the start time for the beginning of the next 1228 * cycle. 1229 */ 1230 n = div64_s64(ktime_sub_ns(now, base), cycle); 1231 *start = ktime_add_ns(base, (n + 1) * cycle); 1232 return 0; 1233 } 1234 1235 static void setup_first_end_time(struct taprio_sched *q, 1236 struct sched_gate_list *sched, ktime_t base) 1237 { 1238 struct net_device *dev = qdisc_dev(q->root); 1239 int num_tc = netdev_get_num_tc(dev); 1240 struct sched_entry *first; 1241 ktime_t cycle; 1242 int tc; 1243 1244 first = list_first_entry(&sched->entries, 1245 struct sched_entry, list); 1246 1247 cycle = sched->cycle_time; 1248 1249 /* FIXME: find a better place to do this */ 1250 sched->cycle_end_time = ktime_add_ns(base, cycle); 1251 1252 first->end_time = ktime_add_ns(base, first->interval); 1253 taprio_set_budgets(q, sched, first); 1254 1255 for (tc = 0; tc < num_tc; tc++) { 1256 if (first->gate_duration[tc] == sched->cycle_time) 1257 first->gate_close_time[tc] = KTIME_MAX; 1258 else 1259 first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); 1260 } 1261 1262 rcu_assign_pointer(q->current_entry, NULL); 1263 } 1264 1265 static void taprio_start_sched(struct Qdisc *sch, 1266 ktime_t start, struct sched_gate_list *new) 1267 { 1268 struct taprio_sched *q = qdisc_priv(sch); 1269 ktime_t expires; 1270 1271 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1272 return; 1273 1274 expires = hrtimer_get_expires(&q->advance_timer); 1275 if (expires == 0) 1276 expires = KTIME_MAX; 1277 1278 /* If the new schedule starts before the next expiration, we 1279 * reprogram it to the earliest one, so we change the admin 1280 * schedule to the operational one at the right time. 1281 */ 1282 start = min_t(ktime_t, start, expires); 1283 1284 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1285 } 1286 1287 static void taprio_set_picos_per_byte(struct net_device *dev, 1288 struct taprio_sched *q) 1289 { 1290 struct ethtool_link_ksettings ecmd; 1291 int speed = SPEED_10; 1292 int picos_per_byte; 1293 int err; 1294 1295 err = __ethtool_get_link_ksettings(dev, &ecmd); 1296 if (err < 0) 1297 goto skip; 1298 1299 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1300 speed = ecmd.base.speed; 1301 1302 skip: 1303 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1304 1305 atomic64_set(&q->picos_per_byte, picos_per_byte); 1306 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1307 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1308 ecmd.base.speed); 1309 } 1310 1311 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1312 void *ptr) 1313 { 1314 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1315 struct sched_gate_list *oper, *admin; 1316 struct qdisc_size_table *stab; 1317 struct taprio_sched *q; 1318 1319 ASSERT_RTNL(); 1320 1321 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1322 return NOTIFY_DONE; 1323 1324 list_for_each_entry(q, &taprio_list, taprio_list) { 1325 if (dev != qdisc_dev(q->root)) 1326 continue; 1327 1328 taprio_set_picos_per_byte(dev, q); 1329 1330 stab = rtnl_dereference(q->root->stab); 1331 1332 oper = rtnl_dereference(q->oper_sched); 1333 if (oper) 1334 taprio_update_queue_max_sdu(q, oper, stab); 1335 1336 admin = rtnl_dereference(q->admin_sched); 1337 if (admin) 1338 taprio_update_queue_max_sdu(q, admin, stab); 1339 1340 break; 1341 } 1342 1343 return NOTIFY_DONE; 1344 } 1345 1346 static void setup_txtime(struct taprio_sched *q, 1347 struct sched_gate_list *sched, ktime_t base) 1348 { 1349 struct sched_entry *entry; 1350 u32 interval = 0; 1351 1352 list_for_each_entry(entry, &sched->entries, list) { 1353 entry->next_txtime = ktime_add_ns(base, interval); 1354 interval += entry->interval; 1355 } 1356 } 1357 1358 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1359 { 1360 struct __tc_taprio_qopt_offload *__offload; 1361 1362 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1363 GFP_KERNEL); 1364 if (!__offload) 1365 return NULL; 1366 1367 refcount_set(&__offload->users, 1); 1368 1369 return &__offload->offload; 1370 } 1371 1372 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1373 *offload) 1374 { 1375 struct __tc_taprio_qopt_offload *__offload; 1376 1377 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1378 offload); 1379 1380 refcount_inc(&__offload->users); 1381 1382 return offload; 1383 } 1384 EXPORT_SYMBOL_GPL(taprio_offload_get); 1385 1386 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1387 { 1388 struct __tc_taprio_qopt_offload *__offload; 1389 1390 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1391 offload); 1392 1393 if (!refcount_dec_and_test(&__offload->users)) 1394 return; 1395 1396 kfree(__offload); 1397 } 1398 EXPORT_SYMBOL_GPL(taprio_offload_free); 1399 1400 /* The function will only serve to keep the pointers to the "oper" and "admin" 1401 * schedules valid in relation to their base times, so when calling dump() the 1402 * users looks at the right schedules. 1403 * When using full offload, the admin configuration is promoted to oper at the 1404 * base_time in the PHC time domain. But because the system time is not 1405 * necessarily in sync with that, we can't just trigger a hrtimer to call 1406 * switch_schedules at the right hardware time. 1407 * At the moment we call this by hand right away from taprio, but in the future 1408 * it will be useful to create a mechanism for drivers to notify taprio of the 1409 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1410 * This is left as TODO. 1411 */ 1412 static void taprio_offload_config_changed(struct taprio_sched *q) 1413 { 1414 struct sched_gate_list *oper, *admin; 1415 1416 oper = rtnl_dereference(q->oper_sched); 1417 admin = rtnl_dereference(q->admin_sched); 1418 1419 switch_schedules(q, &admin, &oper); 1420 } 1421 1422 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1423 { 1424 u32 i, queue_mask = 0; 1425 1426 for (i = 0; i < dev->num_tc; i++) { 1427 u32 offset, count; 1428 1429 if (!(tc_mask & BIT(i))) 1430 continue; 1431 1432 offset = dev->tc_to_txq[i].offset; 1433 count = dev->tc_to_txq[i].count; 1434 1435 queue_mask |= GENMASK(offset + count - 1, offset); 1436 } 1437 1438 return queue_mask; 1439 } 1440 1441 static void taprio_sched_to_offload(struct net_device *dev, 1442 struct sched_gate_list *sched, 1443 struct tc_taprio_qopt_offload *offload, 1444 const struct tc_taprio_caps *caps) 1445 { 1446 struct sched_entry *entry; 1447 int i = 0; 1448 1449 offload->base_time = sched->base_time; 1450 offload->cycle_time = sched->cycle_time; 1451 offload->cycle_time_extension = sched->cycle_time_extension; 1452 1453 list_for_each_entry(entry, &sched->entries, list) { 1454 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1455 1456 e->command = entry->command; 1457 e->interval = entry->interval; 1458 if (caps->gate_mask_per_txq) 1459 e->gate_mask = tc_map_to_queue_mask(dev, 1460 entry->gate_mask); 1461 else 1462 e->gate_mask = entry->gate_mask; 1463 1464 i++; 1465 } 1466 1467 offload->num_entries = i; 1468 } 1469 1470 static void taprio_detect_broken_mqprio(struct taprio_sched *q) 1471 { 1472 struct net_device *dev = qdisc_dev(q->root); 1473 struct tc_taprio_caps caps; 1474 1475 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1476 &caps, sizeof(caps)); 1477 1478 q->broken_mqprio = caps.broken_mqprio; 1479 if (q->broken_mqprio) 1480 static_branch_inc(&taprio_have_broken_mqprio); 1481 else 1482 static_branch_inc(&taprio_have_working_mqprio); 1483 1484 q->detected_mqprio = true; 1485 } 1486 1487 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) 1488 { 1489 if (!q->detected_mqprio) 1490 return; 1491 1492 if (q->broken_mqprio) 1493 static_branch_dec(&taprio_have_broken_mqprio); 1494 else 1495 static_branch_dec(&taprio_have_working_mqprio); 1496 } 1497 1498 static int taprio_enable_offload(struct net_device *dev, 1499 struct taprio_sched *q, 1500 struct sched_gate_list *sched, 1501 struct netlink_ext_ack *extack) 1502 { 1503 const struct net_device_ops *ops = dev->netdev_ops; 1504 struct tc_taprio_qopt_offload *offload; 1505 struct tc_taprio_caps caps; 1506 int tc, err = 0; 1507 1508 if (!ops->ndo_setup_tc) { 1509 NL_SET_ERR_MSG(extack, 1510 "Device does not support taprio offload"); 1511 return -EOPNOTSUPP; 1512 } 1513 1514 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1515 &caps, sizeof(caps)); 1516 1517 if (!caps.supports_queue_max_sdu) { 1518 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 1519 if (q->max_sdu[tc]) { 1520 NL_SET_ERR_MSG_MOD(extack, 1521 "Device does not handle queueMaxSDU"); 1522 return -EOPNOTSUPP; 1523 } 1524 } 1525 } 1526 1527 offload = taprio_offload_alloc(sched->num_entries); 1528 if (!offload) { 1529 NL_SET_ERR_MSG(extack, 1530 "Not enough memory for enabling offload mode"); 1531 return -ENOMEM; 1532 } 1533 offload->cmd = TAPRIO_CMD_REPLACE; 1534 offload->extack = extack; 1535 mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); 1536 offload->mqprio.extack = extack; 1537 taprio_sched_to_offload(dev, sched, offload, &caps); 1538 mqprio_fp_to_offload(q->fp, &offload->mqprio); 1539 1540 for (tc = 0; tc < TC_MAX_QUEUE; tc++) 1541 offload->max_sdu[tc] = q->max_sdu[tc]; 1542 1543 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1544 if (err < 0) { 1545 NL_SET_ERR_MSG_WEAK(extack, 1546 "Device failed to setup taprio offload"); 1547 goto done; 1548 } 1549 1550 q->offloaded = true; 1551 1552 done: 1553 /* The offload structure may linger around via a reference taken by the 1554 * device driver, so clear up the netlink extack pointer so that the 1555 * driver isn't tempted to dereference data which stopped being valid 1556 */ 1557 offload->extack = NULL; 1558 offload->mqprio.extack = NULL; 1559 taprio_offload_free(offload); 1560 1561 return err; 1562 } 1563 1564 static int taprio_disable_offload(struct net_device *dev, 1565 struct taprio_sched *q, 1566 struct netlink_ext_ack *extack) 1567 { 1568 const struct net_device_ops *ops = dev->netdev_ops; 1569 struct tc_taprio_qopt_offload *offload; 1570 int err; 1571 1572 if (!q->offloaded) 1573 return 0; 1574 1575 offload = taprio_offload_alloc(0); 1576 if (!offload) { 1577 NL_SET_ERR_MSG(extack, 1578 "Not enough memory to disable offload mode"); 1579 return -ENOMEM; 1580 } 1581 offload->cmd = TAPRIO_CMD_DESTROY; 1582 1583 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1584 if (err < 0) { 1585 NL_SET_ERR_MSG(extack, 1586 "Device failed to disable offload"); 1587 goto out; 1588 } 1589 1590 q->offloaded = false; 1591 1592 out: 1593 taprio_offload_free(offload); 1594 1595 return err; 1596 } 1597 1598 /* If full offload is enabled, the only possible clockid is the net device's 1599 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1600 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1601 * in sync with the specified clockid via a user space daemon such as phc2sys. 1602 * For both software taprio and txtime-assist, the clockid is used for the 1603 * hrtimer that advances the schedule and hence mandatory. 1604 */ 1605 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1606 struct netlink_ext_ack *extack) 1607 { 1608 struct taprio_sched *q = qdisc_priv(sch); 1609 struct net_device *dev = qdisc_dev(sch); 1610 int err = -EINVAL; 1611 1612 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1613 const struct ethtool_ops *ops = dev->ethtool_ops; 1614 struct ethtool_ts_info info = { 1615 .cmd = ETHTOOL_GET_TS_INFO, 1616 .phc_index = -1, 1617 }; 1618 1619 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1620 NL_SET_ERR_MSG(extack, 1621 "The 'clockid' cannot be specified for full offload"); 1622 goto out; 1623 } 1624 1625 if (ops && ops->get_ts_info) 1626 err = ops->get_ts_info(dev, &info); 1627 1628 if (err || info.phc_index < 0) { 1629 NL_SET_ERR_MSG(extack, 1630 "Device does not have a PTP clock"); 1631 err = -ENOTSUPP; 1632 goto out; 1633 } 1634 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1635 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1636 enum tk_offsets tk_offset; 1637 1638 /* We only support static clockids and we don't allow 1639 * for it to be modified after the first init. 1640 */ 1641 if (clockid < 0 || 1642 (q->clockid != -1 && q->clockid != clockid)) { 1643 NL_SET_ERR_MSG(extack, 1644 "Changing the 'clockid' of a running schedule is not supported"); 1645 err = -ENOTSUPP; 1646 goto out; 1647 } 1648 1649 switch (clockid) { 1650 case CLOCK_REALTIME: 1651 tk_offset = TK_OFFS_REAL; 1652 break; 1653 case CLOCK_MONOTONIC: 1654 tk_offset = TK_OFFS_MAX; 1655 break; 1656 case CLOCK_BOOTTIME: 1657 tk_offset = TK_OFFS_BOOT; 1658 break; 1659 case CLOCK_TAI: 1660 tk_offset = TK_OFFS_TAI; 1661 break; 1662 default: 1663 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1664 err = -EINVAL; 1665 goto out; 1666 } 1667 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1668 WRITE_ONCE(q->tk_offset, tk_offset); 1669 1670 q->clockid = clockid; 1671 } else { 1672 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1673 goto out; 1674 } 1675 1676 /* Everything went ok, return success. */ 1677 err = 0; 1678 1679 out: 1680 return err; 1681 } 1682 1683 static int taprio_parse_tc_entry(struct Qdisc *sch, 1684 struct nlattr *opt, 1685 u32 max_sdu[TC_QOPT_MAX_QUEUE], 1686 u32 fp[TC_QOPT_MAX_QUEUE], 1687 unsigned long *seen_tcs, 1688 struct netlink_ext_ack *extack) 1689 { 1690 struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; 1691 struct net_device *dev = qdisc_dev(sch); 1692 int err, tc; 1693 u32 val; 1694 1695 err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, 1696 taprio_tc_policy, extack); 1697 if (err < 0) 1698 return err; 1699 1700 if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { 1701 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); 1702 return -EINVAL; 1703 } 1704 1705 tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); 1706 if (tc >= TC_QOPT_MAX_QUEUE) { 1707 NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); 1708 return -ERANGE; 1709 } 1710 1711 if (*seen_tcs & BIT(tc)) { 1712 NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); 1713 return -EINVAL; 1714 } 1715 1716 *seen_tcs |= BIT(tc); 1717 1718 if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { 1719 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); 1720 if (val > dev->max_mtu) { 1721 NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); 1722 return -ERANGE; 1723 } 1724 1725 max_sdu[tc] = val; 1726 } 1727 1728 if (tb[TCA_TAPRIO_TC_ENTRY_FP]) 1729 fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); 1730 1731 return 0; 1732 } 1733 1734 static int taprio_parse_tc_entries(struct Qdisc *sch, 1735 struct nlattr *opt, 1736 struct netlink_ext_ack *extack) 1737 { 1738 struct taprio_sched *q = qdisc_priv(sch); 1739 struct net_device *dev = qdisc_dev(sch); 1740 u32 max_sdu[TC_QOPT_MAX_QUEUE]; 1741 bool have_preemption = false; 1742 unsigned long seen_tcs = 0; 1743 u32 fp[TC_QOPT_MAX_QUEUE]; 1744 struct nlattr *n; 1745 int tc, rem; 1746 int err = 0; 1747 1748 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1749 max_sdu[tc] = q->max_sdu[tc]; 1750 fp[tc] = q->fp[tc]; 1751 } 1752 1753 nla_for_each_nested(n, opt, rem) { 1754 if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY) 1755 continue; 1756 1757 err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, 1758 extack); 1759 if (err) 1760 return err; 1761 } 1762 1763 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1764 q->max_sdu[tc] = max_sdu[tc]; 1765 q->fp[tc] = fp[tc]; 1766 if (fp[tc] != TC_FP_EXPRESS) 1767 have_preemption = true; 1768 } 1769 1770 if (have_preemption) { 1771 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1772 NL_SET_ERR_MSG(extack, 1773 "Preemption only supported with full offload"); 1774 return -EOPNOTSUPP; 1775 } 1776 1777 if (!ethtool_dev_mm_supported(dev)) { 1778 NL_SET_ERR_MSG(extack, 1779 "Device does not support preemption"); 1780 return -EOPNOTSUPP; 1781 } 1782 } 1783 1784 return err; 1785 } 1786 1787 static int taprio_mqprio_cmp(const struct net_device *dev, 1788 const struct tc_mqprio_qopt *mqprio) 1789 { 1790 int i; 1791 1792 if (!mqprio || mqprio->num_tc != dev->num_tc) 1793 return -1; 1794 1795 for (i = 0; i < mqprio->num_tc; i++) 1796 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1797 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1798 return -1; 1799 1800 for (i = 0; i <= TC_BITMASK; i++) 1801 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1802 return -1; 1803 1804 return 0; 1805 } 1806 1807 /* The semantics of the 'flags' argument in relation to 'change()' 1808 * requests, are interpreted following two rules (which are applied in 1809 * this order): (1) an omitted 'flags' argument is interpreted as 1810 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1811 * changed. 1812 */ 1813 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1814 struct netlink_ext_ack *extack) 1815 { 1816 u32 new = 0; 1817 1818 if (attr) 1819 new = nla_get_u32(attr); 1820 1821 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1822 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1823 return -EOPNOTSUPP; 1824 } 1825 1826 if (!taprio_flags_valid(new)) { 1827 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1828 return -EINVAL; 1829 } 1830 1831 return new; 1832 } 1833 1834 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1835 struct netlink_ext_ack *extack) 1836 { 1837 struct qdisc_size_table *stab = rtnl_dereference(sch->stab); 1838 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1839 struct sched_gate_list *oper, *admin, *new_admin; 1840 struct taprio_sched *q = qdisc_priv(sch); 1841 struct net_device *dev = qdisc_dev(sch); 1842 struct tc_mqprio_qopt *mqprio = NULL; 1843 unsigned long flags; 1844 ktime_t start; 1845 int i, err; 1846 1847 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1848 taprio_policy, extack); 1849 if (err < 0) 1850 return err; 1851 1852 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1853 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1854 1855 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1856 q->flags, extack); 1857 if (err < 0) 1858 return err; 1859 1860 q->flags = err; 1861 1862 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1863 if (err < 0) 1864 return err; 1865 1866 err = taprio_parse_tc_entries(sch, opt, extack); 1867 if (err) 1868 return err; 1869 1870 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1871 if (!new_admin) { 1872 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1873 return -ENOMEM; 1874 } 1875 INIT_LIST_HEAD(&new_admin->entries); 1876 1877 oper = rtnl_dereference(q->oper_sched); 1878 admin = rtnl_dereference(q->admin_sched); 1879 1880 /* no changes - no new mqprio settings */ 1881 if (!taprio_mqprio_cmp(dev, mqprio)) 1882 mqprio = NULL; 1883 1884 if (mqprio && (oper || admin)) { 1885 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1886 err = -ENOTSUPP; 1887 goto free_sched; 1888 } 1889 1890 if (mqprio) { 1891 err = netdev_set_num_tc(dev, mqprio->num_tc); 1892 if (err) 1893 goto free_sched; 1894 for (i = 0; i < mqprio->num_tc; i++) { 1895 netdev_set_tc_queue(dev, i, 1896 mqprio->count[i], 1897 mqprio->offset[i]); 1898 q->cur_txq[i] = mqprio->offset[i]; 1899 } 1900 1901 /* Always use supplied priority mappings */ 1902 for (i = 0; i <= TC_BITMASK; i++) 1903 netdev_set_prio_tc_map(dev, i, 1904 mqprio->prio_tc_map[i]); 1905 } 1906 1907 err = parse_taprio_schedule(q, tb, new_admin, extack); 1908 if (err < 0) 1909 goto free_sched; 1910 1911 if (new_admin->num_entries == 0) { 1912 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1913 err = -EINVAL; 1914 goto free_sched; 1915 } 1916 1917 err = taprio_parse_clockid(sch, tb, extack); 1918 if (err < 0) 1919 goto free_sched; 1920 1921 taprio_set_picos_per_byte(dev, q); 1922 taprio_update_queue_max_sdu(q, new_admin, stab); 1923 1924 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1925 err = taprio_enable_offload(dev, q, new_admin, extack); 1926 else 1927 err = taprio_disable_offload(dev, q, extack); 1928 if (err) 1929 goto free_sched; 1930 1931 /* Protects against enqueue()/dequeue() */ 1932 spin_lock_bh(qdisc_lock(sch)); 1933 1934 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1935 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1936 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1937 err = -EINVAL; 1938 goto unlock; 1939 } 1940 1941 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1942 } 1943 1944 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1945 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1946 !hrtimer_active(&q->advance_timer)) { 1947 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1948 q->advance_timer.function = advance_sched; 1949 } 1950 1951 err = taprio_get_start_time(sch, new_admin, &start); 1952 if (err < 0) { 1953 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1954 goto unlock; 1955 } 1956 1957 setup_txtime(q, new_admin, start); 1958 1959 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1960 if (!oper) { 1961 rcu_assign_pointer(q->oper_sched, new_admin); 1962 err = 0; 1963 new_admin = NULL; 1964 goto unlock; 1965 } 1966 1967 rcu_assign_pointer(q->admin_sched, new_admin); 1968 if (admin) 1969 call_rcu(&admin->rcu, taprio_free_sched_cb); 1970 } else { 1971 setup_first_end_time(q, new_admin, start); 1972 1973 /* Protects against advance_sched() */ 1974 spin_lock_irqsave(&q->current_entry_lock, flags); 1975 1976 taprio_start_sched(sch, start, new_admin); 1977 1978 rcu_assign_pointer(q->admin_sched, new_admin); 1979 if (admin) 1980 call_rcu(&admin->rcu, taprio_free_sched_cb); 1981 1982 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1983 1984 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1985 taprio_offload_config_changed(q); 1986 } 1987 1988 new_admin = NULL; 1989 err = 0; 1990 1991 if (!stab) 1992 NL_SET_ERR_MSG_MOD(extack, 1993 "Size table not specified, frame length estimations may be inaccurate"); 1994 1995 unlock: 1996 spin_unlock_bh(qdisc_lock(sch)); 1997 1998 free_sched: 1999 if (new_admin) 2000 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 2001 2002 return err; 2003 } 2004 2005 static void taprio_reset(struct Qdisc *sch) 2006 { 2007 struct taprio_sched *q = qdisc_priv(sch); 2008 struct net_device *dev = qdisc_dev(sch); 2009 int i; 2010 2011 hrtimer_cancel(&q->advance_timer); 2012 2013 if (q->qdiscs) { 2014 for (i = 0; i < dev->num_tx_queues; i++) 2015 if (q->qdiscs[i]) 2016 qdisc_reset(q->qdiscs[i]); 2017 } 2018 } 2019 2020 static void taprio_destroy(struct Qdisc *sch) 2021 { 2022 struct taprio_sched *q = qdisc_priv(sch); 2023 struct net_device *dev = qdisc_dev(sch); 2024 struct sched_gate_list *oper, *admin; 2025 unsigned int i; 2026 2027 list_del(&q->taprio_list); 2028 2029 /* Note that taprio_reset() might not be called if an error 2030 * happens in qdisc_create(), after taprio_init() has been called. 2031 */ 2032 hrtimer_cancel(&q->advance_timer); 2033 qdisc_synchronize(sch); 2034 2035 taprio_disable_offload(dev, q, NULL); 2036 2037 if (q->qdiscs) { 2038 for (i = 0; i < dev->num_tx_queues; i++) 2039 qdisc_put(q->qdiscs[i]); 2040 2041 kfree(q->qdiscs); 2042 } 2043 q->qdiscs = NULL; 2044 2045 netdev_reset_tc(dev); 2046 2047 oper = rtnl_dereference(q->oper_sched); 2048 admin = rtnl_dereference(q->admin_sched); 2049 2050 if (oper) 2051 call_rcu(&oper->rcu, taprio_free_sched_cb); 2052 2053 if (admin) 2054 call_rcu(&admin->rcu, taprio_free_sched_cb); 2055 2056 taprio_cleanup_broken_mqprio(q); 2057 } 2058 2059 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 2060 struct netlink_ext_ack *extack) 2061 { 2062 struct taprio_sched *q = qdisc_priv(sch); 2063 struct net_device *dev = qdisc_dev(sch); 2064 int i, tc; 2065 2066 spin_lock_init(&q->current_entry_lock); 2067 2068 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 2069 q->advance_timer.function = advance_sched; 2070 2071 q->root = sch; 2072 2073 /* We only support static clockids. Use an invalid value as default 2074 * and get the valid one on taprio_change(). 2075 */ 2076 q->clockid = -1; 2077 q->flags = TAPRIO_FLAGS_INVALID; 2078 2079 list_add(&q->taprio_list, &taprio_list); 2080 2081 if (sch->parent != TC_H_ROOT) { 2082 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); 2083 return -EOPNOTSUPP; 2084 } 2085 2086 if (!netif_is_multiqueue(dev)) { 2087 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); 2088 return -EOPNOTSUPP; 2089 } 2090 2091 /* pre-allocate qdisc, attachment can't fail */ 2092 q->qdiscs = kcalloc(dev->num_tx_queues, 2093 sizeof(q->qdiscs[0]), 2094 GFP_KERNEL); 2095 2096 if (!q->qdiscs) 2097 return -ENOMEM; 2098 2099 if (!opt) 2100 return -EINVAL; 2101 2102 for (i = 0; i < dev->num_tx_queues; i++) { 2103 struct netdev_queue *dev_queue; 2104 struct Qdisc *qdisc; 2105 2106 dev_queue = netdev_get_tx_queue(dev, i); 2107 qdisc = qdisc_create_dflt(dev_queue, 2108 &pfifo_qdisc_ops, 2109 TC_H_MAKE(TC_H_MAJ(sch->handle), 2110 TC_H_MIN(i + 1)), 2111 extack); 2112 if (!qdisc) 2113 return -ENOMEM; 2114 2115 if (i < dev->real_num_tx_queues) 2116 qdisc_hash_add(qdisc, false); 2117 2118 q->qdiscs[i] = qdisc; 2119 } 2120 2121 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) 2122 q->fp[tc] = TC_FP_EXPRESS; 2123 2124 taprio_detect_broken_mqprio(q); 2125 2126 return taprio_change(sch, opt, extack); 2127 } 2128 2129 static void taprio_attach(struct Qdisc *sch) 2130 { 2131 struct taprio_sched *q = qdisc_priv(sch); 2132 struct net_device *dev = qdisc_dev(sch); 2133 unsigned int ntx; 2134 2135 /* Attach underlying qdisc */ 2136 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 2137 struct Qdisc *qdisc = q->qdiscs[ntx]; 2138 struct Qdisc *old; 2139 2140 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2141 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2142 old = dev_graft_qdisc(qdisc->dev_queue, qdisc); 2143 } else { 2144 old = dev_graft_qdisc(qdisc->dev_queue, sch); 2145 qdisc_refcount_inc(sch); 2146 } 2147 if (old) 2148 qdisc_put(old); 2149 } 2150 2151 /* access to the child qdiscs is not needed in offload mode */ 2152 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2153 kfree(q->qdiscs); 2154 q->qdiscs = NULL; 2155 } 2156 } 2157 2158 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 2159 unsigned long cl) 2160 { 2161 struct net_device *dev = qdisc_dev(sch); 2162 unsigned long ntx = cl - 1; 2163 2164 if (ntx >= dev->num_tx_queues) 2165 return NULL; 2166 2167 return netdev_get_tx_queue(dev, ntx); 2168 } 2169 2170 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 2171 struct Qdisc *new, struct Qdisc **old, 2172 struct netlink_ext_ack *extack) 2173 { 2174 struct taprio_sched *q = qdisc_priv(sch); 2175 struct net_device *dev = qdisc_dev(sch); 2176 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2177 2178 if (!dev_queue) 2179 return -EINVAL; 2180 2181 if (dev->flags & IFF_UP) 2182 dev_deactivate(dev); 2183 2184 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2185 *old = dev_graft_qdisc(dev_queue, new); 2186 } else { 2187 *old = q->qdiscs[cl - 1]; 2188 q->qdiscs[cl - 1] = new; 2189 } 2190 2191 if (new) 2192 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2193 2194 if (dev->flags & IFF_UP) 2195 dev_activate(dev); 2196 2197 return 0; 2198 } 2199 2200 static int dump_entry(struct sk_buff *msg, 2201 const struct sched_entry *entry) 2202 { 2203 struct nlattr *item; 2204 2205 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 2206 if (!item) 2207 return -ENOSPC; 2208 2209 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 2210 goto nla_put_failure; 2211 2212 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 2213 goto nla_put_failure; 2214 2215 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 2216 entry->gate_mask)) 2217 goto nla_put_failure; 2218 2219 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 2220 entry->interval)) 2221 goto nla_put_failure; 2222 2223 return nla_nest_end(msg, item); 2224 2225 nla_put_failure: 2226 nla_nest_cancel(msg, item); 2227 return -1; 2228 } 2229 2230 static int dump_schedule(struct sk_buff *msg, 2231 const struct sched_gate_list *root) 2232 { 2233 struct nlattr *entry_list; 2234 struct sched_entry *entry; 2235 2236 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 2237 root->base_time, TCA_TAPRIO_PAD)) 2238 return -1; 2239 2240 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 2241 root->cycle_time, TCA_TAPRIO_PAD)) 2242 return -1; 2243 2244 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 2245 root->cycle_time_extension, TCA_TAPRIO_PAD)) 2246 return -1; 2247 2248 entry_list = nla_nest_start_noflag(msg, 2249 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 2250 if (!entry_list) 2251 goto error_nest; 2252 2253 list_for_each_entry(entry, &root->entries, list) { 2254 if (dump_entry(msg, entry) < 0) 2255 goto error_nest; 2256 } 2257 2258 nla_nest_end(msg, entry_list); 2259 return 0; 2260 2261 error_nest: 2262 nla_nest_cancel(msg, entry_list); 2263 return -1; 2264 } 2265 2266 static int taprio_dump_tc_entries(struct sk_buff *skb, 2267 struct taprio_sched *q, 2268 struct sched_gate_list *sched) 2269 { 2270 struct nlattr *n; 2271 int tc; 2272 2273 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 2274 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); 2275 if (!n) 2276 return -EMSGSIZE; 2277 2278 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) 2279 goto nla_put_failure; 2280 2281 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, 2282 sched->max_sdu[tc])) 2283 goto nla_put_failure; 2284 2285 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) 2286 goto nla_put_failure; 2287 2288 nla_nest_end(skb, n); 2289 } 2290 2291 return 0; 2292 2293 nla_put_failure: 2294 nla_nest_cancel(skb, n); 2295 return -EMSGSIZE; 2296 } 2297 2298 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) 2299 { 2300 if (val == TAPRIO_STAT_NOT_SET) 2301 return 0; 2302 if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD)) 2303 return -EMSGSIZE; 2304 return 0; 2305 } 2306 2307 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d, 2308 struct tc_taprio_qopt_offload *offload, 2309 struct tc_taprio_qopt_stats *stats) 2310 { 2311 struct net_device *dev = qdisc_dev(sch); 2312 const struct net_device_ops *ops; 2313 struct sk_buff *skb = d->skb; 2314 struct nlattr *xstats; 2315 int err; 2316 2317 ops = qdisc_dev(sch)->netdev_ops; 2318 2319 /* FIXME I could use qdisc_offload_dump_helper(), but that messes 2320 * with sch->flags depending on whether the device reports taprio 2321 * stats, and I'm not sure whether that's a good idea, considering 2322 * that stats are optional to the offload itself 2323 */ 2324 if (!ops->ndo_setup_tc) 2325 return 0; 2326 2327 memset(stats, 0xff, sizeof(*stats)); 2328 2329 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 2330 if (err == -EOPNOTSUPP) 2331 return 0; 2332 if (err) 2333 return err; 2334 2335 xstats = nla_nest_start(skb, TCA_STATS_APP); 2336 if (!xstats) 2337 goto err; 2338 2339 if (taprio_put_stat(skb, stats->window_drops, 2340 TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) || 2341 taprio_put_stat(skb, stats->tx_overruns, 2342 TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS)) 2343 goto err_cancel; 2344 2345 nla_nest_end(skb, xstats); 2346 2347 return 0; 2348 2349 err_cancel: 2350 nla_nest_cancel(skb, xstats); 2351 err: 2352 return -EMSGSIZE; 2353 } 2354 2355 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 2356 { 2357 struct tc_taprio_qopt_offload offload = { 2358 .cmd = TAPRIO_CMD_STATS, 2359 }; 2360 2361 return taprio_dump_xstats(sch, d, &offload, &offload.stats); 2362 } 2363 2364 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 2365 { 2366 struct taprio_sched *q = qdisc_priv(sch); 2367 struct net_device *dev = qdisc_dev(sch); 2368 struct sched_gate_list *oper, *admin; 2369 struct tc_mqprio_qopt opt = { 0 }; 2370 struct nlattr *nest, *sched_nest; 2371 2372 oper = rtnl_dereference(q->oper_sched); 2373 admin = rtnl_dereference(q->admin_sched); 2374 2375 mqprio_qopt_reconstruct(dev, &opt); 2376 2377 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 2378 if (!nest) 2379 goto start_error; 2380 2381 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 2382 goto options_error; 2383 2384 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 2385 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 2386 goto options_error; 2387 2388 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 2389 goto options_error; 2390 2391 if (q->txtime_delay && 2392 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 2393 goto options_error; 2394 2395 if (oper && taprio_dump_tc_entries(skb, q, oper)) 2396 goto options_error; 2397 2398 if (oper && dump_schedule(skb, oper)) 2399 goto options_error; 2400 2401 if (!admin) 2402 goto done; 2403 2404 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 2405 if (!sched_nest) 2406 goto options_error; 2407 2408 if (dump_schedule(skb, admin)) 2409 goto admin_error; 2410 2411 nla_nest_end(skb, sched_nest); 2412 2413 done: 2414 return nla_nest_end(skb, nest); 2415 2416 admin_error: 2417 nla_nest_cancel(skb, sched_nest); 2418 2419 options_error: 2420 nla_nest_cancel(skb, nest); 2421 2422 start_error: 2423 return -ENOSPC; 2424 } 2425 2426 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 2427 { 2428 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2429 2430 if (!dev_queue) 2431 return NULL; 2432 2433 return rtnl_dereference(dev_queue->qdisc_sleeping); 2434 } 2435 2436 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 2437 { 2438 unsigned int ntx = TC_H_MIN(classid); 2439 2440 if (!taprio_queue_get(sch, ntx)) 2441 return 0; 2442 return ntx; 2443 } 2444 2445 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 2446 struct sk_buff *skb, struct tcmsg *tcm) 2447 { 2448 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2449 2450 tcm->tcm_parent = TC_H_ROOT; 2451 tcm->tcm_handle |= TC_H_MIN(cl); 2452 tcm->tcm_info = rtnl_dereference(dev_queue->qdisc_sleeping)->handle; 2453 2454 return 0; 2455 } 2456 2457 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 2458 struct gnet_dump *d) 2459 __releases(d->lock) 2460 __acquires(d->lock) 2461 { 2462 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2463 struct tc_taprio_qopt_offload offload = { 2464 .cmd = TAPRIO_CMD_QUEUE_STATS, 2465 .queue_stats = { 2466 .queue = cl - 1, 2467 }, 2468 }; 2469 struct Qdisc *child; 2470 2471 child = rtnl_dereference(dev_queue->qdisc_sleeping); 2472 if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 || 2473 qdisc_qstats_copy(d, child) < 0) 2474 return -1; 2475 2476 return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats); 2477 } 2478 2479 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 2480 { 2481 struct net_device *dev = qdisc_dev(sch); 2482 unsigned long ntx; 2483 2484 if (arg->stop) 2485 return; 2486 2487 arg->count = arg->skip; 2488 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2489 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) 2490 break; 2491 } 2492 } 2493 2494 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2495 struct tcmsg *tcm) 2496 { 2497 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2498 } 2499 2500 static const struct Qdisc_class_ops taprio_class_ops = { 2501 .graft = taprio_graft, 2502 .leaf = taprio_leaf, 2503 .find = taprio_find, 2504 .walk = taprio_walk, 2505 .dump = taprio_dump_class, 2506 .dump_stats = taprio_dump_class_stats, 2507 .select_queue = taprio_select_queue, 2508 }; 2509 2510 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2511 .cl_ops = &taprio_class_ops, 2512 .id = "taprio", 2513 .priv_size = sizeof(struct taprio_sched), 2514 .init = taprio_init, 2515 .change = taprio_change, 2516 .destroy = taprio_destroy, 2517 .reset = taprio_reset, 2518 .attach = taprio_attach, 2519 .peek = taprio_peek, 2520 .dequeue = taprio_dequeue, 2521 .enqueue = taprio_enqueue, 2522 .dump = taprio_dump, 2523 .dump_stats = taprio_dump_stats, 2524 .owner = THIS_MODULE, 2525 }; 2526 2527 static struct notifier_block taprio_device_notifier = { 2528 .notifier_call = taprio_dev_notifier, 2529 }; 2530 2531 static int __init taprio_module_init(void) 2532 { 2533 int err = register_netdevice_notifier(&taprio_device_notifier); 2534 2535 if (err) 2536 return err; 2537 2538 return register_qdisc(&taprio_qdisc_ops); 2539 } 2540 2541 static void __exit taprio_module_exit(void) 2542 { 2543 unregister_qdisc(&taprio_qdisc_ops); 2544 unregister_netdevice_notifier(&taprio_device_notifier); 2545 } 2546 2547 module_init(taprio_module_init); 2548 module_exit(taprio_module_exit); 2549 MODULE_LICENSE("GPL"); 2550