1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/list.h> 14 #include <linux/errno.h> 15 #include <linux/skbuff.h> 16 #include <linux/math64.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/rcupdate.h> 20 #include <net/netlink.h> 21 #include <net/pkt_sched.h> 22 #include <net/pkt_cls.h> 23 #include <net/sch_generic.h> 24 #include <net/sock.h> 25 #include <net/tcp.h> 26 27 static LIST_HEAD(taprio_list); 28 static DEFINE_SPINLOCK(taprio_list_lock); 29 30 #define TAPRIO_ALL_GATES_OPEN -1 31 32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 34 #define TAPRIO_FLAGS_INVALID U32_MAX 35 36 struct sched_entry { 37 struct list_head list; 38 39 /* The instant that this entry "closes" and the next one 40 * should open, the qdisc will make some effort so that no 41 * packet leaves after this time. 42 */ 43 ktime_t close_time; 44 ktime_t next_txtime; 45 atomic_t budget; 46 int index; 47 u32 gate_mask; 48 u32 interval; 49 u8 command; 50 }; 51 52 struct sched_gate_list { 53 struct rcu_head rcu; 54 struct list_head entries; 55 size_t num_entries; 56 ktime_t cycle_close_time; 57 s64 cycle_time; 58 s64 cycle_time_extension; 59 s64 base_time; 60 }; 61 62 struct taprio_sched { 63 struct Qdisc **qdiscs; 64 struct Qdisc *root; 65 u32 flags; 66 enum tk_offsets tk_offset; 67 int clockid; 68 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 69 * speeds it's sub-nanoseconds per byte 70 */ 71 72 /* Protects the update side of the RCU protected current_entry */ 73 spinlock_t current_entry_lock; 74 struct sched_entry __rcu *current_entry; 75 struct sched_gate_list __rcu *oper_sched; 76 struct sched_gate_list __rcu *admin_sched; 77 struct hrtimer advance_timer; 78 struct list_head taprio_list; 79 struct sk_buff *(*dequeue)(struct Qdisc *sch); 80 struct sk_buff *(*peek)(struct Qdisc *sch); 81 u32 txtime_delay; 82 }; 83 84 struct __tc_taprio_qopt_offload { 85 refcount_t users; 86 struct tc_taprio_qopt_offload offload; 87 }; 88 89 static ktime_t sched_base_time(const struct sched_gate_list *sched) 90 { 91 if (!sched) 92 return KTIME_MAX; 93 94 return ns_to_ktime(sched->base_time); 95 } 96 97 static ktime_t taprio_get_time(struct taprio_sched *q) 98 { 99 ktime_t mono = ktime_get(); 100 101 switch (q->tk_offset) { 102 case TK_OFFS_MAX: 103 return mono; 104 default: 105 return ktime_mono_to_any(mono, q->tk_offset); 106 } 107 108 return KTIME_MAX; 109 } 110 111 static void taprio_free_sched_cb(struct rcu_head *head) 112 { 113 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 114 struct sched_entry *entry, *n; 115 116 if (!sched) 117 return; 118 119 list_for_each_entry_safe(entry, n, &sched->entries, list) { 120 list_del(&entry->list); 121 kfree(entry); 122 } 123 124 kfree(sched); 125 } 126 127 static void switch_schedules(struct taprio_sched *q, 128 struct sched_gate_list **admin, 129 struct sched_gate_list **oper) 130 { 131 rcu_assign_pointer(q->oper_sched, *admin); 132 rcu_assign_pointer(q->admin_sched, NULL); 133 134 if (*oper) 135 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 136 137 *oper = *admin; 138 *admin = NULL; 139 } 140 141 /* Get how much time has been already elapsed in the current cycle. */ 142 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 143 { 144 ktime_t time_since_sched_start; 145 s32 time_elapsed; 146 147 time_since_sched_start = ktime_sub(time, sched->base_time); 148 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 149 150 return time_elapsed; 151 } 152 153 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 154 struct sched_gate_list *admin, 155 struct sched_entry *entry, 156 ktime_t intv_start) 157 { 158 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 159 ktime_t intv_end, cycle_ext_end, cycle_end; 160 161 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 162 intv_end = ktime_add_ns(intv_start, entry->interval); 163 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 164 165 if (ktime_before(intv_end, cycle_end)) 166 return intv_end; 167 else if (admin && admin != sched && 168 ktime_after(admin->base_time, cycle_end) && 169 ktime_before(admin->base_time, cycle_ext_end)) 170 return admin->base_time; 171 else 172 return cycle_end; 173 } 174 175 static int length_to_duration(struct taprio_sched *q, int len) 176 { 177 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); 178 } 179 180 /* Returns the entry corresponding to next available interval. If 181 * validate_interval is set, it only validates whether the timestamp occurs 182 * when the gate corresponding to the skb's traffic class is open. 183 */ 184 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 185 struct Qdisc *sch, 186 struct sched_gate_list *sched, 187 struct sched_gate_list *admin, 188 ktime_t time, 189 ktime_t *interval_start, 190 ktime_t *interval_end, 191 bool validate_interval) 192 { 193 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 194 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 195 struct sched_entry *entry = NULL, *entry_found = NULL; 196 struct taprio_sched *q = qdisc_priv(sch); 197 struct net_device *dev = qdisc_dev(sch); 198 bool entry_available = false; 199 s32 cycle_elapsed; 200 int tc, n; 201 202 tc = netdev_get_prio_tc_map(dev, skb->priority); 203 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 204 205 *interval_start = 0; 206 *interval_end = 0; 207 208 if (!sched) 209 return NULL; 210 211 cycle = sched->cycle_time; 212 cycle_elapsed = get_cycle_time_elapsed(sched, time); 213 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 214 cycle_end = ktime_add_ns(curr_intv_end, cycle); 215 216 list_for_each_entry(entry, &sched->entries, list) { 217 curr_intv_start = curr_intv_end; 218 curr_intv_end = get_interval_end_time(sched, admin, entry, 219 curr_intv_start); 220 221 if (ktime_after(curr_intv_start, cycle_end)) 222 break; 223 224 if (!(entry->gate_mask & BIT(tc)) || 225 packet_transmit_time > entry->interval) 226 continue; 227 228 txtime = entry->next_txtime; 229 230 if (ktime_before(txtime, time) || validate_interval) { 231 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 232 if ((ktime_before(curr_intv_start, time) && 233 ktime_before(transmit_end_time, curr_intv_end)) || 234 (ktime_after(curr_intv_start, time) && !validate_interval)) { 235 entry_found = entry; 236 *interval_start = curr_intv_start; 237 *interval_end = curr_intv_end; 238 break; 239 } else if (!entry_available && !validate_interval) { 240 /* Here, we are just trying to find out the 241 * first available interval in the next cycle. 242 */ 243 entry_available = 1; 244 entry_found = entry; 245 *interval_start = ktime_add_ns(curr_intv_start, cycle); 246 *interval_end = ktime_add_ns(curr_intv_end, cycle); 247 } 248 } else if (ktime_before(txtime, earliest_txtime) && 249 !entry_available) { 250 earliest_txtime = txtime; 251 entry_found = entry; 252 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 253 *interval_start = ktime_add(curr_intv_start, n * cycle); 254 *interval_end = ktime_add(curr_intv_end, n * cycle); 255 } 256 } 257 258 return entry_found; 259 } 260 261 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 262 { 263 struct taprio_sched *q = qdisc_priv(sch); 264 struct sched_gate_list *sched, *admin; 265 ktime_t interval_start, interval_end; 266 struct sched_entry *entry; 267 268 rcu_read_lock(); 269 sched = rcu_dereference(q->oper_sched); 270 admin = rcu_dereference(q->admin_sched); 271 272 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 273 &interval_start, &interval_end, true); 274 rcu_read_unlock(); 275 276 return entry; 277 } 278 279 static bool taprio_flags_valid(u32 flags) 280 { 281 /* Make sure no other flag bits are set. */ 282 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 283 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 284 return false; 285 /* txtime-assist and full offload are mutually exclusive */ 286 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 287 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 288 return false; 289 return true; 290 } 291 292 /* This returns the tstamp value set by TCP in terms of the set clock. */ 293 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 294 { 295 unsigned int offset = skb_network_offset(skb); 296 const struct ipv6hdr *ipv6h; 297 const struct iphdr *iph; 298 struct ipv6hdr _ipv6h; 299 300 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 301 if (!ipv6h) 302 return 0; 303 304 if (ipv6h->version == 4) { 305 iph = (struct iphdr *)ipv6h; 306 offset += iph->ihl * 4; 307 308 /* special-case 6in4 tunnelling, as that is a common way to get 309 * v6 connectivity in the home 310 */ 311 if (iph->protocol == IPPROTO_IPV6) { 312 ipv6h = skb_header_pointer(skb, offset, 313 sizeof(_ipv6h), &_ipv6h); 314 315 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 316 return 0; 317 } else if (iph->protocol != IPPROTO_TCP) { 318 return 0; 319 } 320 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 321 return 0; 322 } 323 324 return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset); 325 } 326 327 /* There are a few scenarios where we will have to modify the txtime from 328 * what is read from next_txtime in sched_entry. They are: 329 * 1. If txtime is in the past, 330 * a. The gate for the traffic class is currently open and packet can be 331 * transmitted before it closes, schedule the packet right away. 332 * b. If the gate corresponding to the traffic class is going to open later 333 * in the cycle, set the txtime of packet to the interval start. 334 * 2. If txtime is in the future, there are packets corresponding to the 335 * current traffic class waiting to be transmitted. So, the following 336 * possibilities exist: 337 * a. We can transmit the packet before the window containing the txtime 338 * closes. 339 * b. The window might close before the transmission can be completed 340 * successfully. So, schedule the packet in the next open window. 341 */ 342 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 343 { 344 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 345 struct taprio_sched *q = qdisc_priv(sch); 346 struct sched_gate_list *sched, *admin; 347 ktime_t minimum_time, now, txtime; 348 int len, packet_transmit_time; 349 struct sched_entry *entry; 350 bool sched_changed; 351 352 now = taprio_get_time(q); 353 minimum_time = ktime_add_ns(now, q->txtime_delay); 354 355 tcp_tstamp = get_tcp_tstamp(q, skb); 356 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 357 358 rcu_read_lock(); 359 admin = rcu_dereference(q->admin_sched); 360 sched = rcu_dereference(q->oper_sched); 361 if (admin && ktime_after(minimum_time, admin->base_time)) 362 switch_schedules(q, &admin, &sched); 363 364 /* Until the schedule starts, all the queues are open */ 365 if (!sched || ktime_before(minimum_time, sched->base_time)) { 366 txtime = minimum_time; 367 goto done; 368 } 369 370 len = qdisc_pkt_len(skb); 371 packet_transmit_time = length_to_duration(q, len); 372 373 do { 374 sched_changed = 0; 375 376 entry = find_entry_to_transmit(skb, sch, sched, admin, 377 minimum_time, 378 &interval_start, &interval_end, 379 false); 380 if (!entry) { 381 txtime = 0; 382 goto done; 383 } 384 385 txtime = entry->next_txtime; 386 txtime = max_t(ktime_t, txtime, minimum_time); 387 txtime = max_t(ktime_t, txtime, interval_start); 388 389 if (admin && admin != sched && 390 ktime_after(txtime, admin->base_time)) { 391 sched = admin; 392 sched_changed = 1; 393 continue; 394 } 395 396 transmit_end_time = ktime_add(txtime, packet_transmit_time); 397 minimum_time = transmit_end_time; 398 399 /* Update the txtime of current entry to the next time it's 400 * interval starts. 401 */ 402 if (ktime_after(transmit_end_time, interval_end)) 403 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 404 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 405 406 entry->next_txtime = transmit_end_time; 407 408 done: 409 rcu_read_unlock(); 410 return txtime; 411 } 412 413 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 414 struct sk_buff **to_free) 415 { 416 struct taprio_sched *q = qdisc_priv(sch); 417 struct Qdisc *child; 418 int queue; 419 420 queue = skb_get_queue_mapping(skb); 421 422 child = q->qdiscs[queue]; 423 if (unlikely(!child)) 424 return qdisc_drop(skb, sch, to_free); 425 426 if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) { 427 if (!is_valid_interval(skb, sch)) 428 return qdisc_drop(skb, sch, to_free); 429 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 430 skb->tstamp = get_packet_txtime(skb, sch); 431 if (!skb->tstamp) 432 return qdisc_drop(skb, sch, to_free); 433 } 434 435 qdisc_qstats_backlog_inc(sch, skb); 436 sch->q.qlen++; 437 438 return qdisc_enqueue(skb, child, to_free); 439 } 440 441 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch) 442 { 443 struct taprio_sched *q = qdisc_priv(sch); 444 struct net_device *dev = qdisc_dev(sch); 445 struct sched_entry *entry; 446 struct sk_buff *skb; 447 u32 gate_mask; 448 int i; 449 450 rcu_read_lock(); 451 entry = rcu_dereference(q->current_entry); 452 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 453 rcu_read_unlock(); 454 455 if (!gate_mask) 456 return NULL; 457 458 for (i = 0; i < dev->num_tx_queues; i++) { 459 struct Qdisc *child = q->qdiscs[i]; 460 int prio; 461 u8 tc; 462 463 if (unlikely(!child)) 464 continue; 465 466 skb = child->ops->peek(child); 467 if (!skb) 468 continue; 469 470 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 471 return skb; 472 473 prio = skb->priority; 474 tc = netdev_get_prio_tc_map(dev, prio); 475 476 if (!(gate_mask & BIT(tc))) 477 continue; 478 479 return skb; 480 } 481 482 return NULL; 483 } 484 485 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch) 486 { 487 struct taprio_sched *q = qdisc_priv(sch); 488 struct net_device *dev = qdisc_dev(sch); 489 struct sk_buff *skb; 490 int i; 491 492 for (i = 0; i < dev->num_tx_queues; i++) { 493 struct Qdisc *child = q->qdiscs[i]; 494 495 if (unlikely(!child)) 496 continue; 497 498 skb = child->ops->peek(child); 499 if (!skb) 500 continue; 501 502 return skb; 503 } 504 505 return NULL; 506 } 507 508 static struct sk_buff *taprio_peek(struct Qdisc *sch) 509 { 510 struct taprio_sched *q = qdisc_priv(sch); 511 512 return q->peek(sch); 513 } 514 515 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) 516 { 517 atomic_set(&entry->budget, 518 div64_u64((u64)entry->interval * 1000, 519 atomic64_read(&q->picos_per_byte))); 520 } 521 522 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch) 523 { 524 struct taprio_sched *q = qdisc_priv(sch); 525 struct net_device *dev = qdisc_dev(sch); 526 struct sk_buff *skb = NULL; 527 struct sched_entry *entry; 528 u32 gate_mask; 529 int i; 530 531 rcu_read_lock(); 532 entry = rcu_dereference(q->current_entry); 533 /* if there's no entry, it means that the schedule didn't 534 * start yet, so force all gates to be open, this is in 535 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 536 * "AdminGateSates" 537 */ 538 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 539 540 if (!gate_mask) 541 goto done; 542 543 for (i = 0; i < dev->num_tx_queues; i++) { 544 struct Qdisc *child = q->qdiscs[i]; 545 ktime_t guard; 546 int prio; 547 int len; 548 u8 tc; 549 550 if (unlikely(!child)) 551 continue; 552 553 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 554 skb = child->ops->dequeue(child); 555 if (!skb) 556 continue; 557 goto skb_found; 558 } 559 560 skb = child->ops->peek(child); 561 if (!skb) 562 continue; 563 564 prio = skb->priority; 565 tc = netdev_get_prio_tc_map(dev, prio); 566 567 if (!(gate_mask & BIT(tc))) { 568 skb = NULL; 569 continue; 570 } 571 572 len = qdisc_pkt_len(skb); 573 guard = ktime_add_ns(taprio_get_time(q), 574 length_to_duration(q, len)); 575 576 /* In the case that there's no gate entry, there's no 577 * guard band ... 578 */ 579 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 580 ktime_after(guard, entry->close_time)) { 581 skb = NULL; 582 continue; 583 } 584 585 /* ... and no budget. */ 586 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 587 atomic_sub_return(len, &entry->budget) < 0) { 588 skb = NULL; 589 continue; 590 } 591 592 skb = child->ops->dequeue(child); 593 if (unlikely(!skb)) 594 goto done; 595 596 skb_found: 597 qdisc_bstats_update(sch, skb); 598 qdisc_qstats_backlog_dec(sch, skb); 599 sch->q.qlen--; 600 601 goto done; 602 } 603 604 done: 605 rcu_read_unlock(); 606 607 return skb; 608 } 609 610 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch) 611 { 612 struct taprio_sched *q = qdisc_priv(sch); 613 struct net_device *dev = qdisc_dev(sch); 614 struct sk_buff *skb; 615 int i; 616 617 for (i = 0; i < dev->num_tx_queues; i++) { 618 struct Qdisc *child = q->qdiscs[i]; 619 620 if (unlikely(!child)) 621 continue; 622 623 skb = child->ops->dequeue(child); 624 if (unlikely(!skb)) 625 continue; 626 627 qdisc_bstats_update(sch, skb); 628 qdisc_qstats_backlog_dec(sch, skb); 629 sch->q.qlen--; 630 631 return skb; 632 } 633 634 return NULL; 635 } 636 637 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 638 { 639 struct taprio_sched *q = qdisc_priv(sch); 640 641 return q->dequeue(sch); 642 } 643 644 static bool should_restart_cycle(const struct sched_gate_list *oper, 645 const struct sched_entry *entry) 646 { 647 if (list_is_last(&entry->list, &oper->entries)) 648 return true; 649 650 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) 651 return true; 652 653 return false; 654 } 655 656 static bool should_change_schedules(const struct sched_gate_list *admin, 657 const struct sched_gate_list *oper, 658 ktime_t close_time) 659 { 660 ktime_t next_base_time, extension_time; 661 662 if (!admin) 663 return false; 664 665 next_base_time = sched_base_time(admin); 666 667 /* This is the simple case, the close_time would fall after 668 * the next schedule base_time. 669 */ 670 if (ktime_compare(next_base_time, close_time) <= 0) 671 return true; 672 673 /* This is the cycle_time_extension case, if the close_time 674 * plus the amount that can be extended would fall after the 675 * next schedule base_time, we can extend the current schedule 676 * for that amount. 677 */ 678 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); 679 680 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 681 * how precisely the extension should be made. So after 682 * conformance testing, this logic may change. 683 */ 684 if (ktime_compare(next_base_time, extension_time) <= 0) 685 return true; 686 687 return false; 688 } 689 690 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 691 { 692 struct taprio_sched *q = container_of(timer, struct taprio_sched, 693 advance_timer); 694 struct sched_gate_list *oper, *admin; 695 struct sched_entry *entry, *next; 696 struct Qdisc *sch = q->root; 697 ktime_t close_time; 698 699 spin_lock(&q->current_entry_lock); 700 entry = rcu_dereference_protected(q->current_entry, 701 lockdep_is_held(&q->current_entry_lock)); 702 oper = rcu_dereference_protected(q->oper_sched, 703 lockdep_is_held(&q->current_entry_lock)); 704 admin = rcu_dereference_protected(q->admin_sched, 705 lockdep_is_held(&q->current_entry_lock)); 706 707 if (!oper) 708 switch_schedules(q, &admin, &oper); 709 710 /* This can happen in two cases: 1. this is the very first run 711 * of this function (i.e. we weren't running any schedule 712 * previously); 2. The previous schedule just ended. The first 713 * entry of all schedules are pre-calculated during the 714 * schedule initialization. 715 */ 716 if (unlikely(!entry || entry->close_time == oper->base_time)) { 717 next = list_first_entry(&oper->entries, struct sched_entry, 718 list); 719 close_time = next->close_time; 720 goto first_run; 721 } 722 723 if (should_restart_cycle(oper, entry)) { 724 next = list_first_entry(&oper->entries, struct sched_entry, 725 list); 726 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, 727 oper->cycle_time); 728 } else { 729 next = list_next_entry(entry, list); 730 } 731 732 close_time = ktime_add_ns(entry->close_time, next->interval); 733 close_time = min_t(ktime_t, close_time, oper->cycle_close_time); 734 735 if (should_change_schedules(admin, oper, close_time)) { 736 /* Set things so the next time this runs, the new 737 * schedule runs. 738 */ 739 close_time = sched_base_time(admin); 740 switch_schedules(q, &admin, &oper); 741 } 742 743 next->close_time = close_time; 744 taprio_set_budget(q, next); 745 746 first_run: 747 rcu_assign_pointer(q->current_entry, next); 748 spin_unlock(&q->current_entry_lock); 749 750 hrtimer_set_expires(&q->advance_timer, close_time); 751 752 rcu_read_lock(); 753 __netif_schedule(sch); 754 rcu_read_unlock(); 755 756 return HRTIMER_RESTART; 757 } 758 759 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 760 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 761 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 762 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 763 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 764 }; 765 766 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 767 [TCA_TAPRIO_ATTR_PRIOMAP] = { 768 .len = sizeof(struct tc_mqprio_qopt) 769 }, 770 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 771 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 772 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 773 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 774 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 775 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 776 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 777 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 778 }; 779 780 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 781 struct sched_entry *entry, 782 struct netlink_ext_ack *extack) 783 { 784 int min_duration = length_to_duration(q, ETH_ZLEN); 785 u32 interval = 0; 786 787 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 788 entry->command = nla_get_u8( 789 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 790 791 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 792 entry->gate_mask = nla_get_u32( 793 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 794 795 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 796 interval = nla_get_u32( 797 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 798 799 /* The interval should allow at least the minimum ethernet 800 * frame to go out. 801 */ 802 if (interval < min_duration) { 803 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 804 return -EINVAL; 805 } 806 807 entry->interval = interval; 808 809 return 0; 810 } 811 812 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 813 struct sched_entry *entry, int index, 814 struct netlink_ext_ack *extack) 815 { 816 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 817 int err; 818 819 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 820 entry_policy, NULL); 821 if (err < 0) { 822 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 823 return -EINVAL; 824 } 825 826 entry->index = index; 827 828 return fill_sched_entry(q, tb, entry, extack); 829 } 830 831 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 832 struct sched_gate_list *sched, 833 struct netlink_ext_ack *extack) 834 { 835 struct nlattr *n; 836 int err, rem; 837 int i = 0; 838 839 if (!list) 840 return -EINVAL; 841 842 nla_for_each_nested(n, list, rem) { 843 struct sched_entry *entry; 844 845 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 846 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 847 continue; 848 } 849 850 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 851 if (!entry) { 852 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 853 return -ENOMEM; 854 } 855 856 err = parse_sched_entry(q, n, entry, i, extack); 857 if (err < 0) { 858 kfree(entry); 859 return err; 860 } 861 862 list_add_tail(&entry->list, &sched->entries); 863 i++; 864 } 865 866 sched->num_entries = i; 867 868 return i; 869 } 870 871 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 872 struct sched_gate_list *new, 873 struct netlink_ext_ack *extack) 874 { 875 int err = 0; 876 877 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 878 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 879 return -ENOTSUPP; 880 } 881 882 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 883 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 884 885 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 886 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 887 888 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 889 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 890 891 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 892 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 893 new, extack); 894 if (err < 0) 895 return err; 896 897 if (!new->cycle_time) { 898 struct sched_entry *entry; 899 ktime_t cycle = 0; 900 901 list_for_each_entry(entry, &new->entries, list) 902 cycle = ktime_add_ns(cycle, entry->interval); 903 new->cycle_time = cycle; 904 } 905 906 return 0; 907 } 908 909 static int taprio_parse_mqprio_opt(struct net_device *dev, 910 struct tc_mqprio_qopt *qopt, 911 struct netlink_ext_ack *extack, 912 u32 taprio_flags) 913 { 914 int i, j; 915 916 if (!qopt && !dev->num_tc) { 917 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 918 return -EINVAL; 919 } 920 921 /* If num_tc is already set, it means that the user already 922 * configured the mqprio part 923 */ 924 if (dev->num_tc) 925 return 0; 926 927 /* Verify num_tc is not out of max range */ 928 if (qopt->num_tc > TC_MAX_QUEUE) { 929 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); 930 return -EINVAL; 931 } 932 933 /* taprio imposes that traffic classes map 1:n to tx queues */ 934 if (qopt->num_tc > dev->num_tx_queues) { 935 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 936 return -EINVAL; 937 } 938 939 /* Verify priority mapping uses valid tcs */ 940 for (i = 0; i <= TC_BITMASK; i++) { 941 if (qopt->prio_tc_map[i] >= qopt->num_tc) { 942 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); 943 return -EINVAL; 944 } 945 } 946 947 for (i = 0; i < qopt->num_tc; i++) { 948 unsigned int last = qopt->offset[i] + qopt->count[i]; 949 950 /* Verify the queue count is in tx range being equal to the 951 * real_num_tx_queues indicates the last queue is in use. 952 */ 953 if (qopt->offset[i] >= dev->num_tx_queues || 954 !qopt->count[i] || 955 last > dev->real_num_tx_queues) { 956 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); 957 return -EINVAL; 958 } 959 960 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) 961 continue; 962 963 /* Verify that the offset and counts do not overlap */ 964 for (j = i + 1; j < qopt->num_tc; j++) { 965 if (last > qopt->offset[j]) { 966 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); 967 return -EINVAL; 968 } 969 } 970 } 971 972 return 0; 973 } 974 975 static int taprio_get_start_time(struct Qdisc *sch, 976 struct sched_gate_list *sched, 977 ktime_t *start) 978 { 979 struct taprio_sched *q = qdisc_priv(sch); 980 ktime_t now, base, cycle; 981 s64 n; 982 983 base = sched_base_time(sched); 984 now = taprio_get_time(q); 985 986 if (ktime_after(base, now)) { 987 *start = base; 988 return 0; 989 } 990 991 cycle = sched->cycle_time; 992 993 /* The qdisc is expected to have at least one sched_entry. Moreover, 994 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 995 * something went really wrong. In that case, we should warn about this 996 * inconsistent state and return error. 997 */ 998 if (WARN_ON(!cycle)) 999 return -EFAULT; 1000 1001 /* Schedule the start time for the beginning of the next 1002 * cycle. 1003 */ 1004 n = div64_s64(ktime_sub_ns(now, base), cycle); 1005 *start = ktime_add_ns(base, (n + 1) * cycle); 1006 return 0; 1007 } 1008 1009 static void setup_first_close_time(struct taprio_sched *q, 1010 struct sched_gate_list *sched, ktime_t base) 1011 { 1012 struct sched_entry *first; 1013 ktime_t cycle; 1014 1015 first = list_first_entry(&sched->entries, 1016 struct sched_entry, list); 1017 1018 cycle = sched->cycle_time; 1019 1020 /* FIXME: find a better place to do this */ 1021 sched->cycle_close_time = ktime_add_ns(base, cycle); 1022 1023 first->close_time = ktime_add_ns(base, first->interval); 1024 taprio_set_budget(q, first); 1025 rcu_assign_pointer(q->current_entry, NULL); 1026 } 1027 1028 static void taprio_start_sched(struct Qdisc *sch, 1029 ktime_t start, struct sched_gate_list *new) 1030 { 1031 struct taprio_sched *q = qdisc_priv(sch); 1032 ktime_t expires; 1033 1034 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1035 return; 1036 1037 expires = hrtimer_get_expires(&q->advance_timer); 1038 if (expires == 0) 1039 expires = KTIME_MAX; 1040 1041 /* If the new schedule starts before the next expiration, we 1042 * reprogram it to the earliest one, so we change the admin 1043 * schedule to the operational one at the right time. 1044 */ 1045 start = min_t(ktime_t, start, expires); 1046 1047 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1048 } 1049 1050 static void taprio_set_picos_per_byte(struct net_device *dev, 1051 struct taprio_sched *q) 1052 { 1053 struct ethtool_link_ksettings ecmd; 1054 int speed = SPEED_10; 1055 int picos_per_byte; 1056 int err; 1057 1058 err = __ethtool_get_link_ksettings(dev, &ecmd); 1059 if (err < 0) 1060 goto skip; 1061 1062 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1063 speed = ecmd.base.speed; 1064 1065 skip: 1066 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1067 1068 atomic64_set(&q->picos_per_byte, picos_per_byte); 1069 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1070 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1071 ecmd.base.speed); 1072 } 1073 1074 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1075 void *ptr) 1076 { 1077 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1078 struct net_device *qdev; 1079 struct taprio_sched *q; 1080 bool found = false; 1081 1082 ASSERT_RTNL(); 1083 1084 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1085 return NOTIFY_DONE; 1086 1087 spin_lock(&taprio_list_lock); 1088 list_for_each_entry(q, &taprio_list, taprio_list) { 1089 qdev = qdisc_dev(q->root); 1090 if (qdev == dev) { 1091 found = true; 1092 break; 1093 } 1094 } 1095 spin_unlock(&taprio_list_lock); 1096 1097 if (found) 1098 taprio_set_picos_per_byte(dev, q); 1099 1100 return NOTIFY_DONE; 1101 } 1102 1103 static void setup_txtime(struct taprio_sched *q, 1104 struct sched_gate_list *sched, ktime_t base) 1105 { 1106 struct sched_entry *entry; 1107 u32 interval = 0; 1108 1109 list_for_each_entry(entry, &sched->entries, list) { 1110 entry->next_txtime = ktime_add_ns(base, interval); 1111 interval += entry->interval; 1112 } 1113 } 1114 1115 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1116 { 1117 struct __tc_taprio_qopt_offload *__offload; 1118 1119 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1120 GFP_KERNEL); 1121 if (!__offload) 1122 return NULL; 1123 1124 refcount_set(&__offload->users, 1); 1125 1126 return &__offload->offload; 1127 } 1128 1129 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1130 *offload) 1131 { 1132 struct __tc_taprio_qopt_offload *__offload; 1133 1134 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1135 offload); 1136 1137 refcount_inc(&__offload->users); 1138 1139 return offload; 1140 } 1141 EXPORT_SYMBOL_GPL(taprio_offload_get); 1142 1143 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1144 { 1145 struct __tc_taprio_qopt_offload *__offload; 1146 1147 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1148 offload); 1149 1150 if (!refcount_dec_and_test(&__offload->users)) 1151 return; 1152 1153 kfree(__offload); 1154 } 1155 EXPORT_SYMBOL_GPL(taprio_offload_free); 1156 1157 /* The function will only serve to keep the pointers to the "oper" and "admin" 1158 * schedules valid in relation to their base times, so when calling dump() the 1159 * users looks at the right schedules. 1160 * When using full offload, the admin configuration is promoted to oper at the 1161 * base_time in the PHC time domain. But because the system time is not 1162 * necessarily in sync with that, we can't just trigger a hrtimer to call 1163 * switch_schedules at the right hardware time. 1164 * At the moment we call this by hand right away from taprio, but in the future 1165 * it will be useful to create a mechanism for drivers to notify taprio of the 1166 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1167 * This is left as TODO. 1168 */ 1169 static void taprio_offload_config_changed(struct taprio_sched *q) 1170 { 1171 struct sched_gate_list *oper, *admin; 1172 1173 spin_lock(&q->current_entry_lock); 1174 1175 oper = rcu_dereference_protected(q->oper_sched, 1176 lockdep_is_held(&q->current_entry_lock)); 1177 admin = rcu_dereference_protected(q->admin_sched, 1178 lockdep_is_held(&q->current_entry_lock)); 1179 1180 switch_schedules(q, &admin, &oper); 1181 1182 spin_unlock(&q->current_entry_lock); 1183 } 1184 1185 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1186 { 1187 u32 i, queue_mask = 0; 1188 1189 for (i = 0; i < dev->num_tc; i++) { 1190 u32 offset, count; 1191 1192 if (!(tc_mask & BIT(i))) 1193 continue; 1194 1195 offset = dev->tc_to_txq[i].offset; 1196 count = dev->tc_to_txq[i].count; 1197 1198 queue_mask |= GENMASK(offset + count - 1, offset); 1199 } 1200 1201 return queue_mask; 1202 } 1203 1204 static void taprio_sched_to_offload(struct net_device *dev, 1205 struct sched_gate_list *sched, 1206 struct tc_taprio_qopt_offload *offload) 1207 { 1208 struct sched_entry *entry; 1209 int i = 0; 1210 1211 offload->base_time = sched->base_time; 1212 offload->cycle_time = sched->cycle_time; 1213 offload->cycle_time_extension = sched->cycle_time_extension; 1214 1215 list_for_each_entry(entry, &sched->entries, list) { 1216 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1217 1218 e->command = entry->command; 1219 e->interval = entry->interval; 1220 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask); 1221 1222 i++; 1223 } 1224 1225 offload->num_entries = i; 1226 } 1227 1228 static int taprio_enable_offload(struct net_device *dev, 1229 struct taprio_sched *q, 1230 struct sched_gate_list *sched, 1231 struct netlink_ext_ack *extack) 1232 { 1233 const struct net_device_ops *ops = dev->netdev_ops; 1234 struct tc_taprio_qopt_offload *offload; 1235 int err = 0; 1236 1237 if (!ops->ndo_setup_tc) { 1238 NL_SET_ERR_MSG(extack, 1239 "Device does not support taprio offload"); 1240 return -EOPNOTSUPP; 1241 } 1242 1243 offload = taprio_offload_alloc(sched->num_entries); 1244 if (!offload) { 1245 NL_SET_ERR_MSG(extack, 1246 "Not enough memory for enabling offload mode"); 1247 return -ENOMEM; 1248 } 1249 offload->enable = 1; 1250 taprio_sched_to_offload(dev, sched, offload); 1251 1252 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1253 if (err < 0) { 1254 NL_SET_ERR_MSG(extack, 1255 "Device failed to setup taprio offload"); 1256 goto done; 1257 } 1258 1259 done: 1260 taprio_offload_free(offload); 1261 1262 return err; 1263 } 1264 1265 static int taprio_disable_offload(struct net_device *dev, 1266 struct taprio_sched *q, 1267 struct netlink_ext_ack *extack) 1268 { 1269 const struct net_device_ops *ops = dev->netdev_ops; 1270 struct tc_taprio_qopt_offload *offload; 1271 int err; 1272 1273 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) 1274 return 0; 1275 1276 if (!ops->ndo_setup_tc) 1277 return -EOPNOTSUPP; 1278 1279 offload = taprio_offload_alloc(0); 1280 if (!offload) { 1281 NL_SET_ERR_MSG(extack, 1282 "Not enough memory to disable offload mode"); 1283 return -ENOMEM; 1284 } 1285 offload->enable = 0; 1286 1287 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1288 if (err < 0) { 1289 NL_SET_ERR_MSG(extack, 1290 "Device failed to disable offload"); 1291 goto out; 1292 } 1293 1294 out: 1295 taprio_offload_free(offload); 1296 1297 return err; 1298 } 1299 1300 /* If full offload is enabled, the only possible clockid is the net device's 1301 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1302 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1303 * in sync with the specified clockid via a user space daemon such as phc2sys. 1304 * For both software taprio and txtime-assist, the clockid is used for the 1305 * hrtimer that advances the schedule and hence mandatory. 1306 */ 1307 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1308 struct netlink_ext_ack *extack) 1309 { 1310 struct taprio_sched *q = qdisc_priv(sch); 1311 struct net_device *dev = qdisc_dev(sch); 1312 int err = -EINVAL; 1313 1314 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1315 const struct ethtool_ops *ops = dev->ethtool_ops; 1316 struct ethtool_ts_info info = { 1317 .cmd = ETHTOOL_GET_TS_INFO, 1318 .phc_index = -1, 1319 }; 1320 1321 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1322 NL_SET_ERR_MSG(extack, 1323 "The 'clockid' cannot be specified for full offload"); 1324 goto out; 1325 } 1326 1327 if (ops && ops->get_ts_info) 1328 err = ops->get_ts_info(dev, &info); 1329 1330 if (err || info.phc_index < 0) { 1331 NL_SET_ERR_MSG(extack, 1332 "Device does not have a PTP clock"); 1333 err = -ENOTSUPP; 1334 goto out; 1335 } 1336 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1337 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1338 1339 /* We only support static clockids and we don't allow 1340 * for it to be modified after the first init. 1341 */ 1342 if (clockid < 0 || 1343 (q->clockid != -1 && q->clockid != clockid)) { 1344 NL_SET_ERR_MSG(extack, 1345 "Changing the 'clockid' of a running schedule is not supported"); 1346 err = -ENOTSUPP; 1347 goto out; 1348 } 1349 1350 switch (clockid) { 1351 case CLOCK_REALTIME: 1352 q->tk_offset = TK_OFFS_REAL; 1353 break; 1354 case CLOCK_MONOTONIC: 1355 q->tk_offset = TK_OFFS_MAX; 1356 break; 1357 case CLOCK_BOOTTIME: 1358 q->tk_offset = TK_OFFS_BOOT; 1359 break; 1360 case CLOCK_TAI: 1361 q->tk_offset = TK_OFFS_TAI; 1362 break; 1363 default: 1364 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1365 err = -EINVAL; 1366 goto out; 1367 } 1368 1369 q->clockid = clockid; 1370 } else { 1371 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1372 goto out; 1373 } 1374 1375 /* Everything went ok, return success. */ 1376 err = 0; 1377 1378 out: 1379 return err; 1380 } 1381 1382 static int taprio_mqprio_cmp(const struct net_device *dev, 1383 const struct tc_mqprio_qopt *mqprio) 1384 { 1385 int i; 1386 1387 if (!mqprio || mqprio->num_tc != dev->num_tc) 1388 return -1; 1389 1390 for (i = 0; i < mqprio->num_tc; i++) 1391 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1392 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1393 return -1; 1394 1395 for (i = 0; i <= TC_BITMASK; i++) 1396 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1397 return -1; 1398 1399 return 0; 1400 } 1401 1402 /* The semantics of the 'flags' argument in relation to 'change()' 1403 * requests, are interpreted following two rules (which are applied in 1404 * this order): (1) an omitted 'flags' argument is interpreted as 1405 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1406 * changed. 1407 */ 1408 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1409 struct netlink_ext_ack *extack) 1410 { 1411 u32 new = 0; 1412 1413 if (attr) 1414 new = nla_get_u32(attr); 1415 1416 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1417 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1418 return -EOPNOTSUPP; 1419 } 1420 1421 if (!taprio_flags_valid(new)) { 1422 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1423 return -EINVAL; 1424 } 1425 1426 return new; 1427 } 1428 1429 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1430 struct netlink_ext_ack *extack) 1431 { 1432 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1433 struct sched_gate_list *oper, *admin, *new_admin; 1434 struct taprio_sched *q = qdisc_priv(sch); 1435 struct net_device *dev = qdisc_dev(sch); 1436 struct tc_mqprio_qopt *mqprio = NULL; 1437 unsigned long flags; 1438 ktime_t start; 1439 int i, err; 1440 1441 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1442 taprio_policy, extack); 1443 if (err < 0) 1444 return err; 1445 1446 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1447 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1448 1449 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1450 q->flags, extack); 1451 if (err < 0) 1452 return err; 1453 1454 q->flags = err; 1455 1456 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1457 if (err < 0) 1458 return err; 1459 1460 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1461 if (!new_admin) { 1462 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1463 return -ENOMEM; 1464 } 1465 INIT_LIST_HEAD(&new_admin->entries); 1466 1467 rcu_read_lock(); 1468 oper = rcu_dereference(q->oper_sched); 1469 admin = rcu_dereference(q->admin_sched); 1470 rcu_read_unlock(); 1471 1472 /* no changes - no new mqprio settings */ 1473 if (!taprio_mqprio_cmp(dev, mqprio)) 1474 mqprio = NULL; 1475 1476 if (mqprio && (oper || admin)) { 1477 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1478 err = -ENOTSUPP; 1479 goto free_sched; 1480 } 1481 1482 err = parse_taprio_schedule(q, tb, new_admin, extack); 1483 if (err < 0) 1484 goto free_sched; 1485 1486 if (new_admin->num_entries == 0) { 1487 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1488 err = -EINVAL; 1489 goto free_sched; 1490 } 1491 1492 err = taprio_parse_clockid(sch, tb, extack); 1493 if (err < 0) 1494 goto free_sched; 1495 1496 taprio_set_picos_per_byte(dev, q); 1497 1498 if (mqprio) { 1499 netdev_set_num_tc(dev, mqprio->num_tc); 1500 for (i = 0; i < mqprio->num_tc; i++) 1501 netdev_set_tc_queue(dev, i, 1502 mqprio->count[i], 1503 mqprio->offset[i]); 1504 1505 /* Always use supplied priority mappings */ 1506 for (i = 0; i <= TC_BITMASK; i++) 1507 netdev_set_prio_tc_map(dev, i, 1508 mqprio->prio_tc_map[i]); 1509 } 1510 1511 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1512 err = taprio_enable_offload(dev, q, new_admin, extack); 1513 else 1514 err = taprio_disable_offload(dev, q, extack); 1515 if (err) 1516 goto free_sched; 1517 1518 /* Protects against enqueue()/dequeue() */ 1519 spin_lock_bh(qdisc_lock(sch)); 1520 1521 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1522 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1523 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1524 err = -EINVAL; 1525 goto unlock; 1526 } 1527 1528 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1529 } 1530 1531 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1532 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1533 !hrtimer_active(&q->advance_timer)) { 1534 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1535 q->advance_timer.function = advance_sched; 1536 } 1537 1538 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1539 q->dequeue = taprio_dequeue_offload; 1540 q->peek = taprio_peek_offload; 1541 } else { 1542 /* Be sure to always keep the function pointers 1543 * in a consistent state. 1544 */ 1545 q->dequeue = taprio_dequeue_soft; 1546 q->peek = taprio_peek_soft; 1547 } 1548 1549 err = taprio_get_start_time(sch, new_admin, &start); 1550 if (err < 0) { 1551 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1552 goto unlock; 1553 } 1554 1555 setup_txtime(q, new_admin, start); 1556 1557 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1558 if (!oper) { 1559 rcu_assign_pointer(q->oper_sched, new_admin); 1560 err = 0; 1561 new_admin = NULL; 1562 goto unlock; 1563 } 1564 1565 rcu_assign_pointer(q->admin_sched, new_admin); 1566 if (admin) 1567 call_rcu(&admin->rcu, taprio_free_sched_cb); 1568 } else { 1569 setup_first_close_time(q, new_admin, start); 1570 1571 /* Protects against advance_sched() */ 1572 spin_lock_irqsave(&q->current_entry_lock, flags); 1573 1574 taprio_start_sched(sch, start, new_admin); 1575 1576 rcu_assign_pointer(q->admin_sched, new_admin); 1577 if (admin) 1578 call_rcu(&admin->rcu, taprio_free_sched_cb); 1579 1580 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1581 1582 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1583 taprio_offload_config_changed(q); 1584 } 1585 1586 new_admin = NULL; 1587 err = 0; 1588 1589 unlock: 1590 spin_unlock_bh(qdisc_lock(sch)); 1591 1592 free_sched: 1593 if (new_admin) 1594 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1595 1596 return err; 1597 } 1598 1599 static void taprio_destroy(struct Qdisc *sch) 1600 { 1601 struct taprio_sched *q = qdisc_priv(sch); 1602 struct net_device *dev = qdisc_dev(sch); 1603 unsigned int i; 1604 1605 spin_lock(&taprio_list_lock); 1606 list_del(&q->taprio_list); 1607 spin_unlock(&taprio_list_lock); 1608 1609 hrtimer_cancel(&q->advance_timer); 1610 1611 taprio_disable_offload(dev, q, NULL); 1612 1613 if (q->qdiscs) { 1614 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++) 1615 qdisc_put(q->qdiscs[i]); 1616 1617 kfree(q->qdiscs); 1618 } 1619 q->qdiscs = NULL; 1620 1621 netdev_reset_tc(dev); 1622 1623 if (q->oper_sched) 1624 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); 1625 1626 if (q->admin_sched) 1627 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); 1628 } 1629 1630 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 1631 struct netlink_ext_ack *extack) 1632 { 1633 struct taprio_sched *q = qdisc_priv(sch); 1634 struct net_device *dev = qdisc_dev(sch); 1635 int i; 1636 1637 spin_lock_init(&q->current_entry_lock); 1638 1639 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 1640 q->advance_timer.function = advance_sched; 1641 1642 q->dequeue = taprio_dequeue_soft; 1643 q->peek = taprio_peek_soft; 1644 1645 q->root = sch; 1646 1647 /* We only support static clockids. Use an invalid value as default 1648 * and get the valid one on taprio_change(). 1649 */ 1650 q->clockid = -1; 1651 q->flags = TAPRIO_FLAGS_INVALID; 1652 1653 spin_lock(&taprio_list_lock); 1654 list_add(&q->taprio_list, &taprio_list); 1655 spin_unlock(&taprio_list_lock); 1656 1657 if (sch->parent != TC_H_ROOT) 1658 return -EOPNOTSUPP; 1659 1660 if (!netif_is_multiqueue(dev)) 1661 return -EOPNOTSUPP; 1662 1663 /* pre-allocate qdisc, attachment can't fail */ 1664 q->qdiscs = kcalloc(dev->num_tx_queues, 1665 sizeof(q->qdiscs[0]), 1666 GFP_KERNEL); 1667 1668 if (!q->qdiscs) 1669 return -ENOMEM; 1670 1671 if (!opt) 1672 return -EINVAL; 1673 1674 for (i = 0; i < dev->num_tx_queues; i++) { 1675 struct netdev_queue *dev_queue; 1676 struct Qdisc *qdisc; 1677 1678 dev_queue = netdev_get_tx_queue(dev, i); 1679 qdisc = qdisc_create_dflt(dev_queue, 1680 &pfifo_qdisc_ops, 1681 TC_H_MAKE(TC_H_MAJ(sch->handle), 1682 TC_H_MIN(i + 1)), 1683 extack); 1684 if (!qdisc) 1685 return -ENOMEM; 1686 1687 if (i < dev->real_num_tx_queues) 1688 qdisc_hash_add(qdisc, false); 1689 1690 q->qdiscs[i] = qdisc; 1691 } 1692 1693 return taprio_change(sch, opt, extack); 1694 } 1695 1696 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 1697 unsigned long cl) 1698 { 1699 struct net_device *dev = qdisc_dev(sch); 1700 unsigned long ntx = cl - 1; 1701 1702 if (ntx >= dev->num_tx_queues) 1703 return NULL; 1704 1705 return netdev_get_tx_queue(dev, ntx); 1706 } 1707 1708 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 1709 struct Qdisc *new, struct Qdisc **old, 1710 struct netlink_ext_ack *extack) 1711 { 1712 struct taprio_sched *q = qdisc_priv(sch); 1713 struct net_device *dev = qdisc_dev(sch); 1714 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1715 1716 if (!dev_queue) 1717 return -EINVAL; 1718 1719 if (dev->flags & IFF_UP) 1720 dev_deactivate(dev); 1721 1722 *old = q->qdiscs[cl - 1]; 1723 q->qdiscs[cl - 1] = new; 1724 1725 if (new) 1726 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1727 1728 if (dev->flags & IFF_UP) 1729 dev_activate(dev); 1730 1731 return 0; 1732 } 1733 1734 static int dump_entry(struct sk_buff *msg, 1735 const struct sched_entry *entry) 1736 { 1737 struct nlattr *item; 1738 1739 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 1740 if (!item) 1741 return -ENOSPC; 1742 1743 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 1744 goto nla_put_failure; 1745 1746 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 1747 goto nla_put_failure; 1748 1749 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 1750 entry->gate_mask)) 1751 goto nla_put_failure; 1752 1753 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 1754 entry->interval)) 1755 goto nla_put_failure; 1756 1757 return nla_nest_end(msg, item); 1758 1759 nla_put_failure: 1760 nla_nest_cancel(msg, item); 1761 return -1; 1762 } 1763 1764 static int dump_schedule(struct sk_buff *msg, 1765 const struct sched_gate_list *root) 1766 { 1767 struct nlattr *entry_list; 1768 struct sched_entry *entry; 1769 1770 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 1771 root->base_time, TCA_TAPRIO_PAD)) 1772 return -1; 1773 1774 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 1775 root->cycle_time, TCA_TAPRIO_PAD)) 1776 return -1; 1777 1778 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 1779 root->cycle_time_extension, TCA_TAPRIO_PAD)) 1780 return -1; 1781 1782 entry_list = nla_nest_start_noflag(msg, 1783 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 1784 if (!entry_list) 1785 goto error_nest; 1786 1787 list_for_each_entry(entry, &root->entries, list) { 1788 if (dump_entry(msg, entry) < 0) 1789 goto error_nest; 1790 } 1791 1792 nla_nest_end(msg, entry_list); 1793 return 0; 1794 1795 error_nest: 1796 nla_nest_cancel(msg, entry_list); 1797 return -1; 1798 } 1799 1800 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 1801 { 1802 struct taprio_sched *q = qdisc_priv(sch); 1803 struct net_device *dev = qdisc_dev(sch); 1804 struct sched_gate_list *oper, *admin; 1805 struct tc_mqprio_qopt opt = { 0 }; 1806 struct nlattr *nest, *sched_nest; 1807 unsigned int i; 1808 1809 rcu_read_lock(); 1810 oper = rcu_dereference(q->oper_sched); 1811 admin = rcu_dereference(q->admin_sched); 1812 1813 opt.num_tc = netdev_get_num_tc(dev); 1814 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); 1815 1816 for (i = 0; i < netdev_get_num_tc(dev); i++) { 1817 opt.count[i] = dev->tc_to_txq[i].count; 1818 opt.offset[i] = dev->tc_to_txq[i].offset; 1819 } 1820 1821 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1822 if (!nest) 1823 goto start_error; 1824 1825 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 1826 goto options_error; 1827 1828 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 1829 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 1830 goto options_error; 1831 1832 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 1833 goto options_error; 1834 1835 if (q->txtime_delay && 1836 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 1837 goto options_error; 1838 1839 if (oper && dump_schedule(skb, oper)) 1840 goto options_error; 1841 1842 if (!admin) 1843 goto done; 1844 1845 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 1846 if (!sched_nest) 1847 goto options_error; 1848 1849 if (dump_schedule(skb, admin)) 1850 goto admin_error; 1851 1852 nla_nest_end(skb, sched_nest); 1853 1854 done: 1855 rcu_read_unlock(); 1856 1857 return nla_nest_end(skb, nest); 1858 1859 admin_error: 1860 nla_nest_cancel(skb, sched_nest); 1861 1862 options_error: 1863 nla_nest_cancel(skb, nest); 1864 1865 start_error: 1866 rcu_read_unlock(); 1867 return -ENOSPC; 1868 } 1869 1870 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 1871 { 1872 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1873 1874 if (!dev_queue) 1875 return NULL; 1876 1877 return dev_queue->qdisc_sleeping; 1878 } 1879 1880 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 1881 { 1882 unsigned int ntx = TC_H_MIN(classid); 1883 1884 if (!taprio_queue_get(sch, ntx)) 1885 return 0; 1886 return ntx; 1887 } 1888 1889 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 1890 struct sk_buff *skb, struct tcmsg *tcm) 1891 { 1892 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1893 1894 tcm->tcm_parent = TC_H_ROOT; 1895 tcm->tcm_handle |= TC_H_MIN(cl); 1896 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 1897 1898 return 0; 1899 } 1900 1901 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 1902 struct gnet_dump *d) 1903 __releases(d->lock) 1904 __acquires(d->lock) 1905 { 1906 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1907 1908 sch = dev_queue->qdisc_sleeping; 1909 if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 || 1910 qdisc_qstats_copy(d, sch) < 0) 1911 return -1; 1912 return 0; 1913 } 1914 1915 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1916 { 1917 struct net_device *dev = qdisc_dev(sch); 1918 unsigned long ntx; 1919 1920 if (arg->stop) 1921 return; 1922 1923 arg->count = arg->skip; 1924 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 1925 if (arg->fn(sch, ntx + 1, arg) < 0) { 1926 arg->stop = 1; 1927 break; 1928 } 1929 arg->count++; 1930 } 1931 } 1932 1933 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 1934 struct tcmsg *tcm) 1935 { 1936 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 1937 } 1938 1939 static const struct Qdisc_class_ops taprio_class_ops = { 1940 .graft = taprio_graft, 1941 .leaf = taprio_leaf, 1942 .find = taprio_find, 1943 .walk = taprio_walk, 1944 .dump = taprio_dump_class, 1945 .dump_stats = taprio_dump_class_stats, 1946 .select_queue = taprio_select_queue, 1947 }; 1948 1949 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 1950 .cl_ops = &taprio_class_ops, 1951 .id = "taprio", 1952 .priv_size = sizeof(struct taprio_sched), 1953 .init = taprio_init, 1954 .change = taprio_change, 1955 .destroy = taprio_destroy, 1956 .peek = taprio_peek, 1957 .dequeue = taprio_dequeue, 1958 .enqueue = taprio_enqueue, 1959 .dump = taprio_dump, 1960 .owner = THIS_MODULE, 1961 }; 1962 1963 static struct notifier_block taprio_device_notifier = { 1964 .notifier_call = taprio_dev_notifier, 1965 }; 1966 1967 static int __init taprio_module_init(void) 1968 { 1969 int err = register_netdevice_notifier(&taprio_device_notifier); 1970 1971 if (err) 1972 return err; 1973 1974 return register_qdisc(&taprio_qdisc_ops); 1975 } 1976 1977 static void __exit taprio_module_exit(void) 1978 { 1979 unregister_qdisc(&taprio_qdisc_ops); 1980 unregister_netdevice_notifier(&taprio_device_notifier); 1981 } 1982 1983 module_init(taprio_module_init); 1984 module_exit(taprio_module_exit); 1985 MODULE_LICENSE("GPL"); 1986