1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/types.h> 11 #include <linux/slab.h> 12 #include <linux/kernel.h> 13 #include <linux/string.h> 14 #include <linux/list.h> 15 #include <linux/errno.h> 16 #include <linux/skbuff.h> 17 #include <linux/math64.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/rcupdate.h> 21 #include <net/netlink.h> 22 #include <net/pkt_sched.h> 23 #include <net/pkt_cls.h> 24 #include <net/sch_generic.h> 25 #include <net/sock.h> 26 #include <net/tcp.h> 27 28 static LIST_HEAD(taprio_list); 29 static DEFINE_SPINLOCK(taprio_list_lock); 30 31 #define TAPRIO_ALL_GATES_OPEN -1 32 33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 35 #define TAPRIO_FLAGS_INVALID U32_MAX 36 37 struct sched_entry { 38 struct list_head list; 39 40 /* The instant that this entry "closes" and the next one 41 * should open, the qdisc will make some effort so that no 42 * packet leaves after this time. 43 */ 44 ktime_t close_time; 45 ktime_t next_txtime; 46 atomic_t budget; 47 int index; 48 u32 gate_mask; 49 u32 interval; 50 u8 command; 51 }; 52 53 struct sched_gate_list { 54 struct rcu_head rcu; 55 struct list_head entries; 56 size_t num_entries; 57 ktime_t cycle_close_time; 58 s64 cycle_time; 59 s64 cycle_time_extension; 60 s64 base_time; 61 }; 62 63 struct taprio_sched { 64 struct Qdisc **qdiscs; 65 struct Qdisc *root; 66 u32 flags; 67 enum tk_offsets tk_offset; 68 int clockid; 69 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 70 * speeds it's sub-nanoseconds per byte 71 */ 72 73 /* Protects the update side of the RCU protected current_entry */ 74 spinlock_t current_entry_lock; 75 struct sched_entry __rcu *current_entry; 76 struct sched_gate_list __rcu *oper_sched; 77 struct sched_gate_list __rcu *admin_sched; 78 struct hrtimer advance_timer; 79 struct list_head taprio_list; 80 struct sk_buff *(*dequeue)(struct Qdisc *sch); 81 struct sk_buff *(*peek)(struct Qdisc *sch); 82 u32 txtime_delay; 83 }; 84 85 struct __tc_taprio_qopt_offload { 86 refcount_t users; 87 struct tc_taprio_qopt_offload offload; 88 }; 89 90 static ktime_t sched_base_time(const struct sched_gate_list *sched) 91 { 92 if (!sched) 93 return KTIME_MAX; 94 95 return ns_to_ktime(sched->base_time); 96 } 97 98 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 99 { 100 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 101 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 102 103 switch (tk_offset) { 104 case TK_OFFS_MAX: 105 return mono; 106 default: 107 return ktime_mono_to_any(mono, tk_offset); 108 } 109 } 110 111 static ktime_t taprio_get_time(const struct taprio_sched *q) 112 { 113 return taprio_mono_to_any(q, ktime_get()); 114 } 115 116 static void taprio_free_sched_cb(struct rcu_head *head) 117 { 118 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 119 struct sched_entry *entry, *n; 120 121 list_for_each_entry_safe(entry, n, &sched->entries, list) { 122 list_del(&entry->list); 123 kfree(entry); 124 } 125 126 kfree(sched); 127 } 128 129 static void switch_schedules(struct taprio_sched *q, 130 struct sched_gate_list **admin, 131 struct sched_gate_list **oper) 132 { 133 rcu_assign_pointer(q->oper_sched, *admin); 134 rcu_assign_pointer(q->admin_sched, NULL); 135 136 if (*oper) 137 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 138 139 *oper = *admin; 140 *admin = NULL; 141 } 142 143 /* Get how much time has been already elapsed in the current cycle. */ 144 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 145 { 146 ktime_t time_since_sched_start; 147 s32 time_elapsed; 148 149 time_since_sched_start = ktime_sub(time, sched->base_time); 150 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 151 152 return time_elapsed; 153 } 154 155 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 156 struct sched_gate_list *admin, 157 struct sched_entry *entry, 158 ktime_t intv_start) 159 { 160 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 161 ktime_t intv_end, cycle_ext_end, cycle_end; 162 163 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 164 intv_end = ktime_add_ns(intv_start, entry->interval); 165 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 166 167 if (ktime_before(intv_end, cycle_end)) 168 return intv_end; 169 else if (admin && admin != sched && 170 ktime_after(admin->base_time, cycle_end) && 171 ktime_before(admin->base_time, cycle_ext_end)) 172 return admin->base_time; 173 else 174 return cycle_end; 175 } 176 177 static int length_to_duration(struct taprio_sched *q, int len) 178 { 179 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); 180 } 181 182 /* Returns the entry corresponding to next available interval. If 183 * validate_interval is set, it only validates whether the timestamp occurs 184 * when the gate corresponding to the skb's traffic class is open. 185 */ 186 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 187 struct Qdisc *sch, 188 struct sched_gate_list *sched, 189 struct sched_gate_list *admin, 190 ktime_t time, 191 ktime_t *interval_start, 192 ktime_t *interval_end, 193 bool validate_interval) 194 { 195 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 196 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 197 struct sched_entry *entry = NULL, *entry_found = NULL; 198 struct taprio_sched *q = qdisc_priv(sch); 199 struct net_device *dev = qdisc_dev(sch); 200 bool entry_available = false; 201 s32 cycle_elapsed; 202 int tc, n; 203 204 tc = netdev_get_prio_tc_map(dev, skb->priority); 205 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 206 207 *interval_start = 0; 208 *interval_end = 0; 209 210 if (!sched) 211 return NULL; 212 213 cycle = sched->cycle_time; 214 cycle_elapsed = get_cycle_time_elapsed(sched, time); 215 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 216 cycle_end = ktime_add_ns(curr_intv_end, cycle); 217 218 list_for_each_entry(entry, &sched->entries, list) { 219 curr_intv_start = curr_intv_end; 220 curr_intv_end = get_interval_end_time(sched, admin, entry, 221 curr_intv_start); 222 223 if (ktime_after(curr_intv_start, cycle_end)) 224 break; 225 226 if (!(entry->gate_mask & BIT(tc)) || 227 packet_transmit_time > entry->interval) 228 continue; 229 230 txtime = entry->next_txtime; 231 232 if (ktime_before(txtime, time) || validate_interval) { 233 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 234 if ((ktime_before(curr_intv_start, time) && 235 ktime_before(transmit_end_time, curr_intv_end)) || 236 (ktime_after(curr_intv_start, time) && !validate_interval)) { 237 entry_found = entry; 238 *interval_start = curr_intv_start; 239 *interval_end = curr_intv_end; 240 break; 241 } else if (!entry_available && !validate_interval) { 242 /* Here, we are just trying to find out the 243 * first available interval in the next cycle. 244 */ 245 entry_available = true; 246 entry_found = entry; 247 *interval_start = ktime_add_ns(curr_intv_start, cycle); 248 *interval_end = ktime_add_ns(curr_intv_end, cycle); 249 } 250 } else if (ktime_before(txtime, earliest_txtime) && 251 !entry_available) { 252 earliest_txtime = txtime; 253 entry_found = entry; 254 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 255 *interval_start = ktime_add(curr_intv_start, n * cycle); 256 *interval_end = ktime_add(curr_intv_end, n * cycle); 257 } 258 } 259 260 return entry_found; 261 } 262 263 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 264 { 265 struct taprio_sched *q = qdisc_priv(sch); 266 struct sched_gate_list *sched, *admin; 267 ktime_t interval_start, interval_end; 268 struct sched_entry *entry; 269 270 rcu_read_lock(); 271 sched = rcu_dereference(q->oper_sched); 272 admin = rcu_dereference(q->admin_sched); 273 274 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 275 &interval_start, &interval_end, true); 276 rcu_read_unlock(); 277 278 return entry; 279 } 280 281 static bool taprio_flags_valid(u32 flags) 282 { 283 /* Make sure no other flag bits are set. */ 284 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 285 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 286 return false; 287 /* txtime-assist and full offload are mutually exclusive */ 288 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 289 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 290 return false; 291 return true; 292 } 293 294 /* This returns the tstamp value set by TCP in terms of the set clock. */ 295 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 296 { 297 unsigned int offset = skb_network_offset(skb); 298 const struct ipv6hdr *ipv6h; 299 const struct iphdr *iph; 300 struct ipv6hdr _ipv6h; 301 302 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 303 if (!ipv6h) 304 return 0; 305 306 if (ipv6h->version == 4) { 307 iph = (struct iphdr *)ipv6h; 308 offset += iph->ihl * 4; 309 310 /* special-case 6in4 tunnelling, as that is a common way to get 311 * v6 connectivity in the home 312 */ 313 if (iph->protocol == IPPROTO_IPV6) { 314 ipv6h = skb_header_pointer(skb, offset, 315 sizeof(_ipv6h), &_ipv6h); 316 317 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 318 return 0; 319 } else if (iph->protocol != IPPROTO_TCP) { 320 return 0; 321 } 322 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 323 return 0; 324 } 325 326 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 327 } 328 329 /* There are a few scenarios where we will have to modify the txtime from 330 * what is read from next_txtime in sched_entry. They are: 331 * 1. If txtime is in the past, 332 * a. The gate for the traffic class is currently open and packet can be 333 * transmitted before it closes, schedule the packet right away. 334 * b. If the gate corresponding to the traffic class is going to open later 335 * in the cycle, set the txtime of packet to the interval start. 336 * 2. If txtime is in the future, there are packets corresponding to the 337 * current traffic class waiting to be transmitted. So, the following 338 * possibilities exist: 339 * a. We can transmit the packet before the window containing the txtime 340 * closes. 341 * b. The window might close before the transmission can be completed 342 * successfully. So, schedule the packet in the next open window. 343 */ 344 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 345 { 346 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 347 struct taprio_sched *q = qdisc_priv(sch); 348 struct sched_gate_list *sched, *admin; 349 ktime_t minimum_time, now, txtime; 350 int len, packet_transmit_time; 351 struct sched_entry *entry; 352 bool sched_changed; 353 354 now = taprio_get_time(q); 355 minimum_time = ktime_add_ns(now, q->txtime_delay); 356 357 tcp_tstamp = get_tcp_tstamp(q, skb); 358 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 359 360 rcu_read_lock(); 361 admin = rcu_dereference(q->admin_sched); 362 sched = rcu_dereference(q->oper_sched); 363 if (admin && ktime_after(minimum_time, admin->base_time)) 364 switch_schedules(q, &admin, &sched); 365 366 /* Until the schedule starts, all the queues are open */ 367 if (!sched || ktime_before(minimum_time, sched->base_time)) { 368 txtime = minimum_time; 369 goto done; 370 } 371 372 len = qdisc_pkt_len(skb); 373 packet_transmit_time = length_to_duration(q, len); 374 375 do { 376 sched_changed = false; 377 378 entry = find_entry_to_transmit(skb, sch, sched, admin, 379 minimum_time, 380 &interval_start, &interval_end, 381 false); 382 if (!entry) { 383 txtime = 0; 384 goto done; 385 } 386 387 txtime = entry->next_txtime; 388 txtime = max_t(ktime_t, txtime, minimum_time); 389 txtime = max_t(ktime_t, txtime, interval_start); 390 391 if (admin && admin != sched && 392 ktime_after(txtime, admin->base_time)) { 393 sched = admin; 394 sched_changed = true; 395 continue; 396 } 397 398 transmit_end_time = ktime_add(txtime, packet_transmit_time); 399 minimum_time = transmit_end_time; 400 401 /* Update the txtime of current entry to the next time it's 402 * interval starts. 403 */ 404 if (ktime_after(transmit_end_time, interval_end)) 405 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 406 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 407 408 entry->next_txtime = transmit_end_time; 409 410 done: 411 rcu_read_unlock(); 412 return txtime; 413 } 414 415 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 416 struct Qdisc *child, struct sk_buff **to_free) 417 { 418 struct taprio_sched *q = qdisc_priv(sch); 419 420 /* sk_flags are only safe to use on full sockets. */ 421 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { 422 if (!is_valid_interval(skb, sch)) 423 return qdisc_drop(skb, sch, to_free); 424 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 425 skb->tstamp = get_packet_txtime(skb, sch); 426 if (!skb->tstamp) 427 return qdisc_drop(skb, sch, to_free); 428 } 429 430 qdisc_qstats_backlog_inc(sch, skb); 431 sch->q.qlen++; 432 433 return qdisc_enqueue(skb, child, to_free); 434 } 435 436 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 437 struct sk_buff **to_free) 438 { 439 struct taprio_sched *q = qdisc_priv(sch); 440 struct Qdisc *child; 441 int queue; 442 443 if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) { 444 WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n"); 445 return qdisc_drop(skb, sch, to_free); 446 } 447 448 queue = skb_get_queue_mapping(skb); 449 450 child = q->qdiscs[queue]; 451 if (unlikely(!child)) 452 return qdisc_drop(skb, sch, to_free); 453 454 /* Large packets might not be transmitted when the transmission duration 455 * exceeds any configured interval. Therefore, segment the skb into 456 * smaller chunks. Skip it for the full offload case, as the driver 457 * and/or the hardware is expected to handle this. 458 */ 459 if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) { 460 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 461 netdev_features_t features = netif_skb_features(skb); 462 struct sk_buff *segs, *nskb; 463 int ret; 464 465 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 466 if (IS_ERR_OR_NULL(segs)) 467 return qdisc_drop(skb, sch, to_free); 468 469 skb_list_walk_safe(segs, segs, nskb) { 470 skb_mark_not_on_list(segs); 471 qdisc_skb_cb(segs)->pkt_len = segs->len; 472 slen += segs->len; 473 474 ret = taprio_enqueue_one(segs, sch, child, to_free); 475 if (ret != NET_XMIT_SUCCESS) { 476 if (net_xmit_drop_count(ret)) 477 qdisc_qstats_drop(sch); 478 } else { 479 numsegs++; 480 } 481 } 482 483 if (numsegs > 1) 484 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 485 consume_skb(skb); 486 487 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 488 } 489 490 return taprio_enqueue_one(skb, sch, child, to_free); 491 } 492 493 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch) 494 { 495 struct taprio_sched *q = qdisc_priv(sch); 496 struct net_device *dev = qdisc_dev(sch); 497 struct sched_entry *entry; 498 struct sk_buff *skb; 499 u32 gate_mask; 500 int i; 501 502 rcu_read_lock(); 503 entry = rcu_dereference(q->current_entry); 504 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 505 rcu_read_unlock(); 506 507 if (!gate_mask) 508 return NULL; 509 510 for (i = 0; i < dev->num_tx_queues; i++) { 511 struct Qdisc *child = q->qdiscs[i]; 512 int prio; 513 u8 tc; 514 515 if (unlikely(!child)) 516 continue; 517 518 skb = child->ops->peek(child); 519 if (!skb) 520 continue; 521 522 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 523 return skb; 524 525 prio = skb->priority; 526 tc = netdev_get_prio_tc_map(dev, prio); 527 528 if (!(gate_mask & BIT(tc))) 529 continue; 530 531 return skb; 532 } 533 534 return NULL; 535 } 536 537 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch) 538 { 539 WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n"); 540 541 return NULL; 542 } 543 544 static struct sk_buff *taprio_peek(struct Qdisc *sch) 545 { 546 struct taprio_sched *q = qdisc_priv(sch); 547 548 return q->peek(sch); 549 } 550 551 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) 552 { 553 atomic_set(&entry->budget, 554 div64_u64((u64)entry->interval * 1000, 555 atomic64_read(&q->picos_per_byte))); 556 } 557 558 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch) 559 { 560 struct taprio_sched *q = qdisc_priv(sch); 561 struct net_device *dev = qdisc_dev(sch); 562 struct sk_buff *skb = NULL; 563 struct sched_entry *entry; 564 u32 gate_mask; 565 int i; 566 567 rcu_read_lock(); 568 entry = rcu_dereference(q->current_entry); 569 /* if there's no entry, it means that the schedule didn't 570 * start yet, so force all gates to be open, this is in 571 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 572 * "AdminGateStates" 573 */ 574 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 575 576 if (!gate_mask) 577 goto done; 578 579 for (i = 0; i < dev->num_tx_queues; i++) { 580 struct Qdisc *child = q->qdiscs[i]; 581 ktime_t guard; 582 int prio; 583 int len; 584 u8 tc; 585 586 if (unlikely(!child)) 587 continue; 588 589 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 590 skb = child->ops->dequeue(child); 591 if (!skb) 592 continue; 593 goto skb_found; 594 } 595 596 skb = child->ops->peek(child); 597 if (!skb) 598 continue; 599 600 prio = skb->priority; 601 tc = netdev_get_prio_tc_map(dev, prio); 602 603 if (!(gate_mask & BIT(tc))) { 604 skb = NULL; 605 continue; 606 } 607 608 len = qdisc_pkt_len(skb); 609 guard = ktime_add_ns(taprio_get_time(q), 610 length_to_duration(q, len)); 611 612 /* In the case that there's no gate entry, there's no 613 * guard band ... 614 */ 615 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 616 ktime_after(guard, entry->close_time)) { 617 skb = NULL; 618 continue; 619 } 620 621 /* ... and no budget. */ 622 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 623 atomic_sub_return(len, &entry->budget) < 0) { 624 skb = NULL; 625 continue; 626 } 627 628 skb = child->ops->dequeue(child); 629 if (unlikely(!skb)) 630 goto done; 631 632 skb_found: 633 qdisc_bstats_update(sch, skb); 634 qdisc_qstats_backlog_dec(sch, skb); 635 sch->q.qlen--; 636 637 goto done; 638 } 639 640 done: 641 rcu_read_unlock(); 642 643 return skb; 644 } 645 646 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch) 647 { 648 WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n"); 649 650 return NULL; 651 } 652 653 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 654 { 655 struct taprio_sched *q = qdisc_priv(sch); 656 657 return q->dequeue(sch); 658 } 659 660 static bool should_restart_cycle(const struct sched_gate_list *oper, 661 const struct sched_entry *entry) 662 { 663 if (list_is_last(&entry->list, &oper->entries)) 664 return true; 665 666 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) 667 return true; 668 669 return false; 670 } 671 672 static bool should_change_schedules(const struct sched_gate_list *admin, 673 const struct sched_gate_list *oper, 674 ktime_t close_time) 675 { 676 ktime_t next_base_time, extension_time; 677 678 if (!admin) 679 return false; 680 681 next_base_time = sched_base_time(admin); 682 683 /* This is the simple case, the close_time would fall after 684 * the next schedule base_time. 685 */ 686 if (ktime_compare(next_base_time, close_time) <= 0) 687 return true; 688 689 /* This is the cycle_time_extension case, if the close_time 690 * plus the amount that can be extended would fall after the 691 * next schedule base_time, we can extend the current schedule 692 * for that amount. 693 */ 694 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); 695 696 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 697 * how precisely the extension should be made. So after 698 * conformance testing, this logic may change. 699 */ 700 if (ktime_compare(next_base_time, extension_time) <= 0) 701 return true; 702 703 return false; 704 } 705 706 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 707 { 708 struct taprio_sched *q = container_of(timer, struct taprio_sched, 709 advance_timer); 710 struct sched_gate_list *oper, *admin; 711 struct sched_entry *entry, *next; 712 struct Qdisc *sch = q->root; 713 ktime_t close_time; 714 715 spin_lock(&q->current_entry_lock); 716 entry = rcu_dereference_protected(q->current_entry, 717 lockdep_is_held(&q->current_entry_lock)); 718 oper = rcu_dereference_protected(q->oper_sched, 719 lockdep_is_held(&q->current_entry_lock)); 720 admin = rcu_dereference_protected(q->admin_sched, 721 lockdep_is_held(&q->current_entry_lock)); 722 723 if (!oper) 724 switch_schedules(q, &admin, &oper); 725 726 /* This can happen in two cases: 1. this is the very first run 727 * of this function (i.e. we weren't running any schedule 728 * previously); 2. The previous schedule just ended. The first 729 * entry of all schedules are pre-calculated during the 730 * schedule initialization. 731 */ 732 if (unlikely(!entry || entry->close_time == oper->base_time)) { 733 next = list_first_entry(&oper->entries, struct sched_entry, 734 list); 735 close_time = next->close_time; 736 goto first_run; 737 } 738 739 if (should_restart_cycle(oper, entry)) { 740 next = list_first_entry(&oper->entries, struct sched_entry, 741 list); 742 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, 743 oper->cycle_time); 744 } else { 745 next = list_next_entry(entry, list); 746 } 747 748 close_time = ktime_add_ns(entry->close_time, next->interval); 749 close_time = min_t(ktime_t, close_time, oper->cycle_close_time); 750 751 if (should_change_schedules(admin, oper, close_time)) { 752 /* Set things so the next time this runs, the new 753 * schedule runs. 754 */ 755 close_time = sched_base_time(admin); 756 switch_schedules(q, &admin, &oper); 757 } 758 759 next->close_time = close_time; 760 taprio_set_budget(q, next); 761 762 first_run: 763 rcu_assign_pointer(q->current_entry, next); 764 spin_unlock(&q->current_entry_lock); 765 766 hrtimer_set_expires(&q->advance_timer, close_time); 767 768 rcu_read_lock(); 769 __netif_schedule(sch); 770 rcu_read_unlock(); 771 772 return HRTIMER_RESTART; 773 } 774 775 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 776 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 777 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 778 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 779 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 780 }; 781 782 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 783 [TCA_TAPRIO_ATTR_PRIOMAP] = { 784 .len = sizeof(struct tc_mqprio_qopt) 785 }, 786 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 787 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 788 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 789 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 790 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 791 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 792 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 793 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 794 }; 795 796 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 797 struct sched_entry *entry, 798 struct netlink_ext_ack *extack) 799 { 800 int min_duration = length_to_duration(q, ETH_ZLEN); 801 u32 interval = 0; 802 803 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 804 entry->command = nla_get_u8( 805 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 806 807 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 808 entry->gate_mask = nla_get_u32( 809 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 810 811 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 812 interval = nla_get_u32( 813 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 814 815 /* The interval should allow at least the minimum ethernet 816 * frame to go out. 817 */ 818 if (interval < min_duration) { 819 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 820 return -EINVAL; 821 } 822 823 entry->interval = interval; 824 825 return 0; 826 } 827 828 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 829 struct sched_entry *entry, int index, 830 struct netlink_ext_ack *extack) 831 { 832 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 833 int err; 834 835 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 836 entry_policy, NULL); 837 if (err < 0) { 838 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 839 return -EINVAL; 840 } 841 842 entry->index = index; 843 844 return fill_sched_entry(q, tb, entry, extack); 845 } 846 847 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 848 struct sched_gate_list *sched, 849 struct netlink_ext_ack *extack) 850 { 851 struct nlattr *n; 852 int err, rem; 853 int i = 0; 854 855 if (!list) 856 return -EINVAL; 857 858 nla_for_each_nested(n, list, rem) { 859 struct sched_entry *entry; 860 861 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 862 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 863 continue; 864 } 865 866 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 867 if (!entry) { 868 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 869 return -ENOMEM; 870 } 871 872 err = parse_sched_entry(q, n, entry, i, extack); 873 if (err < 0) { 874 kfree(entry); 875 return err; 876 } 877 878 list_add_tail(&entry->list, &sched->entries); 879 i++; 880 } 881 882 sched->num_entries = i; 883 884 return i; 885 } 886 887 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 888 struct sched_gate_list *new, 889 struct netlink_ext_ack *extack) 890 { 891 int err = 0; 892 893 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 894 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 895 return -ENOTSUPP; 896 } 897 898 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 899 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 900 901 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 902 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 903 904 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 905 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 906 907 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 908 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 909 new, extack); 910 if (err < 0) 911 return err; 912 913 if (!new->cycle_time) { 914 struct sched_entry *entry; 915 ktime_t cycle = 0; 916 917 list_for_each_entry(entry, &new->entries, list) 918 cycle = ktime_add_ns(cycle, entry->interval); 919 920 if (!cycle) { 921 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 922 return -EINVAL; 923 } 924 925 new->cycle_time = cycle; 926 } 927 928 return 0; 929 } 930 931 static int taprio_parse_mqprio_opt(struct net_device *dev, 932 struct tc_mqprio_qopt *qopt, 933 struct netlink_ext_ack *extack, 934 u32 taprio_flags) 935 { 936 int i, j; 937 938 if (!qopt && !dev->num_tc) { 939 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 940 return -EINVAL; 941 } 942 943 /* If num_tc is already set, it means that the user already 944 * configured the mqprio part 945 */ 946 if (dev->num_tc) 947 return 0; 948 949 /* Verify num_tc is not out of max range */ 950 if (qopt->num_tc > TC_MAX_QUEUE) { 951 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); 952 return -EINVAL; 953 } 954 955 /* taprio imposes that traffic classes map 1:n to tx queues */ 956 if (qopt->num_tc > dev->num_tx_queues) { 957 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 958 return -EINVAL; 959 } 960 961 /* Verify priority mapping uses valid tcs */ 962 for (i = 0; i <= TC_BITMASK; i++) { 963 if (qopt->prio_tc_map[i] >= qopt->num_tc) { 964 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); 965 return -EINVAL; 966 } 967 } 968 969 for (i = 0; i < qopt->num_tc; i++) { 970 unsigned int last = qopt->offset[i] + qopt->count[i]; 971 972 /* Verify the queue count is in tx range being equal to the 973 * real_num_tx_queues indicates the last queue is in use. 974 */ 975 if (qopt->offset[i] >= dev->num_tx_queues || 976 !qopt->count[i] || 977 last > dev->real_num_tx_queues) { 978 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); 979 return -EINVAL; 980 } 981 982 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) 983 continue; 984 985 /* Verify that the offset and counts do not overlap */ 986 for (j = i + 1; j < qopt->num_tc; j++) { 987 if (last > qopt->offset[j]) { 988 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); 989 return -EINVAL; 990 } 991 } 992 } 993 994 return 0; 995 } 996 997 static int taprio_get_start_time(struct Qdisc *sch, 998 struct sched_gate_list *sched, 999 ktime_t *start) 1000 { 1001 struct taprio_sched *q = qdisc_priv(sch); 1002 ktime_t now, base, cycle; 1003 s64 n; 1004 1005 base = sched_base_time(sched); 1006 now = taprio_get_time(q); 1007 1008 if (ktime_after(base, now)) { 1009 *start = base; 1010 return 0; 1011 } 1012 1013 cycle = sched->cycle_time; 1014 1015 /* The qdisc is expected to have at least one sched_entry. Moreover, 1016 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1017 * something went really wrong. In that case, we should warn about this 1018 * inconsistent state and return error. 1019 */ 1020 if (WARN_ON(!cycle)) 1021 return -EFAULT; 1022 1023 /* Schedule the start time for the beginning of the next 1024 * cycle. 1025 */ 1026 n = div64_s64(ktime_sub_ns(now, base), cycle); 1027 *start = ktime_add_ns(base, (n + 1) * cycle); 1028 return 0; 1029 } 1030 1031 static void setup_first_close_time(struct taprio_sched *q, 1032 struct sched_gate_list *sched, ktime_t base) 1033 { 1034 struct sched_entry *first; 1035 ktime_t cycle; 1036 1037 first = list_first_entry(&sched->entries, 1038 struct sched_entry, list); 1039 1040 cycle = sched->cycle_time; 1041 1042 /* FIXME: find a better place to do this */ 1043 sched->cycle_close_time = ktime_add_ns(base, cycle); 1044 1045 first->close_time = ktime_add_ns(base, first->interval); 1046 taprio_set_budget(q, first); 1047 rcu_assign_pointer(q->current_entry, NULL); 1048 } 1049 1050 static void taprio_start_sched(struct Qdisc *sch, 1051 ktime_t start, struct sched_gate_list *new) 1052 { 1053 struct taprio_sched *q = qdisc_priv(sch); 1054 ktime_t expires; 1055 1056 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1057 return; 1058 1059 expires = hrtimer_get_expires(&q->advance_timer); 1060 if (expires == 0) 1061 expires = KTIME_MAX; 1062 1063 /* If the new schedule starts before the next expiration, we 1064 * reprogram it to the earliest one, so we change the admin 1065 * schedule to the operational one at the right time. 1066 */ 1067 start = min_t(ktime_t, start, expires); 1068 1069 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1070 } 1071 1072 static void taprio_set_picos_per_byte(struct net_device *dev, 1073 struct taprio_sched *q) 1074 { 1075 struct ethtool_link_ksettings ecmd; 1076 int speed = SPEED_10; 1077 int picos_per_byte; 1078 int err; 1079 1080 err = __ethtool_get_link_ksettings(dev, &ecmd); 1081 if (err < 0) 1082 goto skip; 1083 1084 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1085 speed = ecmd.base.speed; 1086 1087 skip: 1088 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1089 1090 atomic64_set(&q->picos_per_byte, picos_per_byte); 1091 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1092 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1093 ecmd.base.speed); 1094 } 1095 1096 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1097 void *ptr) 1098 { 1099 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1100 struct net_device *qdev; 1101 struct taprio_sched *q; 1102 bool found = false; 1103 1104 ASSERT_RTNL(); 1105 1106 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1107 return NOTIFY_DONE; 1108 1109 spin_lock(&taprio_list_lock); 1110 list_for_each_entry(q, &taprio_list, taprio_list) { 1111 qdev = qdisc_dev(q->root); 1112 if (qdev == dev) { 1113 found = true; 1114 break; 1115 } 1116 } 1117 spin_unlock(&taprio_list_lock); 1118 1119 if (found) 1120 taprio_set_picos_per_byte(dev, q); 1121 1122 return NOTIFY_DONE; 1123 } 1124 1125 static void setup_txtime(struct taprio_sched *q, 1126 struct sched_gate_list *sched, ktime_t base) 1127 { 1128 struct sched_entry *entry; 1129 u32 interval = 0; 1130 1131 list_for_each_entry(entry, &sched->entries, list) { 1132 entry->next_txtime = ktime_add_ns(base, interval); 1133 interval += entry->interval; 1134 } 1135 } 1136 1137 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1138 { 1139 struct __tc_taprio_qopt_offload *__offload; 1140 1141 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1142 GFP_KERNEL); 1143 if (!__offload) 1144 return NULL; 1145 1146 refcount_set(&__offload->users, 1); 1147 1148 return &__offload->offload; 1149 } 1150 1151 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1152 *offload) 1153 { 1154 struct __tc_taprio_qopt_offload *__offload; 1155 1156 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1157 offload); 1158 1159 refcount_inc(&__offload->users); 1160 1161 return offload; 1162 } 1163 EXPORT_SYMBOL_GPL(taprio_offload_get); 1164 1165 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1166 { 1167 struct __tc_taprio_qopt_offload *__offload; 1168 1169 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1170 offload); 1171 1172 if (!refcount_dec_and_test(&__offload->users)) 1173 return; 1174 1175 kfree(__offload); 1176 } 1177 EXPORT_SYMBOL_GPL(taprio_offload_free); 1178 1179 /* The function will only serve to keep the pointers to the "oper" and "admin" 1180 * schedules valid in relation to their base times, so when calling dump() the 1181 * users looks at the right schedules. 1182 * When using full offload, the admin configuration is promoted to oper at the 1183 * base_time in the PHC time domain. But because the system time is not 1184 * necessarily in sync with that, we can't just trigger a hrtimer to call 1185 * switch_schedules at the right hardware time. 1186 * At the moment we call this by hand right away from taprio, but in the future 1187 * it will be useful to create a mechanism for drivers to notify taprio of the 1188 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1189 * This is left as TODO. 1190 */ 1191 static void taprio_offload_config_changed(struct taprio_sched *q) 1192 { 1193 struct sched_gate_list *oper, *admin; 1194 1195 spin_lock(&q->current_entry_lock); 1196 1197 oper = rcu_dereference_protected(q->oper_sched, 1198 lockdep_is_held(&q->current_entry_lock)); 1199 admin = rcu_dereference_protected(q->admin_sched, 1200 lockdep_is_held(&q->current_entry_lock)); 1201 1202 switch_schedules(q, &admin, &oper); 1203 1204 spin_unlock(&q->current_entry_lock); 1205 } 1206 1207 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1208 { 1209 u32 i, queue_mask = 0; 1210 1211 for (i = 0; i < dev->num_tc; i++) { 1212 u32 offset, count; 1213 1214 if (!(tc_mask & BIT(i))) 1215 continue; 1216 1217 offset = dev->tc_to_txq[i].offset; 1218 count = dev->tc_to_txq[i].count; 1219 1220 queue_mask |= GENMASK(offset + count - 1, offset); 1221 } 1222 1223 return queue_mask; 1224 } 1225 1226 static void taprio_sched_to_offload(struct net_device *dev, 1227 struct sched_gate_list *sched, 1228 struct tc_taprio_qopt_offload *offload) 1229 { 1230 struct sched_entry *entry; 1231 int i = 0; 1232 1233 offload->base_time = sched->base_time; 1234 offload->cycle_time = sched->cycle_time; 1235 offload->cycle_time_extension = sched->cycle_time_extension; 1236 1237 list_for_each_entry(entry, &sched->entries, list) { 1238 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1239 1240 e->command = entry->command; 1241 e->interval = entry->interval; 1242 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask); 1243 1244 i++; 1245 } 1246 1247 offload->num_entries = i; 1248 } 1249 1250 static int taprio_enable_offload(struct net_device *dev, 1251 struct taprio_sched *q, 1252 struct sched_gate_list *sched, 1253 struct netlink_ext_ack *extack) 1254 { 1255 const struct net_device_ops *ops = dev->netdev_ops; 1256 struct tc_taprio_qopt_offload *offload; 1257 int err = 0; 1258 1259 if (!ops->ndo_setup_tc) { 1260 NL_SET_ERR_MSG(extack, 1261 "Device does not support taprio offload"); 1262 return -EOPNOTSUPP; 1263 } 1264 1265 offload = taprio_offload_alloc(sched->num_entries); 1266 if (!offload) { 1267 NL_SET_ERR_MSG(extack, 1268 "Not enough memory for enabling offload mode"); 1269 return -ENOMEM; 1270 } 1271 offload->enable = 1; 1272 taprio_sched_to_offload(dev, sched, offload); 1273 1274 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1275 if (err < 0) { 1276 NL_SET_ERR_MSG(extack, 1277 "Device failed to setup taprio offload"); 1278 goto done; 1279 } 1280 1281 done: 1282 taprio_offload_free(offload); 1283 1284 return err; 1285 } 1286 1287 static int taprio_disable_offload(struct net_device *dev, 1288 struct taprio_sched *q, 1289 struct netlink_ext_ack *extack) 1290 { 1291 const struct net_device_ops *ops = dev->netdev_ops; 1292 struct tc_taprio_qopt_offload *offload; 1293 int err; 1294 1295 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) 1296 return 0; 1297 1298 if (!ops->ndo_setup_tc) 1299 return -EOPNOTSUPP; 1300 1301 offload = taprio_offload_alloc(0); 1302 if (!offload) { 1303 NL_SET_ERR_MSG(extack, 1304 "Not enough memory to disable offload mode"); 1305 return -ENOMEM; 1306 } 1307 offload->enable = 0; 1308 1309 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1310 if (err < 0) { 1311 NL_SET_ERR_MSG(extack, 1312 "Device failed to disable offload"); 1313 goto out; 1314 } 1315 1316 out: 1317 taprio_offload_free(offload); 1318 1319 return err; 1320 } 1321 1322 /* If full offload is enabled, the only possible clockid is the net device's 1323 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1324 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1325 * in sync with the specified clockid via a user space daemon such as phc2sys. 1326 * For both software taprio and txtime-assist, the clockid is used for the 1327 * hrtimer that advances the schedule and hence mandatory. 1328 */ 1329 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1330 struct netlink_ext_ack *extack) 1331 { 1332 struct taprio_sched *q = qdisc_priv(sch); 1333 struct net_device *dev = qdisc_dev(sch); 1334 int err = -EINVAL; 1335 1336 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1337 const struct ethtool_ops *ops = dev->ethtool_ops; 1338 struct ethtool_ts_info info = { 1339 .cmd = ETHTOOL_GET_TS_INFO, 1340 .phc_index = -1, 1341 }; 1342 1343 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1344 NL_SET_ERR_MSG(extack, 1345 "The 'clockid' cannot be specified for full offload"); 1346 goto out; 1347 } 1348 1349 if (ops && ops->get_ts_info) 1350 err = ops->get_ts_info(dev, &info); 1351 1352 if (err || info.phc_index < 0) { 1353 NL_SET_ERR_MSG(extack, 1354 "Device does not have a PTP clock"); 1355 err = -ENOTSUPP; 1356 goto out; 1357 } 1358 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1359 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1360 enum tk_offsets tk_offset; 1361 1362 /* We only support static clockids and we don't allow 1363 * for it to be modified after the first init. 1364 */ 1365 if (clockid < 0 || 1366 (q->clockid != -1 && q->clockid != clockid)) { 1367 NL_SET_ERR_MSG(extack, 1368 "Changing the 'clockid' of a running schedule is not supported"); 1369 err = -ENOTSUPP; 1370 goto out; 1371 } 1372 1373 switch (clockid) { 1374 case CLOCK_REALTIME: 1375 tk_offset = TK_OFFS_REAL; 1376 break; 1377 case CLOCK_MONOTONIC: 1378 tk_offset = TK_OFFS_MAX; 1379 break; 1380 case CLOCK_BOOTTIME: 1381 tk_offset = TK_OFFS_BOOT; 1382 break; 1383 case CLOCK_TAI: 1384 tk_offset = TK_OFFS_TAI; 1385 break; 1386 default: 1387 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1388 err = -EINVAL; 1389 goto out; 1390 } 1391 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1392 WRITE_ONCE(q->tk_offset, tk_offset); 1393 1394 q->clockid = clockid; 1395 } else { 1396 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1397 goto out; 1398 } 1399 1400 /* Everything went ok, return success. */ 1401 err = 0; 1402 1403 out: 1404 return err; 1405 } 1406 1407 static int taprio_mqprio_cmp(const struct net_device *dev, 1408 const struct tc_mqprio_qopt *mqprio) 1409 { 1410 int i; 1411 1412 if (!mqprio || mqprio->num_tc != dev->num_tc) 1413 return -1; 1414 1415 for (i = 0; i < mqprio->num_tc; i++) 1416 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1417 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1418 return -1; 1419 1420 for (i = 0; i <= TC_BITMASK; i++) 1421 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1422 return -1; 1423 1424 return 0; 1425 } 1426 1427 /* The semantics of the 'flags' argument in relation to 'change()' 1428 * requests, are interpreted following two rules (which are applied in 1429 * this order): (1) an omitted 'flags' argument is interpreted as 1430 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1431 * changed. 1432 */ 1433 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1434 struct netlink_ext_ack *extack) 1435 { 1436 u32 new = 0; 1437 1438 if (attr) 1439 new = nla_get_u32(attr); 1440 1441 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1442 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1443 return -EOPNOTSUPP; 1444 } 1445 1446 if (!taprio_flags_valid(new)) { 1447 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1448 return -EINVAL; 1449 } 1450 1451 return new; 1452 } 1453 1454 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1455 struct netlink_ext_ack *extack) 1456 { 1457 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1458 struct sched_gate_list *oper, *admin, *new_admin; 1459 struct taprio_sched *q = qdisc_priv(sch); 1460 struct net_device *dev = qdisc_dev(sch); 1461 struct tc_mqprio_qopt *mqprio = NULL; 1462 unsigned long flags; 1463 ktime_t start; 1464 int i, err; 1465 1466 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1467 taprio_policy, extack); 1468 if (err < 0) 1469 return err; 1470 1471 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1472 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1473 1474 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1475 q->flags, extack); 1476 if (err < 0) 1477 return err; 1478 1479 q->flags = err; 1480 1481 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1482 if (err < 0) 1483 return err; 1484 1485 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1486 if (!new_admin) { 1487 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1488 return -ENOMEM; 1489 } 1490 INIT_LIST_HEAD(&new_admin->entries); 1491 1492 rcu_read_lock(); 1493 oper = rcu_dereference(q->oper_sched); 1494 admin = rcu_dereference(q->admin_sched); 1495 rcu_read_unlock(); 1496 1497 /* no changes - no new mqprio settings */ 1498 if (!taprio_mqprio_cmp(dev, mqprio)) 1499 mqprio = NULL; 1500 1501 if (mqprio && (oper || admin)) { 1502 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1503 err = -ENOTSUPP; 1504 goto free_sched; 1505 } 1506 1507 err = parse_taprio_schedule(q, tb, new_admin, extack); 1508 if (err < 0) 1509 goto free_sched; 1510 1511 if (new_admin->num_entries == 0) { 1512 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1513 err = -EINVAL; 1514 goto free_sched; 1515 } 1516 1517 err = taprio_parse_clockid(sch, tb, extack); 1518 if (err < 0) 1519 goto free_sched; 1520 1521 taprio_set_picos_per_byte(dev, q); 1522 1523 if (mqprio) { 1524 err = netdev_set_num_tc(dev, mqprio->num_tc); 1525 if (err) 1526 goto free_sched; 1527 for (i = 0; i < mqprio->num_tc; i++) 1528 netdev_set_tc_queue(dev, i, 1529 mqprio->count[i], 1530 mqprio->offset[i]); 1531 1532 /* Always use supplied priority mappings */ 1533 for (i = 0; i <= TC_BITMASK; i++) 1534 netdev_set_prio_tc_map(dev, i, 1535 mqprio->prio_tc_map[i]); 1536 } 1537 1538 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1539 err = taprio_enable_offload(dev, q, new_admin, extack); 1540 else 1541 err = taprio_disable_offload(dev, q, extack); 1542 if (err) 1543 goto free_sched; 1544 1545 /* Protects against enqueue()/dequeue() */ 1546 spin_lock_bh(qdisc_lock(sch)); 1547 1548 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1549 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1550 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1551 err = -EINVAL; 1552 goto unlock; 1553 } 1554 1555 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1556 } 1557 1558 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1559 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1560 !hrtimer_active(&q->advance_timer)) { 1561 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1562 q->advance_timer.function = advance_sched; 1563 } 1564 1565 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1566 q->dequeue = taprio_dequeue_offload; 1567 q->peek = taprio_peek_offload; 1568 } else { 1569 /* Be sure to always keep the function pointers 1570 * in a consistent state. 1571 */ 1572 q->dequeue = taprio_dequeue_soft; 1573 q->peek = taprio_peek_soft; 1574 } 1575 1576 err = taprio_get_start_time(sch, new_admin, &start); 1577 if (err < 0) { 1578 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1579 goto unlock; 1580 } 1581 1582 setup_txtime(q, new_admin, start); 1583 1584 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1585 if (!oper) { 1586 rcu_assign_pointer(q->oper_sched, new_admin); 1587 err = 0; 1588 new_admin = NULL; 1589 goto unlock; 1590 } 1591 1592 rcu_assign_pointer(q->admin_sched, new_admin); 1593 if (admin) 1594 call_rcu(&admin->rcu, taprio_free_sched_cb); 1595 } else { 1596 setup_first_close_time(q, new_admin, start); 1597 1598 /* Protects against advance_sched() */ 1599 spin_lock_irqsave(&q->current_entry_lock, flags); 1600 1601 taprio_start_sched(sch, start, new_admin); 1602 1603 rcu_assign_pointer(q->admin_sched, new_admin); 1604 if (admin) 1605 call_rcu(&admin->rcu, taprio_free_sched_cb); 1606 1607 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1608 1609 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1610 taprio_offload_config_changed(q); 1611 } 1612 1613 new_admin = NULL; 1614 err = 0; 1615 1616 unlock: 1617 spin_unlock_bh(qdisc_lock(sch)); 1618 1619 free_sched: 1620 if (new_admin) 1621 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1622 1623 return err; 1624 } 1625 1626 static void taprio_reset(struct Qdisc *sch) 1627 { 1628 struct taprio_sched *q = qdisc_priv(sch); 1629 struct net_device *dev = qdisc_dev(sch); 1630 int i; 1631 1632 hrtimer_cancel(&q->advance_timer); 1633 if (q->qdiscs) { 1634 for (i = 0; i < dev->num_tx_queues; i++) 1635 if (q->qdiscs[i]) 1636 qdisc_reset(q->qdiscs[i]); 1637 } 1638 sch->qstats.backlog = 0; 1639 sch->q.qlen = 0; 1640 } 1641 1642 static void taprio_destroy(struct Qdisc *sch) 1643 { 1644 struct taprio_sched *q = qdisc_priv(sch); 1645 struct net_device *dev = qdisc_dev(sch); 1646 unsigned int i; 1647 1648 spin_lock(&taprio_list_lock); 1649 list_del(&q->taprio_list); 1650 spin_unlock(&taprio_list_lock); 1651 1652 /* Note that taprio_reset() might not be called if an error 1653 * happens in qdisc_create(), after taprio_init() has been called. 1654 */ 1655 hrtimer_cancel(&q->advance_timer); 1656 1657 taprio_disable_offload(dev, q, NULL); 1658 1659 if (q->qdiscs) { 1660 for (i = 0; i < dev->num_tx_queues; i++) 1661 qdisc_put(q->qdiscs[i]); 1662 1663 kfree(q->qdiscs); 1664 } 1665 q->qdiscs = NULL; 1666 1667 netdev_reset_tc(dev); 1668 1669 if (q->oper_sched) 1670 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); 1671 1672 if (q->admin_sched) 1673 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); 1674 } 1675 1676 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 1677 struct netlink_ext_ack *extack) 1678 { 1679 struct taprio_sched *q = qdisc_priv(sch); 1680 struct net_device *dev = qdisc_dev(sch); 1681 int i; 1682 1683 spin_lock_init(&q->current_entry_lock); 1684 1685 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 1686 q->advance_timer.function = advance_sched; 1687 1688 q->dequeue = taprio_dequeue_soft; 1689 q->peek = taprio_peek_soft; 1690 1691 q->root = sch; 1692 1693 /* We only support static clockids. Use an invalid value as default 1694 * and get the valid one on taprio_change(). 1695 */ 1696 q->clockid = -1; 1697 q->flags = TAPRIO_FLAGS_INVALID; 1698 1699 spin_lock(&taprio_list_lock); 1700 list_add(&q->taprio_list, &taprio_list); 1701 spin_unlock(&taprio_list_lock); 1702 1703 if (sch->parent != TC_H_ROOT) 1704 return -EOPNOTSUPP; 1705 1706 if (!netif_is_multiqueue(dev)) 1707 return -EOPNOTSUPP; 1708 1709 /* pre-allocate qdisc, attachment can't fail */ 1710 q->qdiscs = kcalloc(dev->num_tx_queues, 1711 sizeof(q->qdiscs[0]), 1712 GFP_KERNEL); 1713 1714 if (!q->qdiscs) 1715 return -ENOMEM; 1716 1717 if (!opt) 1718 return -EINVAL; 1719 1720 for (i = 0; i < dev->num_tx_queues; i++) { 1721 struct netdev_queue *dev_queue; 1722 struct Qdisc *qdisc; 1723 1724 dev_queue = netdev_get_tx_queue(dev, i); 1725 qdisc = qdisc_create_dflt(dev_queue, 1726 &pfifo_qdisc_ops, 1727 TC_H_MAKE(TC_H_MAJ(sch->handle), 1728 TC_H_MIN(i + 1)), 1729 extack); 1730 if (!qdisc) 1731 return -ENOMEM; 1732 1733 if (i < dev->real_num_tx_queues) 1734 qdisc_hash_add(qdisc, false); 1735 1736 q->qdiscs[i] = qdisc; 1737 } 1738 1739 return taprio_change(sch, opt, extack); 1740 } 1741 1742 static void taprio_attach(struct Qdisc *sch) 1743 { 1744 struct taprio_sched *q = qdisc_priv(sch); 1745 struct net_device *dev = qdisc_dev(sch); 1746 unsigned int ntx; 1747 1748 /* Attach underlying qdisc */ 1749 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 1750 struct Qdisc *qdisc = q->qdiscs[ntx]; 1751 struct Qdisc *old; 1752 1753 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1754 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1755 old = dev_graft_qdisc(qdisc->dev_queue, qdisc); 1756 } else { 1757 old = dev_graft_qdisc(qdisc->dev_queue, sch); 1758 qdisc_refcount_inc(sch); 1759 } 1760 if (old) 1761 qdisc_put(old); 1762 } 1763 1764 /* access to the child qdiscs is not needed in offload mode */ 1765 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1766 kfree(q->qdiscs); 1767 q->qdiscs = NULL; 1768 } 1769 } 1770 1771 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 1772 unsigned long cl) 1773 { 1774 struct net_device *dev = qdisc_dev(sch); 1775 unsigned long ntx = cl - 1; 1776 1777 if (ntx >= dev->num_tx_queues) 1778 return NULL; 1779 1780 return netdev_get_tx_queue(dev, ntx); 1781 } 1782 1783 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 1784 struct Qdisc *new, struct Qdisc **old, 1785 struct netlink_ext_ack *extack) 1786 { 1787 struct taprio_sched *q = qdisc_priv(sch); 1788 struct net_device *dev = qdisc_dev(sch); 1789 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1790 1791 if (!dev_queue) 1792 return -EINVAL; 1793 1794 if (dev->flags & IFF_UP) 1795 dev_deactivate(dev); 1796 1797 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1798 *old = dev_graft_qdisc(dev_queue, new); 1799 } else { 1800 *old = q->qdiscs[cl - 1]; 1801 q->qdiscs[cl - 1] = new; 1802 } 1803 1804 if (new) 1805 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1806 1807 if (dev->flags & IFF_UP) 1808 dev_activate(dev); 1809 1810 return 0; 1811 } 1812 1813 static int dump_entry(struct sk_buff *msg, 1814 const struct sched_entry *entry) 1815 { 1816 struct nlattr *item; 1817 1818 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 1819 if (!item) 1820 return -ENOSPC; 1821 1822 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 1823 goto nla_put_failure; 1824 1825 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 1826 goto nla_put_failure; 1827 1828 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 1829 entry->gate_mask)) 1830 goto nla_put_failure; 1831 1832 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 1833 entry->interval)) 1834 goto nla_put_failure; 1835 1836 return nla_nest_end(msg, item); 1837 1838 nla_put_failure: 1839 nla_nest_cancel(msg, item); 1840 return -1; 1841 } 1842 1843 static int dump_schedule(struct sk_buff *msg, 1844 const struct sched_gate_list *root) 1845 { 1846 struct nlattr *entry_list; 1847 struct sched_entry *entry; 1848 1849 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 1850 root->base_time, TCA_TAPRIO_PAD)) 1851 return -1; 1852 1853 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 1854 root->cycle_time, TCA_TAPRIO_PAD)) 1855 return -1; 1856 1857 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 1858 root->cycle_time_extension, TCA_TAPRIO_PAD)) 1859 return -1; 1860 1861 entry_list = nla_nest_start_noflag(msg, 1862 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 1863 if (!entry_list) 1864 goto error_nest; 1865 1866 list_for_each_entry(entry, &root->entries, list) { 1867 if (dump_entry(msg, entry) < 0) 1868 goto error_nest; 1869 } 1870 1871 nla_nest_end(msg, entry_list); 1872 return 0; 1873 1874 error_nest: 1875 nla_nest_cancel(msg, entry_list); 1876 return -1; 1877 } 1878 1879 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 1880 { 1881 struct taprio_sched *q = qdisc_priv(sch); 1882 struct net_device *dev = qdisc_dev(sch); 1883 struct sched_gate_list *oper, *admin; 1884 struct tc_mqprio_qopt opt = { 0 }; 1885 struct nlattr *nest, *sched_nest; 1886 unsigned int i; 1887 1888 rcu_read_lock(); 1889 oper = rcu_dereference(q->oper_sched); 1890 admin = rcu_dereference(q->admin_sched); 1891 1892 opt.num_tc = netdev_get_num_tc(dev); 1893 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); 1894 1895 for (i = 0; i < netdev_get_num_tc(dev); i++) { 1896 opt.count[i] = dev->tc_to_txq[i].count; 1897 opt.offset[i] = dev->tc_to_txq[i].offset; 1898 } 1899 1900 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1901 if (!nest) 1902 goto start_error; 1903 1904 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 1905 goto options_error; 1906 1907 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 1908 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 1909 goto options_error; 1910 1911 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 1912 goto options_error; 1913 1914 if (q->txtime_delay && 1915 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 1916 goto options_error; 1917 1918 if (oper && dump_schedule(skb, oper)) 1919 goto options_error; 1920 1921 if (!admin) 1922 goto done; 1923 1924 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 1925 if (!sched_nest) 1926 goto options_error; 1927 1928 if (dump_schedule(skb, admin)) 1929 goto admin_error; 1930 1931 nla_nest_end(skb, sched_nest); 1932 1933 done: 1934 rcu_read_unlock(); 1935 1936 return nla_nest_end(skb, nest); 1937 1938 admin_error: 1939 nla_nest_cancel(skb, sched_nest); 1940 1941 options_error: 1942 nla_nest_cancel(skb, nest); 1943 1944 start_error: 1945 rcu_read_unlock(); 1946 return -ENOSPC; 1947 } 1948 1949 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 1950 { 1951 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1952 1953 if (!dev_queue) 1954 return NULL; 1955 1956 return dev_queue->qdisc_sleeping; 1957 } 1958 1959 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 1960 { 1961 unsigned int ntx = TC_H_MIN(classid); 1962 1963 if (!taprio_queue_get(sch, ntx)) 1964 return 0; 1965 return ntx; 1966 } 1967 1968 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 1969 struct sk_buff *skb, struct tcmsg *tcm) 1970 { 1971 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1972 1973 tcm->tcm_parent = TC_H_ROOT; 1974 tcm->tcm_handle |= TC_H_MIN(cl); 1975 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 1976 1977 return 0; 1978 } 1979 1980 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 1981 struct gnet_dump *d) 1982 __releases(d->lock) 1983 __acquires(d->lock) 1984 { 1985 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1986 1987 sch = dev_queue->qdisc_sleeping; 1988 if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 || 1989 qdisc_qstats_copy(d, sch) < 0) 1990 return -1; 1991 return 0; 1992 } 1993 1994 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1995 { 1996 struct net_device *dev = qdisc_dev(sch); 1997 unsigned long ntx; 1998 1999 if (arg->stop) 2000 return; 2001 2002 arg->count = arg->skip; 2003 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2004 if (arg->fn(sch, ntx + 1, arg) < 0) { 2005 arg->stop = 1; 2006 break; 2007 } 2008 arg->count++; 2009 } 2010 } 2011 2012 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2013 struct tcmsg *tcm) 2014 { 2015 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2016 } 2017 2018 static const struct Qdisc_class_ops taprio_class_ops = { 2019 .graft = taprio_graft, 2020 .leaf = taprio_leaf, 2021 .find = taprio_find, 2022 .walk = taprio_walk, 2023 .dump = taprio_dump_class, 2024 .dump_stats = taprio_dump_class_stats, 2025 .select_queue = taprio_select_queue, 2026 }; 2027 2028 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2029 .cl_ops = &taprio_class_ops, 2030 .id = "taprio", 2031 .priv_size = sizeof(struct taprio_sched), 2032 .init = taprio_init, 2033 .change = taprio_change, 2034 .destroy = taprio_destroy, 2035 .reset = taprio_reset, 2036 .attach = taprio_attach, 2037 .peek = taprio_peek, 2038 .dequeue = taprio_dequeue, 2039 .enqueue = taprio_enqueue, 2040 .dump = taprio_dump, 2041 .owner = THIS_MODULE, 2042 }; 2043 2044 static struct notifier_block taprio_device_notifier = { 2045 .notifier_call = taprio_dev_notifier, 2046 }; 2047 2048 static int __init taprio_module_init(void) 2049 { 2050 int err = register_netdevice_notifier(&taprio_device_notifier); 2051 2052 if (err) 2053 return err; 2054 2055 return register_qdisc(&taprio_qdisc_ops); 2056 } 2057 2058 static void __exit taprio_module_exit(void) 2059 { 2060 unregister_qdisc(&taprio_qdisc_ops); 2061 unregister_netdevice_notifier(&taprio_device_notifier); 2062 } 2063 2064 module_init(taprio_module_init); 2065 module_exit(taprio_module_exit); 2066 MODULE_LICENSE("GPL"); 2067