xref: /openbmc/linux/net/sched/sch_taprio.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26 
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29 
30 #define TAPRIO_ALL_GATES_OPEN -1
31 
32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
34 #define TAPRIO_FLAGS_INVALID U32_MAX
35 
36 struct sched_entry {
37 	struct list_head list;
38 
39 	/* The instant that this entry "closes" and the next one
40 	 * should open, the qdisc will make some effort so that no
41 	 * packet leaves after this time.
42 	 */
43 	ktime_t close_time;
44 	ktime_t next_txtime;
45 	atomic_t budget;
46 	int index;
47 	u32 gate_mask;
48 	u32 interval;
49 	u8 command;
50 };
51 
52 struct sched_gate_list {
53 	struct rcu_head rcu;
54 	struct list_head entries;
55 	size_t num_entries;
56 	ktime_t cycle_close_time;
57 	s64 cycle_time;
58 	s64 cycle_time_extension;
59 	s64 base_time;
60 };
61 
62 struct taprio_sched {
63 	struct Qdisc **qdiscs;
64 	struct Qdisc *root;
65 	u32 flags;
66 	enum tk_offsets tk_offset;
67 	int clockid;
68 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
69 				    * speeds it's sub-nanoseconds per byte
70 				    */
71 
72 	/* Protects the update side of the RCU protected current_entry */
73 	spinlock_t current_entry_lock;
74 	struct sched_entry __rcu *current_entry;
75 	struct sched_gate_list __rcu *oper_sched;
76 	struct sched_gate_list __rcu *admin_sched;
77 	struct hrtimer advance_timer;
78 	struct list_head taprio_list;
79 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
80 	struct sk_buff *(*peek)(struct Qdisc *sch);
81 	u32 txtime_delay;
82 };
83 
84 struct __tc_taprio_qopt_offload {
85 	refcount_t users;
86 	struct tc_taprio_qopt_offload offload;
87 };
88 
89 static ktime_t sched_base_time(const struct sched_gate_list *sched)
90 {
91 	if (!sched)
92 		return KTIME_MAX;
93 
94 	return ns_to_ktime(sched->base_time);
95 }
96 
97 static ktime_t taprio_get_time(struct taprio_sched *q)
98 {
99 	ktime_t mono = ktime_get();
100 
101 	switch (q->tk_offset) {
102 	case TK_OFFS_MAX:
103 		return mono;
104 	default:
105 		return ktime_mono_to_any(mono, q->tk_offset);
106 	}
107 
108 	return KTIME_MAX;
109 }
110 
111 static void taprio_free_sched_cb(struct rcu_head *head)
112 {
113 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
114 	struct sched_entry *entry, *n;
115 
116 	if (!sched)
117 		return;
118 
119 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
120 		list_del(&entry->list);
121 		kfree(entry);
122 	}
123 
124 	kfree(sched);
125 }
126 
127 static void switch_schedules(struct taprio_sched *q,
128 			     struct sched_gate_list **admin,
129 			     struct sched_gate_list **oper)
130 {
131 	rcu_assign_pointer(q->oper_sched, *admin);
132 	rcu_assign_pointer(q->admin_sched, NULL);
133 
134 	if (*oper)
135 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
136 
137 	*oper = *admin;
138 	*admin = NULL;
139 }
140 
141 /* Get how much time has been already elapsed in the current cycle. */
142 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
143 {
144 	ktime_t time_since_sched_start;
145 	s32 time_elapsed;
146 
147 	time_since_sched_start = ktime_sub(time, sched->base_time);
148 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
149 
150 	return time_elapsed;
151 }
152 
153 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
154 				     struct sched_gate_list *admin,
155 				     struct sched_entry *entry,
156 				     ktime_t intv_start)
157 {
158 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
159 	ktime_t intv_end, cycle_ext_end, cycle_end;
160 
161 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
162 	intv_end = ktime_add_ns(intv_start, entry->interval);
163 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
164 
165 	if (ktime_before(intv_end, cycle_end))
166 		return intv_end;
167 	else if (admin && admin != sched &&
168 		 ktime_after(admin->base_time, cycle_end) &&
169 		 ktime_before(admin->base_time, cycle_ext_end))
170 		return admin->base_time;
171 	else
172 		return cycle_end;
173 }
174 
175 static int length_to_duration(struct taprio_sched *q, int len)
176 {
177 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
178 }
179 
180 /* Returns the entry corresponding to next available interval. If
181  * validate_interval is set, it only validates whether the timestamp occurs
182  * when the gate corresponding to the skb's traffic class is open.
183  */
184 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
185 						  struct Qdisc *sch,
186 						  struct sched_gate_list *sched,
187 						  struct sched_gate_list *admin,
188 						  ktime_t time,
189 						  ktime_t *interval_start,
190 						  ktime_t *interval_end,
191 						  bool validate_interval)
192 {
193 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
194 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
195 	struct sched_entry *entry = NULL, *entry_found = NULL;
196 	struct taprio_sched *q = qdisc_priv(sch);
197 	struct net_device *dev = qdisc_dev(sch);
198 	bool entry_available = false;
199 	s32 cycle_elapsed;
200 	int tc, n;
201 
202 	tc = netdev_get_prio_tc_map(dev, skb->priority);
203 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
204 
205 	*interval_start = 0;
206 	*interval_end = 0;
207 
208 	if (!sched)
209 		return NULL;
210 
211 	cycle = sched->cycle_time;
212 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
213 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
214 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
215 
216 	list_for_each_entry(entry, &sched->entries, list) {
217 		curr_intv_start = curr_intv_end;
218 		curr_intv_end = get_interval_end_time(sched, admin, entry,
219 						      curr_intv_start);
220 
221 		if (ktime_after(curr_intv_start, cycle_end))
222 			break;
223 
224 		if (!(entry->gate_mask & BIT(tc)) ||
225 		    packet_transmit_time > entry->interval)
226 			continue;
227 
228 		txtime = entry->next_txtime;
229 
230 		if (ktime_before(txtime, time) || validate_interval) {
231 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
232 			if ((ktime_before(curr_intv_start, time) &&
233 			     ktime_before(transmit_end_time, curr_intv_end)) ||
234 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
235 				entry_found = entry;
236 				*interval_start = curr_intv_start;
237 				*interval_end = curr_intv_end;
238 				break;
239 			} else if (!entry_available && !validate_interval) {
240 				/* Here, we are just trying to find out the
241 				 * first available interval in the next cycle.
242 				 */
243 				entry_available = 1;
244 				entry_found = entry;
245 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
246 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
247 			}
248 		} else if (ktime_before(txtime, earliest_txtime) &&
249 			   !entry_available) {
250 			earliest_txtime = txtime;
251 			entry_found = entry;
252 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
253 			*interval_start = ktime_add(curr_intv_start, n * cycle);
254 			*interval_end = ktime_add(curr_intv_end, n * cycle);
255 		}
256 	}
257 
258 	return entry_found;
259 }
260 
261 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
262 {
263 	struct taprio_sched *q = qdisc_priv(sch);
264 	struct sched_gate_list *sched, *admin;
265 	ktime_t interval_start, interval_end;
266 	struct sched_entry *entry;
267 
268 	rcu_read_lock();
269 	sched = rcu_dereference(q->oper_sched);
270 	admin = rcu_dereference(q->admin_sched);
271 
272 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
273 				       &interval_start, &interval_end, true);
274 	rcu_read_unlock();
275 
276 	return entry;
277 }
278 
279 static bool taprio_flags_valid(u32 flags)
280 {
281 	/* Make sure no other flag bits are set. */
282 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
283 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
284 		return false;
285 	/* txtime-assist and full offload are mutually exclusive */
286 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
287 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
288 		return false;
289 	return true;
290 }
291 
292 /* This returns the tstamp value set by TCP in terms of the set clock. */
293 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
294 {
295 	unsigned int offset = skb_network_offset(skb);
296 	const struct ipv6hdr *ipv6h;
297 	const struct iphdr *iph;
298 	struct ipv6hdr _ipv6h;
299 
300 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
301 	if (!ipv6h)
302 		return 0;
303 
304 	if (ipv6h->version == 4) {
305 		iph = (struct iphdr *)ipv6h;
306 		offset += iph->ihl * 4;
307 
308 		/* special-case 6in4 tunnelling, as that is a common way to get
309 		 * v6 connectivity in the home
310 		 */
311 		if (iph->protocol == IPPROTO_IPV6) {
312 			ipv6h = skb_header_pointer(skb, offset,
313 						   sizeof(_ipv6h), &_ipv6h);
314 
315 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
316 				return 0;
317 		} else if (iph->protocol != IPPROTO_TCP) {
318 			return 0;
319 		}
320 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
321 		return 0;
322 	}
323 
324 	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
325 }
326 
327 /* There are a few scenarios where we will have to modify the txtime from
328  * what is read from next_txtime in sched_entry. They are:
329  * 1. If txtime is in the past,
330  *    a. The gate for the traffic class is currently open and packet can be
331  *       transmitted before it closes, schedule the packet right away.
332  *    b. If the gate corresponding to the traffic class is going to open later
333  *       in the cycle, set the txtime of packet to the interval start.
334  * 2. If txtime is in the future, there are packets corresponding to the
335  *    current traffic class waiting to be transmitted. So, the following
336  *    possibilities exist:
337  *    a. We can transmit the packet before the window containing the txtime
338  *       closes.
339  *    b. The window might close before the transmission can be completed
340  *       successfully. So, schedule the packet in the next open window.
341  */
342 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
343 {
344 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
345 	struct taprio_sched *q = qdisc_priv(sch);
346 	struct sched_gate_list *sched, *admin;
347 	ktime_t minimum_time, now, txtime;
348 	int len, packet_transmit_time;
349 	struct sched_entry *entry;
350 	bool sched_changed;
351 
352 	now = taprio_get_time(q);
353 	minimum_time = ktime_add_ns(now, q->txtime_delay);
354 
355 	tcp_tstamp = get_tcp_tstamp(q, skb);
356 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
357 
358 	rcu_read_lock();
359 	admin = rcu_dereference(q->admin_sched);
360 	sched = rcu_dereference(q->oper_sched);
361 	if (admin && ktime_after(minimum_time, admin->base_time))
362 		switch_schedules(q, &admin, &sched);
363 
364 	/* Until the schedule starts, all the queues are open */
365 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
366 		txtime = minimum_time;
367 		goto done;
368 	}
369 
370 	len = qdisc_pkt_len(skb);
371 	packet_transmit_time = length_to_duration(q, len);
372 
373 	do {
374 		sched_changed = 0;
375 
376 		entry = find_entry_to_transmit(skb, sch, sched, admin,
377 					       minimum_time,
378 					       &interval_start, &interval_end,
379 					       false);
380 		if (!entry) {
381 			txtime = 0;
382 			goto done;
383 		}
384 
385 		txtime = entry->next_txtime;
386 		txtime = max_t(ktime_t, txtime, minimum_time);
387 		txtime = max_t(ktime_t, txtime, interval_start);
388 
389 		if (admin && admin != sched &&
390 		    ktime_after(txtime, admin->base_time)) {
391 			sched = admin;
392 			sched_changed = 1;
393 			continue;
394 		}
395 
396 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
397 		minimum_time = transmit_end_time;
398 
399 		/* Update the txtime of current entry to the next time it's
400 		 * interval starts.
401 		 */
402 		if (ktime_after(transmit_end_time, interval_end))
403 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
404 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
405 
406 	entry->next_txtime = transmit_end_time;
407 
408 done:
409 	rcu_read_unlock();
410 	return txtime;
411 }
412 
413 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
414 			  struct sk_buff **to_free)
415 {
416 	struct taprio_sched *q = qdisc_priv(sch);
417 	struct Qdisc *child;
418 	int queue;
419 
420 	queue = skb_get_queue_mapping(skb);
421 
422 	child = q->qdiscs[queue];
423 	if (unlikely(!child))
424 		return qdisc_drop(skb, sch, to_free);
425 
426 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
427 		if (!is_valid_interval(skb, sch))
428 			return qdisc_drop(skb, sch, to_free);
429 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
430 		skb->tstamp = get_packet_txtime(skb, sch);
431 		if (!skb->tstamp)
432 			return qdisc_drop(skb, sch, to_free);
433 	}
434 
435 	qdisc_qstats_backlog_inc(sch, skb);
436 	sch->q.qlen++;
437 
438 	return qdisc_enqueue(skb, child, to_free);
439 }
440 
441 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
442 {
443 	struct taprio_sched *q = qdisc_priv(sch);
444 	struct net_device *dev = qdisc_dev(sch);
445 	struct sched_entry *entry;
446 	struct sk_buff *skb;
447 	u32 gate_mask;
448 	int i;
449 
450 	rcu_read_lock();
451 	entry = rcu_dereference(q->current_entry);
452 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
453 	rcu_read_unlock();
454 
455 	if (!gate_mask)
456 		return NULL;
457 
458 	for (i = 0; i < dev->num_tx_queues; i++) {
459 		struct Qdisc *child = q->qdiscs[i];
460 		int prio;
461 		u8 tc;
462 
463 		if (unlikely(!child))
464 			continue;
465 
466 		skb = child->ops->peek(child);
467 		if (!skb)
468 			continue;
469 
470 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
471 			return skb;
472 
473 		prio = skb->priority;
474 		tc = netdev_get_prio_tc_map(dev, prio);
475 
476 		if (!(gate_mask & BIT(tc)))
477 			continue;
478 
479 		return skb;
480 	}
481 
482 	return NULL;
483 }
484 
485 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
486 {
487 	struct taprio_sched *q = qdisc_priv(sch);
488 	struct net_device *dev = qdisc_dev(sch);
489 	struct sk_buff *skb;
490 	int i;
491 
492 	for (i = 0; i < dev->num_tx_queues; i++) {
493 		struct Qdisc *child = q->qdiscs[i];
494 
495 		if (unlikely(!child))
496 			continue;
497 
498 		skb = child->ops->peek(child);
499 		if (!skb)
500 			continue;
501 
502 		return skb;
503 	}
504 
505 	return NULL;
506 }
507 
508 static struct sk_buff *taprio_peek(struct Qdisc *sch)
509 {
510 	struct taprio_sched *q = qdisc_priv(sch);
511 
512 	return q->peek(sch);
513 }
514 
515 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
516 {
517 	atomic_set(&entry->budget,
518 		   div64_u64((u64)entry->interval * 1000,
519 			     atomic64_read(&q->picos_per_byte)));
520 }
521 
522 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
523 {
524 	struct taprio_sched *q = qdisc_priv(sch);
525 	struct net_device *dev = qdisc_dev(sch);
526 	struct sk_buff *skb = NULL;
527 	struct sched_entry *entry;
528 	u32 gate_mask;
529 	int i;
530 
531 	rcu_read_lock();
532 	entry = rcu_dereference(q->current_entry);
533 	/* if there's no entry, it means that the schedule didn't
534 	 * start yet, so force all gates to be open, this is in
535 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
536 	 * "AdminGateSates"
537 	 */
538 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
539 
540 	if (!gate_mask)
541 		goto done;
542 
543 	for (i = 0; i < dev->num_tx_queues; i++) {
544 		struct Qdisc *child = q->qdiscs[i];
545 		ktime_t guard;
546 		int prio;
547 		int len;
548 		u8 tc;
549 
550 		if (unlikely(!child))
551 			continue;
552 
553 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
554 			skb = child->ops->dequeue(child);
555 			if (!skb)
556 				continue;
557 			goto skb_found;
558 		}
559 
560 		skb = child->ops->peek(child);
561 		if (!skb)
562 			continue;
563 
564 		prio = skb->priority;
565 		tc = netdev_get_prio_tc_map(dev, prio);
566 
567 		if (!(gate_mask & BIT(tc))) {
568 			skb = NULL;
569 			continue;
570 		}
571 
572 		len = qdisc_pkt_len(skb);
573 		guard = ktime_add_ns(taprio_get_time(q),
574 				     length_to_duration(q, len));
575 
576 		/* In the case that there's no gate entry, there's no
577 		 * guard band ...
578 		 */
579 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
580 		    ktime_after(guard, entry->close_time)) {
581 			skb = NULL;
582 			continue;
583 		}
584 
585 		/* ... and no budget. */
586 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
587 		    atomic_sub_return(len, &entry->budget) < 0) {
588 			skb = NULL;
589 			continue;
590 		}
591 
592 		skb = child->ops->dequeue(child);
593 		if (unlikely(!skb))
594 			goto done;
595 
596 skb_found:
597 		qdisc_bstats_update(sch, skb);
598 		qdisc_qstats_backlog_dec(sch, skb);
599 		sch->q.qlen--;
600 
601 		goto done;
602 	}
603 
604 done:
605 	rcu_read_unlock();
606 
607 	return skb;
608 }
609 
610 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
611 {
612 	struct taprio_sched *q = qdisc_priv(sch);
613 	struct net_device *dev = qdisc_dev(sch);
614 	struct sk_buff *skb;
615 	int i;
616 
617 	for (i = 0; i < dev->num_tx_queues; i++) {
618 		struct Qdisc *child = q->qdiscs[i];
619 
620 		if (unlikely(!child))
621 			continue;
622 
623 		skb = child->ops->dequeue(child);
624 		if (unlikely(!skb))
625 			continue;
626 
627 		qdisc_bstats_update(sch, skb);
628 		qdisc_qstats_backlog_dec(sch, skb);
629 		sch->q.qlen--;
630 
631 		return skb;
632 	}
633 
634 	return NULL;
635 }
636 
637 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
638 {
639 	struct taprio_sched *q = qdisc_priv(sch);
640 
641 	return q->dequeue(sch);
642 }
643 
644 static bool should_restart_cycle(const struct sched_gate_list *oper,
645 				 const struct sched_entry *entry)
646 {
647 	if (list_is_last(&entry->list, &oper->entries))
648 		return true;
649 
650 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
651 		return true;
652 
653 	return false;
654 }
655 
656 static bool should_change_schedules(const struct sched_gate_list *admin,
657 				    const struct sched_gate_list *oper,
658 				    ktime_t close_time)
659 {
660 	ktime_t next_base_time, extension_time;
661 
662 	if (!admin)
663 		return false;
664 
665 	next_base_time = sched_base_time(admin);
666 
667 	/* This is the simple case, the close_time would fall after
668 	 * the next schedule base_time.
669 	 */
670 	if (ktime_compare(next_base_time, close_time) <= 0)
671 		return true;
672 
673 	/* This is the cycle_time_extension case, if the close_time
674 	 * plus the amount that can be extended would fall after the
675 	 * next schedule base_time, we can extend the current schedule
676 	 * for that amount.
677 	 */
678 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
679 
680 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
681 	 * how precisely the extension should be made. So after
682 	 * conformance testing, this logic may change.
683 	 */
684 	if (ktime_compare(next_base_time, extension_time) <= 0)
685 		return true;
686 
687 	return false;
688 }
689 
690 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
691 {
692 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
693 					      advance_timer);
694 	struct sched_gate_list *oper, *admin;
695 	struct sched_entry *entry, *next;
696 	struct Qdisc *sch = q->root;
697 	ktime_t close_time;
698 
699 	spin_lock(&q->current_entry_lock);
700 	entry = rcu_dereference_protected(q->current_entry,
701 					  lockdep_is_held(&q->current_entry_lock));
702 	oper = rcu_dereference_protected(q->oper_sched,
703 					 lockdep_is_held(&q->current_entry_lock));
704 	admin = rcu_dereference_protected(q->admin_sched,
705 					  lockdep_is_held(&q->current_entry_lock));
706 
707 	if (!oper)
708 		switch_schedules(q, &admin, &oper);
709 
710 	/* This can happen in two cases: 1. this is the very first run
711 	 * of this function (i.e. we weren't running any schedule
712 	 * previously); 2. The previous schedule just ended. The first
713 	 * entry of all schedules are pre-calculated during the
714 	 * schedule initialization.
715 	 */
716 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
717 		next = list_first_entry(&oper->entries, struct sched_entry,
718 					list);
719 		close_time = next->close_time;
720 		goto first_run;
721 	}
722 
723 	if (should_restart_cycle(oper, entry)) {
724 		next = list_first_entry(&oper->entries, struct sched_entry,
725 					list);
726 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
727 						      oper->cycle_time);
728 	} else {
729 		next = list_next_entry(entry, list);
730 	}
731 
732 	close_time = ktime_add_ns(entry->close_time, next->interval);
733 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
734 
735 	if (should_change_schedules(admin, oper, close_time)) {
736 		/* Set things so the next time this runs, the new
737 		 * schedule runs.
738 		 */
739 		close_time = sched_base_time(admin);
740 		switch_schedules(q, &admin, &oper);
741 	}
742 
743 	next->close_time = close_time;
744 	taprio_set_budget(q, next);
745 
746 first_run:
747 	rcu_assign_pointer(q->current_entry, next);
748 	spin_unlock(&q->current_entry_lock);
749 
750 	hrtimer_set_expires(&q->advance_timer, close_time);
751 
752 	rcu_read_lock();
753 	__netif_schedule(sch);
754 	rcu_read_unlock();
755 
756 	return HRTIMER_RESTART;
757 }
758 
759 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
760 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
761 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
762 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
763 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
764 };
765 
766 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
767 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
768 		.len = sizeof(struct tc_mqprio_qopt)
769 	},
770 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
771 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
772 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
773 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
774 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
775 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
776 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
777 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
778 };
779 
780 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
781 			    struct netlink_ext_ack *extack)
782 {
783 	u32 interval = 0;
784 
785 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
786 		entry->command = nla_get_u8(
787 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
788 
789 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
790 		entry->gate_mask = nla_get_u32(
791 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
792 
793 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
794 		interval = nla_get_u32(
795 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
796 
797 	if (interval == 0) {
798 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
799 		return -EINVAL;
800 	}
801 
802 	entry->interval = interval;
803 
804 	return 0;
805 }
806 
807 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
808 			     int index, struct netlink_ext_ack *extack)
809 {
810 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
811 	int err;
812 
813 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
814 					  entry_policy, NULL);
815 	if (err < 0) {
816 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
817 		return -EINVAL;
818 	}
819 
820 	entry->index = index;
821 
822 	return fill_sched_entry(tb, entry, extack);
823 }
824 
825 static int parse_sched_list(struct nlattr *list,
826 			    struct sched_gate_list *sched,
827 			    struct netlink_ext_ack *extack)
828 {
829 	struct nlattr *n;
830 	int err, rem;
831 	int i = 0;
832 
833 	if (!list)
834 		return -EINVAL;
835 
836 	nla_for_each_nested(n, list, rem) {
837 		struct sched_entry *entry;
838 
839 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
840 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
841 			continue;
842 		}
843 
844 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
845 		if (!entry) {
846 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
847 			return -ENOMEM;
848 		}
849 
850 		err = parse_sched_entry(n, entry, i, extack);
851 		if (err < 0) {
852 			kfree(entry);
853 			return err;
854 		}
855 
856 		list_add_tail(&entry->list, &sched->entries);
857 		i++;
858 	}
859 
860 	sched->num_entries = i;
861 
862 	return i;
863 }
864 
865 static int parse_taprio_schedule(struct nlattr **tb,
866 				 struct sched_gate_list *new,
867 				 struct netlink_ext_ack *extack)
868 {
869 	int err = 0;
870 
871 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
872 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
873 		return -ENOTSUPP;
874 	}
875 
876 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
877 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
878 
879 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
880 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
881 
882 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
883 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
884 
885 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
886 		err = parse_sched_list(
887 			tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
888 	if (err < 0)
889 		return err;
890 
891 	if (!new->cycle_time) {
892 		struct sched_entry *entry;
893 		ktime_t cycle = 0;
894 
895 		list_for_each_entry(entry, &new->entries, list)
896 			cycle = ktime_add_ns(cycle, entry->interval);
897 		new->cycle_time = cycle;
898 	}
899 
900 	return 0;
901 }
902 
903 static int taprio_parse_mqprio_opt(struct net_device *dev,
904 				   struct tc_mqprio_qopt *qopt,
905 				   struct netlink_ext_ack *extack,
906 				   u32 taprio_flags)
907 {
908 	int i, j;
909 
910 	if (!qopt && !dev->num_tc) {
911 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
912 		return -EINVAL;
913 	}
914 
915 	/* If num_tc is already set, it means that the user already
916 	 * configured the mqprio part
917 	 */
918 	if (dev->num_tc)
919 		return 0;
920 
921 	/* Verify num_tc is not out of max range */
922 	if (qopt->num_tc > TC_MAX_QUEUE) {
923 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
924 		return -EINVAL;
925 	}
926 
927 	/* taprio imposes that traffic classes map 1:n to tx queues */
928 	if (qopt->num_tc > dev->num_tx_queues) {
929 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
930 		return -EINVAL;
931 	}
932 
933 	/* Verify priority mapping uses valid tcs */
934 	for (i = 0; i <= TC_BITMASK; i++) {
935 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
936 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
937 			return -EINVAL;
938 		}
939 	}
940 
941 	for (i = 0; i < qopt->num_tc; i++) {
942 		unsigned int last = qopt->offset[i] + qopt->count[i];
943 
944 		/* Verify the queue count is in tx range being equal to the
945 		 * real_num_tx_queues indicates the last queue is in use.
946 		 */
947 		if (qopt->offset[i] >= dev->num_tx_queues ||
948 		    !qopt->count[i] ||
949 		    last > dev->real_num_tx_queues) {
950 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
951 			return -EINVAL;
952 		}
953 
954 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
955 			continue;
956 
957 		/* Verify that the offset and counts do not overlap */
958 		for (j = i + 1; j < qopt->num_tc; j++) {
959 			if (last > qopt->offset[j]) {
960 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
961 				return -EINVAL;
962 			}
963 		}
964 	}
965 
966 	return 0;
967 }
968 
969 static int taprio_get_start_time(struct Qdisc *sch,
970 				 struct sched_gate_list *sched,
971 				 ktime_t *start)
972 {
973 	struct taprio_sched *q = qdisc_priv(sch);
974 	ktime_t now, base, cycle;
975 	s64 n;
976 
977 	base = sched_base_time(sched);
978 	now = taprio_get_time(q);
979 
980 	if (ktime_after(base, now)) {
981 		*start = base;
982 		return 0;
983 	}
984 
985 	cycle = sched->cycle_time;
986 
987 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
988 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
989 	 * something went really wrong. In that case, we should warn about this
990 	 * inconsistent state and return error.
991 	 */
992 	if (WARN_ON(!cycle))
993 		return -EFAULT;
994 
995 	/* Schedule the start time for the beginning of the next
996 	 * cycle.
997 	 */
998 	n = div64_s64(ktime_sub_ns(now, base), cycle);
999 	*start = ktime_add_ns(base, (n + 1) * cycle);
1000 	return 0;
1001 }
1002 
1003 static void setup_first_close_time(struct taprio_sched *q,
1004 				   struct sched_gate_list *sched, ktime_t base)
1005 {
1006 	struct sched_entry *first;
1007 	ktime_t cycle;
1008 
1009 	first = list_first_entry(&sched->entries,
1010 				 struct sched_entry, list);
1011 
1012 	cycle = sched->cycle_time;
1013 
1014 	/* FIXME: find a better place to do this */
1015 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1016 
1017 	first->close_time = ktime_add_ns(base, first->interval);
1018 	taprio_set_budget(q, first);
1019 	rcu_assign_pointer(q->current_entry, NULL);
1020 }
1021 
1022 static void taprio_start_sched(struct Qdisc *sch,
1023 			       ktime_t start, struct sched_gate_list *new)
1024 {
1025 	struct taprio_sched *q = qdisc_priv(sch);
1026 	ktime_t expires;
1027 
1028 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1029 		return;
1030 
1031 	expires = hrtimer_get_expires(&q->advance_timer);
1032 	if (expires == 0)
1033 		expires = KTIME_MAX;
1034 
1035 	/* If the new schedule starts before the next expiration, we
1036 	 * reprogram it to the earliest one, so we change the admin
1037 	 * schedule to the operational one at the right time.
1038 	 */
1039 	start = min_t(ktime_t, start, expires);
1040 
1041 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1042 }
1043 
1044 static void taprio_set_picos_per_byte(struct net_device *dev,
1045 				      struct taprio_sched *q)
1046 {
1047 	struct ethtool_link_ksettings ecmd;
1048 	int speed = SPEED_10;
1049 	int picos_per_byte;
1050 	int err;
1051 
1052 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1053 	if (err < 0)
1054 		goto skip;
1055 
1056 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1057 		speed = ecmd.base.speed;
1058 
1059 skip:
1060 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1061 
1062 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1063 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1064 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1065 		   ecmd.base.speed);
1066 }
1067 
1068 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1069 			       void *ptr)
1070 {
1071 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1072 	struct net_device *qdev;
1073 	struct taprio_sched *q;
1074 	bool found = false;
1075 
1076 	ASSERT_RTNL();
1077 
1078 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1079 		return NOTIFY_DONE;
1080 
1081 	spin_lock(&taprio_list_lock);
1082 	list_for_each_entry(q, &taprio_list, taprio_list) {
1083 		qdev = qdisc_dev(q->root);
1084 		if (qdev == dev) {
1085 			found = true;
1086 			break;
1087 		}
1088 	}
1089 	spin_unlock(&taprio_list_lock);
1090 
1091 	if (found)
1092 		taprio_set_picos_per_byte(dev, q);
1093 
1094 	return NOTIFY_DONE;
1095 }
1096 
1097 static void setup_txtime(struct taprio_sched *q,
1098 			 struct sched_gate_list *sched, ktime_t base)
1099 {
1100 	struct sched_entry *entry;
1101 	u32 interval = 0;
1102 
1103 	list_for_each_entry(entry, &sched->entries, list) {
1104 		entry->next_txtime = ktime_add_ns(base, interval);
1105 		interval += entry->interval;
1106 	}
1107 }
1108 
1109 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1110 {
1111 	size_t size = sizeof(struct tc_taprio_sched_entry) * num_entries +
1112 		      sizeof(struct __tc_taprio_qopt_offload);
1113 	struct __tc_taprio_qopt_offload *__offload;
1114 
1115 	__offload = kzalloc(size, GFP_KERNEL);
1116 	if (!__offload)
1117 		return NULL;
1118 
1119 	refcount_set(&__offload->users, 1);
1120 
1121 	return &__offload->offload;
1122 }
1123 
1124 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1125 						  *offload)
1126 {
1127 	struct __tc_taprio_qopt_offload *__offload;
1128 
1129 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1130 				 offload);
1131 
1132 	refcount_inc(&__offload->users);
1133 
1134 	return offload;
1135 }
1136 EXPORT_SYMBOL_GPL(taprio_offload_get);
1137 
1138 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1139 {
1140 	struct __tc_taprio_qopt_offload *__offload;
1141 
1142 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1143 				 offload);
1144 
1145 	if (!refcount_dec_and_test(&__offload->users))
1146 		return;
1147 
1148 	kfree(__offload);
1149 }
1150 EXPORT_SYMBOL_GPL(taprio_offload_free);
1151 
1152 /* The function will only serve to keep the pointers to the "oper" and "admin"
1153  * schedules valid in relation to their base times, so when calling dump() the
1154  * users looks at the right schedules.
1155  * When using full offload, the admin configuration is promoted to oper at the
1156  * base_time in the PHC time domain.  But because the system time is not
1157  * necessarily in sync with that, we can't just trigger a hrtimer to call
1158  * switch_schedules at the right hardware time.
1159  * At the moment we call this by hand right away from taprio, but in the future
1160  * it will be useful to create a mechanism for drivers to notify taprio of the
1161  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1162  * This is left as TODO.
1163  */
1164 static void taprio_offload_config_changed(struct taprio_sched *q)
1165 {
1166 	struct sched_gate_list *oper, *admin;
1167 
1168 	spin_lock(&q->current_entry_lock);
1169 
1170 	oper = rcu_dereference_protected(q->oper_sched,
1171 					 lockdep_is_held(&q->current_entry_lock));
1172 	admin = rcu_dereference_protected(q->admin_sched,
1173 					  lockdep_is_held(&q->current_entry_lock));
1174 
1175 	switch_schedules(q, &admin, &oper);
1176 
1177 	spin_unlock(&q->current_entry_lock);
1178 }
1179 
1180 static void taprio_sched_to_offload(struct taprio_sched *q,
1181 				    struct sched_gate_list *sched,
1182 				    const struct tc_mqprio_qopt *mqprio,
1183 				    struct tc_taprio_qopt_offload *offload)
1184 {
1185 	struct sched_entry *entry;
1186 	int i = 0;
1187 
1188 	offload->base_time = sched->base_time;
1189 	offload->cycle_time = sched->cycle_time;
1190 	offload->cycle_time_extension = sched->cycle_time_extension;
1191 
1192 	list_for_each_entry(entry, &sched->entries, list) {
1193 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1194 
1195 		e->command = entry->command;
1196 		e->interval = entry->interval;
1197 		e->gate_mask = entry->gate_mask;
1198 		i++;
1199 	}
1200 
1201 	offload->num_entries = i;
1202 }
1203 
1204 static int taprio_enable_offload(struct net_device *dev,
1205 				 struct tc_mqprio_qopt *mqprio,
1206 				 struct taprio_sched *q,
1207 				 struct sched_gate_list *sched,
1208 				 struct netlink_ext_ack *extack)
1209 {
1210 	const struct net_device_ops *ops = dev->netdev_ops;
1211 	struct tc_taprio_qopt_offload *offload;
1212 	int err = 0;
1213 
1214 	if (!ops->ndo_setup_tc) {
1215 		NL_SET_ERR_MSG(extack,
1216 			       "Device does not support taprio offload");
1217 		return -EOPNOTSUPP;
1218 	}
1219 
1220 	offload = taprio_offload_alloc(sched->num_entries);
1221 	if (!offload) {
1222 		NL_SET_ERR_MSG(extack,
1223 			       "Not enough memory for enabling offload mode");
1224 		return -ENOMEM;
1225 	}
1226 	offload->enable = 1;
1227 	taprio_sched_to_offload(q, sched, mqprio, offload);
1228 
1229 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1230 	if (err < 0) {
1231 		NL_SET_ERR_MSG(extack,
1232 			       "Device failed to setup taprio offload");
1233 		goto done;
1234 	}
1235 
1236 done:
1237 	taprio_offload_free(offload);
1238 
1239 	return err;
1240 }
1241 
1242 static int taprio_disable_offload(struct net_device *dev,
1243 				  struct taprio_sched *q,
1244 				  struct netlink_ext_ack *extack)
1245 {
1246 	const struct net_device_ops *ops = dev->netdev_ops;
1247 	struct tc_taprio_qopt_offload *offload;
1248 	int err;
1249 
1250 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1251 		return 0;
1252 
1253 	if (!ops->ndo_setup_tc)
1254 		return -EOPNOTSUPP;
1255 
1256 	offload = taprio_offload_alloc(0);
1257 	if (!offload) {
1258 		NL_SET_ERR_MSG(extack,
1259 			       "Not enough memory to disable offload mode");
1260 		return -ENOMEM;
1261 	}
1262 	offload->enable = 0;
1263 
1264 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1265 	if (err < 0) {
1266 		NL_SET_ERR_MSG(extack,
1267 			       "Device failed to disable offload");
1268 		goto out;
1269 	}
1270 
1271 out:
1272 	taprio_offload_free(offload);
1273 
1274 	return err;
1275 }
1276 
1277 /* If full offload is enabled, the only possible clockid is the net device's
1278  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1279  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1280  * in sync with the specified clockid via a user space daemon such as phc2sys.
1281  * For both software taprio and txtime-assist, the clockid is used for the
1282  * hrtimer that advances the schedule and hence mandatory.
1283  */
1284 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1285 				struct netlink_ext_ack *extack)
1286 {
1287 	struct taprio_sched *q = qdisc_priv(sch);
1288 	struct net_device *dev = qdisc_dev(sch);
1289 	int err = -EINVAL;
1290 
1291 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1292 		const struct ethtool_ops *ops = dev->ethtool_ops;
1293 		struct ethtool_ts_info info = {
1294 			.cmd = ETHTOOL_GET_TS_INFO,
1295 			.phc_index = -1,
1296 		};
1297 
1298 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1299 			NL_SET_ERR_MSG(extack,
1300 				       "The 'clockid' cannot be specified for full offload");
1301 			goto out;
1302 		}
1303 
1304 		if (ops && ops->get_ts_info)
1305 			err = ops->get_ts_info(dev, &info);
1306 
1307 		if (err || info.phc_index < 0) {
1308 			NL_SET_ERR_MSG(extack,
1309 				       "Device does not have a PTP clock");
1310 			err = -ENOTSUPP;
1311 			goto out;
1312 		}
1313 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1314 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1315 
1316 		/* We only support static clockids and we don't allow
1317 		 * for it to be modified after the first init.
1318 		 */
1319 		if (clockid < 0 ||
1320 		    (q->clockid != -1 && q->clockid != clockid)) {
1321 			NL_SET_ERR_MSG(extack,
1322 				       "Changing the 'clockid' of a running schedule is not supported");
1323 			err = -ENOTSUPP;
1324 			goto out;
1325 		}
1326 
1327 		switch (clockid) {
1328 		case CLOCK_REALTIME:
1329 			q->tk_offset = TK_OFFS_REAL;
1330 			break;
1331 		case CLOCK_MONOTONIC:
1332 			q->tk_offset = TK_OFFS_MAX;
1333 			break;
1334 		case CLOCK_BOOTTIME:
1335 			q->tk_offset = TK_OFFS_BOOT;
1336 			break;
1337 		case CLOCK_TAI:
1338 			q->tk_offset = TK_OFFS_TAI;
1339 			break;
1340 		default:
1341 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1342 			err = -EINVAL;
1343 			goto out;
1344 		}
1345 
1346 		q->clockid = clockid;
1347 	} else {
1348 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1349 		goto out;
1350 	}
1351 
1352 	/* Everything went ok, return success. */
1353 	err = 0;
1354 
1355 out:
1356 	return err;
1357 }
1358 
1359 static int taprio_mqprio_cmp(const struct net_device *dev,
1360 			     const struct tc_mqprio_qopt *mqprio)
1361 {
1362 	int i;
1363 
1364 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1365 		return -1;
1366 
1367 	for (i = 0; i < mqprio->num_tc; i++)
1368 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1369 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1370 			return -1;
1371 
1372 	for (i = 0; i <= TC_BITMASK; i++)
1373 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1374 			return -1;
1375 
1376 	return 0;
1377 }
1378 
1379 /* The semantics of the 'flags' argument in relation to 'change()'
1380  * requests, are interpreted following two rules (which are applied in
1381  * this order): (1) an omitted 'flags' argument is interpreted as
1382  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1383  * changed.
1384  */
1385 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1386 			    struct netlink_ext_ack *extack)
1387 {
1388 	u32 new = 0;
1389 
1390 	if (attr)
1391 		new = nla_get_u32(attr);
1392 
1393 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1394 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1395 		return -EOPNOTSUPP;
1396 	}
1397 
1398 	if (!taprio_flags_valid(new)) {
1399 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1400 		return -EINVAL;
1401 	}
1402 
1403 	return new;
1404 }
1405 
1406 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1407 			 struct netlink_ext_ack *extack)
1408 {
1409 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1410 	struct sched_gate_list *oper, *admin, *new_admin;
1411 	struct taprio_sched *q = qdisc_priv(sch);
1412 	struct net_device *dev = qdisc_dev(sch);
1413 	struct tc_mqprio_qopt *mqprio = NULL;
1414 	unsigned long flags;
1415 	ktime_t start;
1416 	int i, err;
1417 
1418 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1419 					  taprio_policy, extack);
1420 	if (err < 0)
1421 		return err;
1422 
1423 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1424 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1425 
1426 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1427 			       q->flags, extack);
1428 	if (err < 0)
1429 		return err;
1430 
1431 	q->flags = err;
1432 
1433 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1434 	if (err < 0)
1435 		return err;
1436 
1437 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1438 	if (!new_admin) {
1439 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1440 		return -ENOMEM;
1441 	}
1442 	INIT_LIST_HEAD(&new_admin->entries);
1443 
1444 	rcu_read_lock();
1445 	oper = rcu_dereference(q->oper_sched);
1446 	admin = rcu_dereference(q->admin_sched);
1447 	rcu_read_unlock();
1448 
1449 	/* no changes - no new mqprio settings */
1450 	if (!taprio_mqprio_cmp(dev, mqprio))
1451 		mqprio = NULL;
1452 
1453 	if (mqprio && (oper || admin)) {
1454 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1455 		err = -ENOTSUPP;
1456 		goto free_sched;
1457 	}
1458 
1459 	err = parse_taprio_schedule(tb, new_admin, extack);
1460 	if (err < 0)
1461 		goto free_sched;
1462 
1463 	if (new_admin->num_entries == 0) {
1464 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1465 		err = -EINVAL;
1466 		goto free_sched;
1467 	}
1468 
1469 	err = taprio_parse_clockid(sch, tb, extack);
1470 	if (err < 0)
1471 		goto free_sched;
1472 
1473 	taprio_set_picos_per_byte(dev, q);
1474 
1475 	if (mqprio) {
1476 		netdev_set_num_tc(dev, mqprio->num_tc);
1477 		for (i = 0; i < mqprio->num_tc; i++)
1478 			netdev_set_tc_queue(dev, i,
1479 					    mqprio->count[i],
1480 					    mqprio->offset[i]);
1481 
1482 		/* Always use supplied priority mappings */
1483 		for (i = 0; i <= TC_BITMASK; i++)
1484 			netdev_set_prio_tc_map(dev, i,
1485 					       mqprio->prio_tc_map[i]);
1486 	}
1487 
1488 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1489 		err = taprio_enable_offload(dev, mqprio, q, new_admin, extack);
1490 	else
1491 		err = taprio_disable_offload(dev, q, extack);
1492 	if (err)
1493 		goto free_sched;
1494 
1495 	/* Protects against enqueue()/dequeue() */
1496 	spin_lock_bh(qdisc_lock(sch));
1497 
1498 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1499 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1500 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1501 			err = -EINVAL;
1502 			goto unlock;
1503 		}
1504 
1505 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1506 	}
1507 
1508 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1509 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1510 	    !hrtimer_active(&q->advance_timer)) {
1511 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1512 		q->advance_timer.function = advance_sched;
1513 	}
1514 
1515 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1516 		q->dequeue = taprio_dequeue_offload;
1517 		q->peek = taprio_peek_offload;
1518 	} else {
1519 		/* Be sure to always keep the function pointers
1520 		 * in a consistent state.
1521 		 */
1522 		q->dequeue = taprio_dequeue_soft;
1523 		q->peek = taprio_peek_soft;
1524 	}
1525 
1526 	err = taprio_get_start_time(sch, new_admin, &start);
1527 	if (err < 0) {
1528 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1529 		goto unlock;
1530 	}
1531 
1532 	setup_txtime(q, new_admin, start);
1533 
1534 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1535 		if (!oper) {
1536 			rcu_assign_pointer(q->oper_sched, new_admin);
1537 			err = 0;
1538 			new_admin = NULL;
1539 			goto unlock;
1540 		}
1541 
1542 		rcu_assign_pointer(q->admin_sched, new_admin);
1543 		if (admin)
1544 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1545 	} else {
1546 		setup_first_close_time(q, new_admin, start);
1547 
1548 		/* Protects against advance_sched() */
1549 		spin_lock_irqsave(&q->current_entry_lock, flags);
1550 
1551 		taprio_start_sched(sch, start, new_admin);
1552 
1553 		rcu_assign_pointer(q->admin_sched, new_admin);
1554 		if (admin)
1555 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1556 
1557 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1558 
1559 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1560 			taprio_offload_config_changed(q);
1561 	}
1562 
1563 	new_admin = NULL;
1564 	err = 0;
1565 
1566 unlock:
1567 	spin_unlock_bh(qdisc_lock(sch));
1568 
1569 free_sched:
1570 	if (new_admin)
1571 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1572 
1573 	return err;
1574 }
1575 
1576 static void taprio_destroy(struct Qdisc *sch)
1577 {
1578 	struct taprio_sched *q = qdisc_priv(sch);
1579 	struct net_device *dev = qdisc_dev(sch);
1580 	unsigned int i;
1581 
1582 	spin_lock(&taprio_list_lock);
1583 	list_del(&q->taprio_list);
1584 	spin_unlock(&taprio_list_lock);
1585 
1586 	hrtimer_cancel(&q->advance_timer);
1587 
1588 	taprio_disable_offload(dev, q, NULL);
1589 
1590 	if (q->qdiscs) {
1591 		for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1592 			qdisc_put(q->qdiscs[i]);
1593 
1594 		kfree(q->qdiscs);
1595 	}
1596 	q->qdiscs = NULL;
1597 
1598 	netdev_reset_tc(dev);
1599 
1600 	if (q->oper_sched)
1601 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1602 
1603 	if (q->admin_sched)
1604 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1605 }
1606 
1607 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1608 		       struct netlink_ext_ack *extack)
1609 {
1610 	struct taprio_sched *q = qdisc_priv(sch);
1611 	struct net_device *dev = qdisc_dev(sch);
1612 	int i;
1613 
1614 	spin_lock_init(&q->current_entry_lock);
1615 
1616 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1617 	q->advance_timer.function = advance_sched;
1618 
1619 	q->dequeue = taprio_dequeue_soft;
1620 	q->peek = taprio_peek_soft;
1621 
1622 	q->root = sch;
1623 
1624 	/* We only support static clockids. Use an invalid value as default
1625 	 * and get the valid one on taprio_change().
1626 	 */
1627 	q->clockid = -1;
1628 	q->flags = TAPRIO_FLAGS_INVALID;
1629 
1630 	spin_lock(&taprio_list_lock);
1631 	list_add(&q->taprio_list, &taprio_list);
1632 	spin_unlock(&taprio_list_lock);
1633 
1634 	if (sch->parent != TC_H_ROOT)
1635 		return -EOPNOTSUPP;
1636 
1637 	if (!netif_is_multiqueue(dev))
1638 		return -EOPNOTSUPP;
1639 
1640 	/* pre-allocate qdisc, attachment can't fail */
1641 	q->qdiscs = kcalloc(dev->num_tx_queues,
1642 			    sizeof(q->qdiscs[0]),
1643 			    GFP_KERNEL);
1644 
1645 	if (!q->qdiscs)
1646 		return -ENOMEM;
1647 
1648 	if (!opt)
1649 		return -EINVAL;
1650 
1651 	for (i = 0; i < dev->num_tx_queues; i++) {
1652 		struct netdev_queue *dev_queue;
1653 		struct Qdisc *qdisc;
1654 
1655 		dev_queue = netdev_get_tx_queue(dev, i);
1656 		qdisc = qdisc_create_dflt(dev_queue,
1657 					  &pfifo_qdisc_ops,
1658 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1659 						    TC_H_MIN(i + 1)),
1660 					  extack);
1661 		if (!qdisc)
1662 			return -ENOMEM;
1663 
1664 		if (i < dev->real_num_tx_queues)
1665 			qdisc_hash_add(qdisc, false);
1666 
1667 		q->qdiscs[i] = qdisc;
1668 	}
1669 
1670 	return taprio_change(sch, opt, extack);
1671 }
1672 
1673 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1674 					     unsigned long cl)
1675 {
1676 	struct net_device *dev = qdisc_dev(sch);
1677 	unsigned long ntx = cl - 1;
1678 
1679 	if (ntx >= dev->num_tx_queues)
1680 		return NULL;
1681 
1682 	return netdev_get_tx_queue(dev, ntx);
1683 }
1684 
1685 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1686 			struct Qdisc *new, struct Qdisc **old,
1687 			struct netlink_ext_ack *extack)
1688 {
1689 	struct taprio_sched *q = qdisc_priv(sch);
1690 	struct net_device *dev = qdisc_dev(sch);
1691 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1692 
1693 	if (!dev_queue)
1694 		return -EINVAL;
1695 
1696 	if (dev->flags & IFF_UP)
1697 		dev_deactivate(dev);
1698 
1699 	*old = q->qdiscs[cl - 1];
1700 	q->qdiscs[cl - 1] = new;
1701 
1702 	if (new)
1703 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1704 
1705 	if (dev->flags & IFF_UP)
1706 		dev_activate(dev);
1707 
1708 	return 0;
1709 }
1710 
1711 static int dump_entry(struct sk_buff *msg,
1712 		      const struct sched_entry *entry)
1713 {
1714 	struct nlattr *item;
1715 
1716 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1717 	if (!item)
1718 		return -ENOSPC;
1719 
1720 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1721 		goto nla_put_failure;
1722 
1723 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1724 		goto nla_put_failure;
1725 
1726 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1727 			entry->gate_mask))
1728 		goto nla_put_failure;
1729 
1730 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1731 			entry->interval))
1732 		goto nla_put_failure;
1733 
1734 	return nla_nest_end(msg, item);
1735 
1736 nla_put_failure:
1737 	nla_nest_cancel(msg, item);
1738 	return -1;
1739 }
1740 
1741 static int dump_schedule(struct sk_buff *msg,
1742 			 const struct sched_gate_list *root)
1743 {
1744 	struct nlattr *entry_list;
1745 	struct sched_entry *entry;
1746 
1747 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1748 			root->base_time, TCA_TAPRIO_PAD))
1749 		return -1;
1750 
1751 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1752 			root->cycle_time, TCA_TAPRIO_PAD))
1753 		return -1;
1754 
1755 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1756 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1757 		return -1;
1758 
1759 	entry_list = nla_nest_start_noflag(msg,
1760 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1761 	if (!entry_list)
1762 		goto error_nest;
1763 
1764 	list_for_each_entry(entry, &root->entries, list) {
1765 		if (dump_entry(msg, entry) < 0)
1766 			goto error_nest;
1767 	}
1768 
1769 	nla_nest_end(msg, entry_list);
1770 	return 0;
1771 
1772 error_nest:
1773 	nla_nest_cancel(msg, entry_list);
1774 	return -1;
1775 }
1776 
1777 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1778 {
1779 	struct taprio_sched *q = qdisc_priv(sch);
1780 	struct net_device *dev = qdisc_dev(sch);
1781 	struct sched_gate_list *oper, *admin;
1782 	struct tc_mqprio_qopt opt = { 0 };
1783 	struct nlattr *nest, *sched_nest;
1784 	unsigned int i;
1785 
1786 	rcu_read_lock();
1787 	oper = rcu_dereference(q->oper_sched);
1788 	admin = rcu_dereference(q->admin_sched);
1789 
1790 	opt.num_tc = netdev_get_num_tc(dev);
1791 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1792 
1793 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1794 		opt.count[i] = dev->tc_to_txq[i].count;
1795 		opt.offset[i] = dev->tc_to_txq[i].offset;
1796 	}
1797 
1798 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1799 	if (!nest)
1800 		goto start_error;
1801 
1802 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1803 		goto options_error;
1804 
1805 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1806 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1807 		goto options_error;
1808 
1809 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1810 		goto options_error;
1811 
1812 	if (q->txtime_delay &&
1813 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1814 		goto options_error;
1815 
1816 	if (oper && dump_schedule(skb, oper))
1817 		goto options_error;
1818 
1819 	if (!admin)
1820 		goto done;
1821 
1822 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1823 	if (!sched_nest)
1824 		goto options_error;
1825 
1826 	if (dump_schedule(skb, admin))
1827 		goto admin_error;
1828 
1829 	nla_nest_end(skb, sched_nest);
1830 
1831 done:
1832 	rcu_read_unlock();
1833 
1834 	return nla_nest_end(skb, nest);
1835 
1836 admin_error:
1837 	nla_nest_cancel(skb, sched_nest);
1838 
1839 options_error:
1840 	nla_nest_cancel(skb, nest);
1841 
1842 start_error:
1843 	rcu_read_unlock();
1844 	return -ENOSPC;
1845 }
1846 
1847 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1848 {
1849 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1850 
1851 	if (!dev_queue)
1852 		return NULL;
1853 
1854 	return dev_queue->qdisc_sleeping;
1855 }
1856 
1857 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1858 {
1859 	unsigned int ntx = TC_H_MIN(classid);
1860 
1861 	if (!taprio_queue_get(sch, ntx))
1862 		return 0;
1863 	return ntx;
1864 }
1865 
1866 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1867 			     struct sk_buff *skb, struct tcmsg *tcm)
1868 {
1869 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1870 
1871 	tcm->tcm_parent = TC_H_ROOT;
1872 	tcm->tcm_handle |= TC_H_MIN(cl);
1873 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1874 
1875 	return 0;
1876 }
1877 
1878 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1879 				   struct gnet_dump *d)
1880 	__releases(d->lock)
1881 	__acquires(d->lock)
1882 {
1883 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1884 
1885 	sch = dev_queue->qdisc_sleeping;
1886 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1887 	    qdisc_qstats_copy(d, sch) < 0)
1888 		return -1;
1889 	return 0;
1890 }
1891 
1892 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1893 {
1894 	struct net_device *dev = qdisc_dev(sch);
1895 	unsigned long ntx;
1896 
1897 	if (arg->stop)
1898 		return;
1899 
1900 	arg->count = arg->skip;
1901 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1902 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1903 			arg->stop = 1;
1904 			break;
1905 		}
1906 		arg->count++;
1907 	}
1908 }
1909 
1910 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1911 						struct tcmsg *tcm)
1912 {
1913 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1914 }
1915 
1916 static const struct Qdisc_class_ops taprio_class_ops = {
1917 	.graft		= taprio_graft,
1918 	.leaf		= taprio_leaf,
1919 	.find		= taprio_find,
1920 	.walk		= taprio_walk,
1921 	.dump		= taprio_dump_class,
1922 	.dump_stats	= taprio_dump_class_stats,
1923 	.select_queue	= taprio_select_queue,
1924 };
1925 
1926 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1927 	.cl_ops		= &taprio_class_ops,
1928 	.id		= "taprio",
1929 	.priv_size	= sizeof(struct taprio_sched),
1930 	.init		= taprio_init,
1931 	.change		= taprio_change,
1932 	.destroy	= taprio_destroy,
1933 	.peek		= taprio_peek,
1934 	.dequeue	= taprio_dequeue,
1935 	.enqueue	= taprio_enqueue,
1936 	.dump		= taprio_dump,
1937 	.owner		= THIS_MODULE,
1938 };
1939 
1940 static struct notifier_block taprio_device_notifier = {
1941 	.notifier_call = taprio_dev_notifier,
1942 };
1943 
1944 static int __init taprio_module_init(void)
1945 {
1946 	int err = register_netdevice_notifier(&taprio_device_notifier);
1947 
1948 	if (err)
1949 		return err;
1950 
1951 	return register_qdisc(&taprio_qdisc_ops);
1952 }
1953 
1954 static void __exit taprio_module_exit(void)
1955 {
1956 	unregister_qdisc(&taprio_qdisc_ops);
1957 	unregister_netdevice_notifier(&taprio_device_notifier);
1958 }
1959 
1960 module_init(taprio_module_init);
1961 module_exit(taprio_module_exit);
1962 MODULE_LICENSE("GPL");
1963