1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/ethtool_netlink.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/string.h> 15 #include <linux/list.h> 16 #include <linux/errno.h> 17 #include <linux/skbuff.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/time.h> 23 #include <net/gso.h> 24 #include <net/netlink.h> 25 #include <net/pkt_sched.h> 26 #include <net/pkt_cls.h> 27 #include <net/sch_generic.h> 28 #include <net/sock.h> 29 #include <net/tcp.h> 30 31 #define TAPRIO_STAT_NOT_SET (~0ULL) 32 33 #include "sch_mqprio_lib.h" 34 35 static LIST_HEAD(taprio_list); 36 static struct static_key_false taprio_have_broken_mqprio; 37 static struct static_key_false taprio_have_working_mqprio; 38 39 #define TAPRIO_ALL_GATES_OPEN -1 40 41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 43 #define TAPRIO_FLAGS_INVALID U32_MAX 44 45 struct sched_entry { 46 /* Durations between this GCL entry and the GCL entry where the 47 * respective traffic class gate closes 48 */ 49 u64 gate_duration[TC_MAX_QUEUE]; 50 atomic_t budget[TC_MAX_QUEUE]; 51 /* The qdisc makes some effort so that no packet leaves 52 * after this time 53 */ 54 ktime_t gate_close_time[TC_MAX_QUEUE]; 55 struct list_head list; 56 /* Used to calculate when to advance the schedule */ 57 ktime_t end_time; 58 ktime_t next_txtime; 59 int index; 60 u32 gate_mask; 61 u32 interval; 62 u8 command; 63 }; 64 65 struct sched_gate_list { 66 /* Longest non-zero contiguous gate durations per traffic class, 67 * or 0 if a traffic class gate never opens during the schedule. 68 */ 69 u64 max_open_gate_duration[TC_MAX_QUEUE]; 70 u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ 71 u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ 72 struct rcu_head rcu; 73 struct list_head entries; 74 size_t num_entries; 75 ktime_t cycle_end_time; 76 s64 cycle_time; 77 s64 cycle_time_extension; 78 s64 base_time; 79 }; 80 81 struct taprio_sched { 82 struct Qdisc **qdiscs; 83 struct Qdisc *root; 84 u32 flags; 85 enum tk_offsets tk_offset; 86 int clockid; 87 bool offloaded; 88 bool detected_mqprio; 89 bool broken_mqprio; 90 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 91 * speeds it's sub-nanoseconds per byte 92 */ 93 94 /* Protects the update side of the RCU protected current_entry */ 95 spinlock_t current_entry_lock; 96 struct sched_entry __rcu *current_entry; 97 struct sched_gate_list __rcu *oper_sched; 98 struct sched_gate_list __rcu *admin_sched; 99 struct hrtimer advance_timer; 100 struct list_head taprio_list; 101 int cur_txq[TC_MAX_QUEUE]; 102 u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ 103 u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ 104 u32 txtime_delay; 105 }; 106 107 struct __tc_taprio_qopt_offload { 108 refcount_t users; 109 struct tc_taprio_qopt_offload offload; 110 }; 111 112 static void taprio_calculate_gate_durations(struct taprio_sched *q, 113 struct sched_gate_list *sched) 114 { 115 struct net_device *dev = qdisc_dev(q->root); 116 int num_tc = netdev_get_num_tc(dev); 117 struct sched_entry *entry, *cur; 118 int tc; 119 120 list_for_each_entry(entry, &sched->entries, list) { 121 u32 gates_still_open = entry->gate_mask; 122 123 /* For each traffic class, calculate each open gate duration, 124 * starting at this schedule entry and ending at the schedule 125 * entry containing a gate close event for that TC. 126 */ 127 cur = entry; 128 129 do { 130 if (!gates_still_open) 131 break; 132 133 for (tc = 0; tc < num_tc; tc++) { 134 if (!(gates_still_open & BIT(tc))) 135 continue; 136 137 if (cur->gate_mask & BIT(tc)) 138 entry->gate_duration[tc] += cur->interval; 139 else 140 gates_still_open &= ~BIT(tc); 141 } 142 143 cur = list_next_entry_circular(cur, &sched->entries, list); 144 } while (cur != entry); 145 146 /* Keep track of the maximum gate duration for each traffic 147 * class, taking care to not confuse a traffic class which is 148 * temporarily closed with one that is always closed. 149 */ 150 for (tc = 0; tc < num_tc; tc++) 151 if (entry->gate_duration[tc] && 152 sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) 153 sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; 154 } 155 } 156 157 static bool taprio_entry_allows_tx(ktime_t skb_end_time, 158 struct sched_entry *entry, int tc) 159 { 160 return ktime_before(skb_end_time, entry->gate_close_time[tc]); 161 } 162 163 static ktime_t sched_base_time(const struct sched_gate_list *sched) 164 { 165 if (!sched) 166 return KTIME_MAX; 167 168 return ns_to_ktime(sched->base_time); 169 } 170 171 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 172 { 173 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 174 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 175 176 switch (tk_offset) { 177 case TK_OFFS_MAX: 178 return mono; 179 default: 180 return ktime_mono_to_any(mono, tk_offset); 181 } 182 } 183 184 static ktime_t taprio_get_time(const struct taprio_sched *q) 185 { 186 return taprio_mono_to_any(q, ktime_get()); 187 } 188 189 static void taprio_free_sched_cb(struct rcu_head *head) 190 { 191 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 192 struct sched_entry *entry, *n; 193 194 list_for_each_entry_safe(entry, n, &sched->entries, list) { 195 list_del(&entry->list); 196 kfree(entry); 197 } 198 199 kfree(sched); 200 } 201 202 static void switch_schedules(struct taprio_sched *q, 203 struct sched_gate_list **admin, 204 struct sched_gate_list **oper) 205 { 206 rcu_assign_pointer(q->oper_sched, *admin); 207 rcu_assign_pointer(q->admin_sched, NULL); 208 209 if (*oper) 210 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 211 212 *oper = *admin; 213 *admin = NULL; 214 } 215 216 /* Get how much time has been already elapsed in the current cycle. */ 217 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 218 { 219 ktime_t time_since_sched_start; 220 s32 time_elapsed; 221 222 time_since_sched_start = ktime_sub(time, sched->base_time); 223 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 224 225 return time_elapsed; 226 } 227 228 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 229 struct sched_gate_list *admin, 230 struct sched_entry *entry, 231 ktime_t intv_start) 232 { 233 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 234 ktime_t intv_end, cycle_ext_end, cycle_end; 235 236 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 237 intv_end = ktime_add_ns(intv_start, entry->interval); 238 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 239 240 if (ktime_before(intv_end, cycle_end)) 241 return intv_end; 242 else if (admin && admin != sched && 243 ktime_after(admin->base_time, cycle_end) && 244 ktime_before(admin->base_time, cycle_ext_end)) 245 return admin->base_time; 246 else 247 return cycle_end; 248 } 249 250 static int length_to_duration(struct taprio_sched *q, int len) 251 { 252 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); 253 } 254 255 static int duration_to_length(struct taprio_sched *q, u64 duration) 256 { 257 return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); 258 } 259 260 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the 261 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by 262 * the maximum open gate durations at the given link speed. 263 */ 264 static void taprio_update_queue_max_sdu(struct taprio_sched *q, 265 struct sched_gate_list *sched, 266 struct qdisc_size_table *stab) 267 { 268 struct net_device *dev = qdisc_dev(q->root); 269 int num_tc = netdev_get_num_tc(dev); 270 u32 max_sdu_from_user; 271 u32 max_sdu_dynamic; 272 u32 max_sdu; 273 int tc; 274 275 for (tc = 0; tc < num_tc; tc++) { 276 max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; 277 278 /* TC gate never closes => keep the queueMaxSDU 279 * selected by the user 280 */ 281 if (sched->max_open_gate_duration[tc] == sched->cycle_time) { 282 max_sdu_dynamic = U32_MAX; 283 } else { 284 u32 max_frm_len; 285 286 max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); 287 /* Compensate for L1 overhead from size table, 288 * but don't let the frame size go negative 289 */ 290 if (stab) { 291 max_frm_len -= stab->szopts.overhead; 292 max_frm_len = max_t(int, max_frm_len, 293 dev->hard_header_len + 1); 294 } 295 max_sdu_dynamic = max_frm_len - dev->hard_header_len; 296 if (max_sdu_dynamic > dev->max_mtu) 297 max_sdu_dynamic = U32_MAX; 298 } 299 300 max_sdu = min(max_sdu_dynamic, max_sdu_from_user); 301 302 if (max_sdu != U32_MAX) { 303 sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; 304 sched->max_sdu[tc] = max_sdu; 305 } else { 306 sched->max_frm_len[tc] = U32_MAX; /* never oversized */ 307 sched->max_sdu[tc] = 0; 308 } 309 } 310 } 311 312 /* Returns the entry corresponding to next available interval. If 313 * validate_interval is set, it only validates whether the timestamp occurs 314 * when the gate corresponding to the skb's traffic class is open. 315 */ 316 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 317 struct Qdisc *sch, 318 struct sched_gate_list *sched, 319 struct sched_gate_list *admin, 320 ktime_t time, 321 ktime_t *interval_start, 322 ktime_t *interval_end, 323 bool validate_interval) 324 { 325 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 326 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 327 struct sched_entry *entry = NULL, *entry_found = NULL; 328 struct taprio_sched *q = qdisc_priv(sch); 329 struct net_device *dev = qdisc_dev(sch); 330 bool entry_available = false; 331 s32 cycle_elapsed; 332 int tc, n; 333 334 tc = netdev_get_prio_tc_map(dev, skb->priority); 335 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 336 337 *interval_start = 0; 338 *interval_end = 0; 339 340 if (!sched) 341 return NULL; 342 343 cycle = sched->cycle_time; 344 cycle_elapsed = get_cycle_time_elapsed(sched, time); 345 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 346 cycle_end = ktime_add_ns(curr_intv_end, cycle); 347 348 list_for_each_entry(entry, &sched->entries, list) { 349 curr_intv_start = curr_intv_end; 350 curr_intv_end = get_interval_end_time(sched, admin, entry, 351 curr_intv_start); 352 353 if (ktime_after(curr_intv_start, cycle_end)) 354 break; 355 356 if (!(entry->gate_mask & BIT(tc)) || 357 packet_transmit_time > entry->interval) 358 continue; 359 360 txtime = entry->next_txtime; 361 362 if (ktime_before(txtime, time) || validate_interval) { 363 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 364 if ((ktime_before(curr_intv_start, time) && 365 ktime_before(transmit_end_time, curr_intv_end)) || 366 (ktime_after(curr_intv_start, time) && !validate_interval)) { 367 entry_found = entry; 368 *interval_start = curr_intv_start; 369 *interval_end = curr_intv_end; 370 break; 371 } else if (!entry_available && !validate_interval) { 372 /* Here, we are just trying to find out the 373 * first available interval in the next cycle. 374 */ 375 entry_available = true; 376 entry_found = entry; 377 *interval_start = ktime_add_ns(curr_intv_start, cycle); 378 *interval_end = ktime_add_ns(curr_intv_end, cycle); 379 } 380 } else if (ktime_before(txtime, earliest_txtime) && 381 !entry_available) { 382 earliest_txtime = txtime; 383 entry_found = entry; 384 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 385 *interval_start = ktime_add(curr_intv_start, n * cycle); 386 *interval_end = ktime_add(curr_intv_end, n * cycle); 387 } 388 } 389 390 return entry_found; 391 } 392 393 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 394 { 395 struct taprio_sched *q = qdisc_priv(sch); 396 struct sched_gate_list *sched, *admin; 397 ktime_t interval_start, interval_end; 398 struct sched_entry *entry; 399 400 rcu_read_lock(); 401 sched = rcu_dereference(q->oper_sched); 402 admin = rcu_dereference(q->admin_sched); 403 404 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 405 &interval_start, &interval_end, true); 406 rcu_read_unlock(); 407 408 return entry; 409 } 410 411 static bool taprio_flags_valid(u32 flags) 412 { 413 /* Make sure no other flag bits are set. */ 414 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 415 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 416 return false; 417 /* txtime-assist and full offload are mutually exclusive */ 418 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 419 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 420 return false; 421 return true; 422 } 423 424 /* This returns the tstamp value set by TCP in terms of the set clock. */ 425 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 426 { 427 unsigned int offset = skb_network_offset(skb); 428 const struct ipv6hdr *ipv6h; 429 const struct iphdr *iph; 430 struct ipv6hdr _ipv6h; 431 432 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 433 if (!ipv6h) 434 return 0; 435 436 if (ipv6h->version == 4) { 437 iph = (struct iphdr *)ipv6h; 438 offset += iph->ihl * 4; 439 440 /* special-case 6in4 tunnelling, as that is a common way to get 441 * v6 connectivity in the home 442 */ 443 if (iph->protocol == IPPROTO_IPV6) { 444 ipv6h = skb_header_pointer(skb, offset, 445 sizeof(_ipv6h), &_ipv6h); 446 447 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 448 return 0; 449 } else if (iph->protocol != IPPROTO_TCP) { 450 return 0; 451 } 452 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 453 return 0; 454 } 455 456 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 457 } 458 459 /* There are a few scenarios where we will have to modify the txtime from 460 * what is read from next_txtime in sched_entry. They are: 461 * 1. If txtime is in the past, 462 * a. The gate for the traffic class is currently open and packet can be 463 * transmitted before it closes, schedule the packet right away. 464 * b. If the gate corresponding to the traffic class is going to open later 465 * in the cycle, set the txtime of packet to the interval start. 466 * 2. If txtime is in the future, there are packets corresponding to the 467 * current traffic class waiting to be transmitted. So, the following 468 * possibilities exist: 469 * a. We can transmit the packet before the window containing the txtime 470 * closes. 471 * b. The window might close before the transmission can be completed 472 * successfully. So, schedule the packet in the next open window. 473 */ 474 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 475 { 476 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 477 struct taprio_sched *q = qdisc_priv(sch); 478 struct sched_gate_list *sched, *admin; 479 ktime_t minimum_time, now, txtime; 480 int len, packet_transmit_time; 481 struct sched_entry *entry; 482 bool sched_changed; 483 484 now = taprio_get_time(q); 485 minimum_time = ktime_add_ns(now, q->txtime_delay); 486 487 tcp_tstamp = get_tcp_tstamp(q, skb); 488 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 489 490 rcu_read_lock(); 491 admin = rcu_dereference(q->admin_sched); 492 sched = rcu_dereference(q->oper_sched); 493 if (admin && ktime_after(minimum_time, admin->base_time)) 494 switch_schedules(q, &admin, &sched); 495 496 /* Until the schedule starts, all the queues are open */ 497 if (!sched || ktime_before(minimum_time, sched->base_time)) { 498 txtime = minimum_time; 499 goto done; 500 } 501 502 len = qdisc_pkt_len(skb); 503 packet_transmit_time = length_to_duration(q, len); 504 505 do { 506 sched_changed = false; 507 508 entry = find_entry_to_transmit(skb, sch, sched, admin, 509 minimum_time, 510 &interval_start, &interval_end, 511 false); 512 if (!entry) { 513 txtime = 0; 514 goto done; 515 } 516 517 txtime = entry->next_txtime; 518 txtime = max_t(ktime_t, txtime, minimum_time); 519 txtime = max_t(ktime_t, txtime, interval_start); 520 521 if (admin && admin != sched && 522 ktime_after(txtime, admin->base_time)) { 523 sched = admin; 524 sched_changed = true; 525 continue; 526 } 527 528 transmit_end_time = ktime_add(txtime, packet_transmit_time); 529 minimum_time = transmit_end_time; 530 531 /* Update the txtime of current entry to the next time it's 532 * interval starts. 533 */ 534 if (ktime_after(transmit_end_time, interval_end)) 535 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 536 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 537 538 entry->next_txtime = transmit_end_time; 539 540 done: 541 rcu_read_unlock(); 542 return txtime; 543 } 544 545 /* Devices with full offload are expected to honor this in hardware */ 546 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, 547 struct sk_buff *skb) 548 { 549 struct taprio_sched *q = qdisc_priv(sch); 550 struct net_device *dev = qdisc_dev(sch); 551 struct sched_gate_list *sched; 552 int prio = skb->priority; 553 bool exceeds = false; 554 u8 tc; 555 556 tc = netdev_get_prio_tc_map(dev, prio); 557 558 rcu_read_lock(); 559 sched = rcu_dereference(q->oper_sched); 560 if (sched && skb->len > sched->max_frm_len[tc]) 561 exceeds = true; 562 rcu_read_unlock(); 563 564 return exceeds; 565 } 566 567 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 568 struct Qdisc *child, struct sk_buff **to_free) 569 { 570 struct taprio_sched *q = qdisc_priv(sch); 571 572 /* sk_flags are only safe to use on full sockets. */ 573 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { 574 if (!is_valid_interval(skb, sch)) 575 return qdisc_drop(skb, sch, to_free); 576 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 577 skb->tstamp = get_packet_txtime(skb, sch); 578 if (!skb->tstamp) 579 return qdisc_drop(skb, sch, to_free); 580 } 581 582 qdisc_qstats_backlog_inc(sch, skb); 583 sch->q.qlen++; 584 585 return qdisc_enqueue(skb, child, to_free); 586 } 587 588 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, 589 struct Qdisc *child, 590 struct sk_buff **to_free) 591 { 592 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 593 netdev_features_t features = netif_skb_features(skb); 594 struct sk_buff *segs, *nskb; 595 int ret; 596 597 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 598 if (IS_ERR_OR_NULL(segs)) 599 return qdisc_drop(skb, sch, to_free); 600 601 skb_list_walk_safe(segs, segs, nskb) { 602 skb_mark_not_on_list(segs); 603 qdisc_skb_cb(segs)->pkt_len = segs->len; 604 slen += segs->len; 605 606 /* FIXME: we should be segmenting to a smaller size 607 * rather than dropping these 608 */ 609 if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) 610 ret = qdisc_drop(segs, sch, to_free); 611 else 612 ret = taprio_enqueue_one(segs, sch, child, to_free); 613 614 if (ret != NET_XMIT_SUCCESS) { 615 if (net_xmit_drop_count(ret)) 616 qdisc_qstats_drop(sch); 617 } else { 618 numsegs++; 619 } 620 } 621 622 if (numsegs > 1) 623 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 624 consume_skb(skb); 625 626 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 627 } 628 629 /* Will not be called in the full offload case, since the TX queues are 630 * attached to the Qdisc created using qdisc_create_dflt() 631 */ 632 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 633 struct sk_buff **to_free) 634 { 635 struct taprio_sched *q = qdisc_priv(sch); 636 struct Qdisc *child; 637 int queue; 638 639 queue = skb_get_queue_mapping(skb); 640 641 child = q->qdiscs[queue]; 642 if (unlikely(!child)) 643 return qdisc_drop(skb, sch, to_free); 644 645 if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { 646 /* Large packets might not be transmitted when the transmission 647 * duration exceeds any configured interval. Therefore, segment 648 * the skb into smaller chunks. Drivers with full offload are 649 * expected to handle this in hardware. 650 */ 651 if (skb_is_gso(skb)) 652 return taprio_enqueue_segmented(skb, sch, child, 653 to_free); 654 655 return qdisc_drop(skb, sch, to_free); 656 } 657 658 return taprio_enqueue_one(skb, sch, child, to_free); 659 } 660 661 static struct sk_buff *taprio_peek(struct Qdisc *sch) 662 { 663 WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); 664 return NULL; 665 } 666 667 static void taprio_set_budgets(struct taprio_sched *q, 668 struct sched_gate_list *sched, 669 struct sched_entry *entry) 670 { 671 struct net_device *dev = qdisc_dev(q->root); 672 int num_tc = netdev_get_num_tc(dev); 673 int tc, budget; 674 675 for (tc = 0; tc < num_tc; tc++) { 676 /* Traffic classes which never close have infinite budget */ 677 if (entry->gate_duration[tc] == sched->cycle_time) 678 budget = INT_MAX; 679 else 680 budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, 681 atomic64_read(&q->picos_per_byte)); 682 683 atomic_set(&entry->budget[tc], budget); 684 } 685 } 686 687 /* When an skb is sent, it consumes from the budget of all traffic classes */ 688 static int taprio_update_budgets(struct sched_entry *entry, size_t len, 689 int tc_consumed, int num_tc) 690 { 691 int tc, budget, new_budget = 0; 692 693 for (tc = 0; tc < num_tc; tc++) { 694 budget = atomic_read(&entry->budget[tc]); 695 /* Don't consume from infinite budget */ 696 if (budget == INT_MAX) { 697 if (tc == tc_consumed) 698 new_budget = budget; 699 continue; 700 } 701 702 if (tc == tc_consumed) 703 new_budget = atomic_sub_return(len, &entry->budget[tc]); 704 else 705 atomic_sub(len, &entry->budget[tc]); 706 } 707 708 return new_budget; 709 } 710 711 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, 712 struct sched_entry *entry, 713 u32 gate_mask) 714 { 715 struct taprio_sched *q = qdisc_priv(sch); 716 struct net_device *dev = qdisc_dev(sch); 717 struct Qdisc *child = q->qdiscs[txq]; 718 int num_tc = netdev_get_num_tc(dev); 719 struct sk_buff *skb; 720 ktime_t guard; 721 int prio; 722 int len; 723 u8 tc; 724 725 if (unlikely(!child)) 726 return NULL; 727 728 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 729 goto skip_peek_checks; 730 731 skb = child->ops->peek(child); 732 if (!skb) 733 return NULL; 734 735 prio = skb->priority; 736 tc = netdev_get_prio_tc_map(dev, prio); 737 738 if (!(gate_mask & BIT(tc))) 739 return NULL; 740 741 len = qdisc_pkt_len(skb); 742 guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); 743 744 /* In the case that there's no gate entry, there's no 745 * guard band ... 746 */ 747 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 748 !taprio_entry_allows_tx(guard, entry, tc)) 749 return NULL; 750 751 /* ... and no budget. */ 752 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 753 taprio_update_budgets(entry, len, tc, num_tc) < 0) 754 return NULL; 755 756 skip_peek_checks: 757 skb = child->ops->dequeue(child); 758 if (unlikely(!skb)) 759 return NULL; 760 761 qdisc_bstats_update(sch, skb); 762 qdisc_qstats_backlog_dec(sch, skb); 763 sch->q.qlen--; 764 765 return skb; 766 } 767 768 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) 769 { 770 int offset = dev->tc_to_txq[tc].offset; 771 int count = dev->tc_to_txq[tc].count; 772 773 (*txq)++; 774 if (*txq == offset + count) 775 *txq = offset; 776 } 777 778 /* Prioritize higher traffic classes, and select among TXQs belonging to the 779 * same TC using round robin 780 */ 781 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, 782 struct sched_entry *entry, 783 u32 gate_mask) 784 { 785 struct taprio_sched *q = qdisc_priv(sch); 786 struct net_device *dev = qdisc_dev(sch); 787 int num_tc = netdev_get_num_tc(dev); 788 struct sk_buff *skb; 789 int tc; 790 791 for (tc = num_tc - 1; tc >= 0; tc--) { 792 int first_txq = q->cur_txq[tc]; 793 794 if (!(gate_mask & BIT(tc))) 795 continue; 796 797 do { 798 skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], 799 entry, gate_mask); 800 801 taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); 802 803 if (q->cur_txq[tc] >= dev->num_tx_queues) 804 q->cur_txq[tc] = first_txq; 805 806 if (skb) 807 return skb; 808 } while (q->cur_txq[tc] != first_txq); 809 } 810 811 return NULL; 812 } 813 814 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic 815 * class other than to determine whether the gate is open or not 816 */ 817 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, 818 struct sched_entry *entry, 819 u32 gate_mask) 820 { 821 struct net_device *dev = qdisc_dev(sch); 822 struct sk_buff *skb; 823 int i; 824 825 for (i = 0; i < dev->num_tx_queues; i++) { 826 skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); 827 if (skb) 828 return skb; 829 } 830 831 return NULL; 832 } 833 834 /* Will not be called in the full offload case, since the TX queues are 835 * attached to the Qdisc created using qdisc_create_dflt() 836 */ 837 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 838 { 839 struct taprio_sched *q = qdisc_priv(sch); 840 struct sk_buff *skb = NULL; 841 struct sched_entry *entry; 842 u32 gate_mask; 843 844 rcu_read_lock(); 845 entry = rcu_dereference(q->current_entry); 846 /* if there's no entry, it means that the schedule didn't 847 * start yet, so force all gates to be open, this is in 848 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 849 * "AdminGateStates" 850 */ 851 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 852 if (!gate_mask) 853 goto done; 854 855 if (static_branch_unlikely(&taprio_have_broken_mqprio) && 856 !static_branch_likely(&taprio_have_working_mqprio)) { 857 /* Single NIC kind which is broken */ 858 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 859 } else if (static_branch_likely(&taprio_have_working_mqprio) && 860 !static_branch_unlikely(&taprio_have_broken_mqprio)) { 861 /* Single NIC kind which prioritizes properly */ 862 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 863 } else { 864 /* Mixed NIC kinds present in system, need dynamic testing */ 865 if (q->broken_mqprio) 866 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 867 else 868 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 869 } 870 871 done: 872 rcu_read_unlock(); 873 874 return skb; 875 } 876 877 static bool should_restart_cycle(const struct sched_gate_list *oper, 878 const struct sched_entry *entry) 879 { 880 if (list_is_last(&entry->list, &oper->entries)) 881 return true; 882 883 if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) 884 return true; 885 886 return false; 887 } 888 889 static bool should_change_schedules(const struct sched_gate_list *admin, 890 const struct sched_gate_list *oper, 891 ktime_t end_time) 892 { 893 ktime_t next_base_time, extension_time; 894 895 if (!admin) 896 return false; 897 898 next_base_time = sched_base_time(admin); 899 900 /* This is the simple case, the end_time would fall after 901 * the next schedule base_time. 902 */ 903 if (ktime_compare(next_base_time, end_time) <= 0) 904 return true; 905 906 /* This is the cycle_time_extension case, if the end_time 907 * plus the amount that can be extended would fall after the 908 * next schedule base_time, we can extend the current schedule 909 * for that amount. 910 */ 911 extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); 912 913 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 914 * how precisely the extension should be made. So after 915 * conformance testing, this logic may change. 916 */ 917 if (ktime_compare(next_base_time, extension_time) <= 0) 918 return true; 919 920 return false; 921 } 922 923 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 924 { 925 struct taprio_sched *q = container_of(timer, struct taprio_sched, 926 advance_timer); 927 struct net_device *dev = qdisc_dev(q->root); 928 struct sched_gate_list *oper, *admin; 929 int num_tc = netdev_get_num_tc(dev); 930 struct sched_entry *entry, *next; 931 struct Qdisc *sch = q->root; 932 ktime_t end_time; 933 int tc; 934 935 spin_lock(&q->current_entry_lock); 936 entry = rcu_dereference_protected(q->current_entry, 937 lockdep_is_held(&q->current_entry_lock)); 938 oper = rcu_dereference_protected(q->oper_sched, 939 lockdep_is_held(&q->current_entry_lock)); 940 admin = rcu_dereference_protected(q->admin_sched, 941 lockdep_is_held(&q->current_entry_lock)); 942 943 if (!oper) 944 switch_schedules(q, &admin, &oper); 945 946 /* This can happen in two cases: 1. this is the very first run 947 * of this function (i.e. we weren't running any schedule 948 * previously); 2. The previous schedule just ended. The first 949 * entry of all schedules are pre-calculated during the 950 * schedule initialization. 951 */ 952 if (unlikely(!entry || entry->end_time == oper->base_time)) { 953 next = list_first_entry(&oper->entries, struct sched_entry, 954 list); 955 end_time = next->end_time; 956 goto first_run; 957 } 958 959 if (should_restart_cycle(oper, entry)) { 960 next = list_first_entry(&oper->entries, struct sched_entry, 961 list); 962 oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, 963 oper->cycle_time); 964 } else { 965 next = list_next_entry(entry, list); 966 } 967 968 end_time = ktime_add_ns(entry->end_time, next->interval); 969 end_time = min_t(ktime_t, end_time, oper->cycle_end_time); 970 971 for (tc = 0; tc < num_tc; tc++) { 972 if (next->gate_duration[tc] == oper->cycle_time) 973 next->gate_close_time[tc] = KTIME_MAX; 974 else 975 next->gate_close_time[tc] = ktime_add_ns(entry->end_time, 976 next->gate_duration[tc]); 977 } 978 979 if (should_change_schedules(admin, oper, end_time)) { 980 /* Set things so the next time this runs, the new 981 * schedule runs. 982 */ 983 end_time = sched_base_time(admin); 984 switch_schedules(q, &admin, &oper); 985 } 986 987 next->end_time = end_time; 988 taprio_set_budgets(q, oper, next); 989 990 first_run: 991 rcu_assign_pointer(q->current_entry, next); 992 spin_unlock(&q->current_entry_lock); 993 994 hrtimer_set_expires(&q->advance_timer, end_time); 995 996 rcu_read_lock(); 997 __netif_schedule(sch); 998 rcu_read_unlock(); 999 1000 return HRTIMER_RESTART; 1001 } 1002 1003 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 1004 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 1005 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 1006 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 1007 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 1008 }; 1009 1010 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { 1011 [TCA_TAPRIO_TC_ENTRY_INDEX] = NLA_POLICY_MAX(NLA_U32, 1012 TC_QOPT_MAX_QUEUE), 1013 [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, 1014 [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, 1015 TC_FP_EXPRESS, 1016 TC_FP_PREEMPTIBLE), 1017 }; 1018 1019 static struct netlink_range_validation_signed taprio_cycle_time_range = { 1020 .min = 0, 1021 .max = INT_MAX, 1022 }; 1023 1024 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 1025 [TCA_TAPRIO_ATTR_PRIOMAP] = { 1026 .len = sizeof(struct tc_mqprio_qopt) 1027 }, 1028 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 1029 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 1030 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 1031 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 1032 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = 1033 NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range), 1034 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 1035 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 1036 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 1037 [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, 1038 }; 1039 1040 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 1041 struct sched_entry *entry, 1042 struct netlink_ext_ack *extack) 1043 { 1044 int min_duration = length_to_duration(q, ETH_ZLEN); 1045 u32 interval = 0; 1046 1047 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 1048 entry->command = nla_get_u8( 1049 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 1050 1051 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 1052 entry->gate_mask = nla_get_u32( 1053 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 1054 1055 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 1056 interval = nla_get_u32( 1057 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 1058 1059 /* The interval should allow at least the minimum ethernet 1060 * frame to go out. 1061 */ 1062 if (interval < min_duration) { 1063 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 1064 return -EINVAL; 1065 } 1066 1067 entry->interval = interval; 1068 1069 return 0; 1070 } 1071 1072 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 1073 struct sched_entry *entry, int index, 1074 struct netlink_ext_ack *extack) 1075 { 1076 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 1077 int err; 1078 1079 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 1080 entry_policy, NULL); 1081 if (err < 0) { 1082 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 1083 return -EINVAL; 1084 } 1085 1086 entry->index = index; 1087 1088 return fill_sched_entry(q, tb, entry, extack); 1089 } 1090 1091 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 1092 struct sched_gate_list *sched, 1093 struct netlink_ext_ack *extack) 1094 { 1095 struct nlattr *n; 1096 int err, rem; 1097 int i = 0; 1098 1099 if (!list) 1100 return -EINVAL; 1101 1102 nla_for_each_nested(n, list, rem) { 1103 struct sched_entry *entry; 1104 1105 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 1106 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 1107 continue; 1108 } 1109 1110 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1111 if (!entry) { 1112 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 1113 return -ENOMEM; 1114 } 1115 1116 err = parse_sched_entry(q, n, entry, i, extack); 1117 if (err < 0) { 1118 kfree(entry); 1119 return err; 1120 } 1121 1122 list_add_tail(&entry->list, &sched->entries); 1123 i++; 1124 } 1125 1126 sched->num_entries = i; 1127 1128 return i; 1129 } 1130 1131 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 1132 struct sched_gate_list *new, 1133 struct netlink_ext_ack *extack) 1134 { 1135 int err = 0; 1136 1137 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 1138 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 1139 return -ENOTSUPP; 1140 } 1141 1142 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 1143 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 1144 1145 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 1146 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 1147 1148 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 1149 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 1150 1151 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 1152 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 1153 new, extack); 1154 if (err < 0) 1155 return err; 1156 1157 if (!new->cycle_time) { 1158 struct sched_entry *entry; 1159 ktime_t cycle = 0; 1160 1161 list_for_each_entry(entry, &new->entries, list) 1162 cycle = ktime_add_ns(cycle, entry->interval); 1163 1164 if (cycle < 0 || cycle > INT_MAX) { 1165 NL_SET_ERR_MSG(extack, "'cycle_time' is too big"); 1166 return -EINVAL; 1167 } 1168 1169 new->cycle_time = cycle; 1170 } 1171 1172 if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) { 1173 NL_SET_ERR_MSG(extack, "'cycle_time' is too small"); 1174 return -EINVAL; 1175 } 1176 1177 taprio_calculate_gate_durations(q, new); 1178 1179 return 0; 1180 } 1181 1182 static int taprio_parse_mqprio_opt(struct net_device *dev, 1183 struct tc_mqprio_qopt *qopt, 1184 struct netlink_ext_ack *extack, 1185 u32 taprio_flags) 1186 { 1187 bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); 1188 1189 if (!qopt) { 1190 if (!dev->num_tc) { 1191 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 1192 return -EINVAL; 1193 } 1194 return 0; 1195 } 1196 1197 /* taprio imposes that traffic classes map 1:n to tx queues */ 1198 if (qopt->num_tc > dev->num_tx_queues) { 1199 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 1200 return -EINVAL; 1201 } 1202 1203 /* For some reason, in txtime-assist mode, we allow TXQ ranges for 1204 * different TCs to overlap, and just validate the TXQ ranges. 1205 */ 1206 return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, 1207 extack); 1208 } 1209 1210 static int taprio_get_start_time(struct Qdisc *sch, 1211 struct sched_gate_list *sched, 1212 ktime_t *start) 1213 { 1214 struct taprio_sched *q = qdisc_priv(sch); 1215 ktime_t now, base, cycle; 1216 s64 n; 1217 1218 base = sched_base_time(sched); 1219 now = taprio_get_time(q); 1220 1221 if (ktime_after(base, now)) { 1222 *start = base; 1223 return 0; 1224 } 1225 1226 cycle = sched->cycle_time; 1227 1228 /* The qdisc is expected to have at least one sched_entry. Moreover, 1229 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1230 * something went really wrong. In that case, we should warn about this 1231 * inconsistent state and return error. 1232 */ 1233 if (WARN_ON(!cycle)) 1234 return -EFAULT; 1235 1236 /* Schedule the start time for the beginning of the next 1237 * cycle. 1238 */ 1239 n = div64_s64(ktime_sub_ns(now, base), cycle); 1240 *start = ktime_add_ns(base, (n + 1) * cycle); 1241 return 0; 1242 } 1243 1244 static void setup_first_end_time(struct taprio_sched *q, 1245 struct sched_gate_list *sched, ktime_t base) 1246 { 1247 struct net_device *dev = qdisc_dev(q->root); 1248 int num_tc = netdev_get_num_tc(dev); 1249 struct sched_entry *first; 1250 ktime_t cycle; 1251 int tc; 1252 1253 first = list_first_entry(&sched->entries, 1254 struct sched_entry, list); 1255 1256 cycle = sched->cycle_time; 1257 1258 /* FIXME: find a better place to do this */ 1259 sched->cycle_end_time = ktime_add_ns(base, cycle); 1260 1261 first->end_time = ktime_add_ns(base, first->interval); 1262 taprio_set_budgets(q, sched, first); 1263 1264 for (tc = 0; tc < num_tc; tc++) { 1265 if (first->gate_duration[tc] == sched->cycle_time) 1266 first->gate_close_time[tc] = KTIME_MAX; 1267 else 1268 first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); 1269 } 1270 1271 rcu_assign_pointer(q->current_entry, NULL); 1272 } 1273 1274 static void taprio_start_sched(struct Qdisc *sch, 1275 ktime_t start, struct sched_gate_list *new) 1276 { 1277 struct taprio_sched *q = qdisc_priv(sch); 1278 ktime_t expires; 1279 1280 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1281 return; 1282 1283 expires = hrtimer_get_expires(&q->advance_timer); 1284 if (expires == 0) 1285 expires = KTIME_MAX; 1286 1287 /* If the new schedule starts before the next expiration, we 1288 * reprogram it to the earliest one, so we change the admin 1289 * schedule to the operational one at the right time. 1290 */ 1291 start = min_t(ktime_t, start, expires); 1292 1293 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1294 } 1295 1296 static void taprio_set_picos_per_byte(struct net_device *dev, 1297 struct taprio_sched *q) 1298 { 1299 struct ethtool_link_ksettings ecmd; 1300 int speed = SPEED_10; 1301 int picos_per_byte; 1302 int err; 1303 1304 err = __ethtool_get_link_ksettings(dev, &ecmd); 1305 if (err < 0) 1306 goto skip; 1307 1308 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1309 speed = ecmd.base.speed; 1310 1311 skip: 1312 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1313 1314 atomic64_set(&q->picos_per_byte, picos_per_byte); 1315 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1316 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1317 ecmd.base.speed); 1318 } 1319 1320 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1321 void *ptr) 1322 { 1323 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1324 struct sched_gate_list *oper, *admin; 1325 struct qdisc_size_table *stab; 1326 struct taprio_sched *q; 1327 1328 ASSERT_RTNL(); 1329 1330 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1331 return NOTIFY_DONE; 1332 1333 list_for_each_entry(q, &taprio_list, taprio_list) { 1334 if (dev != qdisc_dev(q->root)) 1335 continue; 1336 1337 taprio_set_picos_per_byte(dev, q); 1338 1339 stab = rtnl_dereference(q->root->stab); 1340 1341 oper = rtnl_dereference(q->oper_sched); 1342 if (oper) 1343 taprio_update_queue_max_sdu(q, oper, stab); 1344 1345 admin = rtnl_dereference(q->admin_sched); 1346 if (admin) 1347 taprio_update_queue_max_sdu(q, admin, stab); 1348 1349 break; 1350 } 1351 1352 return NOTIFY_DONE; 1353 } 1354 1355 static void setup_txtime(struct taprio_sched *q, 1356 struct sched_gate_list *sched, ktime_t base) 1357 { 1358 struct sched_entry *entry; 1359 u64 interval = 0; 1360 1361 list_for_each_entry(entry, &sched->entries, list) { 1362 entry->next_txtime = ktime_add_ns(base, interval); 1363 interval += entry->interval; 1364 } 1365 } 1366 1367 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1368 { 1369 struct __tc_taprio_qopt_offload *__offload; 1370 1371 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1372 GFP_KERNEL); 1373 if (!__offload) 1374 return NULL; 1375 1376 refcount_set(&__offload->users, 1); 1377 1378 return &__offload->offload; 1379 } 1380 1381 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1382 *offload) 1383 { 1384 struct __tc_taprio_qopt_offload *__offload; 1385 1386 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1387 offload); 1388 1389 refcount_inc(&__offload->users); 1390 1391 return offload; 1392 } 1393 EXPORT_SYMBOL_GPL(taprio_offload_get); 1394 1395 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1396 { 1397 struct __tc_taprio_qopt_offload *__offload; 1398 1399 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1400 offload); 1401 1402 if (!refcount_dec_and_test(&__offload->users)) 1403 return; 1404 1405 kfree(__offload); 1406 } 1407 EXPORT_SYMBOL_GPL(taprio_offload_free); 1408 1409 /* The function will only serve to keep the pointers to the "oper" and "admin" 1410 * schedules valid in relation to their base times, so when calling dump() the 1411 * users looks at the right schedules. 1412 * When using full offload, the admin configuration is promoted to oper at the 1413 * base_time in the PHC time domain. But because the system time is not 1414 * necessarily in sync with that, we can't just trigger a hrtimer to call 1415 * switch_schedules at the right hardware time. 1416 * At the moment we call this by hand right away from taprio, but in the future 1417 * it will be useful to create a mechanism for drivers to notify taprio of the 1418 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1419 * This is left as TODO. 1420 */ 1421 static void taprio_offload_config_changed(struct taprio_sched *q) 1422 { 1423 struct sched_gate_list *oper, *admin; 1424 1425 oper = rtnl_dereference(q->oper_sched); 1426 admin = rtnl_dereference(q->admin_sched); 1427 1428 switch_schedules(q, &admin, &oper); 1429 } 1430 1431 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1432 { 1433 u32 i, queue_mask = 0; 1434 1435 for (i = 0; i < dev->num_tc; i++) { 1436 u32 offset, count; 1437 1438 if (!(tc_mask & BIT(i))) 1439 continue; 1440 1441 offset = dev->tc_to_txq[i].offset; 1442 count = dev->tc_to_txq[i].count; 1443 1444 queue_mask |= GENMASK(offset + count - 1, offset); 1445 } 1446 1447 return queue_mask; 1448 } 1449 1450 static void taprio_sched_to_offload(struct net_device *dev, 1451 struct sched_gate_list *sched, 1452 struct tc_taprio_qopt_offload *offload, 1453 const struct tc_taprio_caps *caps) 1454 { 1455 struct sched_entry *entry; 1456 int i = 0; 1457 1458 offload->base_time = sched->base_time; 1459 offload->cycle_time = sched->cycle_time; 1460 offload->cycle_time_extension = sched->cycle_time_extension; 1461 1462 list_for_each_entry(entry, &sched->entries, list) { 1463 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1464 1465 e->command = entry->command; 1466 e->interval = entry->interval; 1467 if (caps->gate_mask_per_txq) 1468 e->gate_mask = tc_map_to_queue_mask(dev, 1469 entry->gate_mask); 1470 else 1471 e->gate_mask = entry->gate_mask; 1472 1473 i++; 1474 } 1475 1476 offload->num_entries = i; 1477 } 1478 1479 static void taprio_detect_broken_mqprio(struct taprio_sched *q) 1480 { 1481 struct net_device *dev = qdisc_dev(q->root); 1482 struct tc_taprio_caps caps; 1483 1484 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1485 &caps, sizeof(caps)); 1486 1487 q->broken_mqprio = caps.broken_mqprio; 1488 if (q->broken_mqprio) 1489 static_branch_inc(&taprio_have_broken_mqprio); 1490 else 1491 static_branch_inc(&taprio_have_working_mqprio); 1492 1493 q->detected_mqprio = true; 1494 } 1495 1496 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) 1497 { 1498 if (!q->detected_mqprio) 1499 return; 1500 1501 if (q->broken_mqprio) 1502 static_branch_dec(&taprio_have_broken_mqprio); 1503 else 1504 static_branch_dec(&taprio_have_working_mqprio); 1505 } 1506 1507 static int taprio_enable_offload(struct net_device *dev, 1508 struct taprio_sched *q, 1509 struct sched_gate_list *sched, 1510 struct netlink_ext_ack *extack) 1511 { 1512 const struct net_device_ops *ops = dev->netdev_ops; 1513 struct tc_taprio_qopt_offload *offload; 1514 struct tc_taprio_caps caps; 1515 int tc, err = 0; 1516 1517 if (!ops->ndo_setup_tc) { 1518 NL_SET_ERR_MSG(extack, 1519 "Device does not support taprio offload"); 1520 return -EOPNOTSUPP; 1521 } 1522 1523 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1524 &caps, sizeof(caps)); 1525 1526 if (!caps.supports_queue_max_sdu) { 1527 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 1528 if (q->max_sdu[tc]) { 1529 NL_SET_ERR_MSG_MOD(extack, 1530 "Device does not handle queueMaxSDU"); 1531 return -EOPNOTSUPP; 1532 } 1533 } 1534 } 1535 1536 offload = taprio_offload_alloc(sched->num_entries); 1537 if (!offload) { 1538 NL_SET_ERR_MSG(extack, 1539 "Not enough memory for enabling offload mode"); 1540 return -ENOMEM; 1541 } 1542 offload->cmd = TAPRIO_CMD_REPLACE; 1543 offload->extack = extack; 1544 mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); 1545 offload->mqprio.extack = extack; 1546 taprio_sched_to_offload(dev, sched, offload, &caps); 1547 mqprio_fp_to_offload(q->fp, &offload->mqprio); 1548 1549 for (tc = 0; tc < TC_MAX_QUEUE; tc++) 1550 offload->max_sdu[tc] = q->max_sdu[tc]; 1551 1552 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1553 if (err < 0) { 1554 NL_SET_ERR_MSG_WEAK(extack, 1555 "Device failed to setup taprio offload"); 1556 goto done; 1557 } 1558 1559 q->offloaded = true; 1560 1561 done: 1562 /* The offload structure may linger around via a reference taken by the 1563 * device driver, so clear up the netlink extack pointer so that the 1564 * driver isn't tempted to dereference data which stopped being valid 1565 */ 1566 offload->extack = NULL; 1567 offload->mqprio.extack = NULL; 1568 taprio_offload_free(offload); 1569 1570 return err; 1571 } 1572 1573 static int taprio_disable_offload(struct net_device *dev, 1574 struct taprio_sched *q, 1575 struct netlink_ext_ack *extack) 1576 { 1577 const struct net_device_ops *ops = dev->netdev_ops; 1578 struct tc_taprio_qopt_offload *offload; 1579 int err; 1580 1581 if (!q->offloaded) 1582 return 0; 1583 1584 offload = taprio_offload_alloc(0); 1585 if (!offload) { 1586 NL_SET_ERR_MSG(extack, 1587 "Not enough memory to disable offload mode"); 1588 return -ENOMEM; 1589 } 1590 offload->cmd = TAPRIO_CMD_DESTROY; 1591 1592 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1593 if (err < 0) { 1594 NL_SET_ERR_MSG(extack, 1595 "Device failed to disable offload"); 1596 goto out; 1597 } 1598 1599 q->offloaded = false; 1600 1601 out: 1602 taprio_offload_free(offload); 1603 1604 return err; 1605 } 1606 1607 /* If full offload is enabled, the only possible clockid is the net device's 1608 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1609 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1610 * in sync with the specified clockid via a user space daemon such as phc2sys. 1611 * For both software taprio and txtime-assist, the clockid is used for the 1612 * hrtimer that advances the schedule and hence mandatory. 1613 */ 1614 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1615 struct netlink_ext_ack *extack) 1616 { 1617 struct taprio_sched *q = qdisc_priv(sch); 1618 struct net_device *dev = qdisc_dev(sch); 1619 int err = -EINVAL; 1620 1621 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1622 const struct ethtool_ops *ops = dev->ethtool_ops; 1623 struct ethtool_ts_info info = { 1624 .cmd = ETHTOOL_GET_TS_INFO, 1625 .phc_index = -1, 1626 }; 1627 1628 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1629 NL_SET_ERR_MSG(extack, 1630 "The 'clockid' cannot be specified for full offload"); 1631 goto out; 1632 } 1633 1634 if (ops && ops->get_ts_info) 1635 err = ops->get_ts_info(dev, &info); 1636 1637 if (err || info.phc_index < 0) { 1638 NL_SET_ERR_MSG(extack, 1639 "Device does not have a PTP clock"); 1640 err = -ENOTSUPP; 1641 goto out; 1642 } 1643 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1644 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1645 enum tk_offsets tk_offset; 1646 1647 /* We only support static clockids and we don't allow 1648 * for it to be modified after the first init. 1649 */ 1650 if (clockid < 0 || 1651 (q->clockid != -1 && q->clockid != clockid)) { 1652 NL_SET_ERR_MSG(extack, 1653 "Changing the 'clockid' of a running schedule is not supported"); 1654 err = -ENOTSUPP; 1655 goto out; 1656 } 1657 1658 switch (clockid) { 1659 case CLOCK_REALTIME: 1660 tk_offset = TK_OFFS_REAL; 1661 break; 1662 case CLOCK_MONOTONIC: 1663 tk_offset = TK_OFFS_MAX; 1664 break; 1665 case CLOCK_BOOTTIME: 1666 tk_offset = TK_OFFS_BOOT; 1667 break; 1668 case CLOCK_TAI: 1669 tk_offset = TK_OFFS_TAI; 1670 break; 1671 default: 1672 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1673 err = -EINVAL; 1674 goto out; 1675 } 1676 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1677 WRITE_ONCE(q->tk_offset, tk_offset); 1678 1679 q->clockid = clockid; 1680 } else { 1681 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1682 goto out; 1683 } 1684 1685 /* Everything went ok, return success. */ 1686 err = 0; 1687 1688 out: 1689 return err; 1690 } 1691 1692 static int taprio_parse_tc_entry(struct Qdisc *sch, 1693 struct nlattr *opt, 1694 u32 max_sdu[TC_QOPT_MAX_QUEUE], 1695 u32 fp[TC_QOPT_MAX_QUEUE], 1696 unsigned long *seen_tcs, 1697 struct netlink_ext_ack *extack) 1698 { 1699 struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; 1700 struct net_device *dev = qdisc_dev(sch); 1701 int err, tc; 1702 u32 val; 1703 1704 err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, 1705 taprio_tc_policy, extack); 1706 if (err < 0) 1707 return err; 1708 1709 if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { 1710 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); 1711 return -EINVAL; 1712 } 1713 1714 tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); 1715 if (tc >= TC_QOPT_MAX_QUEUE) { 1716 NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); 1717 return -ERANGE; 1718 } 1719 1720 if (*seen_tcs & BIT(tc)) { 1721 NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); 1722 return -EINVAL; 1723 } 1724 1725 *seen_tcs |= BIT(tc); 1726 1727 if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { 1728 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); 1729 if (val > dev->max_mtu) { 1730 NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); 1731 return -ERANGE; 1732 } 1733 1734 max_sdu[tc] = val; 1735 } 1736 1737 if (tb[TCA_TAPRIO_TC_ENTRY_FP]) 1738 fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); 1739 1740 return 0; 1741 } 1742 1743 static int taprio_parse_tc_entries(struct Qdisc *sch, 1744 struct nlattr *opt, 1745 struct netlink_ext_ack *extack) 1746 { 1747 struct taprio_sched *q = qdisc_priv(sch); 1748 struct net_device *dev = qdisc_dev(sch); 1749 u32 max_sdu[TC_QOPT_MAX_QUEUE]; 1750 bool have_preemption = false; 1751 unsigned long seen_tcs = 0; 1752 u32 fp[TC_QOPT_MAX_QUEUE]; 1753 struct nlattr *n; 1754 int tc, rem; 1755 int err = 0; 1756 1757 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1758 max_sdu[tc] = q->max_sdu[tc]; 1759 fp[tc] = q->fp[tc]; 1760 } 1761 1762 nla_for_each_nested(n, opt, rem) { 1763 if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY) 1764 continue; 1765 1766 err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, 1767 extack); 1768 if (err) 1769 return err; 1770 } 1771 1772 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1773 q->max_sdu[tc] = max_sdu[tc]; 1774 q->fp[tc] = fp[tc]; 1775 if (fp[tc] != TC_FP_EXPRESS) 1776 have_preemption = true; 1777 } 1778 1779 if (have_preemption) { 1780 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1781 NL_SET_ERR_MSG(extack, 1782 "Preemption only supported with full offload"); 1783 return -EOPNOTSUPP; 1784 } 1785 1786 if (!ethtool_dev_mm_supported(dev)) { 1787 NL_SET_ERR_MSG(extack, 1788 "Device does not support preemption"); 1789 return -EOPNOTSUPP; 1790 } 1791 } 1792 1793 return err; 1794 } 1795 1796 static int taprio_mqprio_cmp(const struct net_device *dev, 1797 const struct tc_mqprio_qopt *mqprio) 1798 { 1799 int i; 1800 1801 if (!mqprio || mqprio->num_tc != dev->num_tc) 1802 return -1; 1803 1804 for (i = 0; i < mqprio->num_tc; i++) 1805 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1806 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1807 return -1; 1808 1809 for (i = 0; i <= TC_BITMASK; i++) 1810 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1811 return -1; 1812 1813 return 0; 1814 } 1815 1816 /* The semantics of the 'flags' argument in relation to 'change()' 1817 * requests, are interpreted following two rules (which are applied in 1818 * this order): (1) an omitted 'flags' argument is interpreted as 1819 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1820 * changed. 1821 */ 1822 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1823 struct netlink_ext_ack *extack) 1824 { 1825 u32 new = 0; 1826 1827 if (attr) 1828 new = nla_get_u32(attr); 1829 1830 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1831 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1832 return -EOPNOTSUPP; 1833 } 1834 1835 if (!taprio_flags_valid(new)) { 1836 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1837 return -EINVAL; 1838 } 1839 1840 return new; 1841 } 1842 1843 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1844 struct netlink_ext_ack *extack) 1845 { 1846 struct qdisc_size_table *stab = rtnl_dereference(sch->stab); 1847 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1848 struct sched_gate_list *oper, *admin, *new_admin; 1849 struct taprio_sched *q = qdisc_priv(sch); 1850 struct net_device *dev = qdisc_dev(sch); 1851 struct tc_mqprio_qopt *mqprio = NULL; 1852 unsigned long flags; 1853 ktime_t start; 1854 int i, err; 1855 1856 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1857 taprio_policy, extack); 1858 if (err < 0) 1859 return err; 1860 1861 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1862 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1863 1864 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1865 q->flags, extack); 1866 if (err < 0) 1867 return err; 1868 1869 q->flags = err; 1870 1871 /* Needed for length_to_duration() during netlink attribute parsing */ 1872 taprio_set_picos_per_byte(dev, q); 1873 1874 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1875 if (err < 0) 1876 return err; 1877 1878 err = taprio_parse_tc_entries(sch, opt, extack); 1879 if (err) 1880 return err; 1881 1882 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1883 if (!new_admin) { 1884 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1885 return -ENOMEM; 1886 } 1887 INIT_LIST_HEAD(&new_admin->entries); 1888 1889 oper = rtnl_dereference(q->oper_sched); 1890 admin = rtnl_dereference(q->admin_sched); 1891 1892 /* no changes - no new mqprio settings */ 1893 if (!taprio_mqprio_cmp(dev, mqprio)) 1894 mqprio = NULL; 1895 1896 if (mqprio && (oper || admin)) { 1897 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1898 err = -ENOTSUPP; 1899 goto free_sched; 1900 } 1901 1902 if (mqprio) { 1903 err = netdev_set_num_tc(dev, mqprio->num_tc); 1904 if (err) 1905 goto free_sched; 1906 for (i = 0; i < mqprio->num_tc; i++) { 1907 netdev_set_tc_queue(dev, i, 1908 mqprio->count[i], 1909 mqprio->offset[i]); 1910 q->cur_txq[i] = mqprio->offset[i]; 1911 } 1912 1913 /* Always use supplied priority mappings */ 1914 for (i = 0; i <= TC_BITMASK; i++) 1915 netdev_set_prio_tc_map(dev, i, 1916 mqprio->prio_tc_map[i]); 1917 } 1918 1919 err = parse_taprio_schedule(q, tb, new_admin, extack); 1920 if (err < 0) 1921 goto free_sched; 1922 1923 if (new_admin->num_entries == 0) { 1924 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1925 err = -EINVAL; 1926 goto free_sched; 1927 } 1928 1929 err = taprio_parse_clockid(sch, tb, extack); 1930 if (err < 0) 1931 goto free_sched; 1932 1933 taprio_update_queue_max_sdu(q, new_admin, stab); 1934 1935 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1936 err = taprio_enable_offload(dev, q, new_admin, extack); 1937 else 1938 err = taprio_disable_offload(dev, q, extack); 1939 if (err) 1940 goto free_sched; 1941 1942 /* Protects against enqueue()/dequeue() */ 1943 spin_lock_bh(qdisc_lock(sch)); 1944 1945 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1946 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1947 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1948 err = -EINVAL; 1949 goto unlock; 1950 } 1951 1952 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1953 } 1954 1955 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1956 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1957 !hrtimer_active(&q->advance_timer)) { 1958 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1959 q->advance_timer.function = advance_sched; 1960 } 1961 1962 err = taprio_get_start_time(sch, new_admin, &start); 1963 if (err < 0) { 1964 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1965 goto unlock; 1966 } 1967 1968 setup_txtime(q, new_admin, start); 1969 1970 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1971 if (!oper) { 1972 rcu_assign_pointer(q->oper_sched, new_admin); 1973 err = 0; 1974 new_admin = NULL; 1975 goto unlock; 1976 } 1977 1978 rcu_assign_pointer(q->admin_sched, new_admin); 1979 if (admin) 1980 call_rcu(&admin->rcu, taprio_free_sched_cb); 1981 } else { 1982 setup_first_end_time(q, new_admin, start); 1983 1984 /* Protects against advance_sched() */ 1985 spin_lock_irqsave(&q->current_entry_lock, flags); 1986 1987 taprio_start_sched(sch, start, new_admin); 1988 1989 rcu_assign_pointer(q->admin_sched, new_admin); 1990 if (admin) 1991 call_rcu(&admin->rcu, taprio_free_sched_cb); 1992 1993 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1994 1995 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1996 taprio_offload_config_changed(q); 1997 } 1998 1999 new_admin = NULL; 2000 err = 0; 2001 2002 if (!stab) 2003 NL_SET_ERR_MSG_MOD(extack, 2004 "Size table not specified, frame length estimations may be inaccurate"); 2005 2006 unlock: 2007 spin_unlock_bh(qdisc_lock(sch)); 2008 2009 free_sched: 2010 if (new_admin) 2011 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 2012 2013 return err; 2014 } 2015 2016 static void taprio_reset(struct Qdisc *sch) 2017 { 2018 struct taprio_sched *q = qdisc_priv(sch); 2019 struct net_device *dev = qdisc_dev(sch); 2020 int i; 2021 2022 hrtimer_cancel(&q->advance_timer); 2023 2024 if (q->qdiscs) { 2025 for (i = 0; i < dev->num_tx_queues; i++) 2026 if (q->qdiscs[i]) 2027 qdisc_reset(q->qdiscs[i]); 2028 } 2029 } 2030 2031 static void taprio_destroy(struct Qdisc *sch) 2032 { 2033 struct taprio_sched *q = qdisc_priv(sch); 2034 struct net_device *dev = qdisc_dev(sch); 2035 struct sched_gate_list *oper, *admin; 2036 unsigned int i; 2037 2038 list_del(&q->taprio_list); 2039 2040 /* Note that taprio_reset() might not be called if an error 2041 * happens in qdisc_create(), after taprio_init() has been called. 2042 */ 2043 hrtimer_cancel(&q->advance_timer); 2044 qdisc_synchronize(sch); 2045 2046 taprio_disable_offload(dev, q, NULL); 2047 2048 if (q->qdiscs) { 2049 for (i = 0; i < dev->num_tx_queues; i++) 2050 qdisc_put(q->qdiscs[i]); 2051 2052 kfree(q->qdiscs); 2053 } 2054 q->qdiscs = NULL; 2055 2056 netdev_reset_tc(dev); 2057 2058 oper = rtnl_dereference(q->oper_sched); 2059 admin = rtnl_dereference(q->admin_sched); 2060 2061 if (oper) 2062 call_rcu(&oper->rcu, taprio_free_sched_cb); 2063 2064 if (admin) 2065 call_rcu(&admin->rcu, taprio_free_sched_cb); 2066 2067 taprio_cleanup_broken_mqprio(q); 2068 } 2069 2070 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 2071 struct netlink_ext_ack *extack) 2072 { 2073 struct taprio_sched *q = qdisc_priv(sch); 2074 struct net_device *dev = qdisc_dev(sch); 2075 int i, tc; 2076 2077 spin_lock_init(&q->current_entry_lock); 2078 2079 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 2080 q->advance_timer.function = advance_sched; 2081 2082 q->root = sch; 2083 2084 /* We only support static clockids. Use an invalid value as default 2085 * and get the valid one on taprio_change(). 2086 */ 2087 q->clockid = -1; 2088 q->flags = TAPRIO_FLAGS_INVALID; 2089 2090 list_add(&q->taprio_list, &taprio_list); 2091 2092 if (sch->parent != TC_H_ROOT) { 2093 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); 2094 return -EOPNOTSUPP; 2095 } 2096 2097 if (!netif_is_multiqueue(dev)) { 2098 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); 2099 return -EOPNOTSUPP; 2100 } 2101 2102 q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]), 2103 GFP_KERNEL); 2104 if (!q->qdiscs) 2105 return -ENOMEM; 2106 2107 if (!opt) 2108 return -EINVAL; 2109 2110 for (i = 0; i < dev->num_tx_queues; i++) { 2111 struct netdev_queue *dev_queue; 2112 struct Qdisc *qdisc; 2113 2114 dev_queue = netdev_get_tx_queue(dev, i); 2115 qdisc = qdisc_create_dflt(dev_queue, 2116 &pfifo_qdisc_ops, 2117 TC_H_MAKE(TC_H_MAJ(sch->handle), 2118 TC_H_MIN(i + 1)), 2119 extack); 2120 if (!qdisc) 2121 return -ENOMEM; 2122 2123 if (i < dev->real_num_tx_queues) 2124 qdisc_hash_add(qdisc, false); 2125 2126 q->qdiscs[i] = qdisc; 2127 } 2128 2129 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) 2130 q->fp[tc] = TC_FP_EXPRESS; 2131 2132 taprio_detect_broken_mqprio(q); 2133 2134 return taprio_change(sch, opt, extack); 2135 } 2136 2137 static void taprio_attach(struct Qdisc *sch) 2138 { 2139 struct taprio_sched *q = qdisc_priv(sch); 2140 struct net_device *dev = qdisc_dev(sch); 2141 unsigned int ntx; 2142 2143 /* Attach underlying qdisc */ 2144 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 2145 struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx); 2146 struct Qdisc *old, *dev_queue_qdisc; 2147 2148 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2149 struct Qdisc *qdisc = q->qdiscs[ntx]; 2150 2151 /* In offload mode, the root taprio qdisc is bypassed 2152 * and the netdev TX queues see the children directly 2153 */ 2154 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2155 dev_queue_qdisc = qdisc; 2156 } else { 2157 /* In software mode, attach the root taprio qdisc 2158 * to all netdev TX queues, so that dev_qdisc_enqueue() 2159 * goes through taprio_enqueue(). 2160 */ 2161 dev_queue_qdisc = sch; 2162 } 2163 old = dev_graft_qdisc(dev_queue, dev_queue_qdisc); 2164 /* The qdisc's refcount requires to be elevated once 2165 * for each netdev TX queue it is grafted onto 2166 */ 2167 qdisc_refcount_inc(dev_queue_qdisc); 2168 if (old) 2169 qdisc_put(old); 2170 } 2171 } 2172 2173 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 2174 unsigned long cl) 2175 { 2176 struct net_device *dev = qdisc_dev(sch); 2177 unsigned long ntx = cl - 1; 2178 2179 if (ntx >= dev->num_tx_queues) 2180 return NULL; 2181 2182 return netdev_get_tx_queue(dev, ntx); 2183 } 2184 2185 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 2186 struct Qdisc *new, struct Qdisc **old, 2187 struct netlink_ext_ack *extack) 2188 { 2189 struct taprio_sched *q = qdisc_priv(sch); 2190 struct net_device *dev = qdisc_dev(sch); 2191 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2192 2193 if (!dev_queue) 2194 return -EINVAL; 2195 2196 if (dev->flags & IFF_UP) 2197 dev_deactivate(dev); 2198 2199 /* In offload mode, the child Qdisc is directly attached to the netdev 2200 * TX queue, and thus, we need to keep its refcount elevated in order 2201 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue. 2202 * However, save the reference to the new qdisc in the private array in 2203 * both software and offload cases, to have an up-to-date reference to 2204 * our children. 2205 */ 2206 *old = q->qdiscs[cl - 1]; 2207 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2208 WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old); 2209 if (new) 2210 qdisc_refcount_inc(new); 2211 if (*old) 2212 qdisc_put(*old); 2213 } 2214 2215 q->qdiscs[cl - 1] = new; 2216 if (new) 2217 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2218 2219 if (dev->flags & IFF_UP) 2220 dev_activate(dev); 2221 2222 return 0; 2223 } 2224 2225 static int dump_entry(struct sk_buff *msg, 2226 const struct sched_entry *entry) 2227 { 2228 struct nlattr *item; 2229 2230 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 2231 if (!item) 2232 return -ENOSPC; 2233 2234 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 2235 goto nla_put_failure; 2236 2237 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 2238 goto nla_put_failure; 2239 2240 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 2241 entry->gate_mask)) 2242 goto nla_put_failure; 2243 2244 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 2245 entry->interval)) 2246 goto nla_put_failure; 2247 2248 return nla_nest_end(msg, item); 2249 2250 nla_put_failure: 2251 nla_nest_cancel(msg, item); 2252 return -1; 2253 } 2254 2255 static int dump_schedule(struct sk_buff *msg, 2256 const struct sched_gate_list *root) 2257 { 2258 struct nlattr *entry_list; 2259 struct sched_entry *entry; 2260 2261 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 2262 root->base_time, TCA_TAPRIO_PAD)) 2263 return -1; 2264 2265 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 2266 root->cycle_time, TCA_TAPRIO_PAD)) 2267 return -1; 2268 2269 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 2270 root->cycle_time_extension, TCA_TAPRIO_PAD)) 2271 return -1; 2272 2273 entry_list = nla_nest_start_noflag(msg, 2274 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 2275 if (!entry_list) 2276 goto error_nest; 2277 2278 list_for_each_entry(entry, &root->entries, list) { 2279 if (dump_entry(msg, entry) < 0) 2280 goto error_nest; 2281 } 2282 2283 nla_nest_end(msg, entry_list); 2284 return 0; 2285 2286 error_nest: 2287 nla_nest_cancel(msg, entry_list); 2288 return -1; 2289 } 2290 2291 static int taprio_dump_tc_entries(struct sk_buff *skb, 2292 struct taprio_sched *q, 2293 struct sched_gate_list *sched) 2294 { 2295 struct nlattr *n; 2296 int tc; 2297 2298 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 2299 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); 2300 if (!n) 2301 return -EMSGSIZE; 2302 2303 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) 2304 goto nla_put_failure; 2305 2306 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, 2307 sched->max_sdu[tc])) 2308 goto nla_put_failure; 2309 2310 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) 2311 goto nla_put_failure; 2312 2313 nla_nest_end(skb, n); 2314 } 2315 2316 return 0; 2317 2318 nla_put_failure: 2319 nla_nest_cancel(skb, n); 2320 return -EMSGSIZE; 2321 } 2322 2323 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) 2324 { 2325 if (val == TAPRIO_STAT_NOT_SET) 2326 return 0; 2327 if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD)) 2328 return -EMSGSIZE; 2329 return 0; 2330 } 2331 2332 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d, 2333 struct tc_taprio_qopt_offload *offload, 2334 struct tc_taprio_qopt_stats *stats) 2335 { 2336 struct net_device *dev = qdisc_dev(sch); 2337 const struct net_device_ops *ops; 2338 struct sk_buff *skb = d->skb; 2339 struct nlattr *xstats; 2340 int err; 2341 2342 ops = qdisc_dev(sch)->netdev_ops; 2343 2344 /* FIXME I could use qdisc_offload_dump_helper(), but that messes 2345 * with sch->flags depending on whether the device reports taprio 2346 * stats, and I'm not sure whether that's a good idea, considering 2347 * that stats are optional to the offload itself 2348 */ 2349 if (!ops->ndo_setup_tc) 2350 return 0; 2351 2352 memset(stats, 0xff, sizeof(*stats)); 2353 2354 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 2355 if (err == -EOPNOTSUPP) 2356 return 0; 2357 if (err) 2358 return err; 2359 2360 xstats = nla_nest_start(skb, TCA_STATS_APP); 2361 if (!xstats) 2362 goto err; 2363 2364 if (taprio_put_stat(skb, stats->window_drops, 2365 TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) || 2366 taprio_put_stat(skb, stats->tx_overruns, 2367 TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS)) 2368 goto err_cancel; 2369 2370 nla_nest_end(skb, xstats); 2371 2372 return 0; 2373 2374 err_cancel: 2375 nla_nest_cancel(skb, xstats); 2376 err: 2377 return -EMSGSIZE; 2378 } 2379 2380 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 2381 { 2382 struct tc_taprio_qopt_offload offload = { 2383 .cmd = TAPRIO_CMD_STATS, 2384 }; 2385 2386 return taprio_dump_xstats(sch, d, &offload, &offload.stats); 2387 } 2388 2389 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 2390 { 2391 struct taprio_sched *q = qdisc_priv(sch); 2392 struct net_device *dev = qdisc_dev(sch); 2393 struct sched_gate_list *oper, *admin; 2394 struct tc_mqprio_qopt opt = { 0 }; 2395 struct nlattr *nest, *sched_nest; 2396 2397 oper = rtnl_dereference(q->oper_sched); 2398 admin = rtnl_dereference(q->admin_sched); 2399 2400 mqprio_qopt_reconstruct(dev, &opt); 2401 2402 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 2403 if (!nest) 2404 goto start_error; 2405 2406 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 2407 goto options_error; 2408 2409 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 2410 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 2411 goto options_error; 2412 2413 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 2414 goto options_error; 2415 2416 if (q->txtime_delay && 2417 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 2418 goto options_error; 2419 2420 if (oper && taprio_dump_tc_entries(skb, q, oper)) 2421 goto options_error; 2422 2423 if (oper && dump_schedule(skb, oper)) 2424 goto options_error; 2425 2426 if (!admin) 2427 goto done; 2428 2429 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 2430 if (!sched_nest) 2431 goto options_error; 2432 2433 if (dump_schedule(skb, admin)) 2434 goto admin_error; 2435 2436 nla_nest_end(skb, sched_nest); 2437 2438 done: 2439 return nla_nest_end(skb, nest); 2440 2441 admin_error: 2442 nla_nest_cancel(skb, sched_nest); 2443 2444 options_error: 2445 nla_nest_cancel(skb, nest); 2446 2447 start_error: 2448 return -ENOSPC; 2449 } 2450 2451 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 2452 { 2453 struct taprio_sched *q = qdisc_priv(sch); 2454 struct net_device *dev = qdisc_dev(sch); 2455 unsigned int ntx = cl - 1; 2456 2457 if (ntx >= dev->num_tx_queues) 2458 return NULL; 2459 2460 return q->qdiscs[ntx]; 2461 } 2462 2463 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 2464 { 2465 unsigned int ntx = TC_H_MIN(classid); 2466 2467 if (!taprio_queue_get(sch, ntx)) 2468 return 0; 2469 return ntx; 2470 } 2471 2472 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 2473 struct sk_buff *skb, struct tcmsg *tcm) 2474 { 2475 struct Qdisc *child = taprio_leaf(sch, cl); 2476 2477 tcm->tcm_parent = TC_H_ROOT; 2478 tcm->tcm_handle |= TC_H_MIN(cl); 2479 tcm->tcm_info = child->handle; 2480 2481 return 0; 2482 } 2483 2484 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 2485 struct gnet_dump *d) 2486 __releases(d->lock) 2487 __acquires(d->lock) 2488 { 2489 struct Qdisc *child = taprio_leaf(sch, cl); 2490 struct tc_taprio_qopt_offload offload = { 2491 .cmd = TAPRIO_CMD_QUEUE_STATS, 2492 .queue_stats = { 2493 .queue = cl - 1, 2494 }, 2495 }; 2496 2497 if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 || 2498 qdisc_qstats_copy(d, child) < 0) 2499 return -1; 2500 2501 return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats); 2502 } 2503 2504 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 2505 { 2506 struct net_device *dev = qdisc_dev(sch); 2507 unsigned long ntx; 2508 2509 if (arg->stop) 2510 return; 2511 2512 arg->count = arg->skip; 2513 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2514 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) 2515 break; 2516 } 2517 } 2518 2519 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2520 struct tcmsg *tcm) 2521 { 2522 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2523 } 2524 2525 static const struct Qdisc_class_ops taprio_class_ops = { 2526 .graft = taprio_graft, 2527 .leaf = taprio_leaf, 2528 .find = taprio_find, 2529 .walk = taprio_walk, 2530 .dump = taprio_dump_class, 2531 .dump_stats = taprio_dump_class_stats, 2532 .select_queue = taprio_select_queue, 2533 }; 2534 2535 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2536 .cl_ops = &taprio_class_ops, 2537 .id = "taprio", 2538 .priv_size = sizeof(struct taprio_sched), 2539 .init = taprio_init, 2540 .change = taprio_change, 2541 .destroy = taprio_destroy, 2542 .reset = taprio_reset, 2543 .attach = taprio_attach, 2544 .peek = taprio_peek, 2545 .dequeue = taprio_dequeue, 2546 .enqueue = taprio_enqueue, 2547 .dump = taprio_dump, 2548 .dump_stats = taprio_dump_stats, 2549 .owner = THIS_MODULE, 2550 }; 2551 2552 static struct notifier_block taprio_device_notifier = { 2553 .notifier_call = taprio_dev_notifier, 2554 }; 2555 2556 static int __init taprio_module_init(void) 2557 { 2558 int err = register_netdevice_notifier(&taprio_device_notifier); 2559 2560 if (err) 2561 return err; 2562 2563 return register_qdisc(&taprio_qdisc_ops); 2564 } 2565 2566 static void __exit taprio_module_exit(void) 2567 { 2568 unregister_qdisc(&taprio_qdisc_ops); 2569 unregister_netdevice_notifier(&taprio_device_notifier); 2570 } 2571 2572 module_init(taprio_module_init); 2573 module_exit(taprio_module_exit); 2574 MODULE_LICENSE("GPL"); 2575