xref: /openbmc/linux/net/sched/sch_taprio.c (revision a5907065)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
23 #include <net/pkt_cls.h>
24 #include <net/sch_generic.h>
25 #include <net/sock.h>
26 #include <net/tcp.h>
27 
28 static LIST_HEAD(taprio_list);
29 static DEFINE_SPINLOCK(taprio_list_lock);
30 
31 #define TAPRIO_ALL_GATES_OPEN -1
32 
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
35 #define TAPRIO_FLAGS_INVALID U32_MAX
36 
37 struct sched_entry {
38 	struct list_head list;
39 
40 	/* The instant that this entry "closes" and the next one
41 	 * should open, the qdisc will make some effort so that no
42 	 * packet leaves after this time.
43 	 */
44 	ktime_t close_time;
45 	ktime_t next_txtime;
46 	atomic_t budget;
47 	int index;
48 	u32 gate_mask;
49 	u32 interval;
50 	u8 command;
51 };
52 
53 struct sched_gate_list {
54 	struct rcu_head rcu;
55 	struct list_head entries;
56 	size_t num_entries;
57 	ktime_t cycle_close_time;
58 	s64 cycle_time;
59 	s64 cycle_time_extension;
60 	s64 base_time;
61 };
62 
63 struct taprio_sched {
64 	struct Qdisc **qdiscs;
65 	struct Qdisc *root;
66 	u32 flags;
67 	enum tk_offsets tk_offset;
68 	int clockid;
69 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
70 				    * speeds it's sub-nanoseconds per byte
71 				    */
72 
73 	/* Protects the update side of the RCU protected current_entry */
74 	spinlock_t current_entry_lock;
75 	struct sched_entry __rcu *current_entry;
76 	struct sched_gate_list __rcu *oper_sched;
77 	struct sched_gate_list __rcu *admin_sched;
78 	struct hrtimer advance_timer;
79 	struct list_head taprio_list;
80 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
81 	struct sk_buff *(*peek)(struct Qdisc *sch);
82 	u32 txtime_delay;
83 };
84 
85 struct __tc_taprio_qopt_offload {
86 	refcount_t users;
87 	struct tc_taprio_qopt_offload offload;
88 };
89 
90 static ktime_t sched_base_time(const struct sched_gate_list *sched)
91 {
92 	if (!sched)
93 		return KTIME_MAX;
94 
95 	return ns_to_ktime(sched->base_time);
96 }
97 
98 static ktime_t taprio_get_time(struct taprio_sched *q)
99 {
100 	ktime_t mono = ktime_get();
101 
102 	switch (q->tk_offset) {
103 	case TK_OFFS_MAX:
104 		return mono;
105 	default:
106 		return ktime_mono_to_any(mono, q->tk_offset);
107 	}
108 
109 	return KTIME_MAX;
110 }
111 
112 static void taprio_free_sched_cb(struct rcu_head *head)
113 {
114 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
115 	struct sched_entry *entry, *n;
116 
117 	if (!sched)
118 		return;
119 
120 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
121 		list_del(&entry->list);
122 		kfree(entry);
123 	}
124 
125 	kfree(sched);
126 }
127 
128 static void switch_schedules(struct taprio_sched *q,
129 			     struct sched_gate_list **admin,
130 			     struct sched_gate_list **oper)
131 {
132 	rcu_assign_pointer(q->oper_sched, *admin);
133 	rcu_assign_pointer(q->admin_sched, NULL);
134 
135 	if (*oper)
136 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
137 
138 	*oper = *admin;
139 	*admin = NULL;
140 }
141 
142 /* Get how much time has been already elapsed in the current cycle. */
143 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
144 {
145 	ktime_t time_since_sched_start;
146 	s32 time_elapsed;
147 
148 	time_since_sched_start = ktime_sub(time, sched->base_time);
149 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
150 
151 	return time_elapsed;
152 }
153 
154 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
155 				     struct sched_gate_list *admin,
156 				     struct sched_entry *entry,
157 				     ktime_t intv_start)
158 {
159 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
160 	ktime_t intv_end, cycle_ext_end, cycle_end;
161 
162 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
163 	intv_end = ktime_add_ns(intv_start, entry->interval);
164 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
165 
166 	if (ktime_before(intv_end, cycle_end))
167 		return intv_end;
168 	else if (admin && admin != sched &&
169 		 ktime_after(admin->base_time, cycle_end) &&
170 		 ktime_before(admin->base_time, cycle_ext_end))
171 		return admin->base_time;
172 	else
173 		return cycle_end;
174 }
175 
176 static int length_to_duration(struct taprio_sched *q, int len)
177 {
178 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
179 }
180 
181 /* Returns the entry corresponding to next available interval. If
182  * validate_interval is set, it only validates whether the timestamp occurs
183  * when the gate corresponding to the skb's traffic class is open.
184  */
185 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
186 						  struct Qdisc *sch,
187 						  struct sched_gate_list *sched,
188 						  struct sched_gate_list *admin,
189 						  ktime_t time,
190 						  ktime_t *interval_start,
191 						  ktime_t *interval_end,
192 						  bool validate_interval)
193 {
194 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
195 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
196 	struct sched_entry *entry = NULL, *entry_found = NULL;
197 	struct taprio_sched *q = qdisc_priv(sch);
198 	struct net_device *dev = qdisc_dev(sch);
199 	bool entry_available = false;
200 	s32 cycle_elapsed;
201 	int tc, n;
202 
203 	tc = netdev_get_prio_tc_map(dev, skb->priority);
204 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
205 
206 	*interval_start = 0;
207 	*interval_end = 0;
208 
209 	if (!sched)
210 		return NULL;
211 
212 	cycle = sched->cycle_time;
213 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
214 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
215 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
216 
217 	list_for_each_entry(entry, &sched->entries, list) {
218 		curr_intv_start = curr_intv_end;
219 		curr_intv_end = get_interval_end_time(sched, admin, entry,
220 						      curr_intv_start);
221 
222 		if (ktime_after(curr_intv_start, cycle_end))
223 			break;
224 
225 		if (!(entry->gate_mask & BIT(tc)) ||
226 		    packet_transmit_time > entry->interval)
227 			continue;
228 
229 		txtime = entry->next_txtime;
230 
231 		if (ktime_before(txtime, time) || validate_interval) {
232 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
233 			if ((ktime_before(curr_intv_start, time) &&
234 			     ktime_before(transmit_end_time, curr_intv_end)) ||
235 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
236 				entry_found = entry;
237 				*interval_start = curr_intv_start;
238 				*interval_end = curr_intv_end;
239 				break;
240 			} else if (!entry_available && !validate_interval) {
241 				/* Here, we are just trying to find out the
242 				 * first available interval in the next cycle.
243 				 */
244 				entry_available = true;
245 				entry_found = entry;
246 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
247 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
248 			}
249 		} else if (ktime_before(txtime, earliest_txtime) &&
250 			   !entry_available) {
251 			earliest_txtime = txtime;
252 			entry_found = entry;
253 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
254 			*interval_start = ktime_add(curr_intv_start, n * cycle);
255 			*interval_end = ktime_add(curr_intv_end, n * cycle);
256 		}
257 	}
258 
259 	return entry_found;
260 }
261 
262 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
263 {
264 	struct taprio_sched *q = qdisc_priv(sch);
265 	struct sched_gate_list *sched, *admin;
266 	ktime_t interval_start, interval_end;
267 	struct sched_entry *entry;
268 
269 	rcu_read_lock();
270 	sched = rcu_dereference(q->oper_sched);
271 	admin = rcu_dereference(q->admin_sched);
272 
273 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
274 				       &interval_start, &interval_end, true);
275 	rcu_read_unlock();
276 
277 	return entry;
278 }
279 
280 static bool taprio_flags_valid(u32 flags)
281 {
282 	/* Make sure no other flag bits are set. */
283 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
284 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
285 		return false;
286 	/* txtime-assist and full offload are mutually exclusive */
287 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
288 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
289 		return false;
290 	return true;
291 }
292 
293 /* This returns the tstamp value set by TCP in terms of the set clock. */
294 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
295 {
296 	unsigned int offset = skb_network_offset(skb);
297 	const struct ipv6hdr *ipv6h;
298 	const struct iphdr *iph;
299 	struct ipv6hdr _ipv6h;
300 
301 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
302 	if (!ipv6h)
303 		return 0;
304 
305 	if (ipv6h->version == 4) {
306 		iph = (struct iphdr *)ipv6h;
307 		offset += iph->ihl * 4;
308 
309 		/* special-case 6in4 tunnelling, as that is a common way to get
310 		 * v6 connectivity in the home
311 		 */
312 		if (iph->protocol == IPPROTO_IPV6) {
313 			ipv6h = skb_header_pointer(skb, offset,
314 						   sizeof(_ipv6h), &_ipv6h);
315 
316 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
317 				return 0;
318 		} else if (iph->protocol != IPPROTO_TCP) {
319 			return 0;
320 		}
321 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
322 		return 0;
323 	}
324 
325 	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
326 }
327 
328 /* There are a few scenarios where we will have to modify the txtime from
329  * what is read from next_txtime in sched_entry. They are:
330  * 1. If txtime is in the past,
331  *    a. The gate for the traffic class is currently open and packet can be
332  *       transmitted before it closes, schedule the packet right away.
333  *    b. If the gate corresponding to the traffic class is going to open later
334  *       in the cycle, set the txtime of packet to the interval start.
335  * 2. If txtime is in the future, there are packets corresponding to the
336  *    current traffic class waiting to be transmitted. So, the following
337  *    possibilities exist:
338  *    a. We can transmit the packet before the window containing the txtime
339  *       closes.
340  *    b. The window might close before the transmission can be completed
341  *       successfully. So, schedule the packet in the next open window.
342  */
343 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
344 {
345 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
346 	struct taprio_sched *q = qdisc_priv(sch);
347 	struct sched_gate_list *sched, *admin;
348 	ktime_t minimum_time, now, txtime;
349 	int len, packet_transmit_time;
350 	struct sched_entry *entry;
351 	bool sched_changed;
352 
353 	now = taprio_get_time(q);
354 	minimum_time = ktime_add_ns(now, q->txtime_delay);
355 
356 	tcp_tstamp = get_tcp_tstamp(q, skb);
357 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
358 
359 	rcu_read_lock();
360 	admin = rcu_dereference(q->admin_sched);
361 	sched = rcu_dereference(q->oper_sched);
362 	if (admin && ktime_after(minimum_time, admin->base_time))
363 		switch_schedules(q, &admin, &sched);
364 
365 	/* Until the schedule starts, all the queues are open */
366 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
367 		txtime = minimum_time;
368 		goto done;
369 	}
370 
371 	len = qdisc_pkt_len(skb);
372 	packet_transmit_time = length_to_duration(q, len);
373 
374 	do {
375 		sched_changed = false;
376 
377 		entry = find_entry_to_transmit(skb, sch, sched, admin,
378 					       minimum_time,
379 					       &interval_start, &interval_end,
380 					       false);
381 		if (!entry) {
382 			txtime = 0;
383 			goto done;
384 		}
385 
386 		txtime = entry->next_txtime;
387 		txtime = max_t(ktime_t, txtime, minimum_time);
388 		txtime = max_t(ktime_t, txtime, interval_start);
389 
390 		if (admin && admin != sched &&
391 		    ktime_after(txtime, admin->base_time)) {
392 			sched = admin;
393 			sched_changed = true;
394 			continue;
395 		}
396 
397 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
398 		minimum_time = transmit_end_time;
399 
400 		/* Update the txtime of current entry to the next time it's
401 		 * interval starts.
402 		 */
403 		if (ktime_after(transmit_end_time, interval_end))
404 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
405 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
406 
407 	entry->next_txtime = transmit_end_time;
408 
409 done:
410 	rcu_read_unlock();
411 	return txtime;
412 }
413 
414 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
415 			  struct sk_buff **to_free)
416 {
417 	struct taprio_sched *q = qdisc_priv(sch);
418 	struct Qdisc *child;
419 	int queue;
420 
421 	queue = skb_get_queue_mapping(skb);
422 
423 	child = q->qdiscs[queue];
424 	if (unlikely(!child))
425 		return qdisc_drop(skb, sch, to_free);
426 
427 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
428 		if (!is_valid_interval(skb, sch))
429 			return qdisc_drop(skb, sch, to_free);
430 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
431 		skb->tstamp = get_packet_txtime(skb, sch);
432 		if (!skb->tstamp)
433 			return qdisc_drop(skb, sch, to_free);
434 	}
435 
436 	qdisc_qstats_backlog_inc(sch, skb);
437 	sch->q.qlen++;
438 
439 	return qdisc_enqueue(skb, child, to_free);
440 }
441 
442 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
443 {
444 	struct taprio_sched *q = qdisc_priv(sch);
445 	struct net_device *dev = qdisc_dev(sch);
446 	struct sched_entry *entry;
447 	struct sk_buff *skb;
448 	u32 gate_mask;
449 	int i;
450 
451 	rcu_read_lock();
452 	entry = rcu_dereference(q->current_entry);
453 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
454 	rcu_read_unlock();
455 
456 	if (!gate_mask)
457 		return NULL;
458 
459 	for (i = 0; i < dev->num_tx_queues; i++) {
460 		struct Qdisc *child = q->qdiscs[i];
461 		int prio;
462 		u8 tc;
463 
464 		if (unlikely(!child))
465 			continue;
466 
467 		skb = child->ops->peek(child);
468 		if (!skb)
469 			continue;
470 
471 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
472 			return skb;
473 
474 		prio = skb->priority;
475 		tc = netdev_get_prio_tc_map(dev, prio);
476 
477 		if (!(gate_mask & BIT(tc)))
478 			continue;
479 
480 		return skb;
481 	}
482 
483 	return NULL;
484 }
485 
486 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
487 {
488 	struct taprio_sched *q = qdisc_priv(sch);
489 	struct net_device *dev = qdisc_dev(sch);
490 	struct sk_buff *skb;
491 	int i;
492 
493 	for (i = 0; i < dev->num_tx_queues; i++) {
494 		struct Qdisc *child = q->qdiscs[i];
495 
496 		if (unlikely(!child))
497 			continue;
498 
499 		skb = child->ops->peek(child);
500 		if (!skb)
501 			continue;
502 
503 		return skb;
504 	}
505 
506 	return NULL;
507 }
508 
509 static struct sk_buff *taprio_peek(struct Qdisc *sch)
510 {
511 	struct taprio_sched *q = qdisc_priv(sch);
512 
513 	return q->peek(sch);
514 }
515 
516 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
517 {
518 	atomic_set(&entry->budget,
519 		   div64_u64((u64)entry->interval * 1000,
520 			     atomic64_read(&q->picos_per_byte)));
521 }
522 
523 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
524 {
525 	struct taprio_sched *q = qdisc_priv(sch);
526 	struct net_device *dev = qdisc_dev(sch);
527 	struct sk_buff *skb = NULL;
528 	struct sched_entry *entry;
529 	u32 gate_mask;
530 	int i;
531 
532 	rcu_read_lock();
533 	entry = rcu_dereference(q->current_entry);
534 	/* if there's no entry, it means that the schedule didn't
535 	 * start yet, so force all gates to be open, this is in
536 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
537 	 * "AdminGateSates"
538 	 */
539 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
540 
541 	if (!gate_mask)
542 		goto done;
543 
544 	for (i = 0; i < dev->num_tx_queues; i++) {
545 		struct Qdisc *child = q->qdiscs[i];
546 		ktime_t guard;
547 		int prio;
548 		int len;
549 		u8 tc;
550 
551 		if (unlikely(!child))
552 			continue;
553 
554 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
555 			skb = child->ops->dequeue(child);
556 			if (!skb)
557 				continue;
558 			goto skb_found;
559 		}
560 
561 		skb = child->ops->peek(child);
562 		if (!skb)
563 			continue;
564 
565 		prio = skb->priority;
566 		tc = netdev_get_prio_tc_map(dev, prio);
567 
568 		if (!(gate_mask & BIT(tc))) {
569 			skb = NULL;
570 			continue;
571 		}
572 
573 		len = qdisc_pkt_len(skb);
574 		guard = ktime_add_ns(taprio_get_time(q),
575 				     length_to_duration(q, len));
576 
577 		/* In the case that there's no gate entry, there's no
578 		 * guard band ...
579 		 */
580 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
581 		    ktime_after(guard, entry->close_time)) {
582 			skb = NULL;
583 			continue;
584 		}
585 
586 		/* ... and no budget. */
587 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
588 		    atomic_sub_return(len, &entry->budget) < 0) {
589 			skb = NULL;
590 			continue;
591 		}
592 
593 		skb = child->ops->dequeue(child);
594 		if (unlikely(!skb))
595 			goto done;
596 
597 skb_found:
598 		qdisc_bstats_update(sch, skb);
599 		qdisc_qstats_backlog_dec(sch, skb);
600 		sch->q.qlen--;
601 
602 		goto done;
603 	}
604 
605 done:
606 	rcu_read_unlock();
607 
608 	return skb;
609 }
610 
611 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
612 {
613 	struct taprio_sched *q = qdisc_priv(sch);
614 	struct net_device *dev = qdisc_dev(sch);
615 	struct sk_buff *skb;
616 	int i;
617 
618 	for (i = 0; i < dev->num_tx_queues; i++) {
619 		struct Qdisc *child = q->qdiscs[i];
620 
621 		if (unlikely(!child))
622 			continue;
623 
624 		skb = child->ops->dequeue(child);
625 		if (unlikely(!skb))
626 			continue;
627 
628 		qdisc_bstats_update(sch, skb);
629 		qdisc_qstats_backlog_dec(sch, skb);
630 		sch->q.qlen--;
631 
632 		return skb;
633 	}
634 
635 	return NULL;
636 }
637 
638 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
639 {
640 	struct taprio_sched *q = qdisc_priv(sch);
641 
642 	return q->dequeue(sch);
643 }
644 
645 static bool should_restart_cycle(const struct sched_gate_list *oper,
646 				 const struct sched_entry *entry)
647 {
648 	if (list_is_last(&entry->list, &oper->entries))
649 		return true;
650 
651 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
652 		return true;
653 
654 	return false;
655 }
656 
657 static bool should_change_schedules(const struct sched_gate_list *admin,
658 				    const struct sched_gate_list *oper,
659 				    ktime_t close_time)
660 {
661 	ktime_t next_base_time, extension_time;
662 
663 	if (!admin)
664 		return false;
665 
666 	next_base_time = sched_base_time(admin);
667 
668 	/* This is the simple case, the close_time would fall after
669 	 * the next schedule base_time.
670 	 */
671 	if (ktime_compare(next_base_time, close_time) <= 0)
672 		return true;
673 
674 	/* This is the cycle_time_extension case, if the close_time
675 	 * plus the amount that can be extended would fall after the
676 	 * next schedule base_time, we can extend the current schedule
677 	 * for that amount.
678 	 */
679 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
680 
681 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
682 	 * how precisely the extension should be made. So after
683 	 * conformance testing, this logic may change.
684 	 */
685 	if (ktime_compare(next_base_time, extension_time) <= 0)
686 		return true;
687 
688 	return false;
689 }
690 
691 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
692 {
693 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
694 					      advance_timer);
695 	struct sched_gate_list *oper, *admin;
696 	struct sched_entry *entry, *next;
697 	struct Qdisc *sch = q->root;
698 	ktime_t close_time;
699 
700 	spin_lock(&q->current_entry_lock);
701 	entry = rcu_dereference_protected(q->current_entry,
702 					  lockdep_is_held(&q->current_entry_lock));
703 	oper = rcu_dereference_protected(q->oper_sched,
704 					 lockdep_is_held(&q->current_entry_lock));
705 	admin = rcu_dereference_protected(q->admin_sched,
706 					  lockdep_is_held(&q->current_entry_lock));
707 
708 	if (!oper)
709 		switch_schedules(q, &admin, &oper);
710 
711 	/* This can happen in two cases: 1. this is the very first run
712 	 * of this function (i.e. we weren't running any schedule
713 	 * previously); 2. The previous schedule just ended. The first
714 	 * entry of all schedules are pre-calculated during the
715 	 * schedule initialization.
716 	 */
717 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
718 		next = list_first_entry(&oper->entries, struct sched_entry,
719 					list);
720 		close_time = next->close_time;
721 		goto first_run;
722 	}
723 
724 	if (should_restart_cycle(oper, entry)) {
725 		next = list_first_entry(&oper->entries, struct sched_entry,
726 					list);
727 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
728 						      oper->cycle_time);
729 	} else {
730 		next = list_next_entry(entry, list);
731 	}
732 
733 	close_time = ktime_add_ns(entry->close_time, next->interval);
734 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
735 
736 	if (should_change_schedules(admin, oper, close_time)) {
737 		/* Set things so the next time this runs, the new
738 		 * schedule runs.
739 		 */
740 		close_time = sched_base_time(admin);
741 		switch_schedules(q, &admin, &oper);
742 	}
743 
744 	next->close_time = close_time;
745 	taprio_set_budget(q, next);
746 
747 first_run:
748 	rcu_assign_pointer(q->current_entry, next);
749 	spin_unlock(&q->current_entry_lock);
750 
751 	hrtimer_set_expires(&q->advance_timer, close_time);
752 
753 	rcu_read_lock();
754 	__netif_schedule(sch);
755 	rcu_read_unlock();
756 
757 	return HRTIMER_RESTART;
758 }
759 
760 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
761 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
762 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
763 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
764 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
765 };
766 
767 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
768 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
769 		.len = sizeof(struct tc_mqprio_qopt)
770 	},
771 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
772 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
773 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
774 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
775 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
776 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
777 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
778 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
779 };
780 
781 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
782 			    struct sched_entry *entry,
783 			    struct netlink_ext_ack *extack)
784 {
785 	int min_duration = length_to_duration(q, ETH_ZLEN);
786 	u32 interval = 0;
787 
788 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
789 		entry->command = nla_get_u8(
790 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
791 
792 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
793 		entry->gate_mask = nla_get_u32(
794 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
795 
796 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
797 		interval = nla_get_u32(
798 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
799 
800 	/* The interval should allow at least the minimum ethernet
801 	 * frame to go out.
802 	 */
803 	if (interval < min_duration) {
804 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
805 		return -EINVAL;
806 	}
807 
808 	entry->interval = interval;
809 
810 	return 0;
811 }
812 
813 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
814 			     struct sched_entry *entry, int index,
815 			     struct netlink_ext_ack *extack)
816 {
817 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
818 	int err;
819 
820 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
821 					  entry_policy, NULL);
822 	if (err < 0) {
823 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
824 		return -EINVAL;
825 	}
826 
827 	entry->index = index;
828 
829 	return fill_sched_entry(q, tb, entry, extack);
830 }
831 
832 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
833 			    struct sched_gate_list *sched,
834 			    struct netlink_ext_ack *extack)
835 {
836 	struct nlattr *n;
837 	int err, rem;
838 	int i = 0;
839 
840 	if (!list)
841 		return -EINVAL;
842 
843 	nla_for_each_nested(n, list, rem) {
844 		struct sched_entry *entry;
845 
846 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
847 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
848 			continue;
849 		}
850 
851 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
852 		if (!entry) {
853 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
854 			return -ENOMEM;
855 		}
856 
857 		err = parse_sched_entry(q, n, entry, i, extack);
858 		if (err < 0) {
859 			kfree(entry);
860 			return err;
861 		}
862 
863 		list_add_tail(&entry->list, &sched->entries);
864 		i++;
865 	}
866 
867 	sched->num_entries = i;
868 
869 	return i;
870 }
871 
872 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
873 				 struct sched_gate_list *new,
874 				 struct netlink_ext_ack *extack)
875 {
876 	int err = 0;
877 
878 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
879 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
880 		return -ENOTSUPP;
881 	}
882 
883 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
884 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
885 
886 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
887 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
888 
889 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
890 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
891 
892 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
893 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
894 				       new, extack);
895 	if (err < 0)
896 		return err;
897 
898 	if (!new->cycle_time) {
899 		struct sched_entry *entry;
900 		ktime_t cycle = 0;
901 
902 		list_for_each_entry(entry, &new->entries, list)
903 			cycle = ktime_add_ns(cycle, entry->interval);
904 		new->cycle_time = cycle;
905 	}
906 
907 	return 0;
908 }
909 
910 static int taprio_parse_mqprio_opt(struct net_device *dev,
911 				   struct tc_mqprio_qopt *qopt,
912 				   struct netlink_ext_ack *extack,
913 				   u32 taprio_flags)
914 {
915 	int i, j;
916 
917 	if (!qopt && !dev->num_tc) {
918 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
919 		return -EINVAL;
920 	}
921 
922 	/* If num_tc is already set, it means that the user already
923 	 * configured the mqprio part
924 	 */
925 	if (dev->num_tc)
926 		return 0;
927 
928 	/* Verify num_tc is not out of max range */
929 	if (qopt->num_tc > TC_MAX_QUEUE) {
930 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
931 		return -EINVAL;
932 	}
933 
934 	/* taprio imposes that traffic classes map 1:n to tx queues */
935 	if (qopt->num_tc > dev->num_tx_queues) {
936 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
937 		return -EINVAL;
938 	}
939 
940 	/* Verify priority mapping uses valid tcs */
941 	for (i = 0; i <= TC_BITMASK; i++) {
942 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
943 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
944 			return -EINVAL;
945 		}
946 	}
947 
948 	for (i = 0; i < qopt->num_tc; i++) {
949 		unsigned int last = qopt->offset[i] + qopt->count[i];
950 
951 		/* Verify the queue count is in tx range being equal to the
952 		 * real_num_tx_queues indicates the last queue is in use.
953 		 */
954 		if (qopt->offset[i] >= dev->num_tx_queues ||
955 		    !qopt->count[i] ||
956 		    last > dev->real_num_tx_queues) {
957 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
958 			return -EINVAL;
959 		}
960 
961 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
962 			continue;
963 
964 		/* Verify that the offset and counts do not overlap */
965 		for (j = i + 1; j < qopt->num_tc; j++) {
966 			if (last > qopt->offset[j]) {
967 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
968 				return -EINVAL;
969 			}
970 		}
971 	}
972 
973 	return 0;
974 }
975 
976 static int taprio_get_start_time(struct Qdisc *sch,
977 				 struct sched_gate_list *sched,
978 				 ktime_t *start)
979 {
980 	struct taprio_sched *q = qdisc_priv(sch);
981 	ktime_t now, base, cycle;
982 	s64 n;
983 
984 	base = sched_base_time(sched);
985 	now = taprio_get_time(q);
986 
987 	if (ktime_after(base, now)) {
988 		*start = base;
989 		return 0;
990 	}
991 
992 	cycle = sched->cycle_time;
993 
994 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
995 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
996 	 * something went really wrong. In that case, we should warn about this
997 	 * inconsistent state and return error.
998 	 */
999 	if (WARN_ON(!cycle))
1000 		return -EFAULT;
1001 
1002 	/* Schedule the start time for the beginning of the next
1003 	 * cycle.
1004 	 */
1005 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1006 	*start = ktime_add_ns(base, (n + 1) * cycle);
1007 	return 0;
1008 }
1009 
1010 static void setup_first_close_time(struct taprio_sched *q,
1011 				   struct sched_gate_list *sched, ktime_t base)
1012 {
1013 	struct sched_entry *first;
1014 	ktime_t cycle;
1015 
1016 	first = list_first_entry(&sched->entries,
1017 				 struct sched_entry, list);
1018 
1019 	cycle = sched->cycle_time;
1020 
1021 	/* FIXME: find a better place to do this */
1022 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1023 
1024 	first->close_time = ktime_add_ns(base, first->interval);
1025 	taprio_set_budget(q, first);
1026 	rcu_assign_pointer(q->current_entry, NULL);
1027 }
1028 
1029 static void taprio_start_sched(struct Qdisc *sch,
1030 			       ktime_t start, struct sched_gate_list *new)
1031 {
1032 	struct taprio_sched *q = qdisc_priv(sch);
1033 	ktime_t expires;
1034 
1035 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1036 		return;
1037 
1038 	expires = hrtimer_get_expires(&q->advance_timer);
1039 	if (expires == 0)
1040 		expires = KTIME_MAX;
1041 
1042 	/* If the new schedule starts before the next expiration, we
1043 	 * reprogram it to the earliest one, so we change the admin
1044 	 * schedule to the operational one at the right time.
1045 	 */
1046 	start = min_t(ktime_t, start, expires);
1047 
1048 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1049 }
1050 
1051 static void taprio_set_picos_per_byte(struct net_device *dev,
1052 				      struct taprio_sched *q)
1053 {
1054 	struct ethtool_link_ksettings ecmd;
1055 	int speed = SPEED_10;
1056 	int picos_per_byte;
1057 	int err;
1058 
1059 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1060 	if (err < 0)
1061 		goto skip;
1062 
1063 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1064 		speed = ecmd.base.speed;
1065 
1066 skip:
1067 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1068 
1069 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1070 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1071 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1072 		   ecmd.base.speed);
1073 }
1074 
1075 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1076 			       void *ptr)
1077 {
1078 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1079 	struct net_device *qdev;
1080 	struct taprio_sched *q;
1081 	bool found = false;
1082 
1083 	ASSERT_RTNL();
1084 
1085 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1086 		return NOTIFY_DONE;
1087 
1088 	spin_lock(&taprio_list_lock);
1089 	list_for_each_entry(q, &taprio_list, taprio_list) {
1090 		qdev = qdisc_dev(q->root);
1091 		if (qdev == dev) {
1092 			found = true;
1093 			break;
1094 		}
1095 	}
1096 	spin_unlock(&taprio_list_lock);
1097 
1098 	if (found)
1099 		taprio_set_picos_per_byte(dev, q);
1100 
1101 	return NOTIFY_DONE;
1102 }
1103 
1104 static void setup_txtime(struct taprio_sched *q,
1105 			 struct sched_gate_list *sched, ktime_t base)
1106 {
1107 	struct sched_entry *entry;
1108 	u32 interval = 0;
1109 
1110 	list_for_each_entry(entry, &sched->entries, list) {
1111 		entry->next_txtime = ktime_add_ns(base, interval);
1112 		interval += entry->interval;
1113 	}
1114 }
1115 
1116 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1117 {
1118 	struct __tc_taprio_qopt_offload *__offload;
1119 
1120 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1121 			    GFP_KERNEL);
1122 	if (!__offload)
1123 		return NULL;
1124 
1125 	refcount_set(&__offload->users, 1);
1126 
1127 	return &__offload->offload;
1128 }
1129 
1130 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1131 						  *offload)
1132 {
1133 	struct __tc_taprio_qopt_offload *__offload;
1134 
1135 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1136 				 offload);
1137 
1138 	refcount_inc(&__offload->users);
1139 
1140 	return offload;
1141 }
1142 EXPORT_SYMBOL_GPL(taprio_offload_get);
1143 
1144 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1145 {
1146 	struct __tc_taprio_qopt_offload *__offload;
1147 
1148 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1149 				 offload);
1150 
1151 	if (!refcount_dec_and_test(&__offload->users))
1152 		return;
1153 
1154 	kfree(__offload);
1155 }
1156 EXPORT_SYMBOL_GPL(taprio_offload_free);
1157 
1158 /* The function will only serve to keep the pointers to the "oper" and "admin"
1159  * schedules valid in relation to their base times, so when calling dump() the
1160  * users looks at the right schedules.
1161  * When using full offload, the admin configuration is promoted to oper at the
1162  * base_time in the PHC time domain.  But because the system time is not
1163  * necessarily in sync with that, we can't just trigger a hrtimer to call
1164  * switch_schedules at the right hardware time.
1165  * At the moment we call this by hand right away from taprio, but in the future
1166  * it will be useful to create a mechanism for drivers to notify taprio of the
1167  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1168  * This is left as TODO.
1169  */
1170 static void taprio_offload_config_changed(struct taprio_sched *q)
1171 {
1172 	struct sched_gate_list *oper, *admin;
1173 
1174 	spin_lock(&q->current_entry_lock);
1175 
1176 	oper = rcu_dereference_protected(q->oper_sched,
1177 					 lockdep_is_held(&q->current_entry_lock));
1178 	admin = rcu_dereference_protected(q->admin_sched,
1179 					  lockdep_is_held(&q->current_entry_lock));
1180 
1181 	switch_schedules(q, &admin, &oper);
1182 
1183 	spin_unlock(&q->current_entry_lock);
1184 }
1185 
1186 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1187 {
1188 	u32 i, queue_mask = 0;
1189 
1190 	for (i = 0; i < dev->num_tc; i++) {
1191 		u32 offset, count;
1192 
1193 		if (!(tc_mask & BIT(i)))
1194 			continue;
1195 
1196 		offset = dev->tc_to_txq[i].offset;
1197 		count = dev->tc_to_txq[i].count;
1198 
1199 		queue_mask |= GENMASK(offset + count - 1, offset);
1200 	}
1201 
1202 	return queue_mask;
1203 }
1204 
1205 static void taprio_sched_to_offload(struct net_device *dev,
1206 				    struct sched_gate_list *sched,
1207 				    struct tc_taprio_qopt_offload *offload)
1208 {
1209 	struct sched_entry *entry;
1210 	int i = 0;
1211 
1212 	offload->base_time = sched->base_time;
1213 	offload->cycle_time = sched->cycle_time;
1214 	offload->cycle_time_extension = sched->cycle_time_extension;
1215 
1216 	list_for_each_entry(entry, &sched->entries, list) {
1217 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1218 
1219 		e->command = entry->command;
1220 		e->interval = entry->interval;
1221 		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1222 
1223 		i++;
1224 	}
1225 
1226 	offload->num_entries = i;
1227 }
1228 
1229 static int taprio_enable_offload(struct net_device *dev,
1230 				 struct taprio_sched *q,
1231 				 struct sched_gate_list *sched,
1232 				 struct netlink_ext_ack *extack)
1233 {
1234 	const struct net_device_ops *ops = dev->netdev_ops;
1235 	struct tc_taprio_qopt_offload *offload;
1236 	int err = 0;
1237 
1238 	if (!ops->ndo_setup_tc) {
1239 		NL_SET_ERR_MSG(extack,
1240 			       "Device does not support taprio offload");
1241 		return -EOPNOTSUPP;
1242 	}
1243 
1244 	offload = taprio_offload_alloc(sched->num_entries);
1245 	if (!offload) {
1246 		NL_SET_ERR_MSG(extack,
1247 			       "Not enough memory for enabling offload mode");
1248 		return -ENOMEM;
1249 	}
1250 	offload->enable = 1;
1251 	taprio_sched_to_offload(dev, sched, offload);
1252 
1253 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1254 	if (err < 0) {
1255 		NL_SET_ERR_MSG(extack,
1256 			       "Device failed to setup taprio offload");
1257 		goto done;
1258 	}
1259 
1260 done:
1261 	taprio_offload_free(offload);
1262 
1263 	return err;
1264 }
1265 
1266 static int taprio_disable_offload(struct net_device *dev,
1267 				  struct taprio_sched *q,
1268 				  struct netlink_ext_ack *extack)
1269 {
1270 	const struct net_device_ops *ops = dev->netdev_ops;
1271 	struct tc_taprio_qopt_offload *offload;
1272 	int err;
1273 
1274 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1275 		return 0;
1276 
1277 	if (!ops->ndo_setup_tc)
1278 		return -EOPNOTSUPP;
1279 
1280 	offload = taprio_offload_alloc(0);
1281 	if (!offload) {
1282 		NL_SET_ERR_MSG(extack,
1283 			       "Not enough memory to disable offload mode");
1284 		return -ENOMEM;
1285 	}
1286 	offload->enable = 0;
1287 
1288 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1289 	if (err < 0) {
1290 		NL_SET_ERR_MSG(extack,
1291 			       "Device failed to disable offload");
1292 		goto out;
1293 	}
1294 
1295 out:
1296 	taprio_offload_free(offload);
1297 
1298 	return err;
1299 }
1300 
1301 /* If full offload is enabled, the only possible clockid is the net device's
1302  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1303  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1304  * in sync with the specified clockid via a user space daemon such as phc2sys.
1305  * For both software taprio and txtime-assist, the clockid is used for the
1306  * hrtimer that advances the schedule and hence mandatory.
1307  */
1308 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1309 				struct netlink_ext_ack *extack)
1310 {
1311 	struct taprio_sched *q = qdisc_priv(sch);
1312 	struct net_device *dev = qdisc_dev(sch);
1313 	int err = -EINVAL;
1314 
1315 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1316 		const struct ethtool_ops *ops = dev->ethtool_ops;
1317 		struct ethtool_ts_info info = {
1318 			.cmd = ETHTOOL_GET_TS_INFO,
1319 			.phc_index = -1,
1320 		};
1321 
1322 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1323 			NL_SET_ERR_MSG(extack,
1324 				       "The 'clockid' cannot be specified for full offload");
1325 			goto out;
1326 		}
1327 
1328 		if (ops && ops->get_ts_info)
1329 			err = ops->get_ts_info(dev, &info);
1330 
1331 		if (err || info.phc_index < 0) {
1332 			NL_SET_ERR_MSG(extack,
1333 				       "Device does not have a PTP clock");
1334 			err = -ENOTSUPP;
1335 			goto out;
1336 		}
1337 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1338 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1339 
1340 		/* We only support static clockids and we don't allow
1341 		 * for it to be modified after the first init.
1342 		 */
1343 		if (clockid < 0 ||
1344 		    (q->clockid != -1 && q->clockid != clockid)) {
1345 			NL_SET_ERR_MSG(extack,
1346 				       "Changing the 'clockid' of a running schedule is not supported");
1347 			err = -ENOTSUPP;
1348 			goto out;
1349 		}
1350 
1351 		switch (clockid) {
1352 		case CLOCK_REALTIME:
1353 			q->tk_offset = TK_OFFS_REAL;
1354 			break;
1355 		case CLOCK_MONOTONIC:
1356 			q->tk_offset = TK_OFFS_MAX;
1357 			break;
1358 		case CLOCK_BOOTTIME:
1359 			q->tk_offset = TK_OFFS_BOOT;
1360 			break;
1361 		case CLOCK_TAI:
1362 			q->tk_offset = TK_OFFS_TAI;
1363 			break;
1364 		default:
1365 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1366 			err = -EINVAL;
1367 			goto out;
1368 		}
1369 
1370 		q->clockid = clockid;
1371 	} else {
1372 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1373 		goto out;
1374 	}
1375 
1376 	/* Everything went ok, return success. */
1377 	err = 0;
1378 
1379 out:
1380 	return err;
1381 }
1382 
1383 static int taprio_mqprio_cmp(const struct net_device *dev,
1384 			     const struct tc_mqprio_qopt *mqprio)
1385 {
1386 	int i;
1387 
1388 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1389 		return -1;
1390 
1391 	for (i = 0; i < mqprio->num_tc; i++)
1392 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1393 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1394 			return -1;
1395 
1396 	for (i = 0; i <= TC_BITMASK; i++)
1397 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1398 			return -1;
1399 
1400 	return 0;
1401 }
1402 
1403 /* The semantics of the 'flags' argument in relation to 'change()'
1404  * requests, are interpreted following two rules (which are applied in
1405  * this order): (1) an omitted 'flags' argument is interpreted as
1406  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1407  * changed.
1408  */
1409 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1410 			    struct netlink_ext_ack *extack)
1411 {
1412 	u32 new = 0;
1413 
1414 	if (attr)
1415 		new = nla_get_u32(attr);
1416 
1417 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1418 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1419 		return -EOPNOTSUPP;
1420 	}
1421 
1422 	if (!taprio_flags_valid(new)) {
1423 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1424 		return -EINVAL;
1425 	}
1426 
1427 	return new;
1428 }
1429 
1430 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1431 			 struct netlink_ext_ack *extack)
1432 {
1433 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1434 	struct sched_gate_list *oper, *admin, *new_admin;
1435 	struct taprio_sched *q = qdisc_priv(sch);
1436 	struct net_device *dev = qdisc_dev(sch);
1437 	struct tc_mqprio_qopt *mqprio = NULL;
1438 	unsigned long flags;
1439 	ktime_t start;
1440 	int i, err;
1441 
1442 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1443 					  taprio_policy, extack);
1444 	if (err < 0)
1445 		return err;
1446 
1447 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1448 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1449 
1450 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1451 			       q->flags, extack);
1452 	if (err < 0)
1453 		return err;
1454 
1455 	q->flags = err;
1456 
1457 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1458 	if (err < 0)
1459 		return err;
1460 
1461 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1462 	if (!new_admin) {
1463 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1464 		return -ENOMEM;
1465 	}
1466 	INIT_LIST_HEAD(&new_admin->entries);
1467 
1468 	rcu_read_lock();
1469 	oper = rcu_dereference(q->oper_sched);
1470 	admin = rcu_dereference(q->admin_sched);
1471 	rcu_read_unlock();
1472 
1473 	/* no changes - no new mqprio settings */
1474 	if (!taprio_mqprio_cmp(dev, mqprio))
1475 		mqprio = NULL;
1476 
1477 	if (mqprio && (oper || admin)) {
1478 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1479 		err = -ENOTSUPP;
1480 		goto free_sched;
1481 	}
1482 
1483 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1484 	if (err < 0)
1485 		goto free_sched;
1486 
1487 	if (new_admin->num_entries == 0) {
1488 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1489 		err = -EINVAL;
1490 		goto free_sched;
1491 	}
1492 
1493 	err = taprio_parse_clockid(sch, tb, extack);
1494 	if (err < 0)
1495 		goto free_sched;
1496 
1497 	taprio_set_picos_per_byte(dev, q);
1498 
1499 	if (mqprio) {
1500 		netdev_set_num_tc(dev, mqprio->num_tc);
1501 		for (i = 0; i < mqprio->num_tc; i++)
1502 			netdev_set_tc_queue(dev, i,
1503 					    mqprio->count[i],
1504 					    mqprio->offset[i]);
1505 
1506 		/* Always use supplied priority mappings */
1507 		for (i = 0; i <= TC_BITMASK; i++)
1508 			netdev_set_prio_tc_map(dev, i,
1509 					       mqprio->prio_tc_map[i]);
1510 	}
1511 
1512 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1513 		err = taprio_enable_offload(dev, q, new_admin, extack);
1514 	else
1515 		err = taprio_disable_offload(dev, q, extack);
1516 	if (err)
1517 		goto free_sched;
1518 
1519 	/* Protects against enqueue()/dequeue() */
1520 	spin_lock_bh(qdisc_lock(sch));
1521 
1522 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1523 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1524 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1525 			err = -EINVAL;
1526 			goto unlock;
1527 		}
1528 
1529 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1530 	}
1531 
1532 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1533 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1534 	    !hrtimer_active(&q->advance_timer)) {
1535 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1536 		q->advance_timer.function = advance_sched;
1537 	}
1538 
1539 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1540 		q->dequeue = taprio_dequeue_offload;
1541 		q->peek = taprio_peek_offload;
1542 	} else {
1543 		/* Be sure to always keep the function pointers
1544 		 * in a consistent state.
1545 		 */
1546 		q->dequeue = taprio_dequeue_soft;
1547 		q->peek = taprio_peek_soft;
1548 	}
1549 
1550 	err = taprio_get_start_time(sch, new_admin, &start);
1551 	if (err < 0) {
1552 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1553 		goto unlock;
1554 	}
1555 
1556 	setup_txtime(q, new_admin, start);
1557 
1558 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1559 		if (!oper) {
1560 			rcu_assign_pointer(q->oper_sched, new_admin);
1561 			err = 0;
1562 			new_admin = NULL;
1563 			goto unlock;
1564 		}
1565 
1566 		rcu_assign_pointer(q->admin_sched, new_admin);
1567 		if (admin)
1568 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1569 	} else {
1570 		setup_first_close_time(q, new_admin, start);
1571 
1572 		/* Protects against advance_sched() */
1573 		spin_lock_irqsave(&q->current_entry_lock, flags);
1574 
1575 		taprio_start_sched(sch, start, new_admin);
1576 
1577 		rcu_assign_pointer(q->admin_sched, new_admin);
1578 		if (admin)
1579 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1580 
1581 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1582 
1583 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1584 			taprio_offload_config_changed(q);
1585 	}
1586 
1587 	new_admin = NULL;
1588 	err = 0;
1589 
1590 unlock:
1591 	spin_unlock_bh(qdisc_lock(sch));
1592 
1593 free_sched:
1594 	if (new_admin)
1595 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1596 
1597 	return err;
1598 }
1599 
1600 static void taprio_reset(struct Qdisc *sch)
1601 {
1602 	struct taprio_sched *q = qdisc_priv(sch);
1603 	struct net_device *dev = qdisc_dev(sch);
1604 	int i;
1605 
1606 	hrtimer_cancel(&q->advance_timer);
1607 	if (q->qdiscs) {
1608 		for (i = 0; i < dev->num_tx_queues; i++)
1609 			if (q->qdiscs[i])
1610 				qdisc_reset(q->qdiscs[i]);
1611 	}
1612 	sch->qstats.backlog = 0;
1613 	sch->q.qlen = 0;
1614 }
1615 
1616 static void taprio_destroy(struct Qdisc *sch)
1617 {
1618 	struct taprio_sched *q = qdisc_priv(sch);
1619 	struct net_device *dev = qdisc_dev(sch);
1620 	unsigned int i;
1621 
1622 	spin_lock(&taprio_list_lock);
1623 	list_del(&q->taprio_list);
1624 	spin_unlock(&taprio_list_lock);
1625 
1626 
1627 	taprio_disable_offload(dev, q, NULL);
1628 
1629 	if (q->qdiscs) {
1630 		for (i = 0; i < dev->num_tx_queues; i++)
1631 			qdisc_put(q->qdiscs[i]);
1632 
1633 		kfree(q->qdiscs);
1634 	}
1635 	q->qdiscs = NULL;
1636 
1637 	netdev_reset_tc(dev);
1638 
1639 	if (q->oper_sched)
1640 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1641 
1642 	if (q->admin_sched)
1643 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1644 }
1645 
1646 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1647 		       struct netlink_ext_ack *extack)
1648 {
1649 	struct taprio_sched *q = qdisc_priv(sch);
1650 	struct net_device *dev = qdisc_dev(sch);
1651 	int i;
1652 
1653 	spin_lock_init(&q->current_entry_lock);
1654 
1655 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1656 	q->advance_timer.function = advance_sched;
1657 
1658 	q->dequeue = taprio_dequeue_soft;
1659 	q->peek = taprio_peek_soft;
1660 
1661 	q->root = sch;
1662 
1663 	/* We only support static clockids. Use an invalid value as default
1664 	 * and get the valid one on taprio_change().
1665 	 */
1666 	q->clockid = -1;
1667 	q->flags = TAPRIO_FLAGS_INVALID;
1668 
1669 	spin_lock(&taprio_list_lock);
1670 	list_add(&q->taprio_list, &taprio_list);
1671 	spin_unlock(&taprio_list_lock);
1672 
1673 	if (sch->parent != TC_H_ROOT)
1674 		return -EOPNOTSUPP;
1675 
1676 	if (!netif_is_multiqueue(dev))
1677 		return -EOPNOTSUPP;
1678 
1679 	/* pre-allocate qdisc, attachment can't fail */
1680 	q->qdiscs = kcalloc(dev->num_tx_queues,
1681 			    sizeof(q->qdiscs[0]),
1682 			    GFP_KERNEL);
1683 
1684 	if (!q->qdiscs)
1685 		return -ENOMEM;
1686 
1687 	if (!opt)
1688 		return -EINVAL;
1689 
1690 	for (i = 0; i < dev->num_tx_queues; i++) {
1691 		struct netdev_queue *dev_queue;
1692 		struct Qdisc *qdisc;
1693 
1694 		dev_queue = netdev_get_tx_queue(dev, i);
1695 		qdisc = qdisc_create_dflt(dev_queue,
1696 					  &pfifo_qdisc_ops,
1697 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1698 						    TC_H_MIN(i + 1)),
1699 					  extack);
1700 		if (!qdisc)
1701 			return -ENOMEM;
1702 
1703 		if (i < dev->real_num_tx_queues)
1704 			qdisc_hash_add(qdisc, false);
1705 
1706 		q->qdiscs[i] = qdisc;
1707 	}
1708 
1709 	return taprio_change(sch, opt, extack);
1710 }
1711 
1712 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1713 					     unsigned long cl)
1714 {
1715 	struct net_device *dev = qdisc_dev(sch);
1716 	unsigned long ntx = cl - 1;
1717 
1718 	if (ntx >= dev->num_tx_queues)
1719 		return NULL;
1720 
1721 	return netdev_get_tx_queue(dev, ntx);
1722 }
1723 
1724 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1725 			struct Qdisc *new, struct Qdisc **old,
1726 			struct netlink_ext_ack *extack)
1727 {
1728 	struct taprio_sched *q = qdisc_priv(sch);
1729 	struct net_device *dev = qdisc_dev(sch);
1730 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1731 
1732 	if (!dev_queue)
1733 		return -EINVAL;
1734 
1735 	if (dev->flags & IFF_UP)
1736 		dev_deactivate(dev);
1737 
1738 	*old = q->qdiscs[cl - 1];
1739 	q->qdiscs[cl - 1] = new;
1740 
1741 	if (new)
1742 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1743 
1744 	if (dev->flags & IFF_UP)
1745 		dev_activate(dev);
1746 
1747 	return 0;
1748 }
1749 
1750 static int dump_entry(struct sk_buff *msg,
1751 		      const struct sched_entry *entry)
1752 {
1753 	struct nlattr *item;
1754 
1755 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1756 	if (!item)
1757 		return -ENOSPC;
1758 
1759 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1760 		goto nla_put_failure;
1761 
1762 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1763 		goto nla_put_failure;
1764 
1765 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1766 			entry->gate_mask))
1767 		goto nla_put_failure;
1768 
1769 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1770 			entry->interval))
1771 		goto nla_put_failure;
1772 
1773 	return nla_nest_end(msg, item);
1774 
1775 nla_put_failure:
1776 	nla_nest_cancel(msg, item);
1777 	return -1;
1778 }
1779 
1780 static int dump_schedule(struct sk_buff *msg,
1781 			 const struct sched_gate_list *root)
1782 {
1783 	struct nlattr *entry_list;
1784 	struct sched_entry *entry;
1785 
1786 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1787 			root->base_time, TCA_TAPRIO_PAD))
1788 		return -1;
1789 
1790 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1791 			root->cycle_time, TCA_TAPRIO_PAD))
1792 		return -1;
1793 
1794 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1795 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1796 		return -1;
1797 
1798 	entry_list = nla_nest_start_noflag(msg,
1799 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1800 	if (!entry_list)
1801 		goto error_nest;
1802 
1803 	list_for_each_entry(entry, &root->entries, list) {
1804 		if (dump_entry(msg, entry) < 0)
1805 			goto error_nest;
1806 	}
1807 
1808 	nla_nest_end(msg, entry_list);
1809 	return 0;
1810 
1811 error_nest:
1812 	nla_nest_cancel(msg, entry_list);
1813 	return -1;
1814 }
1815 
1816 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1817 {
1818 	struct taprio_sched *q = qdisc_priv(sch);
1819 	struct net_device *dev = qdisc_dev(sch);
1820 	struct sched_gate_list *oper, *admin;
1821 	struct tc_mqprio_qopt opt = { 0 };
1822 	struct nlattr *nest, *sched_nest;
1823 	unsigned int i;
1824 
1825 	rcu_read_lock();
1826 	oper = rcu_dereference(q->oper_sched);
1827 	admin = rcu_dereference(q->admin_sched);
1828 
1829 	opt.num_tc = netdev_get_num_tc(dev);
1830 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1831 
1832 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1833 		opt.count[i] = dev->tc_to_txq[i].count;
1834 		opt.offset[i] = dev->tc_to_txq[i].offset;
1835 	}
1836 
1837 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1838 	if (!nest)
1839 		goto start_error;
1840 
1841 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1842 		goto options_error;
1843 
1844 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1845 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1846 		goto options_error;
1847 
1848 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1849 		goto options_error;
1850 
1851 	if (q->txtime_delay &&
1852 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1853 		goto options_error;
1854 
1855 	if (oper && dump_schedule(skb, oper))
1856 		goto options_error;
1857 
1858 	if (!admin)
1859 		goto done;
1860 
1861 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1862 	if (!sched_nest)
1863 		goto options_error;
1864 
1865 	if (dump_schedule(skb, admin))
1866 		goto admin_error;
1867 
1868 	nla_nest_end(skb, sched_nest);
1869 
1870 done:
1871 	rcu_read_unlock();
1872 
1873 	return nla_nest_end(skb, nest);
1874 
1875 admin_error:
1876 	nla_nest_cancel(skb, sched_nest);
1877 
1878 options_error:
1879 	nla_nest_cancel(skb, nest);
1880 
1881 start_error:
1882 	rcu_read_unlock();
1883 	return -ENOSPC;
1884 }
1885 
1886 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1887 {
1888 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1889 
1890 	if (!dev_queue)
1891 		return NULL;
1892 
1893 	return dev_queue->qdisc_sleeping;
1894 }
1895 
1896 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1897 {
1898 	unsigned int ntx = TC_H_MIN(classid);
1899 
1900 	if (!taprio_queue_get(sch, ntx))
1901 		return 0;
1902 	return ntx;
1903 }
1904 
1905 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1906 			     struct sk_buff *skb, struct tcmsg *tcm)
1907 {
1908 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1909 
1910 	tcm->tcm_parent = TC_H_ROOT;
1911 	tcm->tcm_handle |= TC_H_MIN(cl);
1912 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1913 
1914 	return 0;
1915 }
1916 
1917 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1918 				   struct gnet_dump *d)
1919 	__releases(d->lock)
1920 	__acquires(d->lock)
1921 {
1922 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1923 
1924 	sch = dev_queue->qdisc_sleeping;
1925 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1926 	    qdisc_qstats_copy(d, sch) < 0)
1927 		return -1;
1928 	return 0;
1929 }
1930 
1931 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1932 {
1933 	struct net_device *dev = qdisc_dev(sch);
1934 	unsigned long ntx;
1935 
1936 	if (arg->stop)
1937 		return;
1938 
1939 	arg->count = arg->skip;
1940 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1941 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1942 			arg->stop = 1;
1943 			break;
1944 		}
1945 		arg->count++;
1946 	}
1947 }
1948 
1949 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1950 						struct tcmsg *tcm)
1951 {
1952 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1953 }
1954 
1955 static const struct Qdisc_class_ops taprio_class_ops = {
1956 	.graft		= taprio_graft,
1957 	.leaf		= taprio_leaf,
1958 	.find		= taprio_find,
1959 	.walk		= taprio_walk,
1960 	.dump		= taprio_dump_class,
1961 	.dump_stats	= taprio_dump_class_stats,
1962 	.select_queue	= taprio_select_queue,
1963 };
1964 
1965 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1966 	.cl_ops		= &taprio_class_ops,
1967 	.id		= "taprio",
1968 	.priv_size	= sizeof(struct taprio_sched),
1969 	.init		= taprio_init,
1970 	.change		= taprio_change,
1971 	.destroy	= taprio_destroy,
1972 	.reset		= taprio_reset,
1973 	.peek		= taprio_peek,
1974 	.dequeue	= taprio_dequeue,
1975 	.enqueue	= taprio_enqueue,
1976 	.dump		= taprio_dump,
1977 	.owner		= THIS_MODULE,
1978 };
1979 
1980 static struct notifier_block taprio_device_notifier = {
1981 	.notifier_call = taprio_dev_notifier,
1982 };
1983 
1984 static int __init taprio_module_init(void)
1985 {
1986 	int err = register_netdevice_notifier(&taprio_device_notifier);
1987 
1988 	if (err)
1989 		return err;
1990 
1991 	return register_qdisc(&taprio_qdisc_ops);
1992 }
1993 
1994 static void __exit taprio_module_exit(void)
1995 {
1996 	unregister_qdisc(&taprio_qdisc_ops);
1997 	unregister_netdevice_notifier(&taprio_device_notifier);
1998 }
1999 
2000 module_init(taprio_module_init);
2001 module_exit(taprio_module_exit);
2002 MODULE_LICENSE("GPL");
2003