xref: /openbmc/linux/net/sched/sch_taprio.c (revision 884caada)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26 
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29 
30 #define TAPRIO_ALL_GATES_OPEN -1
31 
32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
34 
35 struct sched_entry {
36 	struct list_head list;
37 
38 	/* The instant that this entry "closes" and the next one
39 	 * should open, the qdisc will make some effort so that no
40 	 * packet leaves after this time.
41 	 */
42 	ktime_t close_time;
43 	ktime_t next_txtime;
44 	atomic_t budget;
45 	int index;
46 	u32 gate_mask;
47 	u32 interval;
48 	u8 command;
49 };
50 
51 struct sched_gate_list {
52 	struct rcu_head rcu;
53 	struct list_head entries;
54 	size_t num_entries;
55 	ktime_t cycle_close_time;
56 	s64 cycle_time;
57 	s64 cycle_time_extension;
58 	s64 base_time;
59 };
60 
61 struct taprio_sched {
62 	struct Qdisc **qdiscs;
63 	struct Qdisc *root;
64 	u32 flags;
65 	enum tk_offsets tk_offset;
66 	int clockid;
67 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
68 				    * speeds it's sub-nanoseconds per byte
69 				    */
70 
71 	/* Protects the update side of the RCU protected current_entry */
72 	spinlock_t current_entry_lock;
73 	struct sched_entry __rcu *current_entry;
74 	struct sched_gate_list __rcu *oper_sched;
75 	struct sched_gate_list __rcu *admin_sched;
76 	struct hrtimer advance_timer;
77 	struct list_head taprio_list;
78 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
79 	struct sk_buff *(*peek)(struct Qdisc *sch);
80 	u32 txtime_delay;
81 };
82 
83 struct __tc_taprio_qopt_offload {
84 	refcount_t users;
85 	struct tc_taprio_qopt_offload offload;
86 };
87 
88 static ktime_t sched_base_time(const struct sched_gate_list *sched)
89 {
90 	if (!sched)
91 		return KTIME_MAX;
92 
93 	return ns_to_ktime(sched->base_time);
94 }
95 
96 static ktime_t taprio_get_time(struct taprio_sched *q)
97 {
98 	ktime_t mono = ktime_get();
99 
100 	switch (q->tk_offset) {
101 	case TK_OFFS_MAX:
102 		return mono;
103 	default:
104 		return ktime_mono_to_any(mono, q->tk_offset);
105 	}
106 
107 	return KTIME_MAX;
108 }
109 
110 static void taprio_free_sched_cb(struct rcu_head *head)
111 {
112 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
113 	struct sched_entry *entry, *n;
114 
115 	if (!sched)
116 		return;
117 
118 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
119 		list_del(&entry->list);
120 		kfree(entry);
121 	}
122 
123 	kfree(sched);
124 }
125 
126 static void switch_schedules(struct taprio_sched *q,
127 			     struct sched_gate_list **admin,
128 			     struct sched_gate_list **oper)
129 {
130 	rcu_assign_pointer(q->oper_sched, *admin);
131 	rcu_assign_pointer(q->admin_sched, NULL);
132 
133 	if (*oper)
134 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
135 
136 	*oper = *admin;
137 	*admin = NULL;
138 }
139 
140 /* Get how much time has been already elapsed in the current cycle. */
141 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
142 {
143 	ktime_t time_since_sched_start;
144 	s32 time_elapsed;
145 
146 	time_since_sched_start = ktime_sub(time, sched->base_time);
147 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
148 
149 	return time_elapsed;
150 }
151 
152 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
153 				     struct sched_gate_list *admin,
154 				     struct sched_entry *entry,
155 				     ktime_t intv_start)
156 {
157 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
158 	ktime_t intv_end, cycle_ext_end, cycle_end;
159 
160 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
161 	intv_end = ktime_add_ns(intv_start, entry->interval);
162 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
163 
164 	if (ktime_before(intv_end, cycle_end))
165 		return intv_end;
166 	else if (admin && admin != sched &&
167 		 ktime_after(admin->base_time, cycle_end) &&
168 		 ktime_before(admin->base_time, cycle_ext_end))
169 		return admin->base_time;
170 	else
171 		return cycle_end;
172 }
173 
174 static int length_to_duration(struct taprio_sched *q, int len)
175 {
176 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
177 }
178 
179 /* Returns the entry corresponding to next available interval. If
180  * validate_interval is set, it only validates whether the timestamp occurs
181  * when the gate corresponding to the skb's traffic class is open.
182  */
183 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
184 						  struct Qdisc *sch,
185 						  struct sched_gate_list *sched,
186 						  struct sched_gate_list *admin,
187 						  ktime_t time,
188 						  ktime_t *interval_start,
189 						  ktime_t *interval_end,
190 						  bool validate_interval)
191 {
192 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
193 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
194 	struct sched_entry *entry = NULL, *entry_found = NULL;
195 	struct taprio_sched *q = qdisc_priv(sch);
196 	struct net_device *dev = qdisc_dev(sch);
197 	bool entry_available = false;
198 	s32 cycle_elapsed;
199 	int tc, n;
200 
201 	tc = netdev_get_prio_tc_map(dev, skb->priority);
202 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
203 
204 	*interval_start = 0;
205 	*interval_end = 0;
206 
207 	if (!sched)
208 		return NULL;
209 
210 	cycle = sched->cycle_time;
211 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
212 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
213 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
214 
215 	list_for_each_entry(entry, &sched->entries, list) {
216 		curr_intv_start = curr_intv_end;
217 		curr_intv_end = get_interval_end_time(sched, admin, entry,
218 						      curr_intv_start);
219 
220 		if (ktime_after(curr_intv_start, cycle_end))
221 			break;
222 
223 		if (!(entry->gate_mask & BIT(tc)) ||
224 		    packet_transmit_time > entry->interval)
225 			continue;
226 
227 		txtime = entry->next_txtime;
228 
229 		if (ktime_before(txtime, time) || validate_interval) {
230 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
231 			if ((ktime_before(curr_intv_start, time) &&
232 			     ktime_before(transmit_end_time, curr_intv_end)) ||
233 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
234 				entry_found = entry;
235 				*interval_start = curr_intv_start;
236 				*interval_end = curr_intv_end;
237 				break;
238 			} else if (!entry_available && !validate_interval) {
239 				/* Here, we are just trying to find out the
240 				 * first available interval in the next cycle.
241 				 */
242 				entry_available = 1;
243 				entry_found = entry;
244 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
245 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
246 			}
247 		} else if (ktime_before(txtime, earliest_txtime) &&
248 			   !entry_available) {
249 			earliest_txtime = txtime;
250 			entry_found = entry;
251 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
252 			*interval_start = ktime_add(curr_intv_start, n * cycle);
253 			*interval_end = ktime_add(curr_intv_end, n * cycle);
254 		}
255 	}
256 
257 	return entry_found;
258 }
259 
260 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
261 {
262 	struct taprio_sched *q = qdisc_priv(sch);
263 	struct sched_gate_list *sched, *admin;
264 	ktime_t interval_start, interval_end;
265 	struct sched_entry *entry;
266 
267 	rcu_read_lock();
268 	sched = rcu_dereference(q->oper_sched);
269 	admin = rcu_dereference(q->admin_sched);
270 
271 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
272 				       &interval_start, &interval_end, true);
273 	rcu_read_unlock();
274 
275 	return entry;
276 }
277 
278 static bool taprio_flags_valid(u32 flags)
279 {
280 	/* Make sure no other flag bits are set. */
281 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
282 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
283 		return false;
284 	/* txtime-assist and full offload are mutually exclusive */
285 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
286 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
287 		return false;
288 	return true;
289 }
290 
291 /* This returns the tstamp value set by TCP in terms of the set clock. */
292 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
293 {
294 	unsigned int offset = skb_network_offset(skb);
295 	const struct ipv6hdr *ipv6h;
296 	const struct iphdr *iph;
297 	struct ipv6hdr _ipv6h;
298 
299 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
300 	if (!ipv6h)
301 		return 0;
302 
303 	if (ipv6h->version == 4) {
304 		iph = (struct iphdr *)ipv6h;
305 		offset += iph->ihl * 4;
306 
307 		/* special-case 6in4 tunnelling, as that is a common way to get
308 		 * v6 connectivity in the home
309 		 */
310 		if (iph->protocol == IPPROTO_IPV6) {
311 			ipv6h = skb_header_pointer(skb, offset,
312 						   sizeof(_ipv6h), &_ipv6h);
313 
314 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
315 				return 0;
316 		} else if (iph->protocol != IPPROTO_TCP) {
317 			return 0;
318 		}
319 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
320 		return 0;
321 	}
322 
323 	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
324 }
325 
326 /* There are a few scenarios where we will have to modify the txtime from
327  * what is read from next_txtime in sched_entry. They are:
328  * 1. If txtime is in the past,
329  *    a. The gate for the traffic class is currently open and packet can be
330  *       transmitted before it closes, schedule the packet right away.
331  *    b. If the gate corresponding to the traffic class is going to open later
332  *       in the cycle, set the txtime of packet to the interval start.
333  * 2. If txtime is in the future, there are packets corresponding to the
334  *    current traffic class waiting to be transmitted. So, the following
335  *    possibilities exist:
336  *    a. We can transmit the packet before the window containing the txtime
337  *       closes.
338  *    b. The window might close before the transmission can be completed
339  *       successfully. So, schedule the packet in the next open window.
340  */
341 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
342 {
343 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
344 	struct taprio_sched *q = qdisc_priv(sch);
345 	struct sched_gate_list *sched, *admin;
346 	ktime_t minimum_time, now, txtime;
347 	int len, packet_transmit_time;
348 	struct sched_entry *entry;
349 	bool sched_changed;
350 
351 	now = taprio_get_time(q);
352 	minimum_time = ktime_add_ns(now, q->txtime_delay);
353 
354 	tcp_tstamp = get_tcp_tstamp(q, skb);
355 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
356 
357 	rcu_read_lock();
358 	admin = rcu_dereference(q->admin_sched);
359 	sched = rcu_dereference(q->oper_sched);
360 	if (admin && ktime_after(minimum_time, admin->base_time))
361 		switch_schedules(q, &admin, &sched);
362 
363 	/* Until the schedule starts, all the queues are open */
364 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
365 		txtime = minimum_time;
366 		goto done;
367 	}
368 
369 	len = qdisc_pkt_len(skb);
370 	packet_transmit_time = length_to_duration(q, len);
371 
372 	do {
373 		sched_changed = 0;
374 
375 		entry = find_entry_to_transmit(skb, sch, sched, admin,
376 					       minimum_time,
377 					       &interval_start, &interval_end,
378 					       false);
379 		if (!entry) {
380 			txtime = 0;
381 			goto done;
382 		}
383 
384 		txtime = entry->next_txtime;
385 		txtime = max_t(ktime_t, txtime, minimum_time);
386 		txtime = max_t(ktime_t, txtime, interval_start);
387 
388 		if (admin && admin != sched &&
389 		    ktime_after(txtime, admin->base_time)) {
390 			sched = admin;
391 			sched_changed = 1;
392 			continue;
393 		}
394 
395 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
396 		minimum_time = transmit_end_time;
397 
398 		/* Update the txtime of current entry to the next time it's
399 		 * interval starts.
400 		 */
401 		if (ktime_after(transmit_end_time, interval_end))
402 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
403 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
404 
405 	entry->next_txtime = transmit_end_time;
406 
407 done:
408 	rcu_read_unlock();
409 	return txtime;
410 }
411 
412 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
413 			  struct sk_buff **to_free)
414 {
415 	struct taprio_sched *q = qdisc_priv(sch);
416 	struct Qdisc *child;
417 	int queue;
418 
419 	queue = skb_get_queue_mapping(skb);
420 
421 	child = q->qdiscs[queue];
422 	if (unlikely(!child))
423 		return qdisc_drop(skb, sch, to_free);
424 
425 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
426 		if (!is_valid_interval(skb, sch))
427 			return qdisc_drop(skb, sch, to_free);
428 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
429 		skb->tstamp = get_packet_txtime(skb, sch);
430 		if (!skb->tstamp)
431 			return qdisc_drop(skb, sch, to_free);
432 	}
433 
434 	qdisc_qstats_backlog_inc(sch, skb);
435 	sch->q.qlen++;
436 
437 	return qdisc_enqueue(skb, child, to_free);
438 }
439 
440 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
441 {
442 	struct taprio_sched *q = qdisc_priv(sch);
443 	struct net_device *dev = qdisc_dev(sch);
444 	struct sched_entry *entry;
445 	struct sk_buff *skb;
446 	u32 gate_mask;
447 	int i;
448 
449 	rcu_read_lock();
450 	entry = rcu_dereference(q->current_entry);
451 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
452 	rcu_read_unlock();
453 
454 	if (!gate_mask)
455 		return NULL;
456 
457 	for (i = 0; i < dev->num_tx_queues; i++) {
458 		struct Qdisc *child = q->qdiscs[i];
459 		int prio;
460 		u8 tc;
461 
462 		if (unlikely(!child))
463 			continue;
464 
465 		skb = child->ops->peek(child);
466 		if (!skb)
467 			continue;
468 
469 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
470 			return skb;
471 
472 		prio = skb->priority;
473 		tc = netdev_get_prio_tc_map(dev, prio);
474 
475 		if (!(gate_mask & BIT(tc)))
476 			continue;
477 
478 		return skb;
479 	}
480 
481 	return NULL;
482 }
483 
484 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
485 {
486 	struct taprio_sched *q = qdisc_priv(sch);
487 	struct net_device *dev = qdisc_dev(sch);
488 	struct sk_buff *skb;
489 	int i;
490 
491 	for (i = 0; i < dev->num_tx_queues; i++) {
492 		struct Qdisc *child = q->qdiscs[i];
493 
494 		if (unlikely(!child))
495 			continue;
496 
497 		skb = child->ops->peek(child);
498 		if (!skb)
499 			continue;
500 
501 		return skb;
502 	}
503 
504 	return NULL;
505 }
506 
507 static struct sk_buff *taprio_peek(struct Qdisc *sch)
508 {
509 	struct taprio_sched *q = qdisc_priv(sch);
510 
511 	return q->peek(sch);
512 }
513 
514 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
515 {
516 	atomic_set(&entry->budget,
517 		   div64_u64((u64)entry->interval * 1000,
518 			     atomic64_read(&q->picos_per_byte)));
519 }
520 
521 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
522 {
523 	struct taprio_sched *q = qdisc_priv(sch);
524 	struct net_device *dev = qdisc_dev(sch);
525 	struct sk_buff *skb = NULL;
526 	struct sched_entry *entry;
527 	u32 gate_mask;
528 	int i;
529 
530 	rcu_read_lock();
531 	entry = rcu_dereference(q->current_entry);
532 	/* if there's no entry, it means that the schedule didn't
533 	 * start yet, so force all gates to be open, this is in
534 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
535 	 * "AdminGateSates"
536 	 */
537 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
538 
539 	if (!gate_mask)
540 		goto done;
541 
542 	for (i = 0; i < dev->num_tx_queues; i++) {
543 		struct Qdisc *child = q->qdiscs[i];
544 		ktime_t guard;
545 		int prio;
546 		int len;
547 		u8 tc;
548 
549 		if (unlikely(!child))
550 			continue;
551 
552 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
553 			skb = child->ops->dequeue(child);
554 			if (!skb)
555 				continue;
556 			goto skb_found;
557 		}
558 
559 		skb = child->ops->peek(child);
560 		if (!skb)
561 			continue;
562 
563 		prio = skb->priority;
564 		tc = netdev_get_prio_tc_map(dev, prio);
565 
566 		if (!(gate_mask & BIT(tc)))
567 			continue;
568 
569 		len = qdisc_pkt_len(skb);
570 		guard = ktime_add_ns(taprio_get_time(q),
571 				     length_to_duration(q, len));
572 
573 		/* In the case that there's no gate entry, there's no
574 		 * guard band ...
575 		 */
576 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
577 		    ktime_after(guard, entry->close_time))
578 			continue;
579 
580 		/* ... and no budget. */
581 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
582 		    atomic_sub_return(len, &entry->budget) < 0)
583 			continue;
584 
585 		skb = child->ops->dequeue(child);
586 		if (unlikely(!skb))
587 			goto done;
588 
589 skb_found:
590 		qdisc_bstats_update(sch, skb);
591 		qdisc_qstats_backlog_dec(sch, skb);
592 		sch->q.qlen--;
593 
594 		goto done;
595 	}
596 
597 done:
598 	rcu_read_unlock();
599 
600 	return skb;
601 }
602 
603 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
604 {
605 	struct taprio_sched *q = qdisc_priv(sch);
606 	struct net_device *dev = qdisc_dev(sch);
607 	struct sk_buff *skb;
608 	int i;
609 
610 	for (i = 0; i < dev->num_tx_queues; i++) {
611 		struct Qdisc *child = q->qdiscs[i];
612 
613 		if (unlikely(!child))
614 			continue;
615 
616 		skb = child->ops->dequeue(child);
617 		if (unlikely(!skb))
618 			continue;
619 
620 		qdisc_bstats_update(sch, skb);
621 		qdisc_qstats_backlog_dec(sch, skb);
622 		sch->q.qlen--;
623 
624 		return skb;
625 	}
626 
627 	return NULL;
628 }
629 
630 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
631 {
632 	struct taprio_sched *q = qdisc_priv(sch);
633 
634 	return q->dequeue(sch);
635 }
636 
637 static bool should_restart_cycle(const struct sched_gate_list *oper,
638 				 const struct sched_entry *entry)
639 {
640 	if (list_is_last(&entry->list, &oper->entries))
641 		return true;
642 
643 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
644 		return true;
645 
646 	return false;
647 }
648 
649 static bool should_change_schedules(const struct sched_gate_list *admin,
650 				    const struct sched_gate_list *oper,
651 				    ktime_t close_time)
652 {
653 	ktime_t next_base_time, extension_time;
654 
655 	if (!admin)
656 		return false;
657 
658 	next_base_time = sched_base_time(admin);
659 
660 	/* This is the simple case, the close_time would fall after
661 	 * the next schedule base_time.
662 	 */
663 	if (ktime_compare(next_base_time, close_time) <= 0)
664 		return true;
665 
666 	/* This is the cycle_time_extension case, if the close_time
667 	 * plus the amount that can be extended would fall after the
668 	 * next schedule base_time, we can extend the current schedule
669 	 * for that amount.
670 	 */
671 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
672 
673 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
674 	 * how precisely the extension should be made. So after
675 	 * conformance testing, this logic may change.
676 	 */
677 	if (ktime_compare(next_base_time, extension_time) <= 0)
678 		return true;
679 
680 	return false;
681 }
682 
683 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
684 {
685 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
686 					      advance_timer);
687 	struct sched_gate_list *oper, *admin;
688 	struct sched_entry *entry, *next;
689 	struct Qdisc *sch = q->root;
690 	ktime_t close_time;
691 
692 	spin_lock(&q->current_entry_lock);
693 	entry = rcu_dereference_protected(q->current_entry,
694 					  lockdep_is_held(&q->current_entry_lock));
695 	oper = rcu_dereference_protected(q->oper_sched,
696 					 lockdep_is_held(&q->current_entry_lock));
697 	admin = rcu_dereference_protected(q->admin_sched,
698 					  lockdep_is_held(&q->current_entry_lock));
699 
700 	if (!oper)
701 		switch_schedules(q, &admin, &oper);
702 
703 	/* This can happen in two cases: 1. this is the very first run
704 	 * of this function (i.e. we weren't running any schedule
705 	 * previously); 2. The previous schedule just ended. The first
706 	 * entry of all schedules are pre-calculated during the
707 	 * schedule initialization.
708 	 */
709 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
710 		next = list_first_entry(&oper->entries, struct sched_entry,
711 					list);
712 		close_time = next->close_time;
713 		goto first_run;
714 	}
715 
716 	if (should_restart_cycle(oper, entry)) {
717 		next = list_first_entry(&oper->entries, struct sched_entry,
718 					list);
719 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
720 						      oper->cycle_time);
721 	} else {
722 		next = list_next_entry(entry, list);
723 	}
724 
725 	close_time = ktime_add_ns(entry->close_time, next->interval);
726 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
727 
728 	if (should_change_schedules(admin, oper, close_time)) {
729 		/* Set things so the next time this runs, the new
730 		 * schedule runs.
731 		 */
732 		close_time = sched_base_time(admin);
733 		switch_schedules(q, &admin, &oper);
734 	}
735 
736 	next->close_time = close_time;
737 	taprio_set_budget(q, next);
738 
739 first_run:
740 	rcu_assign_pointer(q->current_entry, next);
741 	spin_unlock(&q->current_entry_lock);
742 
743 	hrtimer_set_expires(&q->advance_timer, close_time);
744 
745 	rcu_read_lock();
746 	__netif_schedule(sch);
747 	rcu_read_unlock();
748 
749 	return HRTIMER_RESTART;
750 }
751 
752 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
753 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
754 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
755 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
756 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
757 };
758 
759 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
760 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
761 		.len = sizeof(struct tc_mqprio_qopt)
762 	},
763 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
764 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
765 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
766 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
767 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
768 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
769 };
770 
771 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
772 			    struct netlink_ext_ack *extack)
773 {
774 	u32 interval = 0;
775 
776 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
777 		entry->command = nla_get_u8(
778 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
779 
780 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
781 		entry->gate_mask = nla_get_u32(
782 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
783 
784 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
785 		interval = nla_get_u32(
786 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
787 
788 	if (interval == 0) {
789 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
790 		return -EINVAL;
791 	}
792 
793 	entry->interval = interval;
794 
795 	return 0;
796 }
797 
798 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
799 			     int index, struct netlink_ext_ack *extack)
800 {
801 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
802 	int err;
803 
804 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
805 					  entry_policy, NULL);
806 	if (err < 0) {
807 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
808 		return -EINVAL;
809 	}
810 
811 	entry->index = index;
812 
813 	return fill_sched_entry(tb, entry, extack);
814 }
815 
816 static int parse_sched_list(struct nlattr *list,
817 			    struct sched_gate_list *sched,
818 			    struct netlink_ext_ack *extack)
819 {
820 	struct nlattr *n;
821 	int err, rem;
822 	int i = 0;
823 
824 	if (!list)
825 		return -EINVAL;
826 
827 	nla_for_each_nested(n, list, rem) {
828 		struct sched_entry *entry;
829 
830 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
831 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
832 			continue;
833 		}
834 
835 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
836 		if (!entry) {
837 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
838 			return -ENOMEM;
839 		}
840 
841 		err = parse_sched_entry(n, entry, i, extack);
842 		if (err < 0) {
843 			kfree(entry);
844 			return err;
845 		}
846 
847 		list_add_tail(&entry->list, &sched->entries);
848 		i++;
849 	}
850 
851 	sched->num_entries = i;
852 
853 	return i;
854 }
855 
856 static int parse_taprio_schedule(struct nlattr **tb,
857 				 struct sched_gate_list *new,
858 				 struct netlink_ext_ack *extack)
859 {
860 	int err = 0;
861 
862 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
863 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
864 		return -ENOTSUPP;
865 	}
866 
867 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
868 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
869 
870 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
871 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
872 
873 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
874 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
875 
876 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
877 		err = parse_sched_list(
878 			tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
879 	if (err < 0)
880 		return err;
881 
882 	if (!new->cycle_time) {
883 		struct sched_entry *entry;
884 		ktime_t cycle = 0;
885 
886 		list_for_each_entry(entry, &new->entries, list)
887 			cycle = ktime_add_ns(cycle, entry->interval);
888 		new->cycle_time = cycle;
889 	}
890 
891 	return 0;
892 }
893 
894 static int taprio_parse_mqprio_opt(struct net_device *dev,
895 				   struct tc_mqprio_qopt *qopt,
896 				   struct netlink_ext_ack *extack,
897 				   u32 taprio_flags)
898 {
899 	int i, j;
900 
901 	if (!qopt && !dev->num_tc) {
902 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
903 		return -EINVAL;
904 	}
905 
906 	/* If num_tc is already set, it means that the user already
907 	 * configured the mqprio part
908 	 */
909 	if (dev->num_tc)
910 		return 0;
911 
912 	/* Verify num_tc is not out of max range */
913 	if (qopt->num_tc > TC_MAX_QUEUE) {
914 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
915 		return -EINVAL;
916 	}
917 
918 	/* taprio imposes that traffic classes map 1:n to tx queues */
919 	if (qopt->num_tc > dev->num_tx_queues) {
920 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
921 		return -EINVAL;
922 	}
923 
924 	/* Verify priority mapping uses valid tcs */
925 	for (i = 0; i < TC_BITMASK + 1; i++) {
926 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
927 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
928 			return -EINVAL;
929 		}
930 	}
931 
932 	for (i = 0; i < qopt->num_tc; i++) {
933 		unsigned int last = qopt->offset[i] + qopt->count[i];
934 
935 		/* Verify the queue count is in tx range being equal to the
936 		 * real_num_tx_queues indicates the last queue is in use.
937 		 */
938 		if (qopt->offset[i] >= dev->num_tx_queues ||
939 		    !qopt->count[i] ||
940 		    last > dev->real_num_tx_queues) {
941 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
942 			return -EINVAL;
943 		}
944 
945 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
946 			continue;
947 
948 		/* Verify that the offset and counts do not overlap */
949 		for (j = i + 1; j < qopt->num_tc; j++) {
950 			if (last > qopt->offset[j]) {
951 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
952 				return -EINVAL;
953 			}
954 		}
955 	}
956 
957 	return 0;
958 }
959 
960 static int taprio_get_start_time(struct Qdisc *sch,
961 				 struct sched_gate_list *sched,
962 				 ktime_t *start)
963 {
964 	struct taprio_sched *q = qdisc_priv(sch);
965 	ktime_t now, base, cycle;
966 	s64 n;
967 
968 	base = sched_base_time(sched);
969 	now = taprio_get_time(q);
970 
971 	if (ktime_after(base, now)) {
972 		*start = base;
973 		return 0;
974 	}
975 
976 	cycle = sched->cycle_time;
977 
978 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
979 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
980 	 * something went really wrong. In that case, we should warn about this
981 	 * inconsistent state and return error.
982 	 */
983 	if (WARN_ON(!cycle))
984 		return -EFAULT;
985 
986 	/* Schedule the start time for the beginning of the next
987 	 * cycle.
988 	 */
989 	n = div64_s64(ktime_sub_ns(now, base), cycle);
990 	*start = ktime_add_ns(base, (n + 1) * cycle);
991 	return 0;
992 }
993 
994 static void setup_first_close_time(struct taprio_sched *q,
995 				   struct sched_gate_list *sched, ktime_t base)
996 {
997 	struct sched_entry *first;
998 	ktime_t cycle;
999 
1000 	first = list_first_entry(&sched->entries,
1001 				 struct sched_entry, list);
1002 
1003 	cycle = sched->cycle_time;
1004 
1005 	/* FIXME: find a better place to do this */
1006 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1007 
1008 	first->close_time = ktime_add_ns(base, first->interval);
1009 	taprio_set_budget(q, first);
1010 	rcu_assign_pointer(q->current_entry, NULL);
1011 }
1012 
1013 static void taprio_start_sched(struct Qdisc *sch,
1014 			       ktime_t start, struct sched_gate_list *new)
1015 {
1016 	struct taprio_sched *q = qdisc_priv(sch);
1017 	ktime_t expires;
1018 
1019 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1020 		return;
1021 
1022 	expires = hrtimer_get_expires(&q->advance_timer);
1023 	if (expires == 0)
1024 		expires = KTIME_MAX;
1025 
1026 	/* If the new schedule starts before the next expiration, we
1027 	 * reprogram it to the earliest one, so we change the admin
1028 	 * schedule to the operational one at the right time.
1029 	 */
1030 	start = min_t(ktime_t, start, expires);
1031 
1032 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1033 }
1034 
1035 static void taprio_set_picos_per_byte(struct net_device *dev,
1036 				      struct taprio_sched *q)
1037 {
1038 	struct ethtool_link_ksettings ecmd;
1039 	int speed = SPEED_10;
1040 	int picos_per_byte;
1041 	int err;
1042 
1043 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1044 	if (err < 0)
1045 		goto skip;
1046 
1047 	if (ecmd.base.speed != SPEED_UNKNOWN)
1048 		speed = ecmd.base.speed;
1049 
1050 skip:
1051 	picos_per_byte = div64_s64(NSEC_PER_SEC * 1000LL * 8,
1052 				   speed * 1000 * 1000);
1053 
1054 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1055 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1056 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1057 		   ecmd.base.speed);
1058 }
1059 
1060 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1061 			       void *ptr)
1062 {
1063 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1064 	struct net_device *qdev;
1065 	struct taprio_sched *q;
1066 	bool found = false;
1067 
1068 	ASSERT_RTNL();
1069 
1070 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1071 		return NOTIFY_DONE;
1072 
1073 	spin_lock(&taprio_list_lock);
1074 	list_for_each_entry(q, &taprio_list, taprio_list) {
1075 		qdev = qdisc_dev(q->root);
1076 		if (qdev == dev) {
1077 			found = true;
1078 			break;
1079 		}
1080 	}
1081 	spin_unlock(&taprio_list_lock);
1082 
1083 	if (found)
1084 		taprio_set_picos_per_byte(dev, q);
1085 
1086 	return NOTIFY_DONE;
1087 }
1088 
1089 static void setup_txtime(struct taprio_sched *q,
1090 			 struct sched_gate_list *sched, ktime_t base)
1091 {
1092 	struct sched_entry *entry;
1093 	u32 interval = 0;
1094 
1095 	list_for_each_entry(entry, &sched->entries, list) {
1096 		entry->next_txtime = ktime_add_ns(base, interval);
1097 		interval += entry->interval;
1098 	}
1099 }
1100 
1101 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1102 {
1103 	size_t size = sizeof(struct tc_taprio_sched_entry) * num_entries +
1104 		      sizeof(struct __tc_taprio_qopt_offload);
1105 	struct __tc_taprio_qopt_offload *__offload;
1106 
1107 	__offload = kzalloc(size, GFP_KERNEL);
1108 	if (!__offload)
1109 		return NULL;
1110 
1111 	refcount_set(&__offload->users, 1);
1112 
1113 	return &__offload->offload;
1114 }
1115 
1116 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1117 						  *offload)
1118 {
1119 	struct __tc_taprio_qopt_offload *__offload;
1120 
1121 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1122 				 offload);
1123 
1124 	refcount_inc(&__offload->users);
1125 
1126 	return offload;
1127 }
1128 EXPORT_SYMBOL_GPL(taprio_offload_get);
1129 
1130 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1131 {
1132 	struct __tc_taprio_qopt_offload *__offload;
1133 
1134 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1135 				 offload);
1136 
1137 	if (!refcount_dec_and_test(&__offload->users))
1138 		return;
1139 
1140 	kfree(__offload);
1141 }
1142 EXPORT_SYMBOL_GPL(taprio_offload_free);
1143 
1144 /* The function will only serve to keep the pointers to the "oper" and "admin"
1145  * schedules valid in relation to their base times, so when calling dump() the
1146  * users looks at the right schedules.
1147  * When using full offload, the admin configuration is promoted to oper at the
1148  * base_time in the PHC time domain.  But because the system time is not
1149  * necessarily in sync with that, we can't just trigger a hrtimer to call
1150  * switch_schedules at the right hardware time.
1151  * At the moment we call this by hand right away from taprio, but in the future
1152  * it will be useful to create a mechanism for drivers to notify taprio of the
1153  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1154  * This is left as TODO.
1155  */
1156 void taprio_offload_config_changed(struct taprio_sched *q)
1157 {
1158 	struct sched_gate_list *oper, *admin;
1159 
1160 	spin_lock(&q->current_entry_lock);
1161 
1162 	oper = rcu_dereference_protected(q->oper_sched,
1163 					 lockdep_is_held(&q->current_entry_lock));
1164 	admin = rcu_dereference_protected(q->admin_sched,
1165 					  lockdep_is_held(&q->current_entry_lock));
1166 
1167 	switch_schedules(q, &admin, &oper);
1168 
1169 	spin_unlock(&q->current_entry_lock);
1170 }
1171 
1172 static void taprio_sched_to_offload(struct taprio_sched *q,
1173 				    struct sched_gate_list *sched,
1174 				    const struct tc_mqprio_qopt *mqprio,
1175 				    struct tc_taprio_qopt_offload *offload)
1176 {
1177 	struct sched_entry *entry;
1178 	int i = 0;
1179 
1180 	offload->base_time = sched->base_time;
1181 	offload->cycle_time = sched->cycle_time;
1182 	offload->cycle_time_extension = sched->cycle_time_extension;
1183 
1184 	list_for_each_entry(entry, &sched->entries, list) {
1185 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1186 
1187 		e->command = entry->command;
1188 		e->interval = entry->interval;
1189 		e->gate_mask = entry->gate_mask;
1190 		i++;
1191 	}
1192 
1193 	offload->num_entries = i;
1194 }
1195 
1196 static int taprio_enable_offload(struct net_device *dev,
1197 				 struct tc_mqprio_qopt *mqprio,
1198 				 struct taprio_sched *q,
1199 				 struct sched_gate_list *sched,
1200 				 struct netlink_ext_ack *extack)
1201 {
1202 	const struct net_device_ops *ops = dev->netdev_ops;
1203 	struct tc_taprio_qopt_offload *offload;
1204 	int err = 0;
1205 
1206 	if (!ops->ndo_setup_tc) {
1207 		NL_SET_ERR_MSG(extack,
1208 			       "Device does not support taprio offload");
1209 		return -EOPNOTSUPP;
1210 	}
1211 
1212 	offload = taprio_offload_alloc(sched->num_entries);
1213 	if (!offload) {
1214 		NL_SET_ERR_MSG(extack,
1215 			       "Not enough memory for enabling offload mode");
1216 		return -ENOMEM;
1217 	}
1218 	offload->enable = 1;
1219 	taprio_sched_to_offload(q, sched, mqprio, offload);
1220 
1221 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1222 	if (err < 0) {
1223 		NL_SET_ERR_MSG(extack,
1224 			       "Device failed to setup taprio offload");
1225 		goto done;
1226 	}
1227 
1228 	taprio_offload_config_changed(q);
1229 
1230 done:
1231 	taprio_offload_free(offload);
1232 
1233 	return err;
1234 }
1235 
1236 static int taprio_disable_offload(struct net_device *dev,
1237 				  struct taprio_sched *q,
1238 				  struct netlink_ext_ack *extack)
1239 {
1240 	const struct net_device_ops *ops = dev->netdev_ops;
1241 	struct tc_taprio_qopt_offload *offload;
1242 	int err;
1243 
1244 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1245 		return 0;
1246 
1247 	if (!ops->ndo_setup_tc)
1248 		return -EOPNOTSUPP;
1249 
1250 	offload = taprio_offload_alloc(0);
1251 	if (!offload) {
1252 		NL_SET_ERR_MSG(extack,
1253 			       "Not enough memory to disable offload mode");
1254 		return -ENOMEM;
1255 	}
1256 	offload->enable = 0;
1257 
1258 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1259 	if (err < 0) {
1260 		NL_SET_ERR_MSG(extack,
1261 			       "Device failed to disable offload");
1262 		goto out;
1263 	}
1264 
1265 out:
1266 	taprio_offload_free(offload);
1267 
1268 	return err;
1269 }
1270 
1271 /* If full offload is enabled, the only possible clockid is the net device's
1272  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1273  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1274  * in sync with the specified clockid via a user space daemon such as phc2sys.
1275  * For both software taprio and txtime-assist, the clockid is used for the
1276  * hrtimer that advances the schedule and hence mandatory.
1277  */
1278 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1279 				struct netlink_ext_ack *extack)
1280 {
1281 	struct taprio_sched *q = qdisc_priv(sch);
1282 	struct net_device *dev = qdisc_dev(sch);
1283 	int err = -EINVAL;
1284 
1285 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1286 		const struct ethtool_ops *ops = dev->ethtool_ops;
1287 		struct ethtool_ts_info info = {
1288 			.cmd = ETHTOOL_GET_TS_INFO,
1289 			.phc_index = -1,
1290 		};
1291 
1292 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1293 			NL_SET_ERR_MSG(extack,
1294 				       "The 'clockid' cannot be specified for full offload");
1295 			goto out;
1296 		}
1297 
1298 		if (ops && ops->get_ts_info)
1299 			err = ops->get_ts_info(dev, &info);
1300 
1301 		if (err || info.phc_index < 0) {
1302 			NL_SET_ERR_MSG(extack,
1303 				       "Device does not have a PTP clock");
1304 			err = -ENOTSUPP;
1305 			goto out;
1306 		}
1307 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1308 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1309 
1310 		/* We only support static clockids and we don't allow
1311 		 * for it to be modified after the first init.
1312 		 */
1313 		if (clockid < 0 ||
1314 		    (q->clockid != -1 && q->clockid != clockid)) {
1315 			NL_SET_ERR_MSG(extack,
1316 				       "Changing the 'clockid' of a running schedule is not supported");
1317 			err = -ENOTSUPP;
1318 			goto out;
1319 		}
1320 
1321 		switch (clockid) {
1322 		case CLOCK_REALTIME:
1323 			q->tk_offset = TK_OFFS_REAL;
1324 			break;
1325 		case CLOCK_MONOTONIC:
1326 			q->tk_offset = TK_OFFS_MAX;
1327 			break;
1328 		case CLOCK_BOOTTIME:
1329 			q->tk_offset = TK_OFFS_BOOT;
1330 			break;
1331 		case CLOCK_TAI:
1332 			q->tk_offset = TK_OFFS_TAI;
1333 			break;
1334 		default:
1335 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1336 			err = -EINVAL;
1337 			goto out;
1338 		}
1339 
1340 		q->clockid = clockid;
1341 	} else {
1342 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1343 		goto out;
1344 	}
1345 out:
1346 	return err;
1347 }
1348 
1349 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1350 			 struct netlink_ext_ack *extack)
1351 {
1352 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1353 	struct sched_gate_list *oper, *admin, *new_admin;
1354 	struct taprio_sched *q = qdisc_priv(sch);
1355 	struct net_device *dev = qdisc_dev(sch);
1356 	struct tc_mqprio_qopt *mqprio = NULL;
1357 	u32 taprio_flags = 0;
1358 	unsigned long flags;
1359 	ktime_t start;
1360 	int i, err;
1361 
1362 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1363 					  taprio_policy, extack);
1364 	if (err < 0)
1365 		return err;
1366 
1367 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1368 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1369 
1370 	if (tb[TCA_TAPRIO_ATTR_FLAGS]) {
1371 		taprio_flags = nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]);
1372 
1373 		if (q->flags != 0 && q->flags != taprio_flags) {
1374 			NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1375 			return -EOPNOTSUPP;
1376 		} else if (!taprio_flags_valid(taprio_flags)) {
1377 			NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1378 			return -EINVAL;
1379 		}
1380 
1381 		q->flags = taprio_flags;
1382 	}
1383 
1384 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, taprio_flags);
1385 	if (err < 0)
1386 		return err;
1387 
1388 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1389 	if (!new_admin) {
1390 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1391 		return -ENOMEM;
1392 	}
1393 	INIT_LIST_HEAD(&new_admin->entries);
1394 
1395 	rcu_read_lock();
1396 	oper = rcu_dereference(q->oper_sched);
1397 	admin = rcu_dereference(q->admin_sched);
1398 	rcu_read_unlock();
1399 
1400 	if (mqprio && (oper || admin)) {
1401 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1402 		err = -ENOTSUPP;
1403 		goto free_sched;
1404 	}
1405 
1406 	err = parse_taprio_schedule(tb, new_admin, extack);
1407 	if (err < 0)
1408 		goto free_sched;
1409 
1410 	if (new_admin->num_entries == 0) {
1411 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1412 		err = -EINVAL;
1413 		goto free_sched;
1414 	}
1415 
1416 	err = taprio_parse_clockid(sch, tb, extack);
1417 	if (err < 0)
1418 		goto free_sched;
1419 
1420 	taprio_set_picos_per_byte(dev, q);
1421 
1422 	if (FULL_OFFLOAD_IS_ENABLED(taprio_flags))
1423 		err = taprio_enable_offload(dev, mqprio, q, new_admin, extack);
1424 	else
1425 		err = taprio_disable_offload(dev, q, extack);
1426 	if (err)
1427 		goto free_sched;
1428 
1429 	/* Protects against enqueue()/dequeue() */
1430 	spin_lock_bh(qdisc_lock(sch));
1431 
1432 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1433 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1434 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1435 			err = -EINVAL;
1436 			goto unlock;
1437 		}
1438 
1439 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1440 	}
1441 
1442 	if (!TXTIME_ASSIST_IS_ENABLED(taprio_flags) &&
1443 	    !FULL_OFFLOAD_IS_ENABLED(taprio_flags) &&
1444 	    !hrtimer_active(&q->advance_timer)) {
1445 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1446 		q->advance_timer.function = advance_sched;
1447 	}
1448 
1449 	if (mqprio) {
1450 		netdev_set_num_tc(dev, mqprio->num_tc);
1451 		for (i = 0; i < mqprio->num_tc; i++)
1452 			netdev_set_tc_queue(dev, i,
1453 					    mqprio->count[i],
1454 					    mqprio->offset[i]);
1455 
1456 		/* Always use supplied priority mappings */
1457 		for (i = 0; i < TC_BITMASK + 1; i++)
1458 			netdev_set_prio_tc_map(dev, i,
1459 					       mqprio->prio_tc_map[i]);
1460 	}
1461 
1462 	if (FULL_OFFLOAD_IS_ENABLED(taprio_flags)) {
1463 		q->dequeue = taprio_dequeue_offload;
1464 		q->peek = taprio_peek_offload;
1465 	} else {
1466 		/* Be sure to always keep the function pointers
1467 		 * in a consistent state.
1468 		 */
1469 		q->dequeue = taprio_dequeue_soft;
1470 		q->peek = taprio_peek_soft;
1471 	}
1472 
1473 	err = taprio_get_start_time(sch, new_admin, &start);
1474 	if (err < 0) {
1475 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1476 		goto unlock;
1477 	}
1478 
1479 	if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) {
1480 		setup_txtime(q, new_admin, start);
1481 
1482 		if (!oper) {
1483 			rcu_assign_pointer(q->oper_sched, new_admin);
1484 			err = 0;
1485 			new_admin = NULL;
1486 			goto unlock;
1487 		}
1488 
1489 		rcu_assign_pointer(q->admin_sched, new_admin);
1490 		if (admin)
1491 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1492 	} else {
1493 		setup_first_close_time(q, new_admin, start);
1494 
1495 		/* Protects against advance_sched() */
1496 		spin_lock_irqsave(&q->current_entry_lock, flags);
1497 
1498 		taprio_start_sched(sch, start, new_admin);
1499 
1500 		rcu_assign_pointer(q->admin_sched, new_admin);
1501 		if (admin)
1502 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1503 
1504 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1505 	}
1506 
1507 	new_admin = NULL;
1508 	err = 0;
1509 
1510 unlock:
1511 	spin_unlock_bh(qdisc_lock(sch));
1512 
1513 free_sched:
1514 	if (new_admin)
1515 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1516 
1517 	return err;
1518 }
1519 
1520 static void taprio_destroy(struct Qdisc *sch)
1521 {
1522 	struct taprio_sched *q = qdisc_priv(sch);
1523 	struct net_device *dev = qdisc_dev(sch);
1524 	unsigned int i;
1525 
1526 	spin_lock(&taprio_list_lock);
1527 	list_del(&q->taprio_list);
1528 	spin_unlock(&taprio_list_lock);
1529 
1530 	hrtimer_cancel(&q->advance_timer);
1531 
1532 	taprio_disable_offload(dev, q, NULL);
1533 
1534 	if (q->qdiscs) {
1535 		for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1536 			qdisc_put(q->qdiscs[i]);
1537 
1538 		kfree(q->qdiscs);
1539 	}
1540 	q->qdiscs = NULL;
1541 
1542 	netdev_set_num_tc(dev, 0);
1543 
1544 	if (q->oper_sched)
1545 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1546 
1547 	if (q->admin_sched)
1548 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1549 }
1550 
1551 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1552 		       struct netlink_ext_ack *extack)
1553 {
1554 	struct taprio_sched *q = qdisc_priv(sch);
1555 	struct net_device *dev = qdisc_dev(sch);
1556 	int i;
1557 
1558 	spin_lock_init(&q->current_entry_lock);
1559 
1560 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1561 	q->advance_timer.function = advance_sched;
1562 
1563 	q->dequeue = taprio_dequeue_soft;
1564 	q->peek = taprio_peek_soft;
1565 
1566 	q->root = sch;
1567 
1568 	/* We only support static clockids. Use an invalid value as default
1569 	 * and get the valid one on taprio_change().
1570 	 */
1571 	q->clockid = -1;
1572 
1573 	spin_lock(&taprio_list_lock);
1574 	list_add(&q->taprio_list, &taprio_list);
1575 	spin_unlock(&taprio_list_lock);
1576 
1577 	if (sch->parent != TC_H_ROOT)
1578 		return -EOPNOTSUPP;
1579 
1580 	if (!netif_is_multiqueue(dev))
1581 		return -EOPNOTSUPP;
1582 
1583 	/* pre-allocate qdisc, attachment can't fail */
1584 	q->qdiscs = kcalloc(dev->num_tx_queues,
1585 			    sizeof(q->qdiscs[0]),
1586 			    GFP_KERNEL);
1587 
1588 	if (!q->qdiscs)
1589 		return -ENOMEM;
1590 
1591 	if (!opt)
1592 		return -EINVAL;
1593 
1594 	for (i = 0; i < dev->num_tx_queues; i++) {
1595 		struct netdev_queue *dev_queue;
1596 		struct Qdisc *qdisc;
1597 
1598 		dev_queue = netdev_get_tx_queue(dev, i);
1599 		qdisc = qdisc_create_dflt(dev_queue,
1600 					  &pfifo_qdisc_ops,
1601 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1602 						    TC_H_MIN(i + 1)),
1603 					  extack);
1604 		if (!qdisc)
1605 			return -ENOMEM;
1606 
1607 		if (i < dev->real_num_tx_queues)
1608 			qdisc_hash_add(qdisc, false);
1609 
1610 		q->qdiscs[i] = qdisc;
1611 	}
1612 
1613 	return taprio_change(sch, opt, extack);
1614 }
1615 
1616 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1617 					     unsigned long cl)
1618 {
1619 	struct net_device *dev = qdisc_dev(sch);
1620 	unsigned long ntx = cl - 1;
1621 
1622 	if (ntx >= dev->num_tx_queues)
1623 		return NULL;
1624 
1625 	return netdev_get_tx_queue(dev, ntx);
1626 }
1627 
1628 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1629 			struct Qdisc *new, struct Qdisc **old,
1630 			struct netlink_ext_ack *extack)
1631 {
1632 	struct taprio_sched *q = qdisc_priv(sch);
1633 	struct net_device *dev = qdisc_dev(sch);
1634 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1635 
1636 	if (!dev_queue)
1637 		return -EINVAL;
1638 
1639 	if (dev->flags & IFF_UP)
1640 		dev_deactivate(dev);
1641 
1642 	*old = q->qdiscs[cl - 1];
1643 	q->qdiscs[cl - 1] = new;
1644 
1645 	if (new)
1646 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1647 
1648 	if (dev->flags & IFF_UP)
1649 		dev_activate(dev);
1650 
1651 	return 0;
1652 }
1653 
1654 static int dump_entry(struct sk_buff *msg,
1655 		      const struct sched_entry *entry)
1656 {
1657 	struct nlattr *item;
1658 
1659 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1660 	if (!item)
1661 		return -ENOSPC;
1662 
1663 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1664 		goto nla_put_failure;
1665 
1666 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1667 		goto nla_put_failure;
1668 
1669 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1670 			entry->gate_mask))
1671 		goto nla_put_failure;
1672 
1673 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1674 			entry->interval))
1675 		goto nla_put_failure;
1676 
1677 	return nla_nest_end(msg, item);
1678 
1679 nla_put_failure:
1680 	nla_nest_cancel(msg, item);
1681 	return -1;
1682 }
1683 
1684 static int dump_schedule(struct sk_buff *msg,
1685 			 const struct sched_gate_list *root)
1686 {
1687 	struct nlattr *entry_list;
1688 	struct sched_entry *entry;
1689 
1690 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1691 			root->base_time, TCA_TAPRIO_PAD))
1692 		return -1;
1693 
1694 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1695 			root->cycle_time, TCA_TAPRIO_PAD))
1696 		return -1;
1697 
1698 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1699 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1700 		return -1;
1701 
1702 	entry_list = nla_nest_start_noflag(msg,
1703 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1704 	if (!entry_list)
1705 		goto error_nest;
1706 
1707 	list_for_each_entry(entry, &root->entries, list) {
1708 		if (dump_entry(msg, entry) < 0)
1709 			goto error_nest;
1710 	}
1711 
1712 	nla_nest_end(msg, entry_list);
1713 	return 0;
1714 
1715 error_nest:
1716 	nla_nest_cancel(msg, entry_list);
1717 	return -1;
1718 }
1719 
1720 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1721 {
1722 	struct taprio_sched *q = qdisc_priv(sch);
1723 	struct net_device *dev = qdisc_dev(sch);
1724 	struct sched_gate_list *oper, *admin;
1725 	struct tc_mqprio_qopt opt = { 0 };
1726 	struct nlattr *nest, *sched_nest;
1727 	unsigned int i;
1728 
1729 	rcu_read_lock();
1730 	oper = rcu_dereference(q->oper_sched);
1731 	admin = rcu_dereference(q->admin_sched);
1732 
1733 	opt.num_tc = netdev_get_num_tc(dev);
1734 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1735 
1736 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1737 		opt.count[i] = dev->tc_to_txq[i].count;
1738 		opt.offset[i] = dev->tc_to_txq[i].offset;
1739 	}
1740 
1741 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1742 	if (!nest)
1743 		goto start_error;
1744 
1745 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1746 		goto options_error;
1747 
1748 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1749 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1750 		goto options_error;
1751 
1752 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1753 		goto options_error;
1754 
1755 	if (q->txtime_delay &&
1756 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1757 		goto options_error;
1758 
1759 	if (oper && dump_schedule(skb, oper))
1760 		goto options_error;
1761 
1762 	if (!admin)
1763 		goto done;
1764 
1765 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1766 	if (!sched_nest)
1767 		goto options_error;
1768 
1769 	if (dump_schedule(skb, admin))
1770 		goto admin_error;
1771 
1772 	nla_nest_end(skb, sched_nest);
1773 
1774 done:
1775 	rcu_read_unlock();
1776 
1777 	return nla_nest_end(skb, nest);
1778 
1779 admin_error:
1780 	nla_nest_cancel(skb, sched_nest);
1781 
1782 options_error:
1783 	nla_nest_cancel(skb, nest);
1784 
1785 start_error:
1786 	rcu_read_unlock();
1787 	return -ENOSPC;
1788 }
1789 
1790 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1791 {
1792 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1793 
1794 	if (!dev_queue)
1795 		return NULL;
1796 
1797 	return dev_queue->qdisc_sleeping;
1798 }
1799 
1800 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1801 {
1802 	unsigned int ntx = TC_H_MIN(classid);
1803 
1804 	if (!taprio_queue_get(sch, ntx))
1805 		return 0;
1806 	return ntx;
1807 }
1808 
1809 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1810 			     struct sk_buff *skb, struct tcmsg *tcm)
1811 {
1812 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1813 
1814 	tcm->tcm_parent = TC_H_ROOT;
1815 	tcm->tcm_handle |= TC_H_MIN(cl);
1816 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1817 
1818 	return 0;
1819 }
1820 
1821 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1822 				   struct gnet_dump *d)
1823 	__releases(d->lock)
1824 	__acquires(d->lock)
1825 {
1826 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1827 
1828 	sch = dev_queue->qdisc_sleeping;
1829 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1830 	    qdisc_qstats_copy(d, sch) < 0)
1831 		return -1;
1832 	return 0;
1833 }
1834 
1835 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1836 {
1837 	struct net_device *dev = qdisc_dev(sch);
1838 	unsigned long ntx;
1839 
1840 	if (arg->stop)
1841 		return;
1842 
1843 	arg->count = arg->skip;
1844 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1845 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1846 			arg->stop = 1;
1847 			break;
1848 		}
1849 		arg->count++;
1850 	}
1851 }
1852 
1853 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1854 						struct tcmsg *tcm)
1855 {
1856 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1857 }
1858 
1859 static const struct Qdisc_class_ops taprio_class_ops = {
1860 	.graft		= taprio_graft,
1861 	.leaf		= taprio_leaf,
1862 	.find		= taprio_find,
1863 	.walk		= taprio_walk,
1864 	.dump		= taprio_dump_class,
1865 	.dump_stats	= taprio_dump_class_stats,
1866 	.select_queue	= taprio_select_queue,
1867 };
1868 
1869 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1870 	.cl_ops		= &taprio_class_ops,
1871 	.id		= "taprio",
1872 	.priv_size	= sizeof(struct taprio_sched),
1873 	.init		= taprio_init,
1874 	.change		= taprio_change,
1875 	.destroy	= taprio_destroy,
1876 	.peek		= taprio_peek,
1877 	.dequeue	= taprio_dequeue,
1878 	.enqueue	= taprio_enqueue,
1879 	.dump		= taprio_dump,
1880 	.owner		= THIS_MODULE,
1881 };
1882 
1883 static struct notifier_block taprio_device_notifier = {
1884 	.notifier_call = taprio_dev_notifier,
1885 };
1886 
1887 static int __init taprio_module_init(void)
1888 {
1889 	int err = register_netdevice_notifier(&taprio_device_notifier);
1890 
1891 	if (err)
1892 		return err;
1893 
1894 	return register_qdisc(&taprio_qdisc_ops);
1895 }
1896 
1897 static void __exit taprio_module_exit(void)
1898 {
1899 	unregister_qdisc(&taprio_qdisc_ops);
1900 	unregister_netdevice_notifier(&taprio_device_notifier);
1901 }
1902 
1903 module_init(taprio_module_init);
1904 module_exit(taprio_module_exit);
1905 MODULE_LICENSE("GPL");
1906