xref: /openbmc/linux/net/sched/sch_taprio.c (revision 8622a0e5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26 
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29 
30 #define TAPRIO_ALL_GATES_OPEN -1
31 
32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
34 #define TAPRIO_FLAGS_INVALID U32_MAX
35 
36 struct sched_entry {
37 	struct list_head list;
38 
39 	/* The instant that this entry "closes" and the next one
40 	 * should open, the qdisc will make some effort so that no
41 	 * packet leaves after this time.
42 	 */
43 	ktime_t close_time;
44 	ktime_t next_txtime;
45 	atomic_t budget;
46 	int index;
47 	u32 gate_mask;
48 	u32 interval;
49 	u8 command;
50 };
51 
52 struct sched_gate_list {
53 	struct rcu_head rcu;
54 	struct list_head entries;
55 	size_t num_entries;
56 	ktime_t cycle_close_time;
57 	s64 cycle_time;
58 	s64 cycle_time_extension;
59 	s64 base_time;
60 };
61 
62 struct taprio_sched {
63 	struct Qdisc **qdiscs;
64 	struct Qdisc *root;
65 	u32 flags;
66 	enum tk_offsets tk_offset;
67 	int clockid;
68 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
69 				    * speeds it's sub-nanoseconds per byte
70 				    */
71 
72 	/* Protects the update side of the RCU protected current_entry */
73 	spinlock_t current_entry_lock;
74 	struct sched_entry __rcu *current_entry;
75 	struct sched_gate_list __rcu *oper_sched;
76 	struct sched_gate_list __rcu *admin_sched;
77 	struct hrtimer advance_timer;
78 	struct list_head taprio_list;
79 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
80 	struct sk_buff *(*peek)(struct Qdisc *sch);
81 	u32 txtime_delay;
82 };
83 
84 struct __tc_taprio_qopt_offload {
85 	refcount_t users;
86 	struct tc_taprio_qopt_offload offload;
87 };
88 
89 static ktime_t sched_base_time(const struct sched_gate_list *sched)
90 {
91 	if (!sched)
92 		return KTIME_MAX;
93 
94 	return ns_to_ktime(sched->base_time);
95 }
96 
97 static ktime_t taprio_get_time(struct taprio_sched *q)
98 {
99 	ktime_t mono = ktime_get();
100 
101 	switch (q->tk_offset) {
102 	case TK_OFFS_MAX:
103 		return mono;
104 	default:
105 		return ktime_mono_to_any(mono, q->tk_offset);
106 	}
107 
108 	return KTIME_MAX;
109 }
110 
111 static void taprio_free_sched_cb(struct rcu_head *head)
112 {
113 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
114 	struct sched_entry *entry, *n;
115 
116 	if (!sched)
117 		return;
118 
119 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
120 		list_del(&entry->list);
121 		kfree(entry);
122 	}
123 
124 	kfree(sched);
125 }
126 
127 static void switch_schedules(struct taprio_sched *q,
128 			     struct sched_gate_list **admin,
129 			     struct sched_gate_list **oper)
130 {
131 	rcu_assign_pointer(q->oper_sched, *admin);
132 	rcu_assign_pointer(q->admin_sched, NULL);
133 
134 	if (*oper)
135 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
136 
137 	*oper = *admin;
138 	*admin = NULL;
139 }
140 
141 /* Get how much time has been already elapsed in the current cycle. */
142 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
143 {
144 	ktime_t time_since_sched_start;
145 	s32 time_elapsed;
146 
147 	time_since_sched_start = ktime_sub(time, sched->base_time);
148 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
149 
150 	return time_elapsed;
151 }
152 
153 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
154 				     struct sched_gate_list *admin,
155 				     struct sched_entry *entry,
156 				     ktime_t intv_start)
157 {
158 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
159 	ktime_t intv_end, cycle_ext_end, cycle_end;
160 
161 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
162 	intv_end = ktime_add_ns(intv_start, entry->interval);
163 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
164 
165 	if (ktime_before(intv_end, cycle_end))
166 		return intv_end;
167 	else if (admin && admin != sched &&
168 		 ktime_after(admin->base_time, cycle_end) &&
169 		 ktime_before(admin->base_time, cycle_ext_end))
170 		return admin->base_time;
171 	else
172 		return cycle_end;
173 }
174 
175 static int length_to_duration(struct taprio_sched *q, int len)
176 {
177 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
178 }
179 
180 /* Returns the entry corresponding to next available interval. If
181  * validate_interval is set, it only validates whether the timestamp occurs
182  * when the gate corresponding to the skb's traffic class is open.
183  */
184 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
185 						  struct Qdisc *sch,
186 						  struct sched_gate_list *sched,
187 						  struct sched_gate_list *admin,
188 						  ktime_t time,
189 						  ktime_t *interval_start,
190 						  ktime_t *interval_end,
191 						  bool validate_interval)
192 {
193 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
194 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
195 	struct sched_entry *entry = NULL, *entry_found = NULL;
196 	struct taprio_sched *q = qdisc_priv(sch);
197 	struct net_device *dev = qdisc_dev(sch);
198 	bool entry_available = false;
199 	s32 cycle_elapsed;
200 	int tc, n;
201 
202 	tc = netdev_get_prio_tc_map(dev, skb->priority);
203 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
204 
205 	*interval_start = 0;
206 	*interval_end = 0;
207 
208 	if (!sched)
209 		return NULL;
210 
211 	cycle = sched->cycle_time;
212 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
213 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
214 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
215 
216 	list_for_each_entry(entry, &sched->entries, list) {
217 		curr_intv_start = curr_intv_end;
218 		curr_intv_end = get_interval_end_time(sched, admin, entry,
219 						      curr_intv_start);
220 
221 		if (ktime_after(curr_intv_start, cycle_end))
222 			break;
223 
224 		if (!(entry->gate_mask & BIT(tc)) ||
225 		    packet_transmit_time > entry->interval)
226 			continue;
227 
228 		txtime = entry->next_txtime;
229 
230 		if (ktime_before(txtime, time) || validate_interval) {
231 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
232 			if ((ktime_before(curr_intv_start, time) &&
233 			     ktime_before(transmit_end_time, curr_intv_end)) ||
234 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
235 				entry_found = entry;
236 				*interval_start = curr_intv_start;
237 				*interval_end = curr_intv_end;
238 				break;
239 			} else if (!entry_available && !validate_interval) {
240 				/* Here, we are just trying to find out the
241 				 * first available interval in the next cycle.
242 				 */
243 				entry_available = 1;
244 				entry_found = entry;
245 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
246 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
247 			}
248 		} else if (ktime_before(txtime, earliest_txtime) &&
249 			   !entry_available) {
250 			earliest_txtime = txtime;
251 			entry_found = entry;
252 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
253 			*interval_start = ktime_add(curr_intv_start, n * cycle);
254 			*interval_end = ktime_add(curr_intv_end, n * cycle);
255 		}
256 	}
257 
258 	return entry_found;
259 }
260 
261 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
262 {
263 	struct taprio_sched *q = qdisc_priv(sch);
264 	struct sched_gate_list *sched, *admin;
265 	ktime_t interval_start, interval_end;
266 	struct sched_entry *entry;
267 
268 	rcu_read_lock();
269 	sched = rcu_dereference(q->oper_sched);
270 	admin = rcu_dereference(q->admin_sched);
271 
272 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
273 				       &interval_start, &interval_end, true);
274 	rcu_read_unlock();
275 
276 	return entry;
277 }
278 
279 static bool taprio_flags_valid(u32 flags)
280 {
281 	/* Make sure no other flag bits are set. */
282 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
283 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
284 		return false;
285 	/* txtime-assist and full offload are mutually exclusive */
286 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
287 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
288 		return false;
289 	return true;
290 }
291 
292 /* This returns the tstamp value set by TCP in terms of the set clock. */
293 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
294 {
295 	unsigned int offset = skb_network_offset(skb);
296 	const struct ipv6hdr *ipv6h;
297 	const struct iphdr *iph;
298 	struct ipv6hdr _ipv6h;
299 
300 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
301 	if (!ipv6h)
302 		return 0;
303 
304 	if (ipv6h->version == 4) {
305 		iph = (struct iphdr *)ipv6h;
306 		offset += iph->ihl * 4;
307 
308 		/* special-case 6in4 tunnelling, as that is a common way to get
309 		 * v6 connectivity in the home
310 		 */
311 		if (iph->protocol == IPPROTO_IPV6) {
312 			ipv6h = skb_header_pointer(skb, offset,
313 						   sizeof(_ipv6h), &_ipv6h);
314 
315 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
316 				return 0;
317 		} else if (iph->protocol != IPPROTO_TCP) {
318 			return 0;
319 		}
320 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
321 		return 0;
322 	}
323 
324 	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
325 }
326 
327 /* There are a few scenarios where we will have to modify the txtime from
328  * what is read from next_txtime in sched_entry. They are:
329  * 1. If txtime is in the past,
330  *    a. The gate for the traffic class is currently open and packet can be
331  *       transmitted before it closes, schedule the packet right away.
332  *    b. If the gate corresponding to the traffic class is going to open later
333  *       in the cycle, set the txtime of packet to the interval start.
334  * 2. If txtime is in the future, there are packets corresponding to the
335  *    current traffic class waiting to be transmitted. So, the following
336  *    possibilities exist:
337  *    a. We can transmit the packet before the window containing the txtime
338  *       closes.
339  *    b. The window might close before the transmission can be completed
340  *       successfully. So, schedule the packet in the next open window.
341  */
342 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
343 {
344 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
345 	struct taprio_sched *q = qdisc_priv(sch);
346 	struct sched_gate_list *sched, *admin;
347 	ktime_t minimum_time, now, txtime;
348 	int len, packet_transmit_time;
349 	struct sched_entry *entry;
350 	bool sched_changed;
351 
352 	now = taprio_get_time(q);
353 	minimum_time = ktime_add_ns(now, q->txtime_delay);
354 
355 	tcp_tstamp = get_tcp_tstamp(q, skb);
356 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
357 
358 	rcu_read_lock();
359 	admin = rcu_dereference(q->admin_sched);
360 	sched = rcu_dereference(q->oper_sched);
361 	if (admin && ktime_after(minimum_time, admin->base_time))
362 		switch_schedules(q, &admin, &sched);
363 
364 	/* Until the schedule starts, all the queues are open */
365 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
366 		txtime = minimum_time;
367 		goto done;
368 	}
369 
370 	len = qdisc_pkt_len(skb);
371 	packet_transmit_time = length_to_duration(q, len);
372 
373 	do {
374 		sched_changed = 0;
375 
376 		entry = find_entry_to_transmit(skb, sch, sched, admin,
377 					       minimum_time,
378 					       &interval_start, &interval_end,
379 					       false);
380 		if (!entry) {
381 			txtime = 0;
382 			goto done;
383 		}
384 
385 		txtime = entry->next_txtime;
386 		txtime = max_t(ktime_t, txtime, minimum_time);
387 		txtime = max_t(ktime_t, txtime, interval_start);
388 
389 		if (admin && admin != sched &&
390 		    ktime_after(txtime, admin->base_time)) {
391 			sched = admin;
392 			sched_changed = 1;
393 			continue;
394 		}
395 
396 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
397 		minimum_time = transmit_end_time;
398 
399 		/* Update the txtime of current entry to the next time it's
400 		 * interval starts.
401 		 */
402 		if (ktime_after(transmit_end_time, interval_end))
403 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
404 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
405 
406 	entry->next_txtime = transmit_end_time;
407 
408 done:
409 	rcu_read_unlock();
410 	return txtime;
411 }
412 
413 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
414 			  struct sk_buff **to_free)
415 {
416 	struct taprio_sched *q = qdisc_priv(sch);
417 	struct Qdisc *child;
418 	int queue;
419 
420 	queue = skb_get_queue_mapping(skb);
421 
422 	child = q->qdiscs[queue];
423 	if (unlikely(!child))
424 		return qdisc_drop(skb, sch, to_free);
425 
426 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
427 		if (!is_valid_interval(skb, sch))
428 			return qdisc_drop(skb, sch, to_free);
429 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
430 		skb->tstamp = get_packet_txtime(skb, sch);
431 		if (!skb->tstamp)
432 			return qdisc_drop(skb, sch, to_free);
433 	}
434 
435 	qdisc_qstats_backlog_inc(sch, skb);
436 	sch->q.qlen++;
437 
438 	return qdisc_enqueue(skb, child, to_free);
439 }
440 
441 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
442 {
443 	struct taprio_sched *q = qdisc_priv(sch);
444 	struct net_device *dev = qdisc_dev(sch);
445 	struct sched_entry *entry;
446 	struct sk_buff *skb;
447 	u32 gate_mask;
448 	int i;
449 
450 	rcu_read_lock();
451 	entry = rcu_dereference(q->current_entry);
452 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
453 	rcu_read_unlock();
454 
455 	if (!gate_mask)
456 		return NULL;
457 
458 	for (i = 0; i < dev->num_tx_queues; i++) {
459 		struct Qdisc *child = q->qdiscs[i];
460 		int prio;
461 		u8 tc;
462 
463 		if (unlikely(!child))
464 			continue;
465 
466 		skb = child->ops->peek(child);
467 		if (!skb)
468 			continue;
469 
470 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
471 			return skb;
472 
473 		prio = skb->priority;
474 		tc = netdev_get_prio_tc_map(dev, prio);
475 
476 		if (!(gate_mask & BIT(tc)))
477 			continue;
478 
479 		return skb;
480 	}
481 
482 	return NULL;
483 }
484 
485 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
486 {
487 	struct taprio_sched *q = qdisc_priv(sch);
488 	struct net_device *dev = qdisc_dev(sch);
489 	struct sk_buff *skb;
490 	int i;
491 
492 	for (i = 0; i < dev->num_tx_queues; i++) {
493 		struct Qdisc *child = q->qdiscs[i];
494 
495 		if (unlikely(!child))
496 			continue;
497 
498 		skb = child->ops->peek(child);
499 		if (!skb)
500 			continue;
501 
502 		return skb;
503 	}
504 
505 	return NULL;
506 }
507 
508 static struct sk_buff *taprio_peek(struct Qdisc *sch)
509 {
510 	struct taprio_sched *q = qdisc_priv(sch);
511 
512 	return q->peek(sch);
513 }
514 
515 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
516 {
517 	atomic_set(&entry->budget,
518 		   div64_u64((u64)entry->interval * 1000,
519 			     atomic64_read(&q->picos_per_byte)));
520 }
521 
522 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
523 {
524 	struct taprio_sched *q = qdisc_priv(sch);
525 	struct net_device *dev = qdisc_dev(sch);
526 	struct sk_buff *skb = NULL;
527 	struct sched_entry *entry;
528 	u32 gate_mask;
529 	int i;
530 
531 	rcu_read_lock();
532 	entry = rcu_dereference(q->current_entry);
533 	/* if there's no entry, it means that the schedule didn't
534 	 * start yet, so force all gates to be open, this is in
535 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
536 	 * "AdminGateSates"
537 	 */
538 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
539 
540 	if (!gate_mask)
541 		goto done;
542 
543 	for (i = 0; i < dev->num_tx_queues; i++) {
544 		struct Qdisc *child = q->qdiscs[i];
545 		ktime_t guard;
546 		int prio;
547 		int len;
548 		u8 tc;
549 
550 		if (unlikely(!child))
551 			continue;
552 
553 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
554 			skb = child->ops->dequeue(child);
555 			if (!skb)
556 				continue;
557 			goto skb_found;
558 		}
559 
560 		skb = child->ops->peek(child);
561 		if (!skb)
562 			continue;
563 
564 		prio = skb->priority;
565 		tc = netdev_get_prio_tc_map(dev, prio);
566 
567 		if (!(gate_mask & BIT(tc)))
568 			continue;
569 
570 		len = qdisc_pkt_len(skb);
571 		guard = ktime_add_ns(taprio_get_time(q),
572 				     length_to_duration(q, len));
573 
574 		/* In the case that there's no gate entry, there's no
575 		 * guard band ...
576 		 */
577 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
578 		    ktime_after(guard, entry->close_time))
579 			continue;
580 
581 		/* ... and no budget. */
582 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
583 		    atomic_sub_return(len, &entry->budget) < 0)
584 			continue;
585 
586 		skb = child->ops->dequeue(child);
587 		if (unlikely(!skb))
588 			goto done;
589 
590 skb_found:
591 		qdisc_bstats_update(sch, skb);
592 		qdisc_qstats_backlog_dec(sch, skb);
593 		sch->q.qlen--;
594 
595 		goto done;
596 	}
597 
598 done:
599 	rcu_read_unlock();
600 
601 	return skb;
602 }
603 
604 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
605 {
606 	struct taprio_sched *q = qdisc_priv(sch);
607 	struct net_device *dev = qdisc_dev(sch);
608 	struct sk_buff *skb;
609 	int i;
610 
611 	for (i = 0; i < dev->num_tx_queues; i++) {
612 		struct Qdisc *child = q->qdiscs[i];
613 
614 		if (unlikely(!child))
615 			continue;
616 
617 		skb = child->ops->dequeue(child);
618 		if (unlikely(!skb))
619 			continue;
620 
621 		qdisc_bstats_update(sch, skb);
622 		qdisc_qstats_backlog_dec(sch, skb);
623 		sch->q.qlen--;
624 
625 		return skb;
626 	}
627 
628 	return NULL;
629 }
630 
631 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
632 {
633 	struct taprio_sched *q = qdisc_priv(sch);
634 
635 	return q->dequeue(sch);
636 }
637 
638 static bool should_restart_cycle(const struct sched_gate_list *oper,
639 				 const struct sched_entry *entry)
640 {
641 	if (list_is_last(&entry->list, &oper->entries))
642 		return true;
643 
644 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
645 		return true;
646 
647 	return false;
648 }
649 
650 static bool should_change_schedules(const struct sched_gate_list *admin,
651 				    const struct sched_gate_list *oper,
652 				    ktime_t close_time)
653 {
654 	ktime_t next_base_time, extension_time;
655 
656 	if (!admin)
657 		return false;
658 
659 	next_base_time = sched_base_time(admin);
660 
661 	/* This is the simple case, the close_time would fall after
662 	 * the next schedule base_time.
663 	 */
664 	if (ktime_compare(next_base_time, close_time) <= 0)
665 		return true;
666 
667 	/* This is the cycle_time_extension case, if the close_time
668 	 * plus the amount that can be extended would fall after the
669 	 * next schedule base_time, we can extend the current schedule
670 	 * for that amount.
671 	 */
672 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
673 
674 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
675 	 * how precisely the extension should be made. So after
676 	 * conformance testing, this logic may change.
677 	 */
678 	if (ktime_compare(next_base_time, extension_time) <= 0)
679 		return true;
680 
681 	return false;
682 }
683 
684 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
685 {
686 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
687 					      advance_timer);
688 	struct sched_gate_list *oper, *admin;
689 	struct sched_entry *entry, *next;
690 	struct Qdisc *sch = q->root;
691 	ktime_t close_time;
692 
693 	spin_lock(&q->current_entry_lock);
694 	entry = rcu_dereference_protected(q->current_entry,
695 					  lockdep_is_held(&q->current_entry_lock));
696 	oper = rcu_dereference_protected(q->oper_sched,
697 					 lockdep_is_held(&q->current_entry_lock));
698 	admin = rcu_dereference_protected(q->admin_sched,
699 					  lockdep_is_held(&q->current_entry_lock));
700 
701 	if (!oper)
702 		switch_schedules(q, &admin, &oper);
703 
704 	/* This can happen in two cases: 1. this is the very first run
705 	 * of this function (i.e. we weren't running any schedule
706 	 * previously); 2. The previous schedule just ended. The first
707 	 * entry of all schedules are pre-calculated during the
708 	 * schedule initialization.
709 	 */
710 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
711 		next = list_first_entry(&oper->entries, struct sched_entry,
712 					list);
713 		close_time = next->close_time;
714 		goto first_run;
715 	}
716 
717 	if (should_restart_cycle(oper, entry)) {
718 		next = list_first_entry(&oper->entries, struct sched_entry,
719 					list);
720 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
721 						      oper->cycle_time);
722 	} else {
723 		next = list_next_entry(entry, list);
724 	}
725 
726 	close_time = ktime_add_ns(entry->close_time, next->interval);
727 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
728 
729 	if (should_change_schedules(admin, oper, close_time)) {
730 		/* Set things so the next time this runs, the new
731 		 * schedule runs.
732 		 */
733 		close_time = sched_base_time(admin);
734 		switch_schedules(q, &admin, &oper);
735 	}
736 
737 	next->close_time = close_time;
738 	taprio_set_budget(q, next);
739 
740 first_run:
741 	rcu_assign_pointer(q->current_entry, next);
742 	spin_unlock(&q->current_entry_lock);
743 
744 	hrtimer_set_expires(&q->advance_timer, close_time);
745 
746 	rcu_read_lock();
747 	__netif_schedule(sch);
748 	rcu_read_unlock();
749 
750 	return HRTIMER_RESTART;
751 }
752 
753 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
754 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
755 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
756 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
757 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
758 };
759 
760 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
761 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
762 		.len = sizeof(struct tc_mqprio_qopt)
763 	},
764 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
765 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
766 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
767 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
768 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
769 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
770 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
771 };
772 
773 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
774 			    struct netlink_ext_ack *extack)
775 {
776 	u32 interval = 0;
777 
778 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
779 		entry->command = nla_get_u8(
780 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
781 
782 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
783 		entry->gate_mask = nla_get_u32(
784 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
785 
786 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
787 		interval = nla_get_u32(
788 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
789 
790 	if (interval == 0) {
791 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
792 		return -EINVAL;
793 	}
794 
795 	entry->interval = interval;
796 
797 	return 0;
798 }
799 
800 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
801 			     int index, struct netlink_ext_ack *extack)
802 {
803 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
804 	int err;
805 
806 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
807 					  entry_policy, NULL);
808 	if (err < 0) {
809 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
810 		return -EINVAL;
811 	}
812 
813 	entry->index = index;
814 
815 	return fill_sched_entry(tb, entry, extack);
816 }
817 
818 static int parse_sched_list(struct nlattr *list,
819 			    struct sched_gate_list *sched,
820 			    struct netlink_ext_ack *extack)
821 {
822 	struct nlattr *n;
823 	int err, rem;
824 	int i = 0;
825 
826 	if (!list)
827 		return -EINVAL;
828 
829 	nla_for_each_nested(n, list, rem) {
830 		struct sched_entry *entry;
831 
832 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
833 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
834 			continue;
835 		}
836 
837 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
838 		if (!entry) {
839 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
840 			return -ENOMEM;
841 		}
842 
843 		err = parse_sched_entry(n, entry, i, extack);
844 		if (err < 0) {
845 			kfree(entry);
846 			return err;
847 		}
848 
849 		list_add_tail(&entry->list, &sched->entries);
850 		i++;
851 	}
852 
853 	sched->num_entries = i;
854 
855 	return i;
856 }
857 
858 static int parse_taprio_schedule(struct nlattr **tb,
859 				 struct sched_gate_list *new,
860 				 struct netlink_ext_ack *extack)
861 {
862 	int err = 0;
863 
864 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
865 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
866 		return -ENOTSUPP;
867 	}
868 
869 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
870 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
871 
872 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
873 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
874 
875 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
876 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
877 
878 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
879 		err = parse_sched_list(
880 			tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
881 	if (err < 0)
882 		return err;
883 
884 	if (!new->cycle_time) {
885 		struct sched_entry *entry;
886 		ktime_t cycle = 0;
887 
888 		list_for_each_entry(entry, &new->entries, list)
889 			cycle = ktime_add_ns(cycle, entry->interval);
890 		new->cycle_time = cycle;
891 	}
892 
893 	return 0;
894 }
895 
896 static int taprio_parse_mqprio_opt(struct net_device *dev,
897 				   struct tc_mqprio_qopt *qopt,
898 				   struct netlink_ext_ack *extack,
899 				   u32 taprio_flags)
900 {
901 	int i, j;
902 
903 	if (!qopt && !dev->num_tc) {
904 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
905 		return -EINVAL;
906 	}
907 
908 	/* If num_tc is already set, it means that the user already
909 	 * configured the mqprio part
910 	 */
911 	if (dev->num_tc)
912 		return 0;
913 
914 	/* Verify num_tc is not out of max range */
915 	if (qopt->num_tc > TC_MAX_QUEUE) {
916 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
917 		return -EINVAL;
918 	}
919 
920 	/* taprio imposes that traffic classes map 1:n to tx queues */
921 	if (qopt->num_tc > dev->num_tx_queues) {
922 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
923 		return -EINVAL;
924 	}
925 
926 	/* Verify priority mapping uses valid tcs */
927 	for (i = 0; i <= TC_BITMASK; i++) {
928 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
929 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
930 			return -EINVAL;
931 		}
932 	}
933 
934 	for (i = 0; i < qopt->num_tc; i++) {
935 		unsigned int last = qopt->offset[i] + qopt->count[i];
936 
937 		/* Verify the queue count is in tx range being equal to the
938 		 * real_num_tx_queues indicates the last queue is in use.
939 		 */
940 		if (qopt->offset[i] >= dev->num_tx_queues ||
941 		    !qopt->count[i] ||
942 		    last > dev->real_num_tx_queues) {
943 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
944 			return -EINVAL;
945 		}
946 
947 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
948 			continue;
949 
950 		/* Verify that the offset and counts do not overlap */
951 		for (j = i + 1; j < qopt->num_tc; j++) {
952 			if (last > qopt->offset[j]) {
953 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
954 				return -EINVAL;
955 			}
956 		}
957 	}
958 
959 	return 0;
960 }
961 
962 static int taprio_get_start_time(struct Qdisc *sch,
963 				 struct sched_gate_list *sched,
964 				 ktime_t *start)
965 {
966 	struct taprio_sched *q = qdisc_priv(sch);
967 	ktime_t now, base, cycle;
968 	s64 n;
969 
970 	base = sched_base_time(sched);
971 	now = taprio_get_time(q);
972 
973 	if (ktime_after(base, now)) {
974 		*start = base;
975 		return 0;
976 	}
977 
978 	cycle = sched->cycle_time;
979 
980 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
981 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
982 	 * something went really wrong. In that case, we should warn about this
983 	 * inconsistent state and return error.
984 	 */
985 	if (WARN_ON(!cycle))
986 		return -EFAULT;
987 
988 	/* Schedule the start time for the beginning of the next
989 	 * cycle.
990 	 */
991 	n = div64_s64(ktime_sub_ns(now, base), cycle);
992 	*start = ktime_add_ns(base, (n + 1) * cycle);
993 	return 0;
994 }
995 
996 static void setup_first_close_time(struct taprio_sched *q,
997 				   struct sched_gate_list *sched, ktime_t base)
998 {
999 	struct sched_entry *first;
1000 	ktime_t cycle;
1001 
1002 	first = list_first_entry(&sched->entries,
1003 				 struct sched_entry, list);
1004 
1005 	cycle = sched->cycle_time;
1006 
1007 	/* FIXME: find a better place to do this */
1008 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1009 
1010 	first->close_time = ktime_add_ns(base, first->interval);
1011 	taprio_set_budget(q, first);
1012 	rcu_assign_pointer(q->current_entry, NULL);
1013 }
1014 
1015 static void taprio_start_sched(struct Qdisc *sch,
1016 			       ktime_t start, struct sched_gate_list *new)
1017 {
1018 	struct taprio_sched *q = qdisc_priv(sch);
1019 	ktime_t expires;
1020 
1021 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1022 		return;
1023 
1024 	expires = hrtimer_get_expires(&q->advance_timer);
1025 	if (expires == 0)
1026 		expires = KTIME_MAX;
1027 
1028 	/* If the new schedule starts before the next expiration, we
1029 	 * reprogram it to the earliest one, so we change the admin
1030 	 * schedule to the operational one at the right time.
1031 	 */
1032 	start = min_t(ktime_t, start, expires);
1033 
1034 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1035 }
1036 
1037 static void taprio_set_picos_per_byte(struct net_device *dev,
1038 				      struct taprio_sched *q)
1039 {
1040 	struct ethtool_link_ksettings ecmd;
1041 	int speed = SPEED_10;
1042 	int picos_per_byte;
1043 	int err;
1044 
1045 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1046 	if (err < 0)
1047 		goto skip;
1048 
1049 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1050 		speed = ecmd.base.speed;
1051 
1052 skip:
1053 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1054 
1055 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1056 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1057 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1058 		   ecmd.base.speed);
1059 }
1060 
1061 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1062 			       void *ptr)
1063 {
1064 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1065 	struct net_device *qdev;
1066 	struct taprio_sched *q;
1067 	bool found = false;
1068 
1069 	ASSERT_RTNL();
1070 
1071 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1072 		return NOTIFY_DONE;
1073 
1074 	spin_lock(&taprio_list_lock);
1075 	list_for_each_entry(q, &taprio_list, taprio_list) {
1076 		qdev = qdisc_dev(q->root);
1077 		if (qdev == dev) {
1078 			found = true;
1079 			break;
1080 		}
1081 	}
1082 	spin_unlock(&taprio_list_lock);
1083 
1084 	if (found)
1085 		taprio_set_picos_per_byte(dev, q);
1086 
1087 	return NOTIFY_DONE;
1088 }
1089 
1090 static void setup_txtime(struct taprio_sched *q,
1091 			 struct sched_gate_list *sched, ktime_t base)
1092 {
1093 	struct sched_entry *entry;
1094 	u32 interval = 0;
1095 
1096 	list_for_each_entry(entry, &sched->entries, list) {
1097 		entry->next_txtime = ktime_add_ns(base, interval);
1098 		interval += entry->interval;
1099 	}
1100 }
1101 
1102 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1103 {
1104 	size_t size = sizeof(struct tc_taprio_sched_entry) * num_entries +
1105 		      sizeof(struct __tc_taprio_qopt_offload);
1106 	struct __tc_taprio_qopt_offload *__offload;
1107 
1108 	__offload = kzalloc(size, GFP_KERNEL);
1109 	if (!__offload)
1110 		return NULL;
1111 
1112 	refcount_set(&__offload->users, 1);
1113 
1114 	return &__offload->offload;
1115 }
1116 
1117 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1118 						  *offload)
1119 {
1120 	struct __tc_taprio_qopt_offload *__offload;
1121 
1122 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1123 				 offload);
1124 
1125 	refcount_inc(&__offload->users);
1126 
1127 	return offload;
1128 }
1129 EXPORT_SYMBOL_GPL(taprio_offload_get);
1130 
1131 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1132 {
1133 	struct __tc_taprio_qopt_offload *__offload;
1134 
1135 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1136 				 offload);
1137 
1138 	if (!refcount_dec_and_test(&__offload->users))
1139 		return;
1140 
1141 	kfree(__offload);
1142 }
1143 EXPORT_SYMBOL_GPL(taprio_offload_free);
1144 
1145 /* The function will only serve to keep the pointers to the "oper" and "admin"
1146  * schedules valid in relation to their base times, so when calling dump() the
1147  * users looks at the right schedules.
1148  * When using full offload, the admin configuration is promoted to oper at the
1149  * base_time in the PHC time domain.  But because the system time is not
1150  * necessarily in sync with that, we can't just trigger a hrtimer to call
1151  * switch_schedules at the right hardware time.
1152  * At the moment we call this by hand right away from taprio, but in the future
1153  * it will be useful to create a mechanism for drivers to notify taprio of the
1154  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1155  * This is left as TODO.
1156  */
1157 static void taprio_offload_config_changed(struct taprio_sched *q)
1158 {
1159 	struct sched_gate_list *oper, *admin;
1160 
1161 	spin_lock(&q->current_entry_lock);
1162 
1163 	oper = rcu_dereference_protected(q->oper_sched,
1164 					 lockdep_is_held(&q->current_entry_lock));
1165 	admin = rcu_dereference_protected(q->admin_sched,
1166 					  lockdep_is_held(&q->current_entry_lock));
1167 
1168 	switch_schedules(q, &admin, &oper);
1169 
1170 	spin_unlock(&q->current_entry_lock);
1171 }
1172 
1173 static void taprio_sched_to_offload(struct taprio_sched *q,
1174 				    struct sched_gate_list *sched,
1175 				    const struct tc_mqprio_qopt *mqprio,
1176 				    struct tc_taprio_qopt_offload *offload)
1177 {
1178 	struct sched_entry *entry;
1179 	int i = 0;
1180 
1181 	offload->base_time = sched->base_time;
1182 	offload->cycle_time = sched->cycle_time;
1183 	offload->cycle_time_extension = sched->cycle_time_extension;
1184 
1185 	list_for_each_entry(entry, &sched->entries, list) {
1186 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1187 
1188 		e->command = entry->command;
1189 		e->interval = entry->interval;
1190 		e->gate_mask = entry->gate_mask;
1191 		i++;
1192 	}
1193 
1194 	offload->num_entries = i;
1195 }
1196 
1197 static int taprio_enable_offload(struct net_device *dev,
1198 				 struct tc_mqprio_qopt *mqprio,
1199 				 struct taprio_sched *q,
1200 				 struct sched_gate_list *sched,
1201 				 struct netlink_ext_ack *extack)
1202 {
1203 	const struct net_device_ops *ops = dev->netdev_ops;
1204 	struct tc_taprio_qopt_offload *offload;
1205 	int err = 0;
1206 
1207 	if (!ops->ndo_setup_tc) {
1208 		NL_SET_ERR_MSG(extack,
1209 			       "Device does not support taprio offload");
1210 		return -EOPNOTSUPP;
1211 	}
1212 
1213 	offload = taprio_offload_alloc(sched->num_entries);
1214 	if (!offload) {
1215 		NL_SET_ERR_MSG(extack,
1216 			       "Not enough memory for enabling offload mode");
1217 		return -ENOMEM;
1218 	}
1219 	offload->enable = 1;
1220 	taprio_sched_to_offload(q, sched, mqprio, offload);
1221 
1222 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1223 	if (err < 0) {
1224 		NL_SET_ERR_MSG(extack,
1225 			       "Device failed to setup taprio offload");
1226 		goto done;
1227 	}
1228 
1229 done:
1230 	taprio_offload_free(offload);
1231 
1232 	return err;
1233 }
1234 
1235 static int taprio_disable_offload(struct net_device *dev,
1236 				  struct taprio_sched *q,
1237 				  struct netlink_ext_ack *extack)
1238 {
1239 	const struct net_device_ops *ops = dev->netdev_ops;
1240 	struct tc_taprio_qopt_offload *offload;
1241 	int err;
1242 
1243 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1244 		return 0;
1245 
1246 	if (!ops->ndo_setup_tc)
1247 		return -EOPNOTSUPP;
1248 
1249 	offload = taprio_offload_alloc(0);
1250 	if (!offload) {
1251 		NL_SET_ERR_MSG(extack,
1252 			       "Not enough memory to disable offload mode");
1253 		return -ENOMEM;
1254 	}
1255 	offload->enable = 0;
1256 
1257 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1258 	if (err < 0) {
1259 		NL_SET_ERR_MSG(extack,
1260 			       "Device failed to disable offload");
1261 		goto out;
1262 	}
1263 
1264 out:
1265 	taprio_offload_free(offload);
1266 
1267 	return err;
1268 }
1269 
1270 /* If full offload is enabled, the only possible clockid is the net device's
1271  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1272  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1273  * in sync with the specified clockid via a user space daemon such as phc2sys.
1274  * For both software taprio and txtime-assist, the clockid is used for the
1275  * hrtimer that advances the schedule and hence mandatory.
1276  */
1277 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1278 				struct netlink_ext_ack *extack)
1279 {
1280 	struct taprio_sched *q = qdisc_priv(sch);
1281 	struct net_device *dev = qdisc_dev(sch);
1282 	int err = -EINVAL;
1283 
1284 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1285 		const struct ethtool_ops *ops = dev->ethtool_ops;
1286 		struct ethtool_ts_info info = {
1287 			.cmd = ETHTOOL_GET_TS_INFO,
1288 			.phc_index = -1,
1289 		};
1290 
1291 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1292 			NL_SET_ERR_MSG(extack,
1293 				       "The 'clockid' cannot be specified for full offload");
1294 			goto out;
1295 		}
1296 
1297 		if (ops && ops->get_ts_info)
1298 			err = ops->get_ts_info(dev, &info);
1299 
1300 		if (err || info.phc_index < 0) {
1301 			NL_SET_ERR_MSG(extack,
1302 				       "Device does not have a PTP clock");
1303 			err = -ENOTSUPP;
1304 			goto out;
1305 		}
1306 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1307 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1308 
1309 		/* We only support static clockids and we don't allow
1310 		 * for it to be modified after the first init.
1311 		 */
1312 		if (clockid < 0 ||
1313 		    (q->clockid != -1 && q->clockid != clockid)) {
1314 			NL_SET_ERR_MSG(extack,
1315 				       "Changing the 'clockid' of a running schedule is not supported");
1316 			err = -ENOTSUPP;
1317 			goto out;
1318 		}
1319 
1320 		switch (clockid) {
1321 		case CLOCK_REALTIME:
1322 			q->tk_offset = TK_OFFS_REAL;
1323 			break;
1324 		case CLOCK_MONOTONIC:
1325 			q->tk_offset = TK_OFFS_MAX;
1326 			break;
1327 		case CLOCK_BOOTTIME:
1328 			q->tk_offset = TK_OFFS_BOOT;
1329 			break;
1330 		case CLOCK_TAI:
1331 			q->tk_offset = TK_OFFS_TAI;
1332 			break;
1333 		default:
1334 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1335 			err = -EINVAL;
1336 			goto out;
1337 		}
1338 
1339 		q->clockid = clockid;
1340 	} else {
1341 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1342 		goto out;
1343 	}
1344 
1345 	/* Everything went ok, return success. */
1346 	err = 0;
1347 
1348 out:
1349 	return err;
1350 }
1351 
1352 static int taprio_mqprio_cmp(const struct net_device *dev,
1353 			     const struct tc_mqprio_qopt *mqprio)
1354 {
1355 	int i;
1356 
1357 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1358 		return -1;
1359 
1360 	for (i = 0; i < mqprio->num_tc; i++)
1361 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1362 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1363 			return -1;
1364 
1365 	for (i = 0; i <= TC_BITMASK; i++)
1366 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1367 			return -1;
1368 
1369 	return 0;
1370 }
1371 
1372 /* The semantics of the 'flags' argument in relation to 'change()'
1373  * requests, are interpreted following two rules (which are applied in
1374  * this order): (1) an omitted 'flags' argument is interpreted as
1375  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1376  * changed.
1377  */
1378 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1379 			    struct netlink_ext_ack *extack)
1380 {
1381 	u32 new = 0;
1382 
1383 	if (attr)
1384 		new = nla_get_u32(attr);
1385 
1386 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1387 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1388 		return -EOPNOTSUPP;
1389 	}
1390 
1391 	if (!taprio_flags_valid(new)) {
1392 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1393 		return -EINVAL;
1394 	}
1395 
1396 	return new;
1397 }
1398 
1399 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1400 			 struct netlink_ext_ack *extack)
1401 {
1402 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1403 	struct sched_gate_list *oper, *admin, *new_admin;
1404 	struct taprio_sched *q = qdisc_priv(sch);
1405 	struct net_device *dev = qdisc_dev(sch);
1406 	struct tc_mqprio_qopt *mqprio = NULL;
1407 	unsigned long flags;
1408 	ktime_t start;
1409 	int i, err;
1410 
1411 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1412 					  taprio_policy, extack);
1413 	if (err < 0)
1414 		return err;
1415 
1416 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1417 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1418 
1419 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1420 			       q->flags, extack);
1421 	if (err < 0)
1422 		return err;
1423 
1424 	q->flags = err;
1425 
1426 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1427 	if (err < 0)
1428 		return err;
1429 
1430 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1431 	if (!new_admin) {
1432 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1433 		return -ENOMEM;
1434 	}
1435 	INIT_LIST_HEAD(&new_admin->entries);
1436 
1437 	rcu_read_lock();
1438 	oper = rcu_dereference(q->oper_sched);
1439 	admin = rcu_dereference(q->admin_sched);
1440 	rcu_read_unlock();
1441 
1442 	/* no changes - no new mqprio settings */
1443 	if (!taprio_mqprio_cmp(dev, mqprio))
1444 		mqprio = NULL;
1445 
1446 	if (mqprio && (oper || admin)) {
1447 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1448 		err = -ENOTSUPP;
1449 		goto free_sched;
1450 	}
1451 
1452 	err = parse_taprio_schedule(tb, new_admin, extack);
1453 	if (err < 0)
1454 		goto free_sched;
1455 
1456 	if (new_admin->num_entries == 0) {
1457 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1458 		err = -EINVAL;
1459 		goto free_sched;
1460 	}
1461 
1462 	err = taprio_parse_clockid(sch, tb, extack);
1463 	if (err < 0)
1464 		goto free_sched;
1465 
1466 	taprio_set_picos_per_byte(dev, q);
1467 
1468 	if (mqprio) {
1469 		netdev_set_num_tc(dev, mqprio->num_tc);
1470 		for (i = 0; i < mqprio->num_tc; i++)
1471 			netdev_set_tc_queue(dev, i,
1472 					    mqprio->count[i],
1473 					    mqprio->offset[i]);
1474 
1475 		/* Always use supplied priority mappings */
1476 		for (i = 0; i <= TC_BITMASK; i++)
1477 			netdev_set_prio_tc_map(dev, i,
1478 					       mqprio->prio_tc_map[i]);
1479 	}
1480 
1481 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1482 		err = taprio_enable_offload(dev, mqprio, q, new_admin, extack);
1483 	else
1484 		err = taprio_disable_offload(dev, q, extack);
1485 	if (err)
1486 		goto free_sched;
1487 
1488 	/* Protects against enqueue()/dequeue() */
1489 	spin_lock_bh(qdisc_lock(sch));
1490 
1491 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1492 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1493 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1494 			err = -EINVAL;
1495 			goto unlock;
1496 		}
1497 
1498 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1499 	}
1500 
1501 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1502 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1503 	    !hrtimer_active(&q->advance_timer)) {
1504 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1505 		q->advance_timer.function = advance_sched;
1506 	}
1507 
1508 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1509 		q->dequeue = taprio_dequeue_offload;
1510 		q->peek = taprio_peek_offload;
1511 	} else {
1512 		/* Be sure to always keep the function pointers
1513 		 * in a consistent state.
1514 		 */
1515 		q->dequeue = taprio_dequeue_soft;
1516 		q->peek = taprio_peek_soft;
1517 	}
1518 
1519 	err = taprio_get_start_time(sch, new_admin, &start);
1520 	if (err < 0) {
1521 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1522 		goto unlock;
1523 	}
1524 
1525 	setup_txtime(q, new_admin, start);
1526 
1527 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1528 		if (!oper) {
1529 			rcu_assign_pointer(q->oper_sched, new_admin);
1530 			err = 0;
1531 			new_admin = NULL;
1532 			goto unlock;
1533 		}
1534 
1535 		rcu_assign_pointer(q->admin_sched, new_admin);
1536 		if (admin)
1537 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1538 	} else {
1539 		setup_first_close_time(q, new_admin, start);
1540 
1541 		/* Protects against advance_sched() */
1542 		spin_lock_irqsave(&q->current_entry_lock, flags);
1543 
1544 		taprio_start_sched(sch, start, new_admin);
1545 
1546 		rcu_assign_pointer(q->admin_sched, new_admin);
1547 		if (admin)
1548 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1549 
1550 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1551 
1552 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1553 			taprio_offload_config_changed(q);
1554 	}
1555 
1556 	new_admin = NULL;
1557 	err = 0;
1558 
1559 unlock:
1560 	spin_unlock_bh(qdisc_lock(sch));
1561 
1562 free_sched:
1563 	if (new_admin)
1564 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1565 
1566 	return err;
1567 }
1568 
1569 static void taprio_destroy(struct Qdisc *sch)
1570 {
1571 	struct taprio_sched *q = qdisc_priv(sch);
1572 	struct net_device *dev = qdisc_dev(sch);
1573 	unsigned int i;
1574 
1575 	spin_lock(&taprio_list_lock);
1576 	list_del(&q->taprio_list);
1577 	spin_unlock(&taprio_list_lock);
1578 
1579 	hrtimer_cancel(&q->advance_timer);
1580 
1581 	taprio_disable_offload(dev, q, NULL);
1582 
1583 	if (q->qdiscs) {
1584 		for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1585 			qdisc_put(q->qdiscs[i]);
1586 
1587 		kfree(q->qdiscs);
1588 	}
1589 	q->qdiscs = NULL;
1590 
1591 	netdev_reset_tc(dev);
1592 
1593 	if (q->oper_sched)
1594 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1595 
1596 	if (q->admin_sched)
1597 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1598 }
1599 
1600 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1601 		       struct netlink_ext_ack *extack)
1602 {
1603 	struct taprio_sched *q = qdisc_priv(sch);
1604 	struct net_device *dev = qdisc_dev(sch);
1605 	int i;
1606 
1607 	spin_lock_init(&q->current_entry_lock);
1608 
1609 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1610 	q->advance_timer.function = advance_sched;
1611 
1612 	q->dequeue = taprio_dequeue_soft;
1613 	q->peek = taprio_peek_soft;
1614 
1615 	q->root = sch;
1616 
1617 	/* We only support static clockids. Use an invalid value as default
1618 	 * and get the valid one on taprio_change().
1619 	 */
1620 	q->clockid = -1;
1621 	q->flags = TAPRIO_FLAGS_INVALID;
1622 
1623 	spin_lock(&taprio_list_lock);
1624 	list_add(&q->taprio_list, &taprio_list);
1625 	spin_unlock(&taprio_list_lock);
1626 
1627 	if (sch->parent != TC_H_ROOT)
1628 		return -EOPNOTSUPP;
1629 
1630 	if (!netif_is_multiqueue(dev))
1631 		return -EOPNOTSUPP;
1632 
1633 	/* pre-allocate qdisc, attachment can't fail */
1634 	q->qdiscs = kcalloc(dev->num_tx_queues,
1635 			    sizeof(q->qdiscs[0]),
1636 			    GFP_KERNEL);
1637 
1638 	if (!q->qdiscs)
1639 		return -ENOMEM;
1640 
1641 	if (!opt)
1642 		return -EINVAL;
1643 
1644 	for (i = 0; i < dev->num_tx_queues; i++) {
1645 		struct netdev_queue *dev_queue;
1646 		struct Qdisc *qdisc;
1647 
1648 		dev_queue = netdev_get_tx_queue(dev, i);
1649 		qdisc = qdisc_create_dflt(dev_queue,
1650 					  &pfifo_qdisc_ops,
1651 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1652 						    TC_H_MIN(i + 1)),
1653 					  extack);
1654 		if (!qdisc)
1655 			return -ENOMEM;
1656 
1657 		if (i < dev->real_num_tx_queues)
1658 			qdisc_hash_add(qdisc, false);
1659 
1660 		q->qdiscs[i] = qdisc;
1661 	}
1662 
1663 	return taprio_change(sch, opt, extack);
1664 }
1665 
1666 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1667 					     unsigned long cl)
1668 {
1669 	struct net_device *dev = qdisc_dev(sch);
1670 	unsigned long ntx = cl - 1;
1671 
1672 	if (ntx >= dev->num_tx_queues)
1673 		return NULL;
1674 
1675 	return netdev_get_tx_queue(dev, ntx);
1676 }
1677 
1678 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1679 			struct Qdisc *new, struct Qdisc **old,
1680 			struct netlink_ext_ack *extack)
1681 {
1682 	struct taprio_sched *q = qdisc_priv(sch);
1683 	struct net_device *dev = qdisc_dev(sch);
1684 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1685 
1686 	if (!dev_queue)
1687 		return -EINVAL;
1688 
1689 	if (dev->flags & IFF_UP)
1690 		dev_deactivate(dev);
1691 
1692 	*old = q->qdiscs[cl - 1];
1693 	q->qdiscs[cl - 1] = new;
1694 
1695 	if (new)
1696 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1697 
1698 	if (dev->flags & IFF_UP)
1699 		dev_activate(dev);
1700 
1701 	return 0;
1702 }
1703 
1704 static int dump_entry(struct sk_buff *msg,
1705 		      const struct sched_entry *entry)
1706 {
1707 	struct nlattr *item;
1708 
1709 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1710 	if (!item)
1711 		return -ENOSPC;
1712 
1713 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1714 		goto nla_put_failure;
1715 
1716 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1717 		goto nla_put_failure;
1718 
1719 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1720 			entry->gate_mask))
1721 		goto nla_put_failure;
1722 
1723 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1724 			entry->interval))
1725 		goto nla_put_failure;
1726 
1727 	return nla_nest_end(msg, item);
1728 
1729 nla_put_failure:
1730 	nla_nest_cancel(msg, item);
1731 	return -1;
1732 }
1733 
1734 static int dump_schedule(struct sk_buff *msg,
1735 			 const struct sched_gate_list *root)
1736 {
1737 	struct nlattr *entry_list;
1738 	struct sched_entry *entry;
1739 
1740 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1741 			root->base_time, TCA_TAPRIO_PAD))
1742 		return -1;
1743 
1744 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1745 			root->cycle_time, TCA_TAPRIO_PAD))
1746 		return -1;
1747 
1748 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1749 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1750 		return -1;
1751 
1752 	entry_list = nla_nest_start_noflag(msg,
1753 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1754 	if (!entry_list)
1755 		goto error_nest;
1756 
1757 	list_for_each_entry(entry, &root->entries, list) {
1758 		if (dump_entry(msg, entry) < 0)
1759 			goto error_nest;
1760 	}
1761 
1762 	nla_nest_end(msg, entry_list);
1763 	return 0;
1764 
1765 error_nest:
1766 	nla_nest_cancel(msg, entry_list);
1767 	return -1;
1768 }
1769 
1770 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1771 {
1772 	struct taprio_sched *q = qdisc_priv(sch);
1773 	struct net_device *dev = qdisc_dev(sch);
1774 	struct sched_gate_list *oper, *admin;
1775 	struct tc_mqprio_qopt opt = { 0 };
1776 	struct nlattr *nest, *sched_nest;
1777 	unsigned int i;
1778 
1779 	rcu_read_lock();
1780 	oper = rcu_dereference(q->oper_sched);
1781 	admin = rcu_dereference(q->admin_sched);
1782 
1783 	opt.num_tc = netdev_get_num_tc(dev);
1784 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1785 
1786 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1787 		opt.count[i] = dev->tc_to_txq[i].count;
1788 		opt.offset[i] = dev->tc_to_txq[i].offset;
1789 	}
1790 
1791 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1792 	if (!nest)
1793 		goto start_error;
1794 
1795 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1796 		goto options_error;
1797 
1798 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1799 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1800 		goto options_error;
1801 
1802 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1803 		goto options_error;
1804 
1805 	if (q->txtime_delay &&
1806 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1807 		goto options_error;
1808 
1809 	if (oper && dump_schedule(skb, oper))
1810 		goto options_error;
1811 
1812 	if (!admin)
1813 		goto done;
1814 
1815 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1816 	if (!sched_nest)
1817 		goto options_error;
1818 
1819 	if (dump_schedule(skb, admin))
1820 		goto admin_error;
1821 
1822 	nla_nest_end(skb, sched_nest);
1823 
1824 done:
1825 	rcu_read_unlock();
1826 
1827 	return nla_nest_end(skb, nest);
1828 
1829 admin_error:
1830 	nla_nest_cancel(skb, sched_nest);
1831 
1832 options_error:
1833 	nla_nest_cancel(skb, nest);
1834 
1835 start_error:
1836 	rcu_read_unlock();
1837 	return -ENOSPC;
1838 }
1839 
1840 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1841 {
1842 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1843 
1844 	if (!dev_queue)
1845 		return NULL;
1846 
1847 	return dev_queue->qdisc_sleeping;
1848 }
1849 
1850 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1851 {
1852 	unsigned int ntx = TC_H_MIN(classid);
1853 
1854 	if (!taprio_queue_get(sch, ntx))
1855 		return 0;
1856 	return ntx;
1857 }
1858 
1859 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1860 			     struct sk_buff *skb, struct tcmsg *tcm)
1861 {
1862 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1863 
1864 	tcm->tcm_parent = TC_H_ROOT;
1865 	tcm->tcm_handle |= TC_H_MIN(cl);
1866 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1867 
1868 	return 0;
1869 }
1870 
1871 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1872 				   struct gnet_dump *d)
1873 	__releases(d->lock)
1874 	__acquires(d->lock)
1875 {
1876 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1877 
1878 	sch = dev_queue->qdisc_sleeping;
1879 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1880 	    qdisc_qstats_copy(d, sch) < 0)
1881 		return -1;
1882 	return 0;
1883 }
1884 
1885 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1886 {
1887 	struct net_device *dev = qdisc_dev(sch);
1888 	unsigned long ntx;
1889 
1890 	if (arg->stop)
1891 		return;
1892 
1893 	arg->count = arg->skip;
1894 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1895 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1896 			arg->stop = 1;
1897 			break;
1898 		}
1899 		arg->count++;
1900 	}
1901 }
1902 
1903 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1904 						struct tcmsg *tcm)
1905 {
1906 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1907 }
1908 
1909 static const struct Qdisc_class_ops taprio_class_ops = {
1910 	.graft		= taprio_graft,
1911 	.leaf		= taprio_leaf,
1912 	.find		= taprio_find,
1913 	.walk		= taprio_walk,
1914 	.dump		= taprio_dump_class,
1915 	.dump_stats	= taprio_dump_class_stats,
1916 	.select_queue	= taprio_select_queue,
1917 };
1918 
1919 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1920 	.cl_ops		= &taprio_class_ops,
1921 	.id		= "taprio",
1922 	.priv_size	= sizeof(struct taprio_sched),
1923 	.init		= taprio_init,
1924 	.change		= taprio_change,
1925 	.destroy	= taprio_destroy,
1926 	.peek		= taprio_peek,
1927 	.dequeue	= taprio_dequeue,
1928 	.enqueue	= taprio_enqueue,
1929 	.dump		= taprio_dump,
1930 	.owner		= THIS_MODULE,
1931 };
1932 
1933 static struct notifier_block taprio_device_notifier = {
1934 	.notifier_call = taprio_dev_notifier,
1935 };
1936 
1937 static int __init taprio_module_init(void)
1938 {
1939 	int err = register_netdevice_notifier(&taprio_device_notifier);
1940 
1941 	if (err)
1942 		return err;
1943 
1944 	return register_qdisc(&taprio_qdisc_ops);
1945 }
1946 
1947 static void __exit taprio_module_exit(void)
1948 {
1949 	unregister_qdisc(&taprio_qdisc_ops);
1950 	unregister_netdevice_notifier(&taprio_device_notifier);
1951 }
1952 
1953 module_init(taprio_module_init);
1954 module_exit(taprio_module_exit);
1955 MODULE_LICENSE("GPL");
1956