xref: /openbmc/linux/net/sched/sch_taprio.c (revision 83b975b5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <linux/time.h>
22 #include <net/netlink.h>
23 #include <net/pkt_sched.h>
24 #include <net/pkt_cls.h>
25 #include <net/sch_generic.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 
29 static LIST_HEAD(taprio_list);
30 
31 #define TAPRIO_ALL_GATES_OPEN -1
32 
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
35 #define TAPRIO_FLAGS_INVALID U32_MAX
36 
37 struct sched_entry {
38 	struct list_head list;
39 
40 	/* The instant that this entry "closes" and the next one
41 	 * should open, the qdisc will make some effort so that no
42 	 * packet leaves after this time.
43 	 */
44 	ktime_t close_time;
45 	ktime_t next_txtime;
46 	atomic_t budget;
47 	int index;
48 	u32 gate_mask;
49 	u32 interval;
50 	u8 command;
51 };
52 
53 struct sched_gate_list {
54 	struct rcu_head rcu;
55 	struct list_head entries;
56 	size_t num_entries;
57 	ktime_t cycle_close_time;
58 	s64 cycle_time;
59 	s64 cycle_time_extension;
60 	s64 base_time;
61 };
62 
63 struct taprio_sched {
64 	struct Qdisc **qdiscs;
65 	struct Qdisc *root;
66 	u32 flags;
67 	enum tk_offsets tk_offset;
68 	int clockid;
69 	bool offloaded;
70 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
71 				    * speeds it's sub-nanoseconds per byte
72 				    */
73 
74 	/* Protects the update side of the RCU protected current_entry */
75 	spinlock_t current_entry_lock;
76 	struct sched_entry __rcu *current_entry;
77 	struct sched_gate_list __rcu *oper_sched;
78 	struct sched_gate_list __rcu *admin_sched;
79 	struct hrtimer advance_timer;
80 	struct list_head taprio_list;
81 	u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
82 	u32 max_sdu[TC_MAX_QUEUE]; /* for dump and offloading */
83 	u32 txtime_delay;
84 };
85 
86 struct __tc_taprio_qopt_offload {
87 	refcount_t users;
88 	struct tc_taprio_qopt_offload offload;
89 };
90 
91 static ktime_t sched_base_time(const struct sched_gate_list *sched)
92 {
93 	if (!sched)
94 		return KTIME_MAX;
95 
96 	return ns_to_ktime(sched->base_time);
97 }
98 
99 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
100 {
101 	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
102 	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
103 
104 	switch (tk_offset) {
105 	case TK_OFFS_MAX:
106 		return mono;
107 	default:
108 		return ktime_mono_to_any(mono, tk_offset);
109 	}
110 }
111 
112 static ktime_t taprio_get_time(const struct taprio_sched *q)
113 {
114 	return taprio_mono_to_any(q, ktime_get());
115 }
116 
117 static void taprio_free_sched_cb(struct rcu_head *head)
118 {
119 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
120 	struct sched_entry *entry, *n;
121 
122 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
123 		list_del(&entry->list);
124 		kfree(entry);
125 	}
126 
127 	kfree(sched);
128 }
129 
130 static void switch_schedules(struct taprio_sched *q,
131 			     struct sched_gate_list **admin,
132 			     struct sched_gate_list **oper)
133 {
134 	rcu_assign_pointer(q->oper_sched, *admin);
135 	rcu_assign_pointer(q->admin_sched, NULL);
136 
137 	if (*oper)
138 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
139 
140 	*oper = *admin;
141 	*admin = NULL;
142 }
143 
144 /* Get how much time has been already elapsed in the current cycle. */
145 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
146 {
147 	ktime_t time_since_sched_start;
148 	s32 time_elapsed;
149 
150 	time_since_sched_start = ktime_sub(time, sched->base_time);
151 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
152 
153 	return time_elapsed;
154 }
155 
156 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
157 				     struct sched_gate_list *admin,
158 				     struct sched_entry *entry,
159 				     ktime_t intv_start)
160 {
161 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
162 	ktime_t intv_end, cycle_ext_end, cycle_end;
163 
164 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
165 	intv_end = ktime_add_ns(intv_start, entry->interval);
166 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
167 
168 	if (ktime_before(intv_end, cycle_end))
169 		return intv_end;
170 	else if (admin && admin != sched &&
171 		 ktime_after(admin->base_time, cycle_end) &&
172 		 ktime_before(admin->base_time, cycle_ext_end))
173 		return admin->base_time;
174 	else
175 		return cycle_end;
176 }
177 
178 static int length_to_duration(struct taprio_sched *q, int len)
179 {
180 	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
181 }
182 
183 /* Returns the entry corresponding to next available interval. If
184  * validate_interval is set, it only validates whether the timestamp occurs
185  * when the gate corresponding to the skb's traffic class is open.
186  */
187 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
188 						  struct Qdisc *sch,
189 						  struct sched_gate_list *sched,
190 						  struct sched_gate_list *admin,
191 						  ktime_t time,
192 						  ktime_t *interval_start,
193 						  ktime_t *interval_end,
194 						  bool validate_interval)
195 {
196 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
197 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
198 	struct sched_entry *entry = NULL, *entry_found = NULL;
199 	struct taprio_sched *q = qdisc_priv(sch);
200 	struct net_device *dev = qdisc_dev(sch);
201 	bool entry_available = false;
202 	s32 cycle_elapsed;
203 	int tc, n;
204 
205 	tc = netdev_get_prio_tc_map(dev, skb->priority);
206 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
207 
208 	*interval_start = 0;
209 	*interval_end = 0;
210 
211 	if (!sched)
212 		return NULL;
213 
214 	cycle = sched->cycle_time;
215 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
216 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
217 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
218 
219 	list_for_each_entry(entry, &sched->entries, list) {
220 		curr_intv_start = curr_intv_end;
221 		curr_intv_end = get_interval_end_time(sched, admin, entry,
222 						      curr_intv_start);
223 
224 		if (ktime_after(curr_intv_start, cycle_end))
225 			break;
226 
227 		if (!(entry->gate_mask & BIT(tc)) ||
228 		    packet_transmit_time > entry->interval)
229 			continue;
230 
231 		txtime = entry->next_txtime;
232 
233 		if (ktime_before(txtime, time) || validate_interval) {
234 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
235 			if ((ktime_before(curr_intv_start, time) &&
236 			     ktime_before(transmit_end_time, curr_intv_end)) ||
237 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
238 				entry_found = entry;
239 				*interval_start = curr_intv_start;
240 				*interval_end = curr_intv_end;
241 				break;
242 			} else if (!entry_available && !validate_interval) {
243 				/* Here, we are just trying to find out the
244 				 * first available interval in the next cycle.
245 				 */
246 				entry_available = true;
247 				entry_found = entry;
248 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
249 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
250 			}
251 		} else if (ktime_before(txtime, earliest_txtime) &&
252 			   !entry_available) {
253 			earliest_txtime = txtime;
254 			entry_found = entry;
255 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
256 			*interval_start = ktime_add(curr_intv_start, n * cycle);
257 			*interval_end = ktime_add(curr_intv_end, n * cycle);
258 		}
259 	}
260 
261 	return entry_found;
262 }
263 
264 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
265 {
266 	struct taprio_sched *q = qdisc_priv(sch);
267 	struct sched_gate_list *sched, *admin;
268 	ktime_t interval_start, interval_end;
269 	struct sched_entry *entry;
270 
271 	rcu_read_lock();
272 	sched = rcu_dereference(q->oper_sched);
273 	admin = rcu_dereference(q->admin_sched);
274 
275 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
276 				       &interval_start, &interval_end, true);
277 	rcu_read_unlock();
278 
279 	return entry;
280 }
281 
282 static bool taprio_flags_valid(u32 flags)
283 {
284 	/* Make sure no other flag bits are set. */
285 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
286 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
287 		return false;
288 	/* txtime-assist and full offload are mutually exclusive */
289 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
290 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
291 		return false;
292 	return true;
293 }
294 
295 /* This returns the tstamp value set by TCP in terms of the set clock. */
296 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
297 {
298 	unsigned int offset = skb_network_offset(skb);
299 	const struct ipv6hdr *ipv6h;
300 	const struct iphdr *iph;
301 	struct ipv6hdr _ipv6h;
302 
303 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
304 	if (!ipv6h)
305 		return 0;
306 
307 	if (ipv6h->version == 4) {
308 		iph = (struct iphdr *)ipv6h;
309 		offset += iph->ihl * 4;
310 
311 		/* special-case 6in4 tunnelling, as that is a common way to get
312 		 * v6 connectivity in the home
313 		 */
314 		if (iph->protocol == IPPROTO_IPV6) {
315 			ipv6h = skb_header_pointer(skb, offset,
316 						   sizeof(_ipv6h), &_ipv6h);
317 
318 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
319 				return 0;
320 		} else if (iph->protocol != IPPROTO_TCP) {
321 			return 0;
322 		}
323 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
324 		return 0;
325 	}
326 
327 	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
328 }
329 
330 /* There are a few scenarios where we will have to modify the txtime from
331  * what is read from next_txtime in sched_entry. They are:
332  * 1. If txtime is in the past,
333  *    a. The gate for the traffic class is currently open and packet can be
334  *       transmitted before it closes, schedule the packet right away.
335  *    b. If the gate corresponding to the traffic class is going to open later
336  *       in the cycle, set the txtime of packet to the interval start.
337  * 2. If txtime is in the future, there are packets corresponding to the
338  *    current traffic class waiting to be transmitted. So, the following
339  *    possibilities exist:
340  *    a. We can transmit the packet before the window containing the txtime
341  *       closes.
342  *    b. The window might close before the transmission can be completed
343  *       successfully. So, schedule the packet in the next open window.
344  */
345 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
346 {
347 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
348 	struct taprio_sched *q = qdisc_priv(sch);
349 	struct sched_gate_list *sched, *admin;
350 	ktime_t minimum_time, now, txtime;
351 	int len, packet_transmit_time;
352 	struct sched_entry *entry;
353 	bool sched_changed;
354 
355 	now = taprio_get_time(q);
356 	minimum_time = ktime_add_ns(now, q->txtime_delay);
357 
358 	tcp_tstamp = get_tcp_tstamp(q, skb);
359 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
360 
361 	rcu_read_lock();
362 	admin = rcu_dereference(q->admin_sched);
363 	sched = rcu_dereference(q->oper_sched);
364 	if (admin && ktime_after(minimum_time, admin->base_time))
365 		switch_schedules(q, &admin, &sched);
366 
367 	/* Until the schedule starts, all the queues are open */
368 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
369 		txtime = minimum_time;
370 		goto done;
371 	}
372 
373 	len = qdisc_pkt_len(skb);
374 	packet_transmit_time = length_to_duration(q, len);
375 
376 	do {
377 		sched_changed = false;
378 
379 		entry = find_entry_to_transmit(skb, sch, sched, admin,
380 					       minimum_time,
381 					       &interval_start, &interval_end,
382 					       false);
383 		if (!entry) {
384 			txtime = 0;
385 			goto done;
386 		}
387 
388 		txtime = entry->next_txtime;
389 		txtime = max_t(ktime_t, txtime, minimum_time);
390 		txtime = max_t(ktime_t, txtime, interval_start);
391 
392 		if (admin && admin != sched &&
393 		    ktime_after(txtime, admin->base_time)) {
394 			sched = admin;
395 			sched_changed = true;
396 			continue;
397 		}
398 
399 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
400 		minimum_time = transmit_end_time;
401 
402 		/* Update the txtime of current entry to the next time it's
403 		 * interval starts.
404 		 */
405 		if (ktime_after(transmit_end_time, interval_end))
406 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
407 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
408 
409 	entry->next_txtime = transmit_end_time;
410 
411 done:
412 	rcu_read_unlock();
413 	return txtime;
414 }
415 
416 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
417 			      struct Qdisc *child, struct sk_buff **to_free)
418 {
419 	struct taprio_sched *q = qdisc_priv(sch);
420 	struct net_device *dev = qdisc_dev(sch);
421 	int prio = skb->priority;
422 	u8 tc;
423 
424 	/* sk_flags are only safe to use on full sockets. */
425 	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
426 		if (!is_valid_interval(skb, sch))
427 			return qdisc_drop(skb, sch, to_free);
428 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
429 		skb->tstamp = get_packet_txtime(skb, sch);
430 		if (!skb->tstamp)
431 			return qdisc_drop(skb, sch, to_free);
432 	}
433 
434 	/* Devices with full offload are expected to honor this in hardware */
435 	tc = netdev_get_prio_tc_map(dev, prio);
436 	if (skb->len > q->max_frm_len[tc])
437 		return qdisc_drop(skb, sch, to_free);
438 
439 	qdisc_qstats_backlog_inc(sch, skb);
440 	sch->q.qlen++;
441 
442 	return qdisc_enqueue(skb, child, to_free);
443 }
444 
445 /* Will not be called in the full offload case, since the TX queues are
446  * attached to the Qdisc created using qdisc_create_dflt()
447  */
448 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
449 			  struct sk_buff **to_free)
450 {
451 	struct taprio_sched *q = qdisc_priv(sch);
452 	struct Qdisc *child;
453 	int queue;
454 
455 	queue = skb_get_queue_mapping(skb);
456 
457 	child = q->qdiscs[queue];
458 	if (unlikely(!child))
459 		return qdisc_drop(skb, sch, to_free);
460 
461 	/* Large packets might not be transmitted when the transmission duration
462 	 * exceeds any configured interval. Therefore, segment the skb into
463 	 * smaller chunks. Drivers with full offload are expected to handle
464 	 * this in hardware.
465 	 */
466 	if (skb_is_gso(skb)) {
467 		unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
468 		netdev_features_t features = netif_skb_features(skb);
469 		struct sk_buff *segs, *nskb;
470 		int ret;
471 
472 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
473 		if (IS_ERR_OR_NULL(segs))
474 			return qdisc_drop(skb, sch, to_free);
475 
476 		skb_list_walk_safe(segs, segs, nskb) {
477 			skb_mark_not_on_list(segs);
478 			qdisc_skb_cb(segs)->pkt_len = segs->len;
479 			slen += segs->len;
480 
481 			ret = taprio_enqueue_one(segs, sch, child, to_free);
482 			if (ret != NET_XMIT_SUCCESS) {
483 				if (net_xmit_drop_count(ret))
484 					qdisc_qstats_drop(sch);
485 			} else {
486 				numsegs++;
487 			}
488 		}
489 
490 		if (numsegs > 1)
491 			qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
492 		consume_skb(skb);
493 
494 		return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
495 	}
496 
497 	return taprio_enqueue_one(skb, sch, child, to_free);
498 }
499 
500 /* Will not be called in the full offload case, since the TX queues are
501  * attached to the Qdisc created using qdisc_create_dflt()
502  */
503 static struct sk_buff *taprio_peek(struct Qdisc *sch)
504 {
505 	struct taprio_sched *q = qdisc_priv(sch);
506 	struct net_device *dev = qdisc_dev(sch);
507 	struct sched_entry *entry;
508 	struct sk_buff *skb;
509 	u32 gate_mask;
510 	int i;
511 
512 	rcu_read_lock();
513 	entry = rcu_dereference(q->current_entry);
514 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
515 	rcu_read_unlock();
516 
517 	if (!gate_mask)
518 		return NULL;
519 
520 	for (i = 0; i < dev->num_tx_queues; i++) {
521 		struct Qdisc *child = q->qdiscs[i];
522 		int prio;
523 		u8 tc;
524 
525 		if (unlikely(!child))
526 			continue;
527 
528 		skb = child->ops->peek(child);
529 		if (!skb)
530 			continue;
531 
532 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
533 			return skb;
534 
535 		prio = skb->priority;
536 		tc = netdev_get_prio_tc_map(dev, prio);
537 
538 		if (!(gate_mask & BIT(tc)))
539 			continue;
540 
541 		return skb;
542 	}
543 
544 	return NULL;
545 }
546 
547 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
548 {
549 	atomic_set(&entry->budget,
550 		   div64_u64((u64)entry->interval * PSEC_PER_NSEC,
551 			     atomic64_read(&q->picos_per_byte)));
552 }
553 
554 /* Will not be called in the full offload case, since the TX queues are
555  * attached to the Qdisc created using qdisc_create_dflt()
556  */
557 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
558 {
559 	struct taprio_sched *q = qdisc_priv(sch);
560 	struct net_device *dev = qdisc_dev(sch);
561 	struct sk_buff *skb = NULL;
562 	struct sched_entry *entry;
563 	u32 gate_mask;
564 	int i;
565 
566 	rcu_read_lock();
567 	entry = rcu_dereference(q->current_entry);
568 	/* if there's no entry, it means that the schedule didn't
569 	 * start yet, so force all gates to be open, this is in
570 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
571 	 * "AdminGateStates"
572 	 */
573 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
574 
575 	if (!gate_mask)
576 		goto done;
577 
578 	for (i = 0; i < dev->num_tx_queues; i++) {
579 		struct Qdisc *child = q->qdiscs[i];
580 		ktime_t guard;
581 		int prio;
582 		int len;
583 		u8 tc;
584 
585 		if (unlikely(!child))
586 			continue;
587 
588 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
589 			skb = child->ops->dequeue(child);
590 			if (!skb)
591 				continue;
592 			goto skb_found;
593 		}
594 
595 		skb = child->ops->peek(child);
596 		if (!skb)
597 			continue;
598 
599 		prio = skb->priority;
600 		tc = netdev_get_prio_tc_map(dev, prio);
601 
602 		if (!(gate_mask & BIT(tc))) {
603 			skb = NULL;
604 			continue;
605 		}
606 
607 		len = qdisc_pkt_len(skb);
608 		guard = ktime_add_ns(taprio_get_time(q),
609 				     length_to_duration(q, len));
610 
611 		/* In the case that there's no gate entry, there's no
612 		 * guard band ...
613 		 */
614 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
615 		    ktime_after(guard, entry->close_time)) {
616 			skb = NULL;
617 			continue;
618 		}
619 
620 		/* ... and no budget. */
621 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
622 		    atomic_sub_return(len, &entry->budget) < 0) {
623 			skb = NULL;
624 			continue;
625 		}
626 
627 		skb = child->ops->dequeue(child);
628 		if (unlikely(!skb))
629 			goto done;
630 
631 skb_found:
632 		qdisc_bstats_update(sch, skb);
633 		qdisc_qstats_backlog_dec(sch, skb);
634 		sch->q.qlen--;
635 
636 		goto done;
637 	}
638 
639 done:
640 	rcu_read_unlock();
641 
642 	return skb;
643 }
644 
645 static bool should_restart_cycle(const struct sched_gate_list *oper,
646 				 const struct sched_entry *entry)
647 {
648 	if (list_is_last(&entry->list, &oper->entries))
649 		return true;
650 
651 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
652 		return true;
653 
654 	return false;
655 }
656 
657 static bool should_change_schedules(const struct sched_gate_list *admin,
658 				    const struct sched_gate_list *oper,
659 				    ktime_t close_time)
660 {
661 	ktime_t next_base_time, extension_time;
662 
663 	if (!admin)
664 		return false;
665 
666 	next_base_time = sched_base_time(admin);
667 
668 	/* This is the simple case, the close_time would fall after
669 	 * the next schedule base_time.
670 	 */
671 	if (ktime_compare(next_base_time, close_time) <= 0)
672 		return true;
673 
674 	/* This is the cycle_time_extension case, if the close_time
675 	 * plus the amount that can be extended would fall after the
676 	 * next schedule base_time, we can extend the current schedule
677 	 * for that amount.
678 	 */
679 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
680 
681 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
682 	 * how precisely the extension should be made. So after
683 	 * conformance testing, this logic may change.
684 	 */
685 	if (ktime_compare(next_base_time, extension_time) <= 0)
686 		return true;
687 
688 	return false;
689 }
690 
691 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
692 {
693 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
694 					      advance_timer);
695 	struct sched_gate_list *oper, *admin;
696 	struct sched_entry *entry, *next;
697 	struct Qdisc *sch = q->root;
698 	ktime_t close_time;
699 
700 	spin_lock(&q->current_entry_lock);
701 	entry = rcu_dereference_protected(q->current_entry,
702 					  lockdep_is_held(&q->current_entry_lock));
703 	oper = rcu_dereference_protected(q->oper_sched,
704 					 lockdep_is_held(&q->current_entry_lock));
705 	admin = rcu_dereference_protected(q->admin_sched,
706 					  lockdep_is_held(&q->current_entry_lock));
707 
708 	if (!oper)
709 		switch_schedules(q, &admin, &oper);
710 
711 	/* This can happen in two cases: 1. this is the very first run
712 	 * of this function (i.e. we weren't running any schedule
713 	 * previously); 2. The previous schedule just ended. The first
714 	 * entry of all schedules are pre-calculated during the
715 	 * schedule initialization.
716 	 */
717 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
718 		next = list_first_entry(&oper->entries, struct sched_entry,
719 					list);
720 		close_time = next->close_time;
721 		goto first_run;
722 	}
723 
724 	if (should_restart_cycle(oper, entry)) {
725 		next = list_first_entry(&oper->entries, struct sched_entry,
726 					list);
727 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
728 						      oper->cycle_time);
729 	} else {
730 		next = list_next_entry(entry, list);
731 	}
732 
733 	close_time = ktime_add_ns(entry->close_time, next->interval);
734 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
735 
736 	if (should_change_schedules(admin, oper, close_time)) {
737 		/* Set things so the next time this runs, the new
738 		 * schedule runs.
739 		 */
740 		close_time = sched_base_time(admin);
741 		switch_schedules(q, &admin, &oper);
742 	}
743 
744 	next->close_time = close_time;
745 	taprio_set_budget(q, next);
746 
747 first_run:
748 	rcu_assign_pointer(q->current_entry, next);
749 	spin_unlock(&q->current_entry_lock);
750 
751 	hrtimer_set_expires(&q->advance_timer, close_time);
752 
753 	rcu_read_lock();
754 	__netif_schedule(sch);
755 	rcu_read_unlock();
756 
757 	return HRTIMER_RESTART;
758 }
759 
760 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
761 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
762 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
763 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
764 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
765 };
766 
767 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
768 	[TCA_TAPRIO_TC_ENTRY_INDEX]	   = { .type = NLA_U32 },
769 	[TCA_TAPRIO_TC_ENTRY_MAX_SDU]	   = { .type = NLA_U32 },
770 };
771 
772 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
773 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
774 		.len = sizeof(struct tc_mqprio_qopt)
775 	},
776 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
777 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
778 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
779 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
780 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
781 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
782 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
783 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
784 	[TCA_TAPRIO_ATTR_TC_ENTRY]		     = { .type = NLA_NESTED },
785 };
786 
787 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
788 			    struct sched_entry *entry,
789 			    struct netlink_ext_ack *extack)
790 {
791 	int min_duration = length_to_duration(q, ETH_ZLEN);
792 	u32 interval = 0;
793 
794 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
795 		entry->command = nla_get_u8(
796 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
797 
798 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
799 		entry->gate_mask = nla_get_u32(
800 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
801 
802 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
803 		interval = nla_get_u32(
804 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
805 
806 	/* The interval should allow at least the minimum ethernet
807 	 * frame to go out.
808 	 */
809 	if (interval < min_duration) {
810 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
811 		return -EINVAL;
812 	}
813 
814 	entry->interval = interval;
815 
816 	return 0;
817 }
818 
819 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
820 			     struct sched_entry *entry, int index,
821 			     struct netlink_ext_ack *extack)
822 {
823 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
824 	int err;
825 
826 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
827 					  entry_policy, NULL);
828 	if (err < 0) {
829 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
830 		return -EINVAL;
831 	}
832 
833 	entry->index = index;
834 
835 	return fill_sched_entry(q, tb, entry, extack);
836 }
837 
838 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
839 			    struct sched_gate_list *sched,
840 			    struct netlink_ext_ack *extack)
841 {
842 	struct nlattr *n;
843 	int err, rem;
844 	int i = 0;
845 
846 	if (!list)
847 		return -EINVAL;
848 
849 	nla_for_each_nested(n, list, rem) {
850 		struct sched_entry *entry;
851 
852 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
853 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
854 			continue;
855 		}
856 
857 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
858 		if (!entry) {
859 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
860 			return -ENOMEM;
861 		}
862 
863 		err = parse_sched_entry(q, n, entry, i, extack);
864 		if (err < 0) {
865 			kfree(entry);
866 			return err;
867 		}
868 
869 		list_add_tail(&entry->list, &sched->entries);
870 		i++;
871 	}
872 
873 	sched->num_entries = i;
874 
875 	return i;
876 }
877 
878 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
879 				 struct sched_gate_list *new,
880 				 struct netlink_ext_ack *extack)
881 {
882 	int err = 0;
883 
884 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
885 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
886 		return -ENOTSUPP;
887 	}
888 
889 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
890 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
891 
892 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
893 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
894 
895 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
896 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
897 
898 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
899 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
900 				       new, extack);
901 	if (err < 0)
902 		return err;
903 
904 	if (!new->cycle_time) {
905 		struct sched_entry *entry;
906 		ktime_t cycle = 0;
907 
908 		list_for_each_entry(entry, &new->entries, list)
909 			cycle = ktime_add_ns(cycle, entry->interval);
910 
911 		if (!cycle) {
912 			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
913 			return -EINVAL;
914 		}
915 
916 		new->cycle_time = cycle;
917 	}
918 
919 	return 0;
920 }
921 
922 static int taprio_parse_mqprio_opt(struct net_device *dev,
923 				   struct tc_mqprio_qopt *qopt,
924 				   struct netlink_ext_ack *extack,
925 				   u32 taprio_flags)
926 {
927 	int i, j;
928 
929 	if (!qopt && !dev->num_tc) {
930 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
931 		return -EINVAL;
932 	}
933 
934 	/* If num_tc is already set, it means that the user already
935 	 * configured the mqprio part
936 	 */
937 	if (dev->num_tc)
938 		return 0;
939 
940 	/* Verify num_tc is not out of max range */
941 	if (qopt->num_tc > TC_MAX_QUEUE) {
942 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
943 		return -EINVAL;
944 	}
945 
946 	/* taprio imposes that traffic classes map 1:n to tx queues */
947 	if (qopt->num_tc > dev->num_tx_queues) {
948 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
949 		return -EINVAL;
950 	}
951 
952 	/* Verify priority mapping uses valid tcs */
953 	for (i = 0; i <= TC_BITMASK; i++) {
954 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
955 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
956 			return -EINVAL;
957 		}
958 	}
959 
960 	for (i = 0; i < qopt->num_tc; i++) {
961 		unsigned int last = qopt->offset[i] + qopt->count[i];
962 
963 		/* Verify the queue count is in tx range being equal to the
964 		 * real_num_tx_queues indicates the last queue is in use.
965 		 */
966 		if (qopt->offset[i] >= dev->num_tx_queues ||
967 		    !qopt->count[i] ||
968 		    last > dev->real_num_tx_queues) {
969 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
970 			return -EINVAL;
971 		}
972 
973 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
974 			continue;
975 
976 		/* Verify that the offset and counts do not overlap */
977 		for (j = i + 1; j < qopt->num_tc; j++) {
978 			if (last > qopt->offset[j]) {
979 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
980 				return -EINVAL;
981 			}
982 		}
983 	}
984 
985 	return 0;
986 }
987 
988 static int taprio_get_start_time(struct Qdisc *sch,
989 				 struct sched_gate_list *sched,
990 				 ktime_t *start)
991 {
992 	struct taprio_sched *q = qdisc_priv(sch);
993 	ktime_t now, base, cycle;
994 	s64 n;
995 
996 	base = sched_base_time(sched);
997 	now = taprio_get_time(q);
998 
999 	if (ktime_after(base, now)) {
1000 		*start = base;
1001 		return 0;
1002 	}
1003 
1004 	cycle = sched->cycle_time;
1005 
1006 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1007 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1008 	 * something went really wrong. In that case, we should warn about this
1009 	 * inconsistent state and return error.
1010 	 */
1011 	if (WARN_ON(!cycle))
1012 		return -EFAULT;
1013 
1014 	/* Schedule the start time for the beginning of the next
1015 	 * cycle.
1016 	 */
1017 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1018 	*start = ktime_add_ns(base, (n + 1) * cycle);
1019 	return 0;
1020 }
1021 
1022 static void setup_first_close_time(struct taprio_sched *q,
1023 				   struct sched_gate_list *sched, ktime_t base)
1024 {
1025 	struct sched_entry *first;
1026 	ktime_t cycle;
1027 
1028 	first = list_first_entry(&sched->entries,
1029 				 struct sched_entry, list);
1030 
1031 	cycle = sched->cycle_time;
1032 
1033 	/* FIXME: find a better place to do this */
1034 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1035 
1036 	first->close_time = ktime_add_ns(base, first->interval);
1037 	taprio_set_budget(q, first);
1038 	rcu_assign_pointer(q->current_entry, NULL);
1039 }
1040 
1041 static void taprio_start_sched(struct Qdisc *sch,
1042 			       ktime_t start, struct sched_gate_list *new)
1043 {
1044 	struct taprio_sched *q = qdisc_priv(sch);
1045 	ktime_t expires;
1046 
1047 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1048 		return;
1049 
1050 	expires = hrtimer_get_expires(&q->advance_timer);
1051 	if (expires == 0)
1052 		expires = KTIME_MAX;
1053 
1054 	/* If the new schedule starts before the next expiration, we
1055 	 * reprogram it to the earliest one, so we change the admin
1056 	 * schedule to the operational one at the right time.
1057 	 */
1058 	start = min_t(ktime_t, start, expires);
1059 
1060 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1061 }
1062 
1063 static void taprio_set_picos_per_byte(struct net_device *dev,
1064 				      struct taprio_sched *q)
1065 {
1066 	struct ethtool_link_ksettings ecmd;
1067 	int speed = SPEED_10;
1068 	int picos_per_byte;
1069 	int err;
1070 
1071 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1072 	if (err < 0)
1073 		goto skip;
1074 
1075 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1076 		speed = ecmd.base.speed;
1077 
1078 skip:
1079 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1080 
1081 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1082 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1083 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1084 		   ecmd.base.speed);
1085 }
1086 
1087 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1088 			       void *ptr)
1089 {
1090 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1091 	struct taprio_sched *q;
1092 
1093 	ASSERT_RTNL();
1094 
1095 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1096 		return NOTIFY_DONE;
1097 
1098 	list_for_each_entry(q, &taprio_list, taprio_list) {
1099 		if (dev != qdisc_dev(q->root))
1100 			continue;
1101 
1102 		taprio_set_picos_per_byte(dev, q);
1103 		break;
1104 	}
1105 
1106 	return NOTIFY_DONE;
1107 }
1108 
1109 static void setup_txtime(struct taprio_sched *q,
1110 			 struct sched_gate_list *sched, ktime_t base)
1111 {
1112 	struct sched_entry *entry;
1113 	u32 interval = 0;
1114 
1115 	list_for_each_entry(entry, &sched->entries, list) {
1116 		entry->next_txtime = ktime_add_ns(base, interval);
1117 		interval += entry->interval;
1118 	}
1119 }
1120 
1121 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1122 {
1123 	struct __tc_taprio_qopt_offload *__offload;
1124 
1125 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1126 			    GFP_KERNEL);
1127 	if (!__offload)
1128 		return NULL;
1129 
1130 	refcount_set(&__offload->users, 1);
1131 
1132 	return &__offload->offload;
1133 }
1134 
1135 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1136 						  *offload)
1137 {
1138 	struct __tc_taprio_qopt_offload *__offload;
1139 
1140 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1141 				 offload);
1142 
1143 	refcount_inc(&__offload->users);
1144 
1145 	return offload;
1146 }
1147 EXPORT_SYMBOL_GPL(taprio_offload_get);
1148 
1149 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1150 {
1151 	struct __tc_taprio_qopt_offload *__offload;
1152 
1153 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1154 				 offload);
1155 
1156 	if (!refcount_dec_and_test(&__offload->users))
1157 		return;
1158 
1159 	kfree(__offload);
1160 }
1161 EXPORT_SYMBOL_GPL(taprio_offload_free);
1162 
1163 /* The function will only serve to keep the pointers to the "oper" and "admin"
1164  * schedules valid in relation to their base times, so when calling dump() the
1165  * users looks at the right schedules.
1166  * When using full offload, the admin configuration is promoted to oper at the
1167  * base_time in the PHC time domain.  But because the system time is not
1168  * necessarily in sync with that, we can't just trigger a hrtimer to call
1169  * switch_schedules at the right hardware time.
1170  * At the moment we call this by hand right away from taprio, but in the future
1171  * it will be useful to create a mechanism for drivers to notify taprio of the
1172  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1173  * This is left as TODO.
1174  */
1175 static void taprio_offload_config_changed(struct taprio_sched *q)
1176 {
1177 	struct sched_gate_list *oper, *admin;
1178 
1179 	oper = rtnl_dereference(q->oper_sched);
1180 	admin = rtnl_dereference(q->admin_sched);
1181 
1182 	switch_schedules(q, &admin, &oper);
1183 }
1184 
1185 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1186 {
1187 	u32 i, queue_mask = 0;
1188 
1189 	for (i = 0; i < dev->num_tc; i++) {
1190 		u32 offset, count;
1191 
1192 		if (!(tc_mask & BIT(i)))
1193 			continue;
1194 
1195 		offset = dev->tc_to_txq[i].offset;
1196 		count = dev->tc_to_txq[i].count;
1197 
1198 		queue_mask |= GENMASK(offset + count - 1, offset);
1199 	}
1200 
1201 	return queue_mask;
1202 }
1203 
1204 static void taprio_sched_to_offload(struct net_device *dev,
1205 				    struct sched_gate_list *sched,
1206 				    struct tc_taprio_qopt_offload *offload)
1207 {
1208 	struct sched_entry *entry;
1209 	int i = 0;
1210 
1211 	offload->base_time = sched->base_time;
1212 	offload->cycle_time = sched->cycle_time;
1213 	offload->cycle_time_extension = sched->cycle_time_extension;
1214 
1215 	list_for_each_entry(entry, &sched->entries, list) {
1216 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1217 
1218 		e->command = entry->command;
1219 		e->interval = entry->interval;
1220 		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1221 
1222 		i++;
1223 	}
1224 
1225 	offload->num_entries = i;
1226 }
1227 
1228 static int taprio_enable_offload(struct net_device *dev,
1229 				 struct taprio_sched *q,
1230 				 struct sched_gate_list *sched,
1231 				 struct netlink_ext_ack *extack)
1232 {
1233 	const struct net_device_ops *ops = dev->netdev_ops;
1234 	struct tc_taprio_qopt_offload *offload;
1235 	struct tc_taprio_caps caps;
1236 	int tc, err = 0;
1237 
1238 	if (!ops->ndo_setup_tc) {
1239 		NL_SET_ERR_MSG(extack,
1240 			       "Device does not support taprio offload");
1241 		return -EOPNOTSUPP;
1242 	}
1243 
1244 	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1245 				 &caps, sizeof(caps));
1246 
1247 	if (!caps.supports_queue_max_sdu) {
1248 		for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1249 			if (q->max_sdu[tc]) {
1250 				NL_SET_ERR_MSG_MOD(extack,
1251 						   "Device does not handle queueMaxSDU");
1252 				return -EOPNOTSUPP;
1253 			}
1254 		}
1255 	}
1256 
1257 	offload = taprio_offload_alloc(sched->num_entries);
1258 	if (!offload) {
1259 		NL_SET_ERR_MSG(extack,
1260 			       "Not enough memory for enabling offload mode");
1261 		return -ENOMEM;
1262 	}
1263 	offload->enable = 1;
1264 	taprio_sched_to_offload(dev, sched, offload);
1265 
1266 	for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1267 		offload->max_sdu[tc] = q->max_sdu[tc];
1268 
1269 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1270 	if (err < 0) {
1271 		NL_SET_ERR_MSG(extack,
1272 			       "Device failed to setup taprio offload");
1273 		goto done;
1274 	}
1275 
1276 	q->offloaded = true;
1277 
1278 done:
1279 	taprio_offload_free(offload);
1280 
1281 	return err;
1282 }
1283 
1284 static int taprio_disable_offload(struct net_device *dev,
1285 				  struct taprio_sched *q,
1286 				  struct netlink_ext_ack *extack)
1287 {
1288 	const struct net_device_ops *ops = dev->netdev_ops;
1289 	struct tc_taprio_qopt_offload *offload;
1290 	int err;
1291 
1292 	if (!q->offloaded)
1293 		return 0;
1294 
1295 	offload = taprio_offload_alloc(0);
1296 	if (!offload) {
1297 		NL_SET_ERR_MSG(extack,
1298 			       "Not enough memory to disable offload mode");
1299 		return -ENOMEM;
1300 	}
1301 	offload->enable = 0;
1302 
1303 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1304 	if (err < 0) {
1305 		NL_SET_ERR_MSG(extack,
1306 			       "Device failed to disable offload");
1307 		goto out;
1308 	}
1309 
1310 	q->offloaded = false;
1311 
1312 out:
1313 	taprio_offload_free(offload);
1314 
1315 	return err;
1316 }
1317 
1318 /* If full offload is enabled, the only possible clockid is the net device's
1319  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1320  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1321  * in sync with the specified clockid via a user space daemon such as phc2sys.
1322  * For both software taprio and txtime-assist, the clockid is used for the
1323  * hrtimer that advances the schedule and hence mandatory.
1324  */
1325 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1326 				struct netlink_ext_ack *extack)
1327 {
1328 	struct taprio_sched *q = qdisc_priv(sch);
1329 	struct net_device *dev = qdisc_dev(sch);
1330 	int err = -EINVAL;
1331 
1332 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1333 		const struct ethtool_ops *ops = dev->ethtool_ops;
1334 		struct ethtool_ts_info info = {
1335 			.cmd = ETHTOOL_GET_TS_INFO,
1336 			.phc_index = -1,
1337 		};
1338 
1339 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1340 			NL_SET_ERR_MSG(extack,
1341 				       "The 'clockid' cannot be specified for full offload");
1342 			goto out;
1343 		}
1344 
1345 		if (ops && ops->get_ts_info)
1346 			err = ops->get_ts_info(dev, &info);
1347 
1348 		if (err || info.phc_index < 0) {
1349 			NL_SET_ERR_MSG(extack,
1350 				       "Device does not have a PTP clock");
1351 			err = -ENOTSUPP;
1352 			goto out;
1353 		}
1354 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1355 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1356 		enum tk_offsets tk_offset;
1357 
1358 		/* We only support static clockids and we don't allow
1359 		 * for it to be modified after the first init.
1360 		 */
1361 		if (clockid < 0 ||
1362 		    (q->clockid != -1 && q->clockid != clockid)) {
1363 			NL_SET_ERR_MSG(extack,
1364 				       "Changing the 'clockid' of a running schedule is not supported");
1365 			err = -ENOTSUPP;
1366 			goto out;
1367 		}
1368 
1369 		switch (clockid) {
1370 		case CLOCK_REALTIME:
1371 			tk_offset = TK_OFFS_REAL;
1372 			break;
1373 		case CLOCK_MONOTONIC:
1374 			tk_offset = TK_OFFS_MAX;
1375 			break;
1376 		case CLOCK_BOOTTIME:
1377 			tk_offset = TK_OFFS_BOOT;
1378 			break;
1379 		case CLOCK_TAI:
1380 			tk_offset = TK_OFFS_TAI;
1381 			break;
1382 		default:
1383 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1384 			err = -EINVAL;
1385 			goto out;
1386 		}
1387 		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1388 		WRITE_ONCE(q->tk_offset, tk_offset);
1389 
1390 		q->clockid = clockid;
1391 	} else {
1392 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1393 		goto out;
1394 	}
1395 
1396 	/* Everything went ok, return success. */
1397 	err = 0;
1398 
1399 out:
1400 	return err;
1401 }
1402 
1403 static int taprio_parse_tc_entry(struct Qdisc *sch,
1404 				 struct nlattr *opt,
1405 				 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1406 				 unsigned long *seen_tcs,
1407 				 struct netlink_ext_ack *extack)
1408 {
1409 	struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1410 	struct net_device *dev = qdisc_dev(sch);
1411 	u32 val = 0;
1412 	int err, tc;
1413 
1414 	err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1415 			       taprio_tc_policy, extack);
1416 	if (err < 0)
1417 		return err;
1418 
1419 	if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
1420 		NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1421 		return -EINVAL;
1422 	}
1423 
1424 	tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1425 	if (tc >= TC_QOPT_MAX_QUEUE) {
1426 		NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
1427 		return -ERANGE;
1428 	}
1429 
1430 	if (*seen_tcs & BIT(tc)) {
1431 		NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
1432 		return -EINVAL;
1433 	}
1434 
1435 	*seen_tcs |= BIT(tc);
1436 
1437 	if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU])
1438 		val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1439 
1440 	if (val > dev->max_mtu) {
1441 		NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1442 		return -ERANGE;
1443 	}
1444 
1445 	max_sdu[tc] = val;
1446 
1447 	return 0;
1448 }
1449 
1450 static int taprio_parse_tc_entries(struct Qdisc *sch,
1451 				   struct nlattr *opt,
1452 				   struct netlink_ext_ack *extack)
1453 {
1454 	struct taprio_sched *q = qdisc_priv(sch);
1455 	struct net_device *dev = qdisc_dev(sch);
1456 	u32 max_sdu[TC_QOPT_MAX_QUEUE];
1457 	unsigned long seen_tcs = 0;
1458 	struct nlattr *n;
1459 	int tc, rem;
1460 	int err = 0;
1461 
1462 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
1463 		max_sdu[tc] = q->max_sdu[tc];
1464 
1465 	nla_for_each_nested(n, opt, rem) {
1466 		if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY)
1467 			continue;
1468 
1469 		err = taprio_parse_tc_entry(sch, n, max_sdu, &seen_tcs, extack);
1470 		if (err)
1471 			goto out;
1472 	}
1473 
1474 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1475 		q->max_sdu[tc] = max_sdu[tc];
1476 		if (max_sdu[tc])
1477 			q->max_frm_len[tc] = max_sdu[tc] + dev->hard_header_len;
1478 		else
1479 			q->max_frm_len[tc] = U32_MAX; /* never oversized */
1480 	}
1481 
1482 out:
1483 	return err;
1484 }
1485 
1486 static int taprio_mqprio_cmp(const struct net_device *dev,
1487 			     const struct tc_mqprio_qopt *mqprio)
1488 {
1489 	int i;
1490 
1491 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1492 		return -1;
1493 
1494 	for (i = 0; i < mqprio->num_tc; i++)
1495 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1496 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1497 			return -1;
1498 
1499 	for (i = 0; i <= TC_BITMASK; i++)
1500 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1501 			return -1;
1502 
1503 	return 0;
1504 }
1505 
1506 /* The semantics of the 'flags' argument in relation to 'change()'
1507  * requests, are interpreted following two rules (which are applied in
1508  * this order): (1) an omitted 'flags' argument is interpreted as
1509  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1510  * changed.
1511  */
1512 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1513 			    struct netlink_ext_ack *extack)
1514 {
1515 	u32 new = 0;
1516 
1517 	if (attr)
1518 		new = nla_get_u32(attr);
1519 
1520 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1521 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1522 		return -EOPNOTSUPP;
1523 	}
1524 
1525 	if (!taprio_flags_valid(new)) {
1526 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1527 		return -EINVAL;
1528 	}
1529 
1530 	return new;
1531 }
1532 
1533 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1534 			 struct netlink_ext_ack *extack)
1535 {
1536 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1537 	struct sched_gate_list *oper, *admin, *new_admin;
1538 	struct taprio_sched *q = qdisc_priv(sch);
1539 	struct net_device *dev = qdisc_dev(sch);
1540 	struct tc_mqprio_qopt *mqprio = NULL;
1541 	unsigned long flags;
1542 	ktime_t start;
1543 	int i, err;
1544 
1545 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1546 					  taprio_policy, extack);
1547 	if (err < 0)
1548 		return err;
1549 
1550 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1551 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1552 
1553 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1554 			       q->flags, extack);
1555 	if (err < 0)
1556 		return err;
1557 
1558 	q->flags = err;
1559 
1560 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1561 	if (err < 0)
1562 		return err;
1563 
1564 	err = taprio_parse_tc_entries(sch, opt, extack);
1565 	if (err)
1566 		return err;
1567 
1568 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1569 	if (!new_admin) {
1570 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1571 		return -ENOMEM;
1572 	}
1573 	INIT_LIST_HEAD(&new_admin->entries);
1574 
1575 	oper = rtnl_dereference(q->oper_sched);
1576 	admin = rtnl_dereference(q->admin_sched);
1577 
1578 	/* no changes - no new mqprio settings */
1579 	if (!taprio_mqprio_cmp(dev, mqprio))
1580 		mqprio = NULL;
1581 
1582 	if (mqprio && (oper || admin)) {
1583 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1584 		err = -ENOTSUPP;
1585 		goto free_sched;
1586 	}
1587 
1588 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1589 	if (err < 0)
1590 		goto free_sched;
1591 
1592 	if (new_admin->num_entries == 0) {
1593 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1594 		err = -EINVAL;
1595 		goto free_sched;
1596 	}
1597 
1598 	err = taprio_parse_clockid(sch, tb, extack);
1599 	if (err < 0)
1600 		goto free_sched;
1601 
1602 	taprio_set_picos_per_byte(dev, q);
1603 
1604 	if (mqprio) {
1605 		err = netdev_set_num_tc(dev, mqprio->num_tc);
1606 		if (err)
1607 			goto free_sched;
1608 		for (i = 0; i < mqprio->num_tc; i++)
1609 			netdev_set_tc_queue(dev, i,
1610 					    mqprio->count[i],
1611 					    mqprio->offset[i]);
1612 
1613 		/* Always use supplied priority mappings */
1614 		for (i = 0; i <= TC_BITMASK; i++)
1615 			netdev_set_prio_tc_map(dev, i,
1616 					       mqprio->prio_tc_map[i]);
1617 	}
1618 
1619 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1620 		err = taprio_enable_offload(dev, q, new_admin, extack);
1621 	else
1622 		err = taprio_disable_offload(dev, q, extack);
1623 	if (err)
1624 		goto free_sched;
1625 
1626 	/* Protects against enqueue()/dequeue() */
1627 	spin_lock_bh(qdisc_lock(sch));
1628 
1629 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1630 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1631 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1632 			err = -EINVAL;
1633 			goto unlock;
1634 		}
1635 
1636 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1637 	}
1638 
1639 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1640 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1641 	    !hrtimer_active(&q->advance_timer)) {
1642 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1643 		q->advance_timer.function = advance_sched;
1644 	}
1645 
1646 	err = taprio_get_start_time(sch, new_admin, &start);
1647 	if (err < 0) {
1648 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1649 		goto unlock;
1650 	}
1651 
1652 	setup_txtime(q, new_admin, start);
1653 
1654 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1655 		if (!oper) {
1656 			rcu_assign_pointer(q->oper_sched, new_admin);
1657 			err = 0;
1658 			new_admin = NULL;
1659 			goto unlock;
1660 		}
1661 
1662 		rcu_assign_pointer(q->admin_sched, new_admin);
1663 		if (admin)
1664 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1665 	} else {
1666 		setup_first_close_time(q, new_admin, start);
1667 
1668 		/* Protects against advance_sched() */
1669 		spin_lock_irqsave(&q->current_entry_lock, flags);
1670 
1671 		taprio_start_sched(sch, start, new_admin);
1672 
1673 		rcu_assign_pointer(q->admin_sched, new_admin);
1674 		if (admin)
1675 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1676 
1677 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1678 
1679 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1680 			taprio_offload_config_changed(q);
1681 	}
1682 
1683 	new_admin = NULL;
1684 	err = 0;
1685 
1686 unlock:
1687 	spin_unlock_bh(qdisc_lock(sch));
1688 
1689 free_sched:
1690 	if (new_admin)
1691 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1692 
1693 	return err;
1694 }
1695 
1696 static void taprio_reset(struct Qdisc *sch)
1697 {
1698 	struct taprio_sched *q = qdisc_priv(sch);
1699 	struct net_device *dev = qdisc_dev(sch);
1700 	int i;
1701 
1702 	hrtimer_cancel(&q->advance_timer);
1703 	if (q->qdiscs) {
1704 		for (i = 0; i < dev->num_tx_queues; i++)
1705 			if (q->qdiscs[i])
1706 				qdisc_reset(q->qdiscs[i]);
1707 	}
1708 }
1709 
1710 static void taprio_destroy(struct Qdisc *sch)
1711 {
1712 	struct taprio_sched *q = qdisc_priv(sch);
1713 	struct net_device *dev = qdisc_dev(sch);
1714 	struct sched_gate_list *oper, *admin;
1715 	unsigned int i;
1716 
1717 	list_del(&q->taprio_list);
1718 
1719 	/* Note that taprio_reset() might not be called if an error
1720 	 * happens in qdisc_create(), after taprio_init() has been called.
1721 	 */
1722 	hrtimer_cancel(&q->advance_timer);
1723 
1724 	taprio_disable_offload(dev, q, NULL);
1725 
1726 	if (q->qdiscs) {
1727 		for (i = 0; i < dev->num_tx_queues; i++)
1728 			qdisc_put(q->qdiscs[i]);
1729 
1730 		kfree(q->qdiscs);
1731 	}
1732 	q->qdiscs = NULL;
1733 
1734 	netdev_reset_tc(dev);
1735 
1736 	oper = rtnl_dereference(q->oper_sched);
1737 	admin = rtnl_dereference(q->admin_sched);
1738 
1739 	if (oper)
1740 		call_rcu(&oper->rcu, taprio_free_sched_cb);
1741 
1742 	if (admin)
1743 		call_rcu(&admin->rcu, taprio_free_sched_cb);
1744 }
1745 
1746 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1747 		       struct netlink_ext_ack *extack)
1748 {
1749 	struct taprio_sched *q = qdisc_priv(sch);
1750 	struct net_device *dev = qdisc_dev(sch);
1751 	int i;
1752 
1753 	spin_lock_init(&q->current_entry_lock);
1754 
1755 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1756 	q->advance_timer.function = advance_sched;
1757 
1758 	q->root = sch;
1759 
1760 	/* We only support static clockids. Use an invalid value as default
1761 	 * and get the valid one on taprio_change().
1762 	 */
1763 	q->clockid = -1;
1764 	q->flags = TAPRIO_FLAGS_INVALID;
1765 
1766 	list_add(&q->taprio_list, &taprio_list);
1767 
1768 	if (sch->parent != TC_H_ROOT) {
1769 		NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
1770 		return -EOPNOTSUPP;
1771 	}
1772 
1773 	if (!netif_is_multiqueue(dev)) {
1774 		NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
1775 		return -EOPNOTSUPP;
1776 	}
1777 
1778 	/* pre-allocate qdisc, attachment can't fail */
1779 	q->qdiscs = kcalloc(dev->num_tx_queues,
1780 			    sizeof(q->qdiscs[0]),
1781 			    GFP_KERNEL);
1782 
1783 	if (!q->qdiscs)
1784 		return -ENOMEM;
1785 
1786 	if (!opt)
1787 		return -EINVAL;
1788 
1789 	for (i = 0; i < dev->num_tx_queues; i++) {
1790 		struct netdev_queue *dev_queue;
1791 		struct Qdisc *qdisc;
1792 
1793 		dev_queue = netdev_get_tx_queue(dev, i);
1794 		qdisc = qdisc_create_dflt(dev_queue,
1795 					  &pfifo_qdisc_ops,
1796 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1797 						    TC_H_MIN(i + 1)),
1798 					  extack);
1799 		if (!qdisc)
1800 			return -ENOMEM;
1801 
1802 		if (i < dev->real_num_tx_queues)
1803 			qdisc_hash_add(qdisc, false);
1804 
1805 		q->qdiscs[i] = qdisc;
1806 	}
1807 
1808 	return taprio_change(sch, opt, extack);
1809 }
1810 
1811 static void taprio_attach(struct Qdisc *sch)
1812 {
1813 	struct taprio_sched *q = qdisc_priv(sch);
1814 	struct net_device *dev = qdisc_dev(sch);
1815 	unsigned int ntx;
1816 
1817 	/* Attach underlying qdisc */
1818 	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1819 		struct Qdisc *qdisc = q->qdiscs[ntx];
1820 		struct Qdisc *old;
1821 
1822 		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1823 			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1824 			old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1825 		} else {
1826 			old = dev_graft_qdisc(qdisc->dev_queue, sch);
1827 			qdisc_refcount_inc(sch);
1828 		}
1829 		if (old)
1830 			qdisc_put(old);
1831 	}
1832 
1833 	/* access to the child qdiscs is not needed in offload mode */
1834 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1835 		kfree(q->qdiscs);
1836 		q->qdiscs = NULL;
1837 	}
1838 }
1839 
1840 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1841 					     unsigned long cl)
1842 {
1843 	struct net_device *dev = qdisc_dev(sch);
1844 	unsigned long ntx = cl - 1;
1845 
1846 	if (ntx >= dev->num_tx_queues)
1847 		return NULL;
1848 
1849 	return netdev_get_tx_queue(dev, ntx);
1850 }
1851 
1852 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1853 			struct Qdisc *new, struct Qdisc **old,
1854 			struct netlink_ext_ack *extack)
1855 {
1856 	struct taprio_sched *q = qdisc_priv(sch);
1857 	struct net_device *dev = qdisc_dev(sch);
1858 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1859 
1860 	if (!dev_queue)
1861 		return -EINVAL;
1862 
1863 	if (dev->flags & IFF_UP)
1864 		dev_deactivate(dev);
1865 
1866 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1867 		*old = dev_graft_qdisc(dev_queue, new);
1868 	} else {
1869 		*old = q->qdiscs[cl - 1];
1870 		q->qdiscs[cl - 1] = new;
1871 	}
1872 
1873 	if (new)
1874 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1875 
1876 	if (dev->flags & IFF_UP)
1877 		dev_activate(dev);
1878 
1879 	return 0;
1880 }
1881 
1882 static int dump_entry(struct sk_buff *msg,
1883 		      const struct sched_entry *entry)
1884 {
1885 	struct nlattr *item;
1886 
1887 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1888 	if (!item)
1889 		return -ENOSPC;
1890 
1891 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1892 		goto nla_put_failure;
1893 
1894 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1895 		goto nla_put_failure;
1896 
1897 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1898 			entry->gate_mask))
1899 		goto nla_put_failure;
1900 
1901 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1902 			entry->interval))
1903 		goto nla_put_failure;
1904 
1905 	return nla_nest_end(msg, item);
1906 
1907 nla_put_failure:
1908 	nla_nest_cancel(msg, item);
1909 	return -1;
1910 }
1911 
1912 static int dump_schedule(struct sk_buff *msg,
1913 			 const struct sched_gate_list *root)
1914 {
1915 	struct nlattr *entry_list;
1916 	struct sched_entry *entry;
1917 
1918 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1919 			root->base_time, TCA_TAPRIO_PAD))
1920 		return -1;
1921 
1922 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1923 			root->cycle_time, TCA_TAPRIO_PAD))
1924 		return -1;
1925 
1926 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1927 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1928 		return -1;
1929 
1930 	entry_list = nla_nest_start_noflag(msg,
1931 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1932 	if (!entry_list)
1933 		goto error_nest;
1934 
1935 	list_for_each_entry(entry, &root->entries, list) {
1936 		if (dump_entry(msg, entry) < 0)
1937 			goto error_nest;
1938 	}
1939 
1940 	nla_nest_end(msg, entry_list);
1941 	return 0;
1942 
1943 error_nest:
1944 	nla_nest_cancel(msg, entry_list);
1945 	return -1;
1946 }
1947 
1948 static int taprio_dump_tc_entries(struct taprio_sched *q, struct sk_buff *skb)
1949 {
1950 	struct nlattr *n;
1951 	int tc;
1952 
1953 	for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1954 		n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
1955 		if (!n)
1956 			return -EMSGSIZE;
1957 
1958 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
1959 			goto nla_put_failure;
1960 
1961 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
1962 				q->max_sdu[tc]))
1963 			goto nla_put_failure;
1964 
1965 		nla_nest_end(skb, n);
1966 	}
1967 
1968 	return 0;
1969 
1970 nla_put_failure:
1971 	nla_nest_cancel(skb, n);
1972 	return -EMSGSIZE;
1973 }
1974 
1975 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1976 {
1977 	struct taprio_sched *q = qdisc_priv(sch);
1978 	struct net_device *dev = qdisc_dev(sch);
1979 	struct sched_gate_list *oper, *admin;
1980 	struct tc_mqprio_qopt opt = { 0 };
1981 	struct nlattr *nest, *sched_nest;
1982 	unsigned int i;
1983 
1984 	oper = rtnl_dereference(q->oper_sched);
1985 	admin = rtnl_dereference(q->admin_sched);
1986 
1987 	opt.num_tc = netdev_get_num_tc(dev);
1988 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1989 
1990 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1991 		opt.count[i] = dev->tc_to_txq[i].count;
1992 		opt.offset[i] = dev->tc_to_txq[i].offset;
1993 	}
1994 
1995 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1996 	if (!nest)
1997 		goto start_error;
1998 
1999 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2000 		goto options_error;
2001 
2002 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2003 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2004 		goto options_error;
2005 
2006 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2007 		goto options_error;
2008 
2009 	if (q->txtime_delay &&
2010 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2011 		goto options_error;
2012 
2013 	if (taprio_dump_tc_entries(q, skb))
2014 		goto options_error;
2015 
2016 	if (oper && dump_schedule(skb, oper))
2017 		goto options_error;
2018 
2019 	if (!admin)
2020 		goto done;
2021 
2022 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2023 	if (!sched_nest)
2024 		goto options_error;
2025 
2026 	if (dump_schedule(skb, admin))
2027 		goto admin_error;
2028 
2029 	nla_nest_end(skb, sched_nest);
2030 
2031 done:
2032 	return nla_nest_end(skb, nest);
2033 
2034 admin_error:
2035 	nla_nest_cancel(skb, sched_nest);
2036 
2037 options_error:
2038 	nla_nest_cancel(skb, nest);
2039 
2040 start_error:
2041 	return -ENOSPC;
2042 }
2043 
2044 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2045 {
2046 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2047 
2048 	if (!dev_queue)
2049 		return NULL;
2050 
2051 	return dev_queue->qdisc_sleeping;
2052 }
2053 
2054 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2055 {
2056 	unsigned int ntx = TC_H_MIN(classid);
2057 
2058 	if (!taprio_queue_get(sch, ntx))
2059 		return 0;
2060 	return ntx;
2061 }
2062 
2063 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2064 			     struct sk_buff *skb, struct tcmsg *tcm)
2065 {
2066 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2067 
2068 	tcm->tcm_parent = TC_H_ROOT;
2069 	tcm->tcm_handle |= TC_H_MIN(cl);
2070 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
2071 
2072 	return 0;
2073 }
2074 
2075 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2076 				   struct gnet_dump *d)
2077 	__releases(d->lock)
2078 	__acquires(d->lock)
2079 {
2080 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2081 
2082 	sch = dev_queue->qdisc_sleeping;
2083 	if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
2084 	    qdisc_qstats_copy(d, sch) < 0)
2085 		return -1;
2086 	return 0;
2087 }
2088 
2089 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2090 {
2091 	struct net_device *dev = qdisc_dev(sch);
2092 	unsigned long ntx;
2093 
2094 	if (arg->stop)
2095 		return;
2096 
2097 	arg->count = arg->skip;
2098 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2099 		if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2100 			break;
2101 	}
2102 }
2103 
2104 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2105 						struct tcmsg *tcm)
2106 {
2107 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2108 }
2109 
2110 static const struct Qdisc_class_ops taprio_class_ops = {
2111 	.graft		= taprio_graft,
2112 	.leaf		= taprio_leaf,
2113 	.find		= taprio_find,
2114 	.walk		= taprio_walk,
2115 	.dump		= taprio_dump_class,
2116 	.dump_stats	= taprio_dump_class_stats,
2117 	.select_queue	= taprio_select_queue,
2118 };
2119 
2120 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2121 	.cl_ops		= &taprio_class_ops,
2122 	.id		= "taprio",
2123 	.priv_size	= sizeof(struct taprio_sched),
2124 	.init		= taprio_init,
2125 	.change		= taprio_change,
2126 	.destroy	= taprio_destroy,
2127 	.reset		= taprio_reset,
2128 	.attach		= taprio_attach,
2129 	.peek		= taprio_peek,
2130 	.dequeue	= taprio_dequeue,
2131 	.enqueue	= taprio_enqueue,
2132 	.dump		= taprio_dump,
2133 	.owner		= THIS_MODULE,
2134 };
2135 
2136 static struct notifier_block taprio_device_notifier = {
2137 	.notifier_call = taprio_dev_notifier,
2138 };
2139 
2140 static int __init taprio_module_init(void)
2141 {
2142 	int err = register_netdevice_notifier(&taprio_device_notifier);
2143 
2144 	if (err)
2145 		return err;
2146 
2147 	return register_qdisc(&taprio_qdisc_ops);
2148 }
2149 
2150 static void __exit taprio_module_exit(void)
2151 {
2152 	unregister_qdisc(&taprio_qdisc_ops);
2153 	unregister_netdevice_notifier(&taprio_device_notifier);
2154 }
2155 
2156 module_init(taprio_module_init);
2157 module_exit(taprio_module_exit);
2158 MODULE_LICENSE("GPL");
2159