1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/types.h> 11 #include <linux/slab.h> 12 #include <linux/kernel.h> 13 #include <linux/string.h> 14 #include <linux/list.h> 15 #include <linux/errno.h> 16 #include <linux/skbuff.h> 17 #include <linux/math64.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/rcupdate.h> 21 #include <net/netlink.h> 22 #include <net/pkt_sched.h> 23 #include <net/pkt_cls.h> 24 #include <net/sch_generic.h> 25 #include <net/sock.h> 26 #include <net/tcp.h> 27 28 static LIST_HEAD(taprio_list); 29 static DEFINE_SPINLOCK(taprio_list_lock); 30 31 #define TAPRIO_ALL_GATES_OPEN -1 32 33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 35 #define TAPRIO_FLAGS_INVALID U32_MAX 36 37 struct sched_entry { 38 struct list_head list; 39 40 /* The instant that this entry "closes" and the next one 41 * should open, the qdisc will make some effort so that no 42 * packet leaves after this time. 43 */ 44 ktime_t close_time; 45 ktime_t next_txtime; 46 atomic_t budget; 47 int index; 48 u32 gate_mask; 49 u32 interval; 50 u8 command; 51 }; 52 53 struct sched_gate_list { 54 struct rcu_head rcu; 55 struct list_head entries; 56 size_t num_entries; 57 ktime_t cycle_close_time; 58 s64 cycle_time; 59 s64 cycle_time_extension; 60 s64 base_time; 61 }; 62 63 struct taprio_sched { 64 struct Qdisc **qdiscs; 65 struct Qdisc *root; 66 u32 flags; 67 enum tk_offsets tk_offset; 68 int clockid; 69 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 70 * speeds it's sub-nanoseconds per byte 71 */ 72 73 /* Protects the update side of the RCU protected current_entry */ 74 spinlock_t current_entry_lock; 75 struct sched_entry __rcu *current_entry; 76 struct sched_gate_list __rcu *oper_sched; 77 struct sched_gate_list __rcu *admin_sched; 78 struct hrtimer advance_timer; 79 struct list_head taprio_list; 80 struct sk_buff *(*dequeue)(struct Qdisc *sch); 81 struct sk_buff *(*peek)(struct Qdisc *sch); 82 u32 txtime_delay; 83 }; 84 85 struct __tc_taprio_qopt_offload { 86 refcount_t users; 87 struct tc_taprio_qopt_offload offload; 88 }; 89 90 static ktime_t sched_base_time(const struct sched_gate_list *sched) 91 { 92 if (!sched) 93 return KTIME_MAX; 94 95 return ns_to_ktime(sched->base_time); 96 } 97 98 static ktime_t taprio_get_time(struct taprio_sched *q) 99 { 100 ktime_t mono = ktime_get(); 101 102 switch (q->tk_offset) { 103 case TK_OFFS_MAX: 104 return mono; 105 default: 106 return ktime_mono_to_any(mono, q->tk_offset); 107 } 108 109 return KTIME_MAX; 110 } 111 112 static void taprio_free_sched_cb(struct rcu_head *head) 113 { 114 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 115 struct sched_entry *entry, *n; 116 117 list_for_each_entry_safe(entry, n, &sched->entries, list) { 118 list_del(&entry->list); 119 kfree(entry); 120 } 121 122 kfree(sched); 123 } 124 125 static void switch_schedules(struct taprio_sched *q, 126 struct sched_gate_list **admin, 127 struct sched_gate_list **oper) 128 { 129 rcu_assign_pointer(q->oper_sched, *admin); 130 rcu_assign_pointer(q->admin_sched, NULL); 131 132 if (*oper) 133 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 134 135 *oper = *admin; 136 *admin = NULL; 137 } 138 139 /* Get how much time has been already elapsed in the current cycle. */ 140 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 141 { 142 ktime_t time_since_sched_start; 143 s32 time_elapsed; 144 145 time_since_sched_start = ktime_sub(time, sched->base_time); 146 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 147 148 return time_elapsed; 149 } 150 151 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 152 struct sched_gate_list *admin, 153 struct sched_entry *entry, 154 ktime_t intv_start) 155 { 156 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 157 ktime_t intv_end, cycle_ext_end, cycle_end; 158 159 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 160 intv_end = ktime_add_ns(intv_start, entry->interval); 161 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 162 163 if (ktime_before(intv_end, cycle_end)) 164 return intv_end; 165 else if (admin && admin != sched && 166 ktime_after(admin->base_time, cycle_end) && 167 ktime_before(admin->base_time, cycle_ext_end)) 168 return admin->base_time; 169 else 170 return cycle_end; 171 } 172 173 static int length_to_duration(struct taprio_sched *q, int len) 174 { 175 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); 176 } 177 178 /* Returns the entry corresponding to next available interval. If 179 * validate_interval is set, it only validates whether the timestamp occurs 180 * when the gate corresponding to the skb's traffic class is open. 181 */ 182 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 183 struct Qdisc *sch, 184 struct sched_gate_list *sched, 185 struct sched_gate_list *admin, 186 ktime_t time, 187 ktime_t *interval_start, 188 ktime_t *interval_end, 189 bool validate_interval) 190 { 191 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 192 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 193 struct sched_entry *entry = NULL, *entry_found = NULL; 194 struct taprio_sched *q = qdisc_priv(sch); 195 struct net_device *dev = qdisc_dev(sch); 196 bool entry_available = false; 197 s32 cycle_elapsed; 198 int tc, n; 199 200 tc = netdev_get_prio_tc_map(dev, skb->priority); 201 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 202 203 *interval_start = 0; 204 *interval_end = 0; 205 206 if (!sched) 207 return NULL; 208 209 cycle = sched->cycle_time; 210 cycle_elapsed = get_cycle_time_elapsed(sched, time); 211 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 212 cycle_end = ktime_add_ns(curr_intv_end, cycle); 213 214 list_for_each_entry(entry, &sched->entries, list) { 215 curr_intv_start = curr_intv_end; 216 curr_intv_end = get_interval_end_time(sched, admin, entry, 217 curr_intv_start); 218 219 if (ktime_after(curr_intv_start, cycle_end)) 220 break; 221 222 if (!(entry->gate_mask & BIT(tc)) || 223 packet_transmit_time > entry->interval) 224 continue; 225 226 txtime = entry->next_txtime; 227 228 if (ktime_before(txtime, time) || validate_interval) { 229 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 230 if ((ktime_before(curr_intv_start, time) && 231 ktime_before(transmit_end_time, curr_intv_end)) || 232 (ktime_after(curr_intv_start, time) && !validate_interval)) { 233 entry_found = entry; 234 *interval_start = curr_intv_start; 235 *interval_end = curr_intv_end; 236 break; 237 } else if (!entry_available && !validate_interval) { 238 /* Here, we are just trying to find out the 239 * first available interval in the next cycle. 240 */ 241 entry_available = true; 242 entry_found = entry; 243 *interval_start = ktime_add_ns(curr_intv_start, cycle); 244 *interval_end = ktime_add_ns(curr_intv_end, cycle); 245 } 246 } else if (ktime_before(txtime, earliest_txtime) && 247 !entry_available) { 248 earliest_txtime = txtime; 249 entry_found = entry; 250 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 251 *interval_start = ktime_add(curr_intv_start, n * cycle); 252 *interval_end = ktime_add(curr_intv_end, n * cycle); 253 } 254 } 255 256 return entry_found; 257 } 258 259 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 260 { 261 struct taprio_sched *q = qdisc_priv(sch); 262 struct sched_gate_list *sched, *admin; 263 ktime_t interval_start, interval_end; 264 struct sched_entry *entry; 265 266 rcu_read_lock(); 267 sched = rcu_dereference(q->oper_sched); 268 admin = rcu_dereference(q->admin_sched); 269 270 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 271 &interval_start, &interval_end, true); 272 rcu_read_unlock(); 273 274 return entry; 275 } 276 277 static bool taprio_flags_valid(u32 flags) 278 { 279 /* Make sure no other flag bits are set. */ 280 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 281 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 282 return false; 283 /* txtime-assist and full offload are mutually exclusive */ 284 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 285 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 286 return false; 287 return true; 288 } 289 290 /* This returns the tstamp value set by TCP in terms of the set clock. */ 291 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 292 { 293 unsigned int offset = skb_network_offset(skb); 294 const struct ipv6hdr *ipv6h; 295 const struct iphdr *iph; 296 struct ipv6hdr _ipv6h; 297 298 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 299 if (!ipv6h) 300 return 0; 301 302 if (ipv6h->version == 4) { 303 iph = (struct iphdr *)ipv6h; 304 offset += iph->ihl * 4; 305 306 /* special-case 6in4 tunnelling, as that is a common way to get 307 * v6 connectivity in the home 308 */ 309 if (iph->protocol == IPPROTO_IPV6) { 310 ipv6h = skb_header_pointer(skb, offset, 311 sizeof(_ipv6h), &_ipv6h); 312 313 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 314 return 0; 315 } else if (iph->protocol != IPPROTO_TCP) { 316 return 0; 317 } 318 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 319 return 0; 320 } 321 322 return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset); 323 } 324 325 /* There are a few scenarios where we will have to modify the txtime from 326 * what is read from next_txtime in sched_entry. They are: 327 * 1. If txtime is in the past, 328 * a. The gate for the traffic class is currently open and packet can be 329 * transmitted before it closes, schedule the packet right away. 330 * b. If the gate corresponding to the traffic class is going to open later 331 * in the cycle, set the txtime of packet to the interval start. 332 * 2. If txtime is in the future, there are packets corresponding to the 333 * current traffic class waiting to be transmitted. So, the following 334 * possibilities exist: 335 * a. We can transmit the packet before the window containing the txtime 336 * closes. 337 * b. The window might close before the transmission can be completed 338 * successfully. So, schedule the packet in the next open window. 339 */ 340 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 341 { 342 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 343 struct taprio_sched *q = qdisc_priv(sch); 344 struct sched_gate_list *sched, *admin; 345 ktime_t minimum_time, now, txtime; 346 int len, packet_transmit_time; 347 struct sched_entry *entry; 348 bool sched_changed; 349 350 now = taprio_get_time(q); 351 minimum_time = ktime_add_ns(now, q->txtime_delay); 352 353 tcp_tstamp = get_tcp_tstamp(q, skb); 354 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 355 356 rcu_read_lock(); 357 admin = rcu_dereference(q->admin_sched); 358 sched = rcu_dereference(q->oper_sched); 359 if (admin && ktime_after(minimum_time, admin->base_time)) 360 switch_schedules(q, &admin, &sched); 361 362 /* Until the schedule starts, all the queues are open */ 363 if (!sched || ktime_before(minimum_time, sched->base_time)) { 364 txtime = minimum_time; 365 goto done; 366 } 367 368 len = qdisc_pkt_len(skb); 369 packet_transmit_time = length_to_duration(q, len); 370 371 do { 372 sched_changed = false; 373 374 entry = find_entry_to_transmit(skb, sch, sched, admin, 375 minimum_time, 376 &interval_start, &interval_end, 377 false); 378 if (!entry) { 379 txtime = 0; 380 goto done; 381 } 382 383 txtime = entry->next_txtime; 384 txtime = max_t(ktime_t, txtime, minimum_time); 385 txtime = max_t(ktime_t, txtime, interval_start); 386 387 if (admin && admin != sched && 388 ktime_after(txtime, admin->base_time)) { 389 sched = admin; 390 sched_changed = true; 391 continue; 392 } 393 394 transmit_end_time = ktime_add(txtime, packet_transmit_time); 395 minimum_time = transmit_end_time; 396 397 /* Update the txtime of current entry to the next time it's 398 * interval starts. 399 */ 400 if (ktime_after(transmit_end_time, interval_end)) 401 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 402 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 403 404 entry->next_txtime = transmit_end_time; 405 406 done: 407 rcu_read_unlock(); 408 return txtime; 409 } 410 411 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 412 struct Qdisc *child, struct sk_buff **to_free) 413 { 414 struct taprio_sched *q = qdisc_priv(sch); 415 416 if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) { 417 if (!is_valid_interval(skb, sch)) 418 return qdisc_drop(skb, sch, to_free); 419 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 420 skb->tstamp = get_packet_txtime(skb, sch); 421 if (!skb->tstamp) 422 return qdisc_drop(skb, sch, to_free); 423 } 424 425 qdisc_qstats_backlog_inc(sch, skb); 426 sch->q.qlen++; 427 428 return qdisc_enqueue(skb, child, to_free); 429 } 430 431 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 432 struct sk_buff **to_free) 433 { 434 struct taprio_sched *q = qdisc_priv(sch); 435 struct Qdisc *child; 436 int queue; 437 438 if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) { 439 WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n"); 440 return qdisc_drop(skb, sch, to_free); 441 } 442 443 queue = skb_get_queue_mapping(skb); 444 445 child = q->qdiscs[queue]; 446 if (unlikely(!child)) 447 return qdisc_drop(skb, sch, to_free); 448 449 /* Large packets might not be transmitted when the transmission duration 450 * exceeds any configured interval. Therefore, segment the skb into 451 * smaller chunks. Skip it for the full offload case, as the driver 452 * and/or the hardware is expected to handle this. 453 */ 454 if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) { 455 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 456 netdev_features_t features = netif_skb_features(skb); 457 struct sk_buff *segs, *nskb; 458 int ret; 459 460 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 461 if (IS_ERR_OR_NULL(segs)) 462 return qdisc_drop(skb, sch, to_free); 463 464 skb_list_walk_safe(segs, segs, nskb) { 465 skb_mark_not_on_list(segs); 466 qdisc_skb_cb(segs)->pkt_len = segs->len; 467 slen += segs->len; 468 469 ret = taprio_enqueue_one(segs, sch, child, to_free); 470 if (ret != NET_XMIT_SUCCESS) { 471 if (net_xmit_drop_count(ret)) 472 qdisc_qstats_drop(sch); 473 } else { 474 numsegs++; 475 } 476 } 477 478 if (numsegs > 1) 479 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 480 consume_skb(skb); 481 482 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 483 } 484 485 return taprio_enqueue_one(skb, sch, child, to_free); 486 } 487 488 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch) 489 { 490 struct taprio_sched *q = qdisc_priv(sch); 491 struct net_device *dev = qdisc_dev(sch); 492 struct sched_entry *entry; 493 struct sk_buff *skb; 494 u32 gate_mask; 495 int i; 496 497 rcu_read_lock(); 498 entry = rcu_dereference(q->current_entry); 499 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 500 rcu_read_unlock(); 501 502 if (!gate_mask) 503 return NULL; 504 505 for (i = 0; i < dev->num_tx_queues; i++) { 506 struct Qdisc *child = q->qdiscs[i]; 507 int prio; 508 u8 tc; 509 510 if (unlikely(!child)) 511 continue; 512 513 skb = child->ops->peek(child); 514 if (!skb) 515 continue; 516 517 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 518 return skb; 519 520 prio = skb->priority; 521 tc = netdev_get_prio_tc_map(dev, prio); 522 523 if (!(gate_mask & BIT(tc))) 524 continue; 525 526 return skb; 527 } 528 529 return NULL; 530 } 531 532 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch) 533 { 534 WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n"); 535 536 return NULL; 537 } 538 539 static struct sk_buff *taprio_peek(struct Qdisc *sch) 540 { 541 struct taprio_sched *q = qdisc_priv(sch); 542 543 return q->peek(sch); 544 } 545 546 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) 547 { 548 atomic_set(&entry->budget, 549 div64_u64((u64)entry->interval * 1000, 550 atomic64_read(&q->picos_per_byte))); 551 } 552 553 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch) 554 { 555 struct taprio_sched *q = qdisc_priv(sch); 556 struct net_device *dev = qdisc_dev(sch); 557 struct sk_buff *skb = NULL; 558 struct sched_entry *entry; 559 u32 gate_mask; 560 int i; 561 562 rcu_read_lock(); 563 entry = rcu_dereference(q->current_entry); 564 /* if there's no entry, it means that the schedule didn't 565 * start yet, so force all gates to be open, this is in 566 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 567 * "AdminGateStates" 568 */ 569 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 570 571 if (!gate_mask) 572 goto done; 573 574 for (i = 0; i < dev->num_tx_queues; i++) { 575 struct Qdisc *child = q->qdiscs[i]; 576 ktime_t guard; 577 int prio; 578 int len; 579 u8 tc; 580 581 if (unlikely(!child)) 582 continue; 583 584 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 585 skb = child->ops->dequeue(child); 586 if (!skb) 587 continue; 588 goto skb_found; 589 } 590 591 skb = child->ops->peek(child); 592 if (!skb) 593 continue; 594 595 prio = skb->priority; 596 tc = netdev_get_prio_tc_map(dev, prio); 597 598 if (!(gate_mask & BIT(tc))) { 599 skb = NULL; 600 continue; 601 } 602 603 len = qdisc_pkt_len(skb); 604 guard = ktime_add_ns(taprio_get_time(q), 605 length_to_duration(q, len)); 606 607 /* In the case that there's no gate entry, there's no 608 * guard band ... 609 */ 610 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 611 ktime_after(guard, entry->close_time)) { 612 skb = NULL; 613 continue; 614 } 615 616 /* ... and no budget. */ 617 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 618 atomic_sub_return(len, &entry->budget) < 0) { 619 skb = NULL; 620 continue; 621 } 622 623 skb = child->ops->dequeue(child); 624 if (unlikely(!skb)) 625 goto done; 626 627 skb_found: 628 qdisc_bstats_update(sch, skb); 629 qdisc_qstats_backlog_dec(sch, skb); 630 sch->q.qlen--; 631 632 goto done; 633 } 634 635 done: 636 rcu_read_unlock(); 637 638 return skb; 639 } 640 641 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch) 642 { 643 WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n"); 644 645 return NULL; 646 } 647 648 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 649 { 650 struct taprio_sched *q = qdisc_priv(sch); 651 652 return q->dequeue(sch); 653 } 654 655 static bool should_restart_cycle(const struct sched_gate_list *oper, 656 const struct sched_entry *entry) 657 { 658 if (list_is_last(&entry->list, &oper->entries)) 659 return true; 660 661 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) 662 return true; 663 664 return false; 665 } 666 667 static bool should_change_schedules(const struct sched_gate_list *admin, 668 const struct sched_gate_list *oper, 669 ktime_t close_time) 670 { 671 ktime_t next_base_time, extension_time; 672 673 if (!admin) 674 return false; 675 676 next_base_time = sched_base_time(admin); 677 678 /* This is the simple case, the close_time would fall after 679 * the next schedule base_time. 680 */ 681 if (ktime_compare(next_base_time, close_time) <= 0) 682 return true; 683 684 /* This is the cycle_time_extension case, if the close_time 685 * plus the amount that can be extended would fall after the 686 * next schedule base_time, we can extend the current schedule 687 * for that amount. 688 */ 689 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); 690 691 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 692 * how precisely the extension should be made. So after 693 * conformance testing, this logic may change. 694 */ 695 if (ktime_compare(next_base_time, extension_time) <= 0) 696 return true; 697 698 return false; 699 } 700 701 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 702 { 703 struct taprio_sched *q = container_of(timer, struct taprio_sched, 704 advance_timer); 705 struct sched_gate_list *oper, *admin; 706 struct sched_entry *entry, *next; 707 struct Qdisc *sch = q->root; 708 ktime_t close_time; 709 710 spin_lock(&q->current_entry_lock); 711 entry = rcu_dereference_protected(q->current_entry, 712 lockdep_is_held(&q->current_entry_lock)); 713 oper = rcu_dereference_protected(q->oper_sched, 714 lockdep_is_held(&q->current_entry_lock)); 715 admin = rcu_dereference_protected(q->admin_sched, 716 lockdep_is_held(&q->current_entry_lock)); 717 718 if (!oper) 719 switch_schedules(q, &admin, &oper); 720 721 /* This can happen in two cases: 1. this is the very first run 722 * of this function (i.e. we weren't running any schedule 723 * previously); 2. The previous schedule just ended. The first 724 * entry of all schedules are pre-calculated during the 725 * schedule initialization. 726 */ 727 if (unlikely(!entry || entry->close_time == oper->base_time)) { 728 next = list_first_entry(&oper->entries, struct sched_entry, 729 list); 730 close_time = next->close_time; 731 goto first_run; 732 } 733 734 if (should_restart_cycle(oper, entry)) { 735 next = list_first_entry(&oper->entries, struct sched_entry, 736 list); 737 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, 738 oper->cycle_time); 739 } else { 740 next = list_next_entry(entry, list); 741 } 742 743 close_time = ktime_add_ns(entry->close_time, next->interval); 744 close_time = min_t(ktime_t, close_time, oper->cycle_close_time); 745 746 if (should_change_schedules(admin, oper, close_time)) { 747 /* Set things so the next time this runs, the new 748 * schedule runs. 749 */ 750 close_time = sched_base_time(admin); 751 switch_schedules(q, &admin, &oper); 752 } 753 754 next->close_time = close_time; 755 taprio_set_budget(q, next); 756 757 first_run: 758 rcu_assign_pointer(q->current_entry, next); 759 spin_unlock(&q->current_entry_lock); 760 761 hrtimer_set_expires(&q->advance_timer, close_time); 762 763 rcu_read_lock(); 764 __netif_schedule(sch); 765 rcu_read_unlock(); 766 767 return HRTIMER_RESTART; 768 } 769 770 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 771 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 772 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 773 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 774 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 775 }; 776 777 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 778 [TCA_TAPRIO_ATTR_PRIOMAP] = { 779 .len = sizeof(struct tc_mqprio_qopt) 780 }, 781 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 782 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 783 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 784 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 785 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 786 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 787 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 788 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 789 }; 790 791 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 792 struct sched_entry *entry, 793 struct netlink_ext_ack *extack) 794 { 795 int min_duration = length_to_duration(q, ETH_ZLEN); 796 u32 interval = 0; 797 798 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 799 entry->command = nla_get_u8( 800 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 801 802 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 803 entry->gate_mask = nla_get_u32( 804 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 805 806 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 807 interval = nla_get_u32( 808 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 809 810 /* The interval should allow at least the minimum ethernet 811 * frame to go out. 812 */ 813 if (interval < min_duration) { 814 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 815 return -EINVAL; 816 } 817 818 entry->interval = interval; 819 820 return 0; 821 } 822 823 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 824 struct sched_entry *entry, int index, 825 struct netlink_ext_ack *extack) 826 { 827 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 828 int err; 829 830 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 831 entry_policy, NULL); 832 if (err < 0) { 833 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 834 return -EINVAL; 835 } 836 837 entry->index = index; 838 839 return fill_sched_entry(q, tb, entry, extack); 840 } 841 842 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 843 struct sched_gate_list *sched, 844 struct netlink_ext_ack *extack) 845 { 846 struct nlattr *n; 847 int err, rem; 848 int i = 0; 849 850 if (!list) 851 return -EINVAL; 852 853 nla_for_each_nested(n, list, rem) { 854 struct sched_entry *entry; 855 856 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 857 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 858 continue; 859 } 860 861 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 862 if (!entry) { 863 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 864 return -ENOMEM; 865 } 866 867 err = parse_sched_entry(q, n, entry, i, extack); 868 if (err < 0) { 869 kfree(entry); 870 return err; 871 } 872 873 list_add_tail(&entry->list, &sched->entries); 874 i++; 875 } 876 877 sched->num_entries = i; 878 879 return i; 880 } 881 882 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 883 struct sched_gate_list *new, 884 struct netlink_ext_ack *extack) 885 { 886 int err = 0; 887 888 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 889 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 890 return -ENOTSUPP; 891 } 892 893 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 894 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 895 896 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 897 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 898 899 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 900 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 901 902 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 903 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 904 new, extack); 905 if (err < 0) 906 return err; 907 908 if (!new->cycle_time) { 909 struct sched_entry *entry; 910 ktime_t cycle = 0; 911 912 list_for_each_entry(entry, &new->entries, list) 913 cycle = ktime_add_ns(cycle, entry->interval); 914 915 if (!cycle) { 916 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 917 return -EINVAL; 918 } 919 920 new->cycle_time = cycle; 921 } 922 923 return 0; 924 } 925 926 static int taprio_parse_mqprio_opt(struct net_device *dev, 927 struct tc_mqprio_qopt *qopt, 928 struct netlink_ext_ack *extack, 929 u32 taprio_flags) 930 { 931 int i, j; 932 933 if (!qopt && !dev->num_tc) { 934 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 935 return -EINVAL; 936 } 937 938 /* If num_tc is already set, it means that the user already 939 * configured the mqprio part 940 */ 941 if (dev->num_tc) 942 return 0; 943 944 /* Verify num_tc is not out of max range */ 945 if (qopt->num_tc > TC_MAX_QUEUE) { 946 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); 947 return -EINVAL; 948 } 949 950 /* taprio imposes that traffic classes map 1:n to tx queues */ 951 if (qopt->num_tc > dev->num_tx_queues) { 952 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 953 return -EINVAL; 954 } 955 956 /* Verify priority mapping uses valid tcs */ 957 for (i = 0; i <= TC_BITMASK; i++) { 958 if (qopt->prio_tc_map[i] >= qopt->num_tc) { 959 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); 960 return -EINVAL; 961 } 962 } 963 964 for (i = 0; i < qopt->num_tc; i++) { 965 unsigned int last = qopt->offset[i] + qopt->count[i]; 966 967 /* Verify the queue count is in tx range being equal to the 968 * real_num_tx_queues indicates the last queue is in use. 969 */ 970 if (qopt->offset[i] >= dev->num_tx_queues || 971 !qopt->count[i] || 972 last > dev->real_num_tx_queues) { 973 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); 974 return -EINVAL; 975 } 976 977 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) 978 continue; 979 980 /* Verify that the offset and counts do not overlap */ 981 for (j = i + 1; j < qopt->num_tc; j++) { 982 if (last > qopt->offset[j]) { 983 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); 984 return -EINVAL; 985 } 986 } 987 } 988 989 return 0; 990 } 991 992 static int taprio_get_start_time(struct Qdisc *sch, 993 struct sched_gate_list *sched, 994 ktime_t *start) 995 { 996 struct taprio_sched *q = qdisc_priv(sch); 997 ktime_t now, base, cycle; 998 s64 n; 999 1000 base = sched_base_time(sched); 1001 now = taprio_get_time(q); 1002 1003 if (ktime_after(base, now)) { 1004 *start = base; 1005 return 0; 1006 } 1007 1008 cycle = sched->cycle_time; 1009 1010 /* The qdisc is expected to have at least one sched_entry. Moreover, 1011 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1012 * something went really wrong. In that case, we should warn about this 1013 * inconsistent state and return error. 1014 */ 1015 if (WARN_ON(!cycle)) 1016 return -EFAULT; 1017 1018 /* Schedule the start time for the beginning of the next 1019 * cycle. 1020 */ 1021 n = div64_s64(ktime_sub_ns(now, base), cycle); 1022 *start = ktime_add_ns(base, (n + 1) * cycle); 1023 return 0; 1024 } 1025 1026 static void setup_first_close_time(struct taprio_sched *q, 1027 struct sched_gate_list *sched, ktime_t base) 1028 { 1029 struct sched_entry *first; 1030 ktime_t cycle; 1031 1032 first = list_first_entry(&sched->entries, 1033 struct sched_entry, list); 1034 1035 cycle = sched->cycle_time; 1036 1037 /* FIXME: find a better place to do this */ 1038 sched->cycle_close_time = ktime_add_ns(base, cycle); 1039 1040 first->close_time = ktime_add_ns(base, first->interval); 1041 taprio_set_budget(q, first); 1042 rcu_assign_pointer(q->current_entry, NULL); 1043 } 1044 1045 static void taprio_start_sched(struct Qdisc *sch, 1046 ktime_t start, struct sched_gate_list *new) 1047 { 1048 struct taprio_sched *q = qdisc_priv(sch); 1049 ktime_t expires; 1050 1051 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1052 return; 1053 1054 expires = hrtimer_get_expires(&q->advance_timer); 1055 if (expires == 0) 1056 expires = KTIME_MAX; 1057 1058 /* If the new schedule starts before the next expiration, we 1059 * reprogram it to the earliest one, so we change the admin 1060 * schedule to the operational one at the right time. 1061 */ 1062 start = min_t(ktime_t, start, expires); 1063 1064 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1065 } 1066 1067 static void taprio_set_picos_per_byte(struct net_device *dev, 1068 struct taprio_sched *q) 1069 { 1070 struct ethtool_link_ksettings ecmd; 1071 int speed = SPEED_10; 1072 int picos_per_byte; 1073 int err; 1074 1075 err = __ethtool_get_link_ksettings(dev, &ecmd); 1076 if (err < 0) 1077 goto skip; 1078 1079 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1080 speed = ecmd.base.speed; 1081 1082 skip: 1083 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1084 1085 atomic64_set(&q->picos_per_byte, picos_per_byte); 1086 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1087 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1088 ecmd.base.speed); 1089 } 1090 1091 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1092 void *ptr) 1093 { 1094 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1095 struct net_device *qdev; 1096 struct taprio_sched *q; 1097 bool found = false; 1098 1099 ASSERT_RTNL(); 1100 1101 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1102 return NOTIFY_DONE; 1103 1104 spin_lock(&taprio_list_lock); 1105 list_for_each_entry(q, &taprio_list, taprio_list) { 1106 qdev = qdisc_dev(q->root); 1107 if (qdev == dev) { 1108 found = true; 1109 break; 1110 } 1111 } 1112 spin_unlock(&taprio_list_lock); 1113 1114 if (found) 1115 taprio_set_picos_per_byte(dev, q); 1116 1117 return NOTIFY_DONE; 1118 } 1119 1120 static void setup_txtime(struct taprio_sched *q, 1121 struct sched_gate_list *sched, ktime_t base) 1122 { 1123 struct sched_entry *entry; 1124 u32 interval = 0; 1125 1126 list_for_each_entry(entry, &sched->entries, list) { 1127 entry->next_txtime = ktime_add_ns(base, interval); 1128 interval += entry->interval; 1129 } 1130 } 1131 1132 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1133 { 1134 struct __tc_taprio_qopt_offload *__offload; 1135 1136 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1137 GFP_KERNEL); 1138 if (!__offload) 1139 return NULL; 1140 1141 refcount_set(&__offload->users, 1); 1142 1143 return &__offload->offload; 1144 } 1145 1146 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1147 *offload) 1148 { 1149 struct __tc_taprio_qopt_offload *__offload; 1150 1151 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1152 offload); 1153 1154 refcount_inc(&__offload->users); 1155 1156 return offload; 1157 } 1158 EXPORT_SYMBOL_GPL(taprio_offload_get); 1159 1160 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1161 { 1162 struct __tc_taprio_qopt_offload *__offload; 1163 1164 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1165 offload); 1166 1167 if (!refcount_dec_and_test(&__offload->users)) 1168 return; 1169 1170 kfree(__offload); 1171 } 1172 EXPORT_SYMBOL_GPL(taprio_offload_free); 1173 1174 /* The function will only serve to keep the pointers to the "oper" and "admin" 1175 * schedules valid in relation to their base times, so when calling dump() the 1176 * users looks at the right schedules. 1177 * When using full offload, the admin configuration is promoted to oper at the 1178 * base_time in the PHC time domain. But because the system time is not 1179 * necessarily in sync with that, we can't just trigger a hrtimer to call 1180 * switch_schedules at the right hardware time. 1181 * At the moment we call this by hand right away from taprio, but in the future 1182 * it will be useful to create a mechanism for drivers to notify taprio of the 1183 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1184 * This is left as TODO. 1185 */ 1186 static void taprio_offload_config_changed(struct taprio_sched *q) 1187 { 1188 struct sched_gate_list *oper, *admin; 1189 1190 spin_lock(&q->current_entry_lock); 1191 1192 oper = rcu_dereference_protected(q->oper_sched, 1193 lockdep_is_held(&q->current_entry_lock)); 1194 admin = rcu_dereference_protected(q->admin_sched, 1195 lockdep_is_held(&q->current_entry_lock)); 1196 1197 switch_schedules(q, &admin, &oper); 1198 1199 spin_unlock(&q->current_entry_lock); 1200 } 1201 1202 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1203 { 1204 u32 i, queue_mask = 0; 1205 1206 for (i = 0; i < dev->num_tc; i++) { 1207 u32 offset, count; 1208 1209 if (!(tc_mask & BIT(i))) 1210 continue; 1211 1212 offset = dev->tc_to_txq[i].offset; 1213 count = dev->tc_to_txq[i].count; 1214 1215 queue_mask |= GENMASK(offset + count - 1, offset); 1216 } 1217 1218 return queue_mask; 1219 } 1220 1221 static void taprio_sched_to_offload(struct net_device *dev, 1222 struct sched_gate_list *sched, 1223 struct tc_taprio_qopt_offload *offload) 1224 { 1225 struct sched_entry *entry; 1226 int i = 0; 1227 1228 offload->base_time = sched->base_time; 1229 offload->cycle_time = sched->cycle_time; 1230 offload->cycle_time_extension = sched->cycle_time_extension; 1231 1232 list_for_each_entry(entry, &sched->entries, list) { 1233 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1234 1235 e->command = entry->command; 1236 e->interval = entry->interval; 1237 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask); 1238 1239 i++; 1240 } 1241 1242 offload->num_entries = i; 1243 } 1244 1245 static int taprio_enable_offload(struct net_device *dev, 1246 struct taprio_sched *q, 1247 struct sched_gate_list *sched, 1248 struct netlink_ext_ack *extack) 1249 { 1250 const struct net_device_ops *ops = dev->netdev_ops; 1251 struct tc_taprio_qopt_offload *offload; 1252 int err = 0; 1253 1254 if (!ops->ndo_setup_tc) { 1255 NL_SET_ERR_MSG(extack, 1256 "Device does not support taprio offload"); 1257 return -EOPNOTSUPP; 1258 } 1259 1260 offload = taprio_offload_alloc(sched->num_entries); 1261 if (!offload) { 1262 NL_SET_ERR_MSG(extack, 1263 "Not enough memory for enabling offload mode"); 1264 return -ENOMEM; 1265 } 1266 offload->enable = 1; 1267 taprio_sched_to_offload(dev, sched, offload); 1268 1269 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1270 if (err < 0) { 1271 NL_SET_ERR_MSG(extack, 1272 "Device failed to setup taprio offload"); 1273 goto done; 1274 } 1275 1276 done: 1277 taprio_offload_free(offload); 1278 1279 return err; 1280 } 1281 1282 static int taprio_disable_offload(struct net_device *dev, 1283 struct taprio_sched *q, 1284 struct netlink_ext_ack *extack) 1285 { 1286 const struct net_device_ops *ops = dev->netdev_ops; 1287 struct tc_taprio_qopt_offload *offload; 1288 int err; 1289 1290 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) 1291 return 0; 1292 1293 if (!ops->ndo_setup_tc) 1294 return -EOPNOTSUPP; 1295 1296 offload = taprio_offload_alloc(0); 1297 if (!offload) { 1298 NL_SET_ERR_MSG(extack, 1299 "Not enough memory to disable offload mode"); 1300 return -ENOMEM; 1301 } 1302 offload->enable = 0; 1303 1304 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1305 if (err < 0) { 1306 NL_SET_ERR_MSG(extack, 1307 "Device failed to disable offload"); 1308 goto out; 1309 } 1310 1311 out: 1312 taprio_offload_free(offload); 1313 1314 return err; 1315 } 1316 1317 /* If full offload is enabled, the only possible clockid is the net device's 1318 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1319 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1320 * in sync with the specified clockid via a user space daemon such as phc2sys. 1321 * For both software taprio and txtime-assist, the clockid is used for the 1322 * hrtimer that advances the schedule and hence mandatory. 1323 */ 1324 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1325 struct netlink_ext_ack *extack) 1326 { 1327 struct taprio_sched *q = qdisc_priv(sch); 1328 struct net_device *dev = qdisc_dev(sch); 1329 int err = -EINVAL; 1330 1331 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1332 const struct ethtool_ops *ops = dev->ethtool_ops; 1333 struct ethtool_ts_info info = { 1334 .cmd = ETHTOOL_GET_TS_INFO, 1335 .phc_index = -1, 1336 }; 1337 1338 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1339 NL_SET_ERR_MSG(extack, 1340 "The 'clockid' cannot be specified for full offload"); 1341 goto out; 1342 } 1343 1344 if (ops && ops->get_ts_info) 1345 err = ops->get_ts_info(dev, &info); 1346 1347 if (err || info.phc_index < 0) { 1348 NL_SET_ERR_MSG(extack, 1349 "Device does not have a PTP clock"); 1350 err = -ENOTSUPP; 1351 goto out; 1352 } 1353 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1354 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1355 1356 /* We only support static clockids and we don't allow 1357 * for it to be modified after the first init. 1358 */ 1359 if (clockid < 0 || 1360 (q->clockid != -1 && q->clockid != clockid)) { 1361 NL_SET_ERR_MSG(extack, 1362 "Changing the 'clockid' of a running schedule is not supported"); 1363 err = -ENOTSUPP; 1364 goto out; 1365 } 1366 1367 switch (clockid) { 1368 case CLOCK_REALTIME: 1369 q->tk_offset = TK_OFFS_REAL; 1370 break; 1371 case CLOCK_MONOTONIC: 1372 q->tk_offset = TK_OFFS_MAX; 1373 break; 1374 case CLOCK_BOOTTIME: 1375 q->tk_offset = TK_OFFS_BOOT; 1376 break; 1377 case CLOCK_TAI: 1378 q->tk_offset = TK_OFFS_TAI; 1379 break; 1380 default: 1381 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1382 err = -EINVAL; 1383 goto out; 1384 } 1385 1386 q->clockid = clockid; 1387 } else { 1388 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1389 goto out; 1390 } 1391 1392 /* Everything went ok, return success. */ 1393 err = 0; 1394 1395 out: 1396 return err; 1397 } 1398 1399 static int taprio_mqprio_cmp(const struct net_device *dev, 1400 const struct tc_mqprio_qopt *mqprio) 1401 { 1402 int i; 1403 1404 if (!mqprio || mqprio->num_tc != dev->num_tc) 1405 return -1; 1406 1407 for (i = 0; i < mqprio->num_tc; i++) 1408 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1409 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1410 return -1; 1411 1412 for (i = 0; i <= TC_BITMASK; i++) 1413 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1414 return -1; 1415 1416 return 0; 1417 } 1418 1419 /* The semantics of the 'flags' argument in relation to 'change()' 1420 * requests, are interpreted following two rules (which are applied in 1421 * this order): (1) an omitted 'flags' argument is interpreted as 1422 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1423 * changed. 1424 */ 1425 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1426 struct netlink_ext_ack *extack) 1427 { 1428 u32 new = 0; 1429 1430 if (attr) 1431 new = nla_get_u32(attr); 1432 1433 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1434 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1435 return -EOPNOTSUPP; 1436 } 1437 1438 if (!taprio_flags_valid(new)) { 1439 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1440 return -EINVAL; 1441 } 1442 1443 return new; 1444 } 1445 1446 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1447 struct netlink_ext_ack *extack) 1448 { 1449 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1450 struct sched_gate_list *oper, *admin, *new_admin; 1451 struct taprio_sched *q = qdisc_priv(sch); 1452 struct net_device *dev = qdisc_dev(sch); 1453 struct tc_mqprio_qopt *mqprio = NULL; 1454 unsigned long flags; 1455 ktime_t start; 1456 int i, err; 1457 1458 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1459 taprio_policy, extack); 1460 if (err < 0) 1461 return err; 1462 1463 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1464 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1465 1466 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1467 q->flags, extack); 1468 if (err < 0) 1469 return err; 1470 1471 q->flags = err; 1472 1473 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1474 if (err < 0) 1475 return err; 1476 1477 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1478 if (!new_admin) { 1479 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1480 return -ENOMEM; 1481 } 1482 INIT_LIST_HEAD(&new_admin->entries); 1483 1484 rcu_read_lock(); 1485 oper = rcu_dereference(q->oper_sched); 1486 admin = rcu_dereference(q->admin_sched); 1487 rcu_read_unlock(); 1488 1489 /* no changes - no new mqprio settings */ 1490 if (!taprio_mqprio_cmp(dev, mqprio)) 1491 mqprio = NULL; 1492 1493 if (mqprio && (oper || admin)) { 1494 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1495 err = -ENOTSUPP; 1496 goto free_sched; 1497 } 1498 1499 err = parse_taprio_schedule(q, tb, new_admin, extack); 1500 if (err < 0) 1501 goto free_sched; 1502 1503 if (new_admin->num_entries == 0) { 1504 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1505 err = -EINVAL; 1506 goto free_sched; 1507 } 1508 1509 err = taprio_parse_clockid(sch, tb, extack); 1510 if (err < 0) 1511 goto free_sched; 1512 1513 taprio_set_picos_per_byte(dev, q); 1514 1515 if (mqprio) { 1516 err = netdev_set_num_tc(dev, mqprio->num_tc); 1517 if (err) 1518 goto free_sched; 1519 for (i = 0; i < mqprio->num_tc; i++) 1520 netdev_set_tc_queue(dev, i, 1521 mqprio->count[i], 1522 mqprio->offset[i]); 1523 1524 /* Always use supplied priority mappings */ 1525 for (i = 0; i <= TC_BITMASK; i++) 1526 netdev_set_prio_tc_map(dev, i, 1527 mqprio->prio_tc_map[i]); 1528 } 1529 1530 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1531 err = taprio_enable_offload(dev, q, new_admin, extack); 1532 else 1533 err = taprio_disable_offload(dev, q, extack); 1534 if (err) 1535 goto free_sched; 1536 1537 /* Protects against enqueue()/dequeue() */ 1538 spin_lock_bh(qdisc_lock(sch)); 1539 1540 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1541 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1542 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1543 err = -EINVAL; 1544 goto unlock; 1545 } 1546 1547 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1548 } 1549 1550 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1551 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1552 !hrtimer_active(&q->advance_timer)) { 1553 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1554 q->advance_timer.function = advance_sched; 1555 } 1556 1557 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1558 q->dequeue = taprio_dequeue_offload; 1559 q->peek = taprio_peek_offload; 1560 } else { 1561 /* Be sure to always keep the function pointers 1562 * in a consistent state. 1563 */ 1564 q->dequeue = taprio_dequeue_soft; 1565 q->peek = taprio_peek_soft; 1566 } 1567 1568 err = taprio_get_start_time(sch, new_admin, &start); 1569 if (err < 0) { 1570 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1571 goto unlock; 1572 } 1573 1574 setup_txtime(q, new_admin, start); 1575 1576 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1577 if (!oper) { 1578 rcu_assign_pointer(q->oper_sched, new_admin); 1579 err = 0; 1580 new_admin = NULL; 1581 goto unlock; 1582 } 1583 1584 rcu_assign_pointer(q->admin_sched, new_admin); 1585 if (admin) 1586 call_rcu(&admin->rcu, taprio_free_sched_cb); 1587 } else { 1588 setup_first_close_time(q, new_admin, start); 1589 1590 /* Protects against advance_sched() */ 1591 spin_lock_irqsave(&q->current_entry_lock, flags); 1592 1593 taprio_start_sched(sch, start, new_admin); 1594 1595 rcu_assign_pointer(q->admin_sched, new_admin); 1596 if (admin) 1597 call_rcu(&admin->rcu, taprio_free_sched_cb); 1598 1599 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1600 1601 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1602 taprio_offload_config_changed(q); 1603 } 1604 1605 new_admin = NULL; 1606 err = 0; 1607 1608 unlock: 1609 spin_unlock_bh(qdisc_lock(sch)); 1610 1611 free_sched: 1612 if (new_admin) 1613 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1614 1615 return err; 1616 } 1617 1618 static void taprio_reset(struct Qdisc *sch) 1619 { 1620 struct taprio_sched *q = qdisc_priv(sch); 1621 struct net_device *dev = qdisc_dev(sch); 1622 int i; 1623 1624 hrtimer_cancel(&q->advance_timer); 1625 if (q->qdiscs) { 1626 for (i = 0; i < dev->num_tx_queues; i++) 1627 if (q->qdiscs[i]) 1628 qdisc_reset(q->qdiscs[i]); 1629 } 1630 sch->qstats.backlog = 0; 1631 sch->q.qlen = 0; 1632 } 1633 1634 static void taprio_destroy(struct Qdisc *sch) 1635 { 1636 struct taprio_sched *q = qdisc_priv(sch); 1637 struct net_device *dev = qdisc_dev(sch); 1638 unsigned int i; 1639 1640 spin_lock(&taprio_list_lock); 1641 list_del(&q->taprio_list); 1642 spin_unlock(&taprio_list_lock); 1643 1644 /* Note that taprio_reset() might not be called if an error 1645 * happens in qdisc_create(), after taprio_init() has been called. 1646 */ 1647 hrtimer_cancel(&q->advance_timer); 1648 1649 taprio_disable_offload(dev, q, NULL); 1650 1651 if (q->qdiscs) { 1652 for (i = 0; i < dev->num_tx_queues; i++) 1653 qdisc_put(q->qdiscs[i]); 1654 1655 kfree(q->qdiscs); 1656 } 1657 q->qdiscs = NULL; 1658 1659 netdev_reset_tc(dev); 1660 1661 if (q->oper_sched) 1662 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); 1663 1664 if (q->admin_sched) 1665 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); 1666 } 1667 1668 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 1669 struct netlink_ext_ack *extack) 1670 { 1671 struct taprio_sched *q = qdisc_priv(sch); 1672 struct net_device *dev = qdisc_dev(sch); 1673 int i; 1674 1675 spin_lock_init(&q->current_entry_lock); 1676 1677 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 1678 q->advance_timer.function = advance_sched; 1679 1680 q->dequeue = taprio_dequeue_soft; 1681 q->peek = taprio_peek_soft; 1682 1683 q->root = sch; 1684 1685 /* We only support static clockids. Use an invalid value as default 1686 * and get the valid one on taprio_change(). 1687 */ 1688 q->clockid = -1; 1689 q->flags = TAPRIO_FLAGS_INVALID; 1690 1691 spin_lock(&taprio_list_lock); 1692 list_add(&q->taprio_list, &taprio_list); 1693 spin_unlock(&taprio_list_lock); 1694 1695 if (sch->parent != TC_H_ROOT) 1696 return -EOPNOTSUPP; 1697 1698 if (!netif_is_multiqueue(dev)) 1699 return -EOPNOTSUPP; 1700 1701 /* pre-allocate qdisc, attachment can't fail */ 1702 q->qdiscs = kcalloc(dev->num_tx_queues, 1703 sizeof(q->qdiscs[0]), 1704 GFP_KERNEL); 1705 1706 if (!q->qdiscs) 1707 return -ENOMEM; 1708 1709 if (!opt) 1710 return -EINVAL; 1711 1712 for (i = 0; i < dev->num_tx_queues; i++) { 1713 struct netdev_queue *dev_queue; 1714 struct Qdisc *qdisc; 1715 1716 dev_queue = netdev_get_tx_queue(dev, i); 1717 qdisc = qdisc_create_dflt(dev_queue, 1718 &pfifo_qdisc_ops, 1719 TC_H_MAKE(TC_H_MAJ(sch->handle), 1720 TC_H_MIN(i + 1)), 1721 extack); 1722 if (!qdisc) 1723 return -ENOMEM; 1724 1725 if (i < dev->real_num_tx_queues) 1726 qdisc_hash_add(qdisc, false); 1727 1728 q->qdiscs[i] = qdisc; 1729 } 1730 1731 return taprio_change(sch, opt, extack); 1732 } 1733 1734 static void taprio_attach(struct Qdisc *sch) 1735 { 1736 struct taprio_sched *q = qdisc_priv(sch); 1737 struct net_device *dev = qdisc_dev(sch); 1738 unsigned int ntx; 1739 1740 /* Attach underlying qdisc */ 1741 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 1742 struct Qdisc *qdisc = q->qdiscs[ntx]; 1743 struct Qdisc *old; 1744 1745 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1746 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1747 old = dev_graft_qdisc(qdisc->dev_queue, qdisc); 1748 } else { 1749 old = dev_graft_qdisc(qdisc->dev_queue, sch); 1750 qdisc_refcount_inc(sch); 1751 } 1752 if (old) 1753 qdisc_put(old); 1754 } 1755 1756 /* access to the child qdiscs is not needed in offload mode */ 1757 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1758 kfree(q->qdiscs); 1759 q->qdiscs = NULL; 1760 } 1761 } 1762 1763 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 1764 unsigned long cl) 1765 { 1766 struct net_device *dev = qdisc_dev(sch); 1767 unsigned long ntx = cl - 1; 1768 1769 if (ntx >= dev->num_tx_queues) 1770 return NULL; 1771 1772 return netdev_get_tx_queue(dev, ntx); 1773 } 1774 1775 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 1776 struct Qdisc *new, struct Qdisc **old, 1777 struct netlink_ext_ack *extack) 1778 { 1779 struct taprio_sched *q = qdisc_priv(sch); 1780 struct net_device *dev = qdisc_dev(sch); 1781 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1782 1783 if (!dev_queue) 1784 return -EINVAL; 1785 1786 if (dev->flags & IFF_UP) 1787 dev_deactivate(dev); 1788 1789 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1790 *old = dev_graft_qdisc(dev_queue, new); 1791 } else { 1792 *old = q->qdiscs[cl - 1]; 1793 q->qdiscs[cl - 1] = new; 1794 } 1795 1796 if (new) 1797 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1798 1799 if (dev->flags & IFF_UP) 1800 dev_activate(dev); 1801 1802 return 0; 1803 } 1804 1805 static int dump_entry(struct sk_buff *msg, 1806 const struct sched_entry *entry) 1807 { 1808 struct nlattr *item; 1809 1810 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 1811 if (!item) 1812 return -ENOSPC; 1813 1814 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 1815 goto nla_put_failure; 1816 1817 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 1818 goto nla_put_failure; 1819 1820 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 1821 entry->gate_mask)) 1822 goto nla_put_failure; 1823 1824 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 1825 entry->interval)) 1826 goto nla_put_failure; 1827 1828 return nla_nest_end(msg, item); 1829 1830 nla_put_failure: 1831 nla_nest_cancel(msg, item); 1832 return -1; 1833 } 1834 1835 static int dump_schedule(struct sk_buff *msg, 1836 const struct sched_gate_list *root) 1837 { 1838 struct nlattr *entry_list; 1839 struct sched_entry *entry; 1840 1841 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 1842 root->base_time, TCA_TAPRIO_PAD)) 1843 return -1; 1844 1845 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 1846 root->cycle_time, TCA_TAPRIO_PAD)) 1847 return -1; 1848 1849 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 1850 root->cycle_time_extension, TCA_TAPRIO_PAD)) 1851 return -1; 1852 1853 entry_list = nla_nest_start_noflag(msg, 1854 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 1855 if (!entry_list) 1856 goto error_nest; 1857 1858 list_for_each_entry(entry, &root->entries, list) { 1859 if (dump_entry(msg, entry) < 0) 1860 goto error_nest; 1861 } 1862 1863 nla_nest_end(msg, entry_list); 1864 return 0; 1865 1866 error_nest: 1867 nla_nest_cancel(msg, entry_list); 1868 return -1; 1869 } 1870 1871 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 1872 { 1873 struct taprio_sched *q = qdisc_priv(sch); 1874 struct net_device *dev = qdisc_dev(sch); 1875 struct sched_gate_list *oper, *admin; 1876 struct tc_mqprio_qopt opt = { 0 }; 1877 struct nlattr *nest, *sched_nest; 1878 unsigned int i; 1879 1880 rcu_read_lock(); 1881 oper = rcu_dereference(q->oper_sched); 1882 admin = rcu_dereference(q->admin_sched); 1883 1884 opt.num_tc = netdev_get_num_tc(dev); 1885 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); 1886 1887 for (i = 0; i < netdev_get_num_tc(dev); i++) { 1888 opt.count[i] = dev->tc_to_txq[i].count; 1889 opt.offset[i] = dev->tc_to_txq[i].offset; 1890 } 1891 1892 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1893 if (!nest) 1894 goto start_error; 1895 1896 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 1897 goto options_error; 1898 1899 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 1900 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 1901 goto options_error; 1902 1903 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 1904 goto options_error; 1905 1906 if (q->txtime_delay && 1907 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 1908 goto options_error; 1909 1910 if (oper && dump_schedule(skb, oper)) 1911 goto options_error; 1912 1913 if (!admin) 1914 goto done; 1915 1916 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 1917 if (!sched_nest) 1918 goto options_error; 1919 1920 if (dump_schedule(skb, admin)) 1921 goto admin_error; 1922 1923 nla_nest_end(skb, sched_nest); 1924 1925 done: 1926 rcu_read_unlock(); 1927 1928 return nla_nest_end(skb, nest); 1929 1930 admin_error: 1931 nla_nest_cancel(skb, sched_nest); 1932 1933 options_error: 1934 nla_nest_cancel(skb, nest); 1935 1936 start_error: 1937 rcu_read_unlock(); 1938 return -ENOSPC; 1939 } 1940 1941 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 1942 { 1943 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1944 1945 if (!dev_queue) 1946 return NULL; 1947 1948 return dev_queue->qdisc_sleeping; 1949 } 1950 1951 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 1952 { 1953 unsigned int ntx = TC_H_MIN(classid); 1954 1955 if (!taprio_queue_get(sch, ntx)) 1956 return 0; 1957 return ntx; 1958 } 1959 1960 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 1961 struct sk_buff *skb, struct tcmsg *tcm) 1962 { 1963 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1964 1965 tcm->tcm_parent = TC_H_ROOT; 1966 tcm->tcm_handle |= TC_H_MIN(cl); 1967 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 1968 1969 return 0; 1970 } 1971 1972 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 1973 struct gnet_dump *d) 1974 __releases(d->lock) 1975 __acquires(d->lock) 1976 { 1977 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1978 1979 sch = dev_queue->qdisc_sleeping; 1980 if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 || 1981 qdisc_qstats_copy(d, sch) < 0) 1982 return -1; 1983 return 0; 1984 } 1985 1986 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1987 { 1988 struct net_device *dev = qdisc_dev(sch); 1989 unsigned long ntx; 1990 1991 if (arg->stop) 1992 return; 1993 1994 arg->count = arg->skip; 1995 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 1996 if (arg->fn(sch, ntx + 1, arg) < 0) { 1997 arg->stop = 1; 1998 break; 1999 } 2000 arg->count++; 2001 } 2002 } 2003 2004 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2005 struct tcmsg *tcm) 2006 { 2007 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2008 } 2009 2010 static const struct Qdisc_class_ops taprio_class_ops = { 2011 .graft = taprio_graft, 2012 .leaf = taprio_leaf, 2013 .find = taprio_find, 2014 .walk = taprio_walk, 2015 .dump = taprio_dump_class, 2016 .dump_stats = taprio_dump_class_stats, 2017 .select_queue = taprio_select_queue, 2018 }; 2019 2020 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2021 .cl_ops = &taprio_class_ops, 2022 .id = "taprio", 2023 .priv_size = sizeof(struct taprio_sched), 2024 .init = taprio_init, 2025 .change = taprio_change, 2026 .destroy = taprio_destroy, 2027 .reset = taprio_reset, 2028 .attach = taprio_attach, 2029 .peek = taprio_peek, 2030 .dequeue = taprio_dequeue, 2031 .enqueue = taprio_enqueue, 2032 .dump = taprio_dump, 2033 .owner = THIS_MODULE, 2034 }; 2035 2036 static struct notifier_block taprio_device_notifier = { 2037 .notifier_call = taprio_dev_notifier, 2038 }; 2039 2040 static int __init taprio_module_init(void) 2041 { 2042 int err = register_netdevice_notifier(&taprio_device_notifier); 2043 2044 if (err) 2045 return err; 2046 2047 return register_qdisc(&taprio_qdisc_ops); 2048 } 2049 2050 static void __exit taprio_module_exit(void) 2051 { 2052 unregister_qdisc(&taprio_qdisc_ops); 2053 unregister_netdevice_notifier(&taprio_device_notifier); 2054 } 2055 2056 module_init(taprio_module_init); 2057 module_exit(taprio_module_exit); 2058 MODULE_LICENSE("GPL"); 2059