xref: /openbmc/linux/net/sched/sch_taprio.c (revision 5e0266f0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <linux/time.h>
22 #include <net/netlink.h>
23 #include <net/pkt_sched.h>
24 #include <net/pkt_cls.h>
25 #include <net/sch_generic.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 
29 #include "sch_mqprio_lib.h"
30 
31 static LIST_HEAD(taprio_list);
32 static struct static_key_false taprio_have_broken_mqprio;
33 static struct static_key_false taprio_have_working_mqprio;
34 
35 #define TAPRIO_ALL_GATES_OPEN -1
36 
37 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
38 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
39 #define TAPRIO_FLAGS_INVALID U32_MAX
40 
41 struct sched_entry {
42 	/* Durations between this GCL entry and the GCL entry where the
43 	 * respective traffic class gate closes
44 	 */
45 	u64 gate_duration[TC_MAX_QUEUE];
46 	atomic_t budget[TC_MAX_QUEUE];
47 	/* The qdisc makes some effort so that no packet leaves
48 	 * after this time
49 	 */
50 	ktime_t gate_close_time[TC_MAX_QUEUE];
51 	struct list_head list;
52 	/* Used to calculate when to advance the schedule */
53 	ktime_t end_time;
54 	ktime_t next_txtime;
55 	int index;
56 	u32 gate_mask;
57 	u32 interval;
58 	u8 command;
59 };
60 
61 struct sched_gate_list {
62 	/* Longest non-zero contiguous gate durations per traffic class,
63 	 * or 0 if a traffic class gate never opens during the schedule.
64 	 */
65 	u64 max_open_gate_duration[TC_MAX_QUEUE];
66 	u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
67 	u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
68 	struct rcu_head rcu;
69 	struct list_head entries;
70 	size_t num_entries;
71 	ktime_t cycle_end_time;
72 	s64 cycle_time;
73 	s64 cycle_time_extension;
74 	s64 base_time;
75 };
76 
77 struct taprio_sched {
78 	struct Qdisc **qdiscs;
79 	struct Qdisc *root;
80 	u32 flags;
81 	enum tk_offsets tk_offset;
82 	int clockid;
83 	bool offloaded;
84 	bool detected_mqprio;
85 	bool broken_mqprio;
86 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
87 				    * speeds it's sub-nanoseconds per byte
88 				    */
89 
90 	/* Protects the update side of the RCU protected current_entry */
91 	spinlock_t current_entry_lock;
92 	struct sched_entry __rcu *current_entry;
93 	struct sched_gate_list __rcu *oper_sched;
94 	struct sched_gate_list __rcu *admin_sched;
95 	struct hrtimer advance_timer;
96 	struct list_head taprio_list;
97 	int cur_txq[TC_MAX_QUEUE];
98 	u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
99 	u32 txtime_delay;
100 };
101 
102 struct __tc_taprio_qopt_offload {
103 	refcount_t users;
104 	struct tc_taprio_qopt_offload offload;
105 };
106 
107 static void taprio_calculate_gate_durations(struct taprio_sched *q,
108 					    struct sched_gate_list *sched)
109 {
110 	struct net_device *dev = qdisc_dev(q->root);
111 	int num_tc = netdev_get_num_tc(dev);
112 	struct sched_entry *entry, *cur;
113 	int tc;
114 
115 	list_for_each_entry(entry, &sched->entries, list) {
116 		u32 gates_still_open = entry->gate_mask;
117 
118 		/* For each traffic class, calculate each open gate duration,
119 		 * starting at this schedule entry and ending at the schedule
120 		 * entry containing a gate close event for that TC.
121 		 */
122 		cur = entry;
123 
124 		do {
125 			if (!gates_still_open)
126 				break;
127 
128 			for (tc = 0; tc < num_tc; tc++) {
129 				if (!(gates_still_open & BIT(tc)))
130 					continue;
131 
132 				if (cur->gate_mask & BIT(tc))
133 					entry->gate_duration[tc] += cur->interval;
134 				else
135 					gates_still_open &= ~BIT(tc);
136 			}
137 
138 			cur = list_next_entry_circular(cur, &sched->entries, list);
139 		} while (cur != entry);
140 
141 		/* Keep track of the maximum gate duration for each traffic
142 		 * class, taking care to not confuse a traffic class which is
143 		 * temporarily closed with one that is always closed.
144 		 */
145 		for (tc = 0; tc < num_tc; tc++)
146 			if (entry->gate_duration[tc] &&
147 			    sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
148 				sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
149 	}
150 }
151 
152 static bool taprio_entry_allows_tx(ktime_t skb_end_time,
153 				   struct sched_entry *entry, int tc)
154 {
155 	return ktime_before(skb_end_time, entry->gate_close_time[tc]);
156 }
157 
158 static ktime_t sched_base_time(const struct sched_gate_list *sched)
159 {
160 	if (!sched)
161 		return KTIME_MAX;
162 
163 	return ns_to_ktime(sched->base_time);
164 }
165 
166 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
167 {
168 	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
169 	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
170 
171 	switch (tk_offset) {
172 	case TK_OFFS_MAX:
173 		return mono;
174 	default:
175 		return ktime_mono_to_any(mono, tk_offset);
176 	}
177 }
178 
179 static ktime_t taprio_get_time(const struct taprio_sched *q)
180 {
181 	return taprio_mono_to_any(q, ktime_get());
182 }
183 
184 static void taprio_free_sched_cb(struct rcu_head *head)
185 {
186 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
187 	struct sched_entry *entry, *n;
188 
189 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
190 		list_del(&entry->list);
191 		kfree(entry);
192 	}
193 
194 	kfree(sched);
195 }
196 
197 static void switch_schedules(struct taprio_sched *q,
198 			     struct sched_gate_list **admin,
199 			     struct sched_gate_list **oper)
200 {
201 	rcu_assign_pointer(q->oper_sched, *admin);
202 	rcu_assign_pointer(q->admin_sched, NULL);
203 
204 	if (*oper)
205 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
206 
207 	*oper = *admin;
208 	*admin = NULL;
209 }
210 
211 /* Get how much time has been already elapsed in the current cycle. */
212 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
213 {
214 	ktime_t time_since_sched_start;
215 	s32 time_elapsed;
216 
217 	time_since_sched_start = ktime_sub(time, sched->base_time);
218 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
219 
220 	return time_elapsed;
221 }
222 
223 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
224 				     struct sched_gate_list *admin,
225 				     struct sched_entry *entry,
226 				     ktime_t intv_start)
227 {
228 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
229 	ktime_t intv_end, cycle_ext_end, cycle_end;
230 
231 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
232 	intv_end = ktime_add_ns(intv_start, entry->interval);
233 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
234 
235 	if (ktime_before(intv_end, cycle_end))
236 		return intv_end;
237 	else if (admin && admin != sched &&
238 		 ktime_after(admin->base_time, cycle_end) &&
239 		 ktime_before(admin->base_time, cycle_ext_end))
240 		return admin->base_time;
241 	else
242 		return cycle_end;
243 }
244 
245 static int length_to_duration(struct taprio_sched *q, int len)
246 {
247 	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
248 }
249 
250 static int duration_to_length(struct taprio_sched *q, u64 duration)
251 {
252 	return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
253 }
254 
255 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
256  * q->max_sdu[] requested by the user and the max_sdu dynamically determined by
257  * the maximum open gate durations at the given link speed.
258  */
259 static void taprio_update_queue_max_sdu(struct taprio_sched *q,
260 					struct sched_gate_list *sched,
261 					struct qdisc_size_table *stab)
262 {
263 	struct net_device *dev = qdisc_dev(q->root);
264 	int num_tc = netdev_get_num_tc(dev);
265 	u32 max_sdu_from_user;
266 	u32 max_sdu_dynamic;
267 	u32 max_sdu;
268 	int tc;
269 
270 	for (tc = 0; tc < num_tc; tc++) {
271 		max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
272 
273 		/* TC gate never closes => keep the queueMaxSDU
274 		 * selected by the user
275 		 */
276 		if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
277 			max_sdu_dynamic = U32_MAX;
278 		} else {
279 			u32 max_frm_len;
280 
281 			max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
282 			/* Compensate for L1 overhead from size table,
283 			 * but don't let the frame size go negative
284 			 */
285 			if (stab) {
286 				max_frm_len -= stab->szopts.overhead;
287 				max_frm_len = max_t(int, max_frm_len,
288 						    dev->hard_header_len + 1);
289 			}
290 			max_sdu_dynamic = max_frm_len - dev->hard_header_len;
291 			if (max_sdu_dynamic > dev->max_mtu)
292 				max_sdu_dynamic = U32_MAX;
293 		}
294 
295 		max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
296 
297 		if (max_sdu != U32_MAX) {
298 			sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
299 			sched->max_sdu[tc] = max_sdu;
300 		} else {
301 			sched->max_frm_len[tc] = U32_MAX; /* never oversized */
302 			sched->max_sdu[tc] = 0;
303 		}
304 	}
305 }
306 
307 /* Returns the entry corresponding to next available interval. If
308  * validate_interval is set, it only validates whether the timestamp occurs
309  * when the gate corresponding to the skb's traffic class is open.
310  */
311 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
312 						  struct Qdisc *sch,
313 						  struct sched_gate_list *sched,
314 						  struct sched_gate_list *admin,
315 						  ktime_t time,
316 						  ktime_t *interval_start,
317 						  ktime_t *interval_end,
318 						  bool validate_interval)
319 {
320 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
321 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
322 	struct sched_entry *entry = NULL, *entry_found = NULL;
323 	struct taprio_sched *q = qdisc_priv(sch);
324 	struct net_device *dev = qdisc_dev(sch);
325 	bool entry_available = false;
326 	s32 cycle_elapsed;
327 	int tc, n;
328 
329 	tc = netdev_get_prio_tc_map(dev, skb->priority);
330 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
331 
332 	*interval_start = 0;
333 	*interval_end = 0;
334 
335 	if (!sched)
336 		return NULL;
337 
338 	cycle = sched->cycle_time;
339 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
340 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
341 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
342 
343 	list_for_each_entry(entry, &sched->entries, list) {
344 		curr_intv_start = curr_intv_end;
345 		curr_intv_end = get_interval_end_time(sched, admin, entry,
346 						      curr_intv_start);
347 
348 		if (ktime_after(curr_intv_start, cycle_end))
349 			break;
350 
351 		if (!(entry->gate_mask & BIT(tc)) ||
352 		    packet_transmit_time > entry->interval)
353 			continue;
354 
355 		txtime = entry->next_txtime;
356 
357 		if (ktime_before(txtime, time) || validate_interval) {
358 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
359 			if ((ktime_before(curr_intv_start, time) &&
360 			     ktime_before(transmit_end_time, curr_intv_end)) ||
361 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
362 				entry_found = entry;
363 				*interval_start = curr_intv_start;
364 				*interval_end = curr_intv_end;
365 				break;
366 			} else if (!entry_available && !validate_interval) {
367 				/* Here, we are just trying to find out the
368 				 * first available interval in the next cycle.
369 				 */
370 				entry_available = true;
371 				entry_found = entry;
372 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
373 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
374 			}
375 		} else if (ktime_before(txtime, earliest_txtime) &&
376 			   !entry_available) {
377 			earliest_txtime = txtime;
378 			entry_found = entry;
379 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
380 			*interval_start = ktime_add(curr_intv_start, n * cycle);
381 			*interval_end = ktime_add(curr_intv_end, n * cycle);
382 		}
383 	}
384 
385 	return entry_found;
386 }
387 
388 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
389 {
390 	struct taprio_sched *q = qdisc_priv(sch);
391 	struct sched_gate_list *sched, *admin;
392 	ktime_t interval_start, interval_end;
393 	struct sched_entry *entry;
394 
395 	rcu_read_lock();
396 	sched = rcu_dereference(q->oper_sched);
397 	admin = rcu_dereference(q->admin_sched);
398 
399 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
400 				       &interval_start, &interval_end, true);
401 	rcu_read_unlock();
402 
403 	return entry;
404 }
405 
406 static bool taprio_flags_valid(u32 flags)
407 {
408 	/* Make sure no other flag bits are set. */
409 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
410 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
411 		return false;
412 	/* txtime-assist and full offload are mutually exclusive */
413 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
414 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
415 		return false;
416 	return true;
417 }
418 
419 /* This returns the tstamp value set by TCP in terms of the set clock. */
420 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
421 {
422 	unsigned int offset = skb_network_offset(skb);
423 	const struct ipv6hdr *ipv6h;
424 	const struct iphdr *iph;
425 	struct ipv6hdr _ipv6h;
426 
427 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
428 	if (!ipv6h)
429 		return 0;
430 
431 	if (ipv6h->version == 4) {
432 		iph = (struct iphdr *)ipv6h;
433 		offset += iph->ihl * 4;
434 
435 		/* special-case 6in4 tunnelling, as that is a common way to get
436 		 * v6 connectivity in the home
437 		 */
438 		if (iph->protocol == IPPROTO_IPV6) {
439 			ipv6h = skb_header_pointer(skb, offset,
440 						   sizeof(_ipv6h), &_ipv6h);
441 
442 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
443 				return 0;
444 		} else if (iph->protocol != IPPROTO_TCP) {
445 			return 0;
446 		}
447 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
448 		return 0;
449 	}
450 
451 	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
452 }
453 
454 /* There are a few scenarios where we will have to modify the txtime from
455  * what is read from next_txtime in sched_entry. They are:
456  * 1. If txtime is in the past,
457  *    a. The gate for the traffic class is currently open and packet can be
458  *       transmitted before it closes, schedule the packet right away.
459  *    b. If the gate corresponding to the traffic class is going to open later
460  *       in the cycle, set the txtime of packet to the interval start.
461  * 2. If txtime is in the future, there are packets corresponding to the
462  *    current traffic class waiting to be transmitted. So, the following
463  *    possibilities exist:
464  *    a. We can transmit the packet before the window containing the txtime
465  *       closes.
466  *    b. The window might close before the transmission can be completed
467  *       successfully. So, schedule the packet in the next open window.
468  */
469 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
470 {
471 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
472 	struct taprio_sched *q = qdisc_priv(sch);
473 	struct sched_gate_list *sched, *admin;
474 	ktime_t minimum_time, now, txtime;
475 	int len, packet_transmit_time;
476 	struct sched_entry *entry;
477 	bool sched_changed;
478 
479 	now = taprio_get_time(q);
480 	minimum_time = ktime_add_ns(now, q->txtime_delay);
481 
482 	tcp_tstamp = get_tcp_tstamp(q, skb);
483 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
484 
485 	rcu_read_lock();
486 	admin = rcu_dereference(q->admin_sched);
487 	sched = rcu_dereference(q->oper_sched);
488 	if (admin && ktime_after(minimum_time, admin->base_time))
489 		switch_schedules(q, &admin, &sched);
490 
491 	/* Until the schedule starts, all the queues are open */
492 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
493 		txtime = minimum_time;
494 		goto done;
495 	}
496 
497 	len = qdisc_pkt_len(skb);
498 	packet_transmit_time = length_to_duration(q, len);
499 
500 	do {
501 		sched_changed = false;
502 
503 		entry = find_entry_to_transmit(skb, sch, sched, admin,
504 					       minimum_time,
505 					       &interval_start, &interval_end,
506 					       false);
507 		if (!entry) {
508 			txtime = 0;
509 			goto done;
510 		}
511 
512 		txtime = entry->next_txtime;
513 		txtime = max_t(ktime_t, txtime, minimum_time);
514 		txtime = max_t(ktime_t, txtime, interval_start);
515 
516 		if (admin && admin != sched &&
517 		    ktime_after(txtime, admin->base_time)) {
518 			sched = admin;
519 			sched_changed = true;
520 			continue;
521 		}
522 
523 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
524 		minimum_time = transmit_end_time;
525 
526 		/* Update the txtime of current entry to the next time it's
527 		 * interval starts.
528 		 */
529 		if (ktime_after(transmit_end_time, interval_end))
530 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
531 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
532 
533 	entry->next_txtime = transmit_end_time;
534 
535 done:
536 	rcu_read_unlock();
537 	return txtime;
538 }
539 
540 /* Devices with full offload are expected to honor this in hardware */
541 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
542 					     struct sk_buff *skb)
543 {
544 	struct taprio_sched *q = qdisc_priv(sch);
545 	struct net_device *dev = qdisc_dev(sch);
546 	struct sched_gate_list *sched;
547 	int prio = skb->priority;
548 	bool exceeds = false;
549 	u8 tc;
550 
551 	tc = netdev_get_prio_tc_map(dev, prio);
552 
553 	rcu_read_lock();
554 	sched = rcu_dereference(q->oper_sched);
555 	if (sched && skb->len > sched->max_frm_len[tc])
556 		exceeds = true;
557 	rcu_read_unlock();
558 
559 	return exceeds;
560 }
561 
562 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
563 			      struct Qdisc *child, struct sk_buff **to_free)
564 {
565 	struct taprio_sched *q = qdisc_priv(sch);
566 
567 	/* sk_flags are only safe to use on full sockets. */
568 	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
569 		if (!is_valid_interval(skb, sch))
570 			return qdisc_drop(skb, sch, to_free);
571 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
572 		skb->tstamp = get_packet_txtime(skb, sch);
573 		if (!skb->tstamp)
574 			return qdisc_drop(skb, sch, to_free);
575 	}
576 
577 	qdisc_qstats_backlog_inc(sch, skb);
578 	sch->q.qlen++;
579 
580 	return qdisc_enqueue(skb, child, to_free);
581 }
582 
583 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
584 				    struct Qdisc *child,
585 				    struct sk_buff **to_free)
586 {
587 	unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
588 	netdev_features_t features = netif_skb_features(skb);
589 	struct sk_buff *segs, *nskb;
590 	int ret;
591 
592 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
593 	if (IS_ERR_OR_NULL(segs))
594 		return qdisc_drop(skb, sch, to_free);
595 
596 	skb_list_walk_safe(segs, segs, nskb) {
597 		skb_mark_not_on_list(segs);
598 		qdisc_skb_cb(segs)->pkt_len = segs->len;
599 		slen += segs->len;
600 
601 		/* FIXME: we should be segmenting to a smaller size
602 		 * rather than dropping these
603 		 */
604 		if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
605 			ret = qdisc_drop(segs, sch, to_free);
606 		else
607 			ret = taprio_enqueue_one(segs, sch, child, to_free);
608 
609 		if (ret != NET_XMIT_SUCCESS) {
610 			if (net_xmit_drop_count(ret))
611 				qdisc_qstats_drop(sch);
612 		} else {
613 			numsegs++;
614 		}
615 	}
616 
617 	if (numsegs > 1)
618 		qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
619 	consume_skb(skb);
620 
621 	return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
622 }
623 
624 /* Will not be called in the full offload case, since the TX queues are
625  * attached to the Qdisc created using qdisc_create_dflt()
626  */
627 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
628 			  struct sk_buff **to_free)
629 {
630 	struct taprio_sched *q = qdisc_priv(sch);
631 	struct Qdisc *child;
632 	int queue;
633 
634 	queue = skb_get_queue_mapping(skb);
635 
636 	child = q->qdiscs[queue];
637 	if (unlikely(!child))
638 		return qdisc_drop(skb, sch, to_free);
639 
640 	if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
641 		/* Large packets might not be transmitted when the transmission
642 		 * duration exceeds any configured interval. Therefore, segment
643 		 * the skb into smaller chunks. Drivers with full offload are
644 		 * expected to handle this in hardware.
645 		 */
646 		if (skb_is_gso(skb))
647 			return taprio_enqueue_segmented(skb, sch, child,
648 							to_free);
649 
650 		return qdisc_drop(skb, sch, to_free);
651 	}
652 
653 	return taprio_enqueue_one(skb, sch, child, to_free);
654 }
655 
656 static struct sk_buff *taprio_peek(struct Qdisc *sch)
657 {
658 	WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
659 	return NULL;
660 }
661 
662 static void taprio_set_budgets(struct taprio_sched *q,
663 			       struct sched_gate_list *sched,
664 			       struct sched_entry *entry)
665 {
666 	struct net_device *dev = qdisc_dev(q->root);
667 	int num_tc = netdev_get_num_tc(dev);
668 	int tc, budget;
669 
670 	for (tc = 0; tc < num_tc; tc++) {
671 		/* Traffic classes which never close have infinite budget */
672 		if (entry->gate_duration[tc] == sched->cycle_time)
673 			budget = INT_MAX;
674 		else
675 			budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
676 					   atomic64_read(&q->picos_per_byte));
677 
678 		atomic_set(&entry->budget[tc], budget);
679 	}
680 }
681 
682 /* When an skb is sent, it consumes from the budget of all traffic classes */
683 static int taprio_update_budgets(struct sched_entry *entry, size_t len,
684 				 int tc_consumed, int num_tc)
685 {
686 	int tc, budget, new_budget = 0;
687 
688 	for (tc = 0; tc < num_tc; tc++) {
689 		budget = atomic_read(&entry->budget[tc]);
690 		/* Don't consume from infinite budget */
691 		if (budget == INT_MAX) {
692 			if (tc == tc_consumed)
693 				new_budget = budget;
694 			continue;
695 		}
696 
697 		if (tc == tc_consumed)
698 			new_budget = atomic_sub_return(len, &entry->budget[tc]);
699 		else
700 			atomic_sub(len, &entry->budget[tc]);
701 	}
702 
703 	return new_budget;
704 }
705 
706 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
707 					       struct sched_entry *entry,
708 					       u32 gate_mask)
709 {
710 	struct taprio_sched *q = qdisc_priv(sch);
711 	struct net_device *dev = qdisc_dev(sch);
712 	struct Qdisc *child = q->qdiscs[txq];
713 	int num_tc = netdev_get_num_tc(dev);
714 	struct sk_buff *skb;
715 	ktime_t guard;
716 	int prio;
717 	int len;
718 	u8 tc;
719 
720 	if (unlikely(!child))
721 		return NULL;
722 
723 	if (TXTIME_ASSIST_IS_ENABLED(q->flags))
724 		goto skip_peek_checks;
725 
726 	skb = child->ops->peek(child);
727 	if (!skb)
728 		return NULL;
729 
730 	prio = skb->priority;
731 	tc = netdev_get_prio_tc_map(dev, prio);
732 
733 	if (!(gate_mask & BIT(tc)))
734 		return NULL;
735 
736 	len = qdisc_pkt_len(skb);
737 	guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
738 
739 	/* In the case that there's no gate entry, there's no
740 	 * guard band ...
741 	 */
742 	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
743 	    !taprio_entry_allows_tx(guard, entry, tc))
744 		return NULL;
745 
746 	/* ... and no budget. */
747 	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
748 	    taprio_update_budgets(entry, len, tc, num_tc) < 0)
749 		return NULL;
750 
751 skip_peek_checks:
752 	skb = child->ops->dequeue(child);
753 	if (unlikely(!skb))
754 		return NULL;
755 
756 	qdisc_bstats_update(sch, skb);
757 	qdisc_qstats_backlog_dec(sch, skb);
758 	sch->q.qlen--;
759 
760 	return skb;
761 }
762 
763 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
764 {
765 	int offset = dev->tc_to_txq[tc].offset;
766 	int count = dev->tc_to_txq[tc].count;
767 
768 	(*txq)++;
769 	if (*txq == offset + count)
770 		*txq = offset;
771 }
772 
773 /* Prioritize higher traffic classes, and select among TXQs belonging to the
774  * same TC using round robin
775  */
776 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
777 						  struct sched_entry *entry,
778 						  u32 gate_mask)
779 {
780 	struct taprio_sched *q = qdisc_priv(sch);
781 	struct net_device *dev = qdisc_dev(sch);
782 	int num_tc = netdev_get_num_tc(dev);
783 	struct sk_buff *skb;
784 	int tc;
785 
786 	for (tc = num_tc - 1; tc >= 0; tc--) {
787 		int first_txq = q->cur_txq[tc];
788 
789 		if (!(gate_mask & BIT(tc)))
790 			continue;
791 
792 		do {
793 			skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
794 						      entry, gate_mask);
795 
796 			taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
797 
798 			if (skb)
799 				return skb;
800 		} while (q->cur_txq[tc] != first_txq);
801 	}
802 
803 	return NULL;
804 }
805 
806 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
807  * class other than to determine whether the gate is open or not
808  */
809 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
810 						   struct sched_entry *entry,
811 						   u32 gate_mask)
812 {
813 	struct net_device *dev = qdisc_dev(sch);
814 	struct sk_buff *skb;
815 	int i;
816 
817 	for (i = 0; i < dev->num_tx_queues; i++) {
818 		skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
819 		if (skb)
820 			return skb;
821 	}
822 
823 	return NULL;
824 }
825 
826 /* Will not be called in the full offload case, since the TX queues are
827  * attached to the Qdisc created using qdisc_create_dflt()
828  */
829 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
830 {
831 	struct taprio_sched *q = qdisc_priv(sch);
832 	struct sk_buff *skb = NULL;
833 	struct sched_entry *entry;
834 	u32 gate_mask;
835 
836 	rcu_read_lock();
837 	entry = rcu_dereference(q->current_entry);
838 	/* if there's no entry, it means that the schedule didn't
839 	 * start yet, so force all gates to be open, this is in
840 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
841 	 * "AdminGateStates"
842 	 */
843 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
844 	if (!gate_mask)
845 		goto done;
846 
847 	if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
848 	    !static_branch_likely(&taprio_have_working_mqprio)) {
849 		/* Single NIC kind which is broken */
850 		skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
851 	} else if (static_branch_likely(&taprio_have_working_mqprio) &&
852 		   !static_branch_unlikely(&taprio_have_broken_mqprio)) {
853 		/* Single NIC kind which prioritizes properly */
854 		skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
855 	} else {
856 		/* Mixed NIC kinds present in system, need dynamic testing */
857 		if (q->broken_mqprio)
858 			skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
859 		else
860 			skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
861 	}
862 
863 done:
864 	rcu_read_unlock();
865 
866 	return skb;
867 }
868 
869 static bool should_restart_cycle(const struct sched_gate_list *oper,
870 				 const struct sched_entry *entry)
871 {
872 	if (list_is_last(&entry->list, &oper->entries))
873 		return true;
874 
875 	if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
876 		return true;
877 
878 	return false;
879 }
880 
881 static bool should_change_schedules(const struct sched_gate_list *admin,
882 				    const struct sched_gate_list *oper,
883 				    ktime_t end_time)
884 {
885 	ktime_t next_base_time, extension_time;
886 
887 	if (!admin)
888 		return false;
889 
890 	next_base_time = sched_base_time(admin);
891 
892 	/* This is the simple case, the end_time would fall after
893 	 * the next schedule base_time.
894 	 */
895 	if (ktime_compare(next_base_time, end_time) <= 0)
896 		return true;
897 
898 	/* This is the cycle_time_extension case, if the end_time
899 	 * plus the amount that can be extended would fall after the
900 	 * next schedule base_time, we can extend the current schedule
901 	 * for that amount.
902 	 */
903 	extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
904 
905 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
906 	 * how precisely the extension should be made. So after
907 	 * conformance testing, this logic may change.
908 	 */
909 	if (ktime_compare(next_base_time, extension_time) <= 0)
910 		return true;
911 
912 	return false;
913 }
914 
915 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
916 {
917 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
918 					      advance_timer);
919 	struct net_device *dev = qdisc_dev(q->root);
920 	struct sched_gate_list *oper, *admin;
921 	int num_tc = netdev_get_num_tc(dev);
922 	struct sched_entry *entry, *next;
923 	struct Qdisc *sch = q->root;
924 	ktime_t end_time;
925 	int tc;
926 
927 	spin_lock(&q->current_entry_lock);
928 	entry = rcu_dereference_protected(q->current_entry,
929 					  lockdep_is_held(&q->current_entry_lock));
930 	oper = rcu_dereference_protected(q->oper_sched,
931 					 lockdep_is_held(&q->current_entry_lock));
932 	admin = rcu_dereference_protected(q->admin_sched,
933 					  lockdep_is_held(&q->current_entry_lock));
934 
935 	if (!oper)
936 		switch_schedules(q, &admin, &oper);
937 
938 	/* This can happen in two cases: 1. this is the very first run
939 	 * of this function (i.e. we weren't running any schedule
940 	 * previously); 2. The previous schedule just ended. The first
941 	 * entry of all schedules are pre-calculated during the
942 	 * schedule initialization.
943 	 */
944 	if (unlikely(!entry || entry->end_time == oper->base_time)) {
945 		next = list_first_entry(&oper->entries, struct sched_entry,
946 					list);
947 		end_time = next->end_time;
948 		goto first_run;
949 	}
950 
951 	if (should_restart_cycle(oper, entry)) {
952 		next = list_first_entry(&oper->entries, struct sched_entry,
953 					list);
954 		oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
955 						    oper->cycle_time);
956 	} else {
957 		next = list_next_entry(entry, list);
958 	}
959 
960 	end_time = ktime_add_ns(entry->end_time, next->interval);
961 	end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
962 
963 	for (tc = 0; tc < num_tc; tc++) {
964 		if (next->gate_duration[tc] == oper->cycle_time)
965 			next->gate_close_time[tc] = KTIME_MAX;
966 		else
967 			next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
968 								 next->gate_duration[tc]);
969 	}
970 
971 	if (should_change_schedules(admin, oper, end_time)) {
972 		/* Set things so the next time this runs, the new
973 		 * schedule runs.
974 		 */
975 		end_time = sched_base_time(admin);
976 		switch_schedules(q, &admin, &oper);
977 	}
978 
979 	next->end_time = end_time;
980 	taprio_set_budgets(q, oper, next);
981 
982 first_run:
983 	rcu_assign_pointer(q->current_entry, next);
984 	spin_unlock(&q->current_entry_lock);
985 
986 	hrtimer_set_expires(&q->advance_timer, end_time);
987 
988 	rcu_read_lock();
989 	__netif_schedule(sch);
990 	rcu_read_unlock();
991 
992 	return HRTIMER_RESTART;
993 }
994 
995 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
996 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
997 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
998 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
999 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
1000 };
1001 
1002 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
1003 	[TCA_TAPRIO_TC_ENTRY_INDEX]	   = { .type = NLA_U32 },
1004 	[TCA_TAPRIO_TC_ENTRY_MAX_SDU]	   = { .type = NLA_U32 },
1005 };
1006 
1007 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
1008 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
1009 		.len = sizeof(struct tc_mqprio_qopt)
1010 	},
1011 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
1012 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
1013 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
1014 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
1015 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
1016 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
1017 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
1018 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
1019 	[TCA_TAPRIO_ATTR_TC_ENTRY]		     = { .type = NLA_NESTED },
1020 };
1021 
1022 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
1023 			    struct sched_entry *entry,
1024 			    struct netlink_ext_ack *extack)
1025 {
1026 	int min_duration = length_to_duration(q, ETH_ZLEN);
1027 	u32 interval = 0;
1028 
1029 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
1030 		entry->command = nla_get_u8(
1031 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
1032 
1033 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
1034 		entry->gate_mask = nla_get_u32(
1035 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
1036 
1037 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
1038 		interval = nla_get_u32(
1039 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
1040 
1041 	/* The interval should allow at least the minimum ethernet
1042 	 * frame to go out.
1043 	 */
1044 	if (interval < min_duration) {
1045 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
1046 		return -EINVAL;
1047 	}
1048 
1049 	entry->interval = interval;
1050 
1051 	return 0;
1052 }
1053 
1054 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
1055 			     struct sched_entry *entry, int index,
1056 			     struct netlink_ext_ack *extack)
1057 {
1058 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
1059 	int err;
1060 
1061 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
1062 					  entry_policy, NULL);
1063 	if (err < 0) {
1064 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
1065 		return -EINVAL;
1066 	}
1067 
1068 	entry->index = index;
1069 
1070 	return fill_sched_entry(q, tb, entry, extack);
1071 }
1072 
1073 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
1074 			    struct sched_gate_list *sched,
1075 			    struct netlink_ext_ack *extack)
1076 {
1077 	struct nlattr *n;
1078 	int err, rem;
1079 	int i = 0;
1080 
1081 	if (!list)
1082 		return -EINVAL;
1083 
1084 	nla_for_each_nested(n, list, rem) {
1085 		struct sched_entry *entry;
1086 
1087 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
1088 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
1089 			continue;
1090 		}
1091 
1092 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1093 		if (!entry) {
1094 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
1095 			return -ENOMEM;
1096 		}
1097 
1098 		err = parse_sched_entry(q, n, entry, i, extack);
1099 		if (err < 0) {
1100 			kfree(entry);
1101 			return err;
1102 		}
1103 
1104 		list_add_tail(&entry->list, &sched->entries);
1105 		i++;
1106 	}
1107 
1108 	sched->num_entries = i;
1109 
1110 	return i;
1111 }
1112 
1113 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
1114 				 struct sched_gate_list *new,
1115 				 struct netlink_ext_ack *extack)
1116 {
1117 	int err = 0;
1118 
1119 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
1120 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
1121 		return -ENOTSUPP;
1122 	}
1123 
1124 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
1125 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
1126 
1127 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
1128 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
1129 
1130 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
1131 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
1132 
1133 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
1134 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
1135 				       new, extack);
1136 	if (err < 0)
1137 		return err;
1138 
1139 	if (!new->cycle_time) {
1140 		struct sched_entry *entry;
1141 		ktime_t cycle = 0;
1142 
1143 		list_for_each_entry(entry, &new->entries, list)
1144 			cycle = ktime_add_ns(cycle, entry->interval);
1145 
1146 		if (!cycle) {
1147 			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
1148 			return -EINVAL;
1149 		}
1150 
1151 		new->cycle_time = cycle;
1152 	}
1153 
1154 	taprio_calculate_gate_durations(q, new);
1155 
1156 	return 0;
1157 }
1158 
1159 static int taprio_parse_mqprio_opt(struct net_device *dev,
1160 				   struct tc_mqprio_qopt *qopt,
1161 				   struct netlink_ext_ack *extack,
1162 				   u32 taprio_flags)
1163 {
1164 	bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
1165 
1166 	if (!qopt && !dev->num_tc) {
1167 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
1168 		return -EINVAL;
1169 	}
1170 
1171 	/* If num_tc is already set, it means that the user already
1172 	 * configured the mqprio part
1173 	 */
1174 	if (dev->num_tc)
1175 		return 0;
1176 
1177 	/* taprio imposes that traffic classes map 1:n to tx queues */
1178 	if (qopt->num_tc > dev->num_tx_queues) {
1179 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
1180 		return -EINVAL;
1181 	}
1182 
1183 	/* For some reason, in txtime-assist mode, we allow TXQ ranges for
1184 	 * different TCs to overlap, and just validate the TXQ ranges.
1185 	 */
1186 	return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
1187 				    extack);
1188 }
1189 
1190 static int taprio_get_start_time(struct Qdisc *sch,
1191 				 struct sched_gate_list *sched,
1192 				 ktime_t *start)
1193 {
1194 	struct taprio_sched *q = qdisc_priv(sch);
1195 	ktime_t now, base, cycle;
1196 	s64 n;
1197 
1198 	base = sched_base_time(sched);
1199 	now = taprio_get_time(q);
1200 
1201 	if (ktime_after(base, now)) {
1202 		*start = base;
1203 		return 0;
1204 	}
1205 
1206 	cycle = sched->cycle_time;
1207 
1208 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1209 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1210 	 * something went really wrong. In that case, we should warn about this
1211 	 * inconsistent state and return error.
1212 	 */
1213 	if (WARN_ON(!cycle))
1214 		return -EFAULT;
1215 
1216 	/* Schedule the start time for the beginning of the next
1217 	 * cycle.
1218 	 */
1219 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1220 	*start = ktime_add_ns(base, (n + 1) * cycle);
1221 	return 0;
1222 }
1223 
1224 static void setup_first_end_time(struct taprio_sched *q,
1225 				 struct sched_gate_list *sched, ktime_t base)
1226 {
1227 	struct net_device *dev = qdisc_dev(q->root);
1228 	int num_tc = netdev_get_num_tc(dev);
1229 	struct sched_entry *first;
1230 	ktime_t cycle;
1231 	int tc;
1232 
1233 	first = list_first_entry(&sched->entries,
1234 				 struct sched_entry, list);
1235 
1236 	cycle = sched->cycle_time;
1237 
1238 	/* FIXME: find a better place to do this */
1239 	sched->cycle_end_time = ktime_add_ns(base, cycle);
1240 
1241 	first->end_time = ktime_add_ns(base, first->interval);
1242 	taprio_set_budgets(q, sched, first);
1243 
1244 	for (tc = 0; tc < num_tc; tc++) {
1245 		if (first->gate_duration[tc] == sched->cycle_time)
1246 			first->gate_close_time[tc] = KTIME_MAX;
1247 		else
1248 			first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
1249 	}
1250 
1251 	rcu_assign_pointer(q->current_entry, NULL);
1252 }
1253 
1254 static void taprio_start_sched(struct Qdisc *sch,
1255 			       ktime_t start, struct sched_gate_list *new)
1256 {
1257 	struct taprio_sched *q = qdisc_priv(sch);
1258 	ktime_t expires;
1259 
1260 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1261 		return;
1262 
1263 	expires = hrtimer_get_expires(&q->advance_timer);
1264 	if (expires == 0)
1265 		expires = KTIME_MAX;
1266 
1267 	/* If the new schedule starts before the next expiration, we
1268 	 * reprogram it to the earliest one, so we change the admin
1269 	 * schedule to the operational one at the right time.
1270 	 */
1271 	start = min_t(ktime_t, start, expires);
1272 
1273 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1274 }
1275 
1276 static void taprio_set_picos_per_byte(struct net_device *dev,
1277 				      struct taprio_sched *q)
1278 {
1279 	struct ethtool_link_ksettings ecmd;
1280 	int speed = SPEED_10;
1281 	int picos_per_byte;
1282 	int err;
1283 
1284 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1285 	if (err < 0)
1286 		goto skip;
1287 
1288 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1289 		speed = ecmd.base.speed;
1290 
1291 skip:
1292 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1293 
1294 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1295 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1296 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1297 		   ecmd.base.speed);
1298 }
1299 
1300 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1301 			       void *ptr)
1302 {
1303 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1304 	struct sched_gate_list *oper, *admin;
1305 	struct qdisc_size_table *stab;
1306 	struct taprio_sched *q;
1307 
1308 	ASSERT_RTNL();
1309 
1310 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1311 		return NOTIFY_DONE;
1312 
1313 	list_for_each_entry(q, &taprio_list, taprio_list) {
1314 		if (dev != qdisc_dev(q->root))
1315 			continue;
1316 
1317 		taprio_set_picos_per_byte(dev, q);
1318 
1319 		stab = rtnl_dereference(q->root->stab);
1320 
1321 		oper = rtnl_dereference(q->oper_sched);
1322 		if (oper)
1323 			taprio_update_queue_max_sdu(q, oper, stab);
1324 
1325 		admin = rtnl_dereference(q->admin_sched);
1326 		if (admin)
1327 			taprio_update_queue_max_sdu(q, admin, stab);
1328 
1329 		break;
1330 	}
1331 
1332 	return NOTIFY_DONE;
1333 }
1334 
1335 static void setup_txtime(struct taprio_sched *q,
1336 			 struct sched_gate_list *sched, ktime_t base)
1337 {
1338 	struct sched_entry *entry;
1339 	u32 interval = 0;
1340 
1341 	list_for_each_entry(entry, &sched->entries, list) {
1342 		entry->next_txtime = ktime_add_ns(base, interval);
1343 		interval += entry->interval;
1344 	}
1345 }
1346 
1347 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1348 {
1349 	struct __tc_taprio_qopt_offload *__offload;
1350 
1351 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1352 			    GFP_KERNEL);
1353 	if (!__offload)
1354 		return NULL;
1355 
1356 	refcount_set(&__offload->users, 1);
1357 
1358 	return &__offload->offload;
1359 }
1360 
1361 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1362 						  *offload)
1363 {
1364 	struct __tc_taprio_qopt_offload *__offload;
1365 
1366 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1367 				 offload);
1368 
1369 	refcount_inc(&__offload->users);
1370 
1371 	return offload;
1372 }
1373 EXPORT_SYMBOL_GPL(taprio_offload_get);
1374 
1375 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1376 {
1377 	struct __tc_taprio_qopt_offload *__offload;
1378 
1379 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1380 				 offload);
1381 
1382 	if (!refcount_dec_and_test(&__offload->users))
1383 		return;
1384 
1385 	kfree(__offload);
1386 }
1387 EXPORT_SYMBOL_GPL(taprio_offload_free);
1388 
1389 /* The function will only serve to keep the pointers to the "oper" and "admin"
1390  * schedules valid in relation to their base times, so when calling dump() the
1391  * users looks at the right schedules.
1392  * When using full offload, the admin configuration is promoted to oper at the
1393  * base_time in the PHC time domain.  But because the system time is not
1394  * necessarily in sync with that, we can't just trigger a hrtimer to call
1395  * switch_schedules at the right hardware time.
1396  * At the moment we call this by hand right away from taprio, but in the future
1397  * it will be useful to create a mechanism for drivers to notify taprio of the
1398  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1399  * This is left as TODO.
1400  */
1401 static void taprio_offload_config_changed(struct taprio_sched *q)
1402 {
1403 	struct sched_gate_list *oper, *admin;
1404 
1405 	oper = rtnl_dereference(q->oper_sched);
1406 	admin = rtnl_dereference(q->admin_sched);
1407 
1408 	switch_schedules(q, &admin, &oper);
1409 }
1410 
1411 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1412 {
1413 	u32 i, queue_mask = 0;
1414 
1415 	for (i = 0; i < dev->num_tc; i++) {
1416 		u32 offset, count;
1417 
1418 		if (!(tc_mask & BIT(i)))
1419 			continue;
1420 
1421 		offset = dev->tc_to_txq[i].offset;
1422 		count = dev->tc_to_txq[i].count;
1423 
1424 		queue_mask |= GENMASK(offset + count - 1, offset);
1425 	}
1426 
1427 	return queue_mask;
1428 }
1429 
1430 static void taprio_sched_to_offload(struct net_device *dev,
1431 				    struct sched_gate_list *sched,
1432 				    struct tc_taprio_qopt_offload *offload,
1433 				    const struct tc_taprio_caps *caps)
1434 {
1435 	struct sched_entry *entry;
1436 	int i = 0;
1437 
1438 	offload->base_time = sched->base_time;
1439 	offload->cycle_time = sched->cycle_time;
1440 	offload->cycle_time_extension = sched->cycle_time_extension;
1441 
1442 	list_for_each_entry(entry, &sched->entries, list) {
1443 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1444 
1445 		e->command = entry->command;
1446 		e->interval = entry->interval;
1447 		if (caps->gate_mask_per_txq)
1448 			e->gate_mask = tc_map_to_queue_mask(dev,
1449 							    entry->gate_mask);
1450 		else
1451 			e->gate_mask = entry->gate_mask;
1452 
1453 		i++;
1454 	}
1455 
1456 	offload->num_entries = i;
1457 }
1458 
1459 static void taprio_detect_broken_mqprio(struct taprio_sched *q)
1460 {
1461 	struct net_device *dev = qdisc_dev(q->root);
1462 	struct tc_taprio_caps caps;
1463 
1464 	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1465 				 &caps, sizeof(caps));
1466 
1467 	q->broken_mqprio = caps.broken_mqprio;
1468 	if (q->broken_mqprio)
1469 		static_branch_inc(&taprio_have_broken_mqprio);
1470 	else
1471 		static_branch_inc(&taprio_have_working_mqprio);
1472 
1473 	q->detected_mqprio = true;
1474 }
1475 
1476 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
1477 {
1478 	if (!q->detected_mqprio)
1479 		return;
1480 
1481 	if (q->broken_mqprio)
1482 		static_branch_dec(&taprio_have_broken_mqprio);
1483 	else
1484 		static_branch_dec(&taprio_have_working_mqprio);
1485 }
1486 
1487 static int taprio_enable_offload(struct net_device *dev,
1488 				 struct taprio_sched *q,
1489 				 struct sched_gate_list *sched,
1490 				 struct netlink_ext_ack *extack)
1491 {
1492 	const struct net_device_ops *ops = dev->netdev_ops;
1493 	struct tc_taprio_qopt_offload *offload;
1494 	struct tc_taprio_caps caps;
1495 	int tc, err = 0;
1496 
1497 	if (!ops->ndo_setup_tc) {
1498 		NL_SET_ERR_MSG(extack,
1499 			       "Device does not support taprio offload");
1500 		return -EOPNOTSUPP;
1501 	}
1502 
1503 	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1504 				 &caps, sizeof(caps));
1505 
1506 	if (!caps.supports_queue_max_sdu) {
1507 		for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1508 			if (q->max_sdu[tc]) {
1509 				NL_SET_ERR_MSG_MOD(extack,
1510 						   "Device does not handle queueMaxSDU");
1511 				return -EOPNOTSUPP;
1512 			}
1513 		}
1514 	}
1515 
1516 	offload = taprio_offload_alloc(sched->num_entries);
1517 	if (!offload) {
1518 		NL_SET_ERR_MSG(extack,
1519 			       "Not enough memory for enabling offload mode");
1520 		return -ENOMEM;
1521 	}
1522 	offload->enable = 1;
1523 	mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
1524 	taprio_sched_to_offload(dev, sched, offload, &caps);
1525 
1526 	for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1527 		offload->max_sdu[tc] = q->max_sdu[tc];
1528 
1529 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1530 	if (err < 0) {
1531 		NL_SET_ERR_MSG(extack,
1532 			       "Device failed to setup taprio offload");
1533 		goto done;
1534 	}
1535 
1536 	q->offloaded = true;
1537 
1538 done:
1539 	taprio_offload_free(offload);
1540 
1541 	return err;
1542 }
1543 
1544 static int taprio_disable_offload(struct net_device *dev,
1545 				  struct taprio_sched *q,
1546 				  struct netlink_ext_ack *extack)
1547 {
1548 	const struct net_device_ops *ops = dev->netdev_ops;
1549 	struct tc_taprio_qopt_offload *offload;
1550 	int err;
1551 
1552 	if (!q->offloaded)
1553 		return 0;
1554 
1555 	offload = taprio_offload_alloc(0);
1556 	if (!offload) {
1557 		NL_SET_ERR_MSG(extack,
1558 			       "Not enough memory to disable offload mode");
1559 		return -ENOMEM;
1560 	}
1561 	offload->enable = 0;
1562 
1563 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1564 	if (err < 0) {
1565 		NL_SET_ERR_MSG(extack,
1566 			       "Device failed to disable offload");
1567 		goto out;
1568 	}
1569 
1570 	q->offloaded = false;
1571 
1572 out:
1573 	taprio_offload_free(offload);
1574 
1575 	return err;
1576 }
1577 
1578 /* If full offload is enabled, the only possible clockid is the net device's
1579  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1580  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1581  * in sync with the specified clockid via a user space daemon such as phc2sys.
1582  * For both software taprio and txtime-assist, the clockid is used for the
1583  * hrtimer that advances the schedule and hence mandatory.
1584  */
1585 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1586 				struct netlink_ext_ack *extack)
1587 {
1588 	struct taprio_sched *q = qdisc_priv(sch);
1589 	struct net_device *dev = qdisc_dev(sch);
1590 	int err = -EINVAL;
1591 
1592 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1593 		const struct ethtool_ops *ops = dev->ethtool_ops;
1594 		struct ethtool_ts_info info = {
1595 			.cmd = ETHTOOL_GET_TS_INFO,
1596 			.phc_index = -1,
1597 		};
1598 
1599 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1600 			NL_SET_ERR_MSG(extack,
1601 				       "The 'clockid' cannot be specified for full offload");
1602 			goto out;
1603 		}
1604 
1605 		if (ops && ops->get_ts_info)
1606 			err = ops->get_ts_info(dev, &info);
1607 
1608 		if (err || info.phc_index < 0) {
1609 			NL_SET_ERR_MSG(extack,
1610 				       "Device does not have a PTP clock");
1611 			err = -ENOTSUPP;
1612 			goto out;
1613 		}
1614 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1615 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1616 		enum tk_offsets tk_offset;
1617 
1618 		/* We only support static clockids and we don't allow
1619 		 * for it to be modified after the first init.
1620 		 */
1621 		if (clockid < 0 ||
1622 		    (q->clockid != -1 && q->clockid != clockid)) {
1623 			NL_SET_ERR_MSG(extack,
1624 				       "Changing the 'clockid' of a running schedule is not supported");
1625 			err = -ENOTSUPP;
1626 			goto out;
1627 		}
1628 
1629 		switch (clockid) {
1630 		case CLOCK_REALTIME:
1631 			tk_offset = TK_OFFS_REAL;
1632 			break;
1633 		case CLOCK_MONOTONIC:
1634 			tk_offset = TK_OFFS_MAX;
1635 			break;
1636 		case CLOCK_BOOTTIME:
1637 			tk_offset = TK_OFFS_BOOT;
1638 			break;
1639 		case CLOCK_TAI:
1640 			tk_offset = TK_OFFS_TAI;
1641 			break;
1642 		default:
1643 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1644 			err = -EINVAL;
1645 			goto out;
1646 		}
1647 		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1648 		WRITE_ONCE(q->tk_offset, tk_offset);
1649 
1650 		q->clockid = clockid;
1651 	} else {
1652 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1653 		goto out;
1654 	}
1655 
1656 	/* Everything went ok, return success. */
1657 	err = 0;
1658 
1659 out:
1660 	return err;
1661 }
1662 
1663 static int taprio_parse_tc_entry(struct Qdisc *sch,
1664 				 struct nlattr *opt,
1665 				 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1666 				 unsigned long *seen_tcs,
1667 				 struct netlink_ext_ack *extack)
1668 {
1669 	struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1670 	struct net_device *dev = qdisc_dev(sch);
1671 	u32 val = 0;
1672 	int err, tc;
1673 
1674 	err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1675 			       taprio_tc_policy, extack);
1676 	if (err < 0)
1677 		return err;
1678 
1679 	if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
1680 		NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1681 		return -EINVAL;
1682 	}
1683 
1684 	tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1685 	if (tc >= TC_QOPT_MAX_QUEUE) {
1686 		NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
1687 		return -ERANGE;
1688 	}
1689 
1690 	if (*seen_tcs & BIT(tc)) {
1691 		NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
1692 		return -EINVAL;
1693 	}
1694 
1695 	*seen_tcs |= BIT(tc);
1696 
1697 	if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU])
1698 		val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1699 
1700 	if (val > dev->max_mtu) {
1701 		NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1702 		return -ERANGE;
1703 	}
1704 
1705 	max_sdu[tc] = val;
1706 
1707 	return 0;
1708 }
1709 
1710 static int taprio_parse_tc_entries(struct Qdisc *sch,
1711 				   struct nlattr *opt,
1712 				   struct netlink_ext_ack *extack)
1713 {
1714 	struct taprio_sched *q = qdisc_priv(sch);
1715 	u32 max_sdu[TC_QOPT_MAX_QUEUE];
1716 	unsigned long seen_tcs = 0;
1717 	struct nlattr *n;
1718 	int tc, rem;
1719 	int err = 0;
1720 
1721 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
1722 		max_sdu[tc] = q->max_sdu[tc];
1723 
1724 	nla_for_each_nested(n, opt, rem) {
1725 		if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY)
1726 			continue;
1727 
1728 		err = taprio_parse_tc_entry(sch, n, max_sdu, &seen_tcs,
1729 					    extack);
1730 		if (err)
1731 			goto out;
1732 	}
1733 
1734 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
1735 		q->max_sdu[tc] = max_sdu[tc];
1736 
1737 out:
1738 	return err;
1739 }
1740 
1741 static int taprio_mqprio_cmp(const struct net_device *dev,
1742 			     const struct tc_mqprio_qopt *mqprio)
1743 {
1744 	int i;
1745 
1746 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1747 		return -1;
1748 
1749 	for (i = 0; i < mqprio->num_tc; i++)
1750 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1751 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1752 			return -1;
1753 
1754 	for (i = 0; i <= TC_BITMASK; i++)
1755 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1756 			return -1;
1757 
1758 	return 0;
1759 }
1760 
1761 /* The semantics of the 'flags' argument in relation to 'change()'
1762  * requests, are interpreted following two rules (which are applied in
1763  * this order): (1) an omitted 'flags' argument is interpreted as
1764  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1765  * changed.
1766  */
1767 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1768 			    struct netlink_ext_ack *extack)
1769 {
1770 	u32 new = 0;
1771 
1772 	if (attr)
1773 		new = nla_get_u32(attr);
1774 
1775 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1776 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1777 		return -EOPNOTSUPP;
1778 	}
1779 
1780 	if (!taprio_flags_valid(new)) {
1781 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1782 		return -EINVAL;
1783 	}
1784 
1785 	return new;
1786 }
1787 
1788 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1789 			 struct netlink_ext_ack *extack)
1790 {
1791 	struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
1792 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1793 	struct sched_gate_list *oper, *admin, *new_admin;
1794 	struct taprio_sched *q = qdisc_priv(sch);
1795 	struct net_device *dev = qdisc_dev(sch);
1796 	struct tc_mqprio_qopt *mqprio = NULL;
1797 	unsigned long flags;
1798 	ktime_t start;
1799 	int i, err;
1800 
1801 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1802 					  taprio_policy, extack);
1803 	if (err < 0)
1804 		return err;
1805 
1806 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1807 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1808 
1809 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1810 			       q->flags, extack);
1811 	if (err < 0)
1812 		return err;
1813 
1814 	q->flags = err;
1815 
1816 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1817 	if (err < 0)
1818 		return err;
1819 
1820 	err = taprio_parse_tc_entries(sch, opt, extack);
1821 	if (err)
1822 		return err;
1823 
1824 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1825 	if (!new_admin) {
1826 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1827 		return -ENOMEM;
1828 	}
1829 	INIT_LIST_HEAD(&new_admin->entries);
1830 
1831 	oper = rtnl_dereference(q->oper_sched);
1832 	admin = rtnl_dereference(q->admin_sched);
1833 
1834 	/* no changes - no new mqprio settings */
1835 	if (!taprio_mqprio_cmp(dev, mqprio))
1836 		mqprio = NULL;
1837 
1838 	if (mqprio && (oper || admin)) {
1839 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1840 		err = -ENOTSUPP;
1841 		goto free_sched;
1842 	}
1843 
1844 	if (mqprio) {
1845 		err = netdev_set_num_tc(dev, mqprio->num_tc);
1846 		if (err)
1847 			goto free_sched;
1848 		for (i = 0; i < mqprio->num_tc; i++) {
1849 			netdev_set_tc_queue(dev, i,
1850 					    mqprio->count[i],
1851 					    mqprio->offset[i]);
1852 			q->cur_txq[i] = mqprio->offset[i];
1853 		}
1854 
1855 		/* Always use supplied priority mappings */
1856 		for (i = 0; i <= TC_BITMASK; i++)
1857 			netdev_set_prio_tc_map(dev, i,
1858 					       mqprio->prio_tc_map[i]);
1859 	}
1860 
1861 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1862 	if (err < 0)
1863 		goto free_sched;
1864 
1865 	if (new_admin->num_entries == 0) {
1866 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1867 		err = -EINVAL;
1868 		goto free_sched;
1869 	}
1870 
1871 	err = taprio_parse_clockid(sch, tb, extack);
1872 	if (err < 0)
1873 		goto free_sched;
1874 
1875 	taprio_set_picos_per_byte(dev, q);
1876 	taprio_update_queue_max_sdu(q, new_admin, stab);
1877 
1878 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1879 		err = taprio_enable_offload(dev, q, new_admin, extack);
1880 	else
1881 		err = taprio_disable_offload(dev, q, extack);
1882 	if (err)
1883 		goto free_sched;
1884 
1885 	/* Protects against enqueue()/dequeue() */
1886 	spin_lock_bh(qdisc_lock(sch));
1887 
1888 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1889 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1890 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1891 			err = -EINVAL;
1892 			goto unlock;
1893 		}
1894 
1895 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1896 	}
1897 
1898 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1899 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1900 	    !hrtimer_active(&q->advance_timer)) {
1901 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1902 		q->advance_timer.function = advance_sched;
1903 	}
1904 
1905 	err = taprio_get_start_time(sch, new_admin, &start);
1906 	if (err < 0) {
1907 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1908 		goto unlock;
1909 	}
1910 
1911 	setup_txtime(q, new_admin, start);
1912 
1913 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1914 		if (!oper) {
1915 			rcu_assign_pointer(q->oper_sched, new_admin);
1916 			err = 0;
1917 			new_admin = NULL;
1918 			goto unlock;
1919 		}
1920 
1921 		rcu_assign_pointer(q->admin_sched, new_admin);
1922 		if (admin)
1923 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1924 	} else {
1925 		setup_first_end_time(q, new_admin, start);
1926 
1927 		/* Protects against advance_sched() */
1928 		spin_lock_irqsave(&q->current_entry_lock, flags);
1929 
1930 		taprio_start_sched(sch, start, new_admin);
1931 
1932 		rcu_assign_pointer(q->admin_sched, new_admin);
1933 		if (admin)
1934 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1935 
1936 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1937 
1938 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1939 			taprio_offload_config_changed(q);
1940 	}
1941 
1942 	new_admin = NULL;
1943 	err = 0;
1944 
1945 	if (!stab)
1946 		NL_SET_ERR_MSG_MOD(extack,
1947 				   "Size table not specified, frame length estimations may be inaccurate");
1948 
1949 unlock:
1950 	spin_unlock_bh(qdisc_lock(sch));
1951 
1952 free_sched:
1953 	if (new_admin)
1954 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1955 
1956 	return err;
1957 }
1958 
1959 static void taprio_reset(struct Qdisc *sch)
1960 {
1961 	struct taprio_sched *q = qdisc_priv(sch);
1962 	struct net_device *dev = qdisc_dev(sch);
1963 	int i;
1964 
1965 	hrtimer_cancel(&q->advance_timer);
1966 
1967 	if (q->qdiscs) {
1968 		for (i = 0; i < dev->num_tx_queues; i++)
1969 			if (q->qdiscs[i])
1970 				qdisc_reset(q->qdiscs[i]);
1971 	}
1972 }
1973 
1974 static void taprio_destroy(struct Qdisc *sch)
1975 {
1976 	struct taprio_sched *q = qdisc_priv(sch);
1977 	struct net_device *dev = qdisc_dev(sch);
1978 	struct sched_gate_list *oper, *admin;
1979 	unsigned int i;
1980 
1981 	list_del(&q->taprio_list);
1982 
1983 	/* Note that taprio_reset() might not be called if an error
1984 	 * happens in qdisc_create(), after taprio_init() has been called.
1985 	 */
1986 	hrtimer_cancel(&q->advance_timer);
1987 	qdisc_synchronize(sch);
1988 
1989 	taprio_disable_offload(dev, q, NULL);
1990 
1991 	if (q->qdiscs) {
1992 		for (i = 0; i < dev->num_tx_queues; i++)
1993 			qdisc_put(q->qdiscs[i]);
1994 
1995 		kfree(q->qdiscs);
1996 	}
1997 	q->qdiscs = NULL;
1998 
1999 	netdev_reset_tc(dev);
2000 
2001 	oper = rtnl_dereference(q->oper_sched);
2002 	admin = rtnl_dereference(q->admin_sched);
2003 
2004 	if (oper)
2005 		call_rcu(&oper->rcu, taprio_free_sched_cb);
2006 
2007 	if (admin)
2008 		call_rcu(&admin->rcu, taprio_free_sched_cb);
2009 
2010 	taprio_cleanup_broken_mqprio(q);
2011 }
2012 
2013 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
2014 		       struct netlink_ext_ack *extack)
2015 {
2016 	struct taprio_sched *q = qdisc_priv(sch);
2017 	struct net_device *dev = qdisc_dev(sch);
2018 	int i;
2019 
2020 	spin_lock_init(&q->current_entry_lock);
2021 
2022 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
2023 	q->advance_timer.function = advance_sched;
2024 
2025 	q->root = sch;
2026 
2027 	/* We only support static clockids. Use an invalid value as default
2028 	 * and get the valid one on taprio_change().
2029 	 */
2030 	q->clockid = -1;
2031 	q->flags = TAPRIO_FLAGS_INVALID;
2032 
2033 	list_add(&q->taprio_list, &taprio_list);
2034 
2035 	if (sch->parent != TC_H_ROOT) {
2036 		NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
2037 		return -EOPNOTSUPP;
2038 	}
2039 
2040 	if (!netif_is_multiqueue(dev)) {
2041 		NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
2042 		return -EOPNOTSUPP;
2043 	}
2044 
2045 	/* pre-allocate qdisc, attachment can't fail */
2046 	q->qdiscs = kcalloc(dev->num_tx_queues,
2047 			    sizeof(q->qdiscs[0]),
2048 			    GFP_KERNEL);
2049 
2050 	if (!q->qdiscs)
2051 		return -ENOMEM;
2052 
2053 	if (!opt)
2054 		return -EINVAL;
2055 
2056 	for (i = 0; i < dev->num_tx_queues; i++) {
2057 		struct netdev_queue *dev_queue;
2058 		struct Qdisc *qdisc;
2059 
2060 		dev_queue = netdev_get_tx_queue(dev, i);
2061 		qdisc = qdisc_create_dflt(dev_queue,
2062 					  &pfifo_qdisc_ops,
2063 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
2064 						    TC_H_MIN(i + 1)),
2065 					  extack);
2066 		if (!qdisc)
2067 			return -ENOMEM;
2068 
2069 		if (i < dev->real_num_tx_queues)
2070 			qdisc_hash_add(qdisc, false);
2071 
2072 		q->qdiscs[i] = qdisc;
2073 	}
2074 
2075 	taprio_detect_broken_mqprio(q);
2076 
2077 	return taprio_change(sch, opt, extack);
2078 }
2079 
2080 static void taprio_attach(struct Qdisc *sch)
2081 {
2082 	struct taprio_sched *q = qdisc_priv(sch);
2083 	struct net_device *dev = qdisc_dev(sch);
2084 	unsigned int ntx;
2085 
2086 	/* Attach underlying qdisc */
2087 	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
2088 		struct Qdisc *qdisc = q->qdiscs[ntx];
2089 		struct Qdisc *old;
2090 
2091 		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2092 			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2093 			old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
2094 		} else {
2095 			old = dev_graft_qdisc(qdisc->dev_queue, sch);
2096 			qdisc_refcount_inc(sch);
2097 		}
2098 		if (old)
2099 			qdisc_put(old);
2100 	}
2101 
2102 	/* access to the child qdiscs is not needed in offload mode */
2103 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2104 		kfree(q->qdiscs);
2105 		q->qdiscs = NULL;
2106 	}
2107 }
2108 
2109 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
2110 					     unsigned long cl)
2111 {
2112 	struct net_device *dev = qdisc_dev(sch);
2113 	unsigned long ntx = cl - 1;
2114 
2115 	if (ntx >= dev->num_tx_queues)
2116 		return NULL;
2117 
2118 	return netdev_get_tx_queue(dev, ntx);
2119 }
2120 
2121 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
2122 			struct Qdisc *new, struct Qdisc **old,
2123 			struct netlink_ext_ack *extack)
2124 {
2125 	struct taprio_sched *q = qdisc_priv(sch);
2126 	struct net_device *dev = qdisc_dev(sch);
2127 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2128 
2129 	if (!dev_queue)
2130 		return -EINVAL;
2131 
2132 	if (dev->flags & IFF_UP)
2133 		dev_deactivate(dev);
2134 
2135 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2136 		*old = dev_graft_qdisc(dev_queue, new);
2137 	} else {
2138 		*old = q->qdiscs[cl - 1];
2139 		q->qdiscs[cl - 1] = new;
2140 	}
2141 
2142 	if (new)
2143 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2144 
2145 	if (dev->flags & IFF_UP)
2146 		dev_activate(dev);
2147 
2148 	return 0;
2149 }
2150 
2151 static int dump_entry(struct sk_buff *msg,
2152 		      const struct sched_entry *entry)
2153 {
2154 	struct nlattr *item;
2155 
2156 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
2157 	if (!item)
2158 		return -ENOSPC;
2159 
2160 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
2161 		goto nla_put_failure;
2162 
2163 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
2164 		goto nla_put_failure;
2165 
2166 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
2167 			entry->gate_mask))
2168 		goto nla_put_failure;
2169 
2170 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
2171 			entry->interval))
2172 		goto nla_put_failure;
2173 
2174 	return nla_nest_end(msg, item);
2175 
2176 nla_put_failure:
2177 	nla_nest_cancel(msg, item);
2178 	return -1;
2179 }
2180 
2181 static int dump_schedule(struct sk_buff *msg,
2182 			 const struct sched_gate_list *root)
2183 {
2184 	struct nlattr *entry_list;
2185 	struct sched_entry *entry;
2186 
2187 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
2188 			root->base_time, TCA_TAPRIO_PAD))
2189 		return -1;
2190 
2191 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
2192 			root->cycle_time, TCA_TAPRIO_PAD))
2193 		return -1;
2194 
2195 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
2196 			root->cycle_time_extension, TCA_TAPRIO_PAD))
2197 		return -1;
2198 
2199 	entry_list = nla_nest_start_noflag(msg,
2200 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
2201 	if (!entry_list)
2202 		goto error_nest;
2203 
2204 	list_for_each_entry(entry, &root->entries, list) {
2205 		if (dump_entry(msg, entry) < 0)
2206 			goto error_nest;
2207 	}
2208 
2209 	nla_nest_end(msg, entry_list);
2210 	return 0;
2211 
2212 error_nest:
2213 	nla_nest_cancel(msg, entry_list);
2214 	return -1;
2215 }
2216 
2217 static int taprio_dump_tc_entries(struct sk_buff *skb,
2218 				  struct sched_gate_list *sched)
2219 {
2220 	struct nlattr *n;
2221 	int tc;
2222 
2223 	for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
2224 		n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
2225 		if (!n)
2226 			return -EMSGSIZE;
2227 
2228 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
2229 			goto nla_put_failure;
2230 
2231 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
2232 				sched->max_sdu[tc]))
2233 			goto nla_put_failure;
2234 
2235 		nla_nest_end(skb, n);
2236 	}
2237 
2238 	return 0;
2239 
2240 nla_put_failure:
2241 	nla_nest_cancel(skb, n);
2242 	return -EMSGSIZE;
2243 }
2244 
2245 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
2246 {
2247 	struct taprio_sched *q = qdisc_priv(sch);
2248 	struct net_device *dev = qdisc_dev(sch);
2249 	struct sched_gate_list *oper, *admin;
2250 	struct tc_mqprio_qopt opt = { 0 };
2251 	struct nlattr *nest, *sched_nest;
2252 
2253 	oper = rtnl_dereference(q->oper_sched);
2254 	admin = rtnl_dereference(q->admin_sched);
2255 
2256 	mqprio_qopt_reconstruct(dev, &opt);
2257 
2258 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2259 	if (!nest)
2260 		goto start_error;
2261 
2262 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2263 		goto options_error;
2264 
2265 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2266 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2267 		goto options_error;
2268 
2269 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2270 		goto options_error;
2271 
2272 	if (q->txtime_delay &&
2273 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2274 		goto options_error;
2275 
2276 	if (oper && taprio_dump_tc_entries(skb, oper))
2277 		goto options_error;
2278 
2279 	if (oper && dump_schedule(skb, oper))
2280 		goto options_error;
2281 
2282 	if (!admin)
2283 		goto done;
2284 
2285 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2286 	if (!sched_nest)
2287 		goto options_error;
2288 
2289 	if (dump_schedule(skb, admin))
2290 		goto admin_error;
2291 
2292 	nla_nest_end(skb, sched_nest);
2293 
2294 done:
2295 	return nla_nest_end(skb, nest);
2296 
2297 admin_error:
2298 	nla_nest_cancel(skb, sched_nest);
2299 
2300 options_error:
2301 	nla_nest_cancel(skb, nest);
2302 
2303 start_error:
2304 	return -ENOSPC;
2305 }
2306 
2307 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2308 {
2309 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2310 
2311 	if (!dev_queue)
2312 		return NULL;
2313 
2314 	return dev_queue->qdisc_sleeping;
2315 }
2316 
2317 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2318 {
2319 	unsigned int ntx = TC_H_MIN(classid);
2320 
2321 	if (!taprio_queue_get(sch, ntx))
2322 		return 0;
2323 	return ntx;
2324 }
2325 
2326 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2327 			     struct sk_buff *skb, struct tcmsg *tcm)
2328 {
2329 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2330 
2331 	tcm->tcm_parent = TC_H_ROOT;
2332 	tcm->tcm_handle |= TC_H_MIN(cl);
2333 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
2334 
2335 	return 0;
2336 }
2337 
2338 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2339 				   struct gnet_dump *d)
2340 	__releases(d->lock)
2341 	__acquires(d->lock)
2342 {
2343 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2344 
2345 	sch = dev_queue->qdisc_sleeping;
2346 	if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
2347 	    qdisc_qstats_copy(d, sch) < 0)
2348 		return -1;
2349 	return 0;
2350 }
2351 
2352 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2353 {
2354 	struct net_device *dev = qdisc_dev(sch);
2355 	unsigned long ntx;
2356 
2357 	if (arg->stop)
2358 		return;
2359 
2360 	arg->count = arg->skip;
2361 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2362 		if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2363 			break;
2364 	}
2365 }
2366 
2367 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2368 						struct tcmsg *tcm)
2369 {
2370 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2371 }
2372 
2373 static const struct Qdisc_class_ops taprio_class_ops = {
2374 	.graft		= taprio_graft,
2375 	.leaf		= taprio_leaf,
2376 	.find		= taprio_find,
2377 	.walk		= taprio_walk,
2378 	.dump		= taprio_dump_class,
2379 	.dump_stats	= taprio_dump_class_stats,
2380 	.select_queue	= taprio_select_queue,
2381 };
2382 
2383 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2384 	.cl_ops		= &taprio_class_ops,
2385 	.id		= "taprio",
2386 	.priv_size	= sizeof(struct taprio_sched),
2387 	.init		= taprio_init,
2388 	.change		= taprio_change,
2389 	.destroy	= taprio_destroy,
2390 	.reset		= taprio_reset,
2391 	.attach		= taprio_attach,
2392 	.peek		= taprio_peek,
2393 	.dequeue	= taprio_dequeue,
2394 	.enqueue	= taprio_enqueue,
2395 	.dump		= taprio_dump,
2396 	.owner		= THIS_MODULE,
2397 };
2398 
2399 static struct notifier_block taprio_device_notifier = {
2400 	.notifier_call = taprio_dev_notifier,
2401 };
2402 
2403 static int __init taprio_module_init(void)
2404 {
2405 	int err = register_netdevice_notifier(&taprio_device_notifier);
2406 
2407 	if (err)
2408 		return err;
2409 
2410 	return register_qdisc(&taprio_qdisc_ops);
2411 }
2412 
2413 static void __exit taprio_module_exit(void)
2414 {
2415 	unregister_qdisc(&taprio_qdisc_ops);
2416 	unregister_netdevice_notifier(&taprio_device_notifier);
2417 }
2418 
2419 module_init(taprio_module_init);
2420 module_exit(taprio_module_exit);
2421 MODULE_LICENSE("GPL");
2422