1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/ethtool_netlink.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/string.h> 15 #include <linux/list.h> 16 #include <linux/errno.h> 17 #include <linux/skbuff.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/time.h> 23 #include <net/gso.h> 24 #include <net/netlink.h> 25 #include <net/pkt_sched.h> 26 #include <net/pkt_cls.h> 27 #include <net/sch_generic.h> 28 #include <net/sock.h> 29 #include <net/tcp.h> 30 31 #define TAPRIO_STAT_NOT_SET (~0ULL) 32 33 #include "sch_mqprio_lib.h" 34 35 static LIST_HEAD(taprio_list); 36 static struct static_key_false taprio_have_broken_mqprio; 37 static struct static_key_false taprio_have_working_mqprio; 38 39 #define TAPRIO_ALL_GATES_OPEN -1 40 41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 43 #define TAPRIO_FLAGS_INVALID U32_MAX 44 45 struct sched_entry { 46 /* Durations between this GCL entry and the GCL entry where the 47 * respective traffic class gate closes 48 */ 49 u64 gate_duration[TC_MAX_QUEUE]; 50 atomic_t budget[TC_MAX_QUEUE]; 51 /* The qdisc makes some effort so that no packet leaves 52 * after this time 53 */ 54 ktime_t gate_close_time[TC_MAX_QUEUE]; 55 struct list_head list; 56 /* Used to calculate when to advance the schedule */ 57 ktime_t end_time; 58 ktime_t next_txtime; 59 int index; 60 u32 gate_mask; 61 u32 interval; 62 u8 command; 63 }; 64 65 struct sched_gate_list { 66 /* Longest non-zero contiguous gate durations per traffic class, 67 * or 0 if a traffic class gate never opens during the schedule. 68 */ 69 u64 max_open_gate_duration[TC_MAX_QUEUE]; 70 u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ 71 u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ 72 struct rcu_head rcu; 73 struct list_head entries; 74 size_t num_entries; 75 ktime_t cycle_end_time; 76 s64 cycle_time; 77 s64 cycle_time_extension; 78 s64 base_time; 79 }; 80 81 struct taprio_sched { 82 struct Qdisc **qdiscs; 83 struct Qdisc *root; 84 u32 flags; 85 enum tk_offsets tk_offset; 86 int clockid; 87 bool offloaded; 88 bool detected_mqprio; 89 bool broken_mqprio; 90 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 91 * speeds it's sub-nanoseconds per byte 92 */ 93 94 /* Protects the update side of the RCU protected current_entry */ 95 spinlock_t current_entry_lock; 96 struct sched_entry __rcu *current_entry; 97 struct sched_gate_list __rcu *oper_sched; 98 struct sched_gate_list __rcu *admin_sched; 99 struct hrtimer advance_timer; 100 struct list_head taprio_list; 101 int cur_txq[TC_MAX_QUEUE]; 102 u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ 103 u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ 104 u32 txtime_delay; 105 }; 106 107 struct __tc_taprio_qopt_offload { 108 refcount_t users; 109 struct tc_taprio_qopt_offload offload; 110 }; 111 112 static void taprio_calculate_gate_durations(struct taprio_sched *q, 113 struct sched_gate_list *sched) 114 { 115 struct net_device *dev = qdisc_dev(q->root); 116 int num_tc = netdev_get_num_tc(dev); 117 struct sched_entry *entry, *cur; 118 int tc; 119 120 list_for_each_entry(entry, &sched->entries, list) { 121 u32 gates_still_open = entry->gate_mask; 122 123 /* For each traffic class, calculate each open gate duration, 124 * starting at this schedule entry and ending at the schedule 125 * entry containing a gate close event for that TC. 126 */ 127 cur = entry; 128 129 do { 130 if (!gates_still_open) 131 break; 132 133 for (tc = 0; tc < num_tc; tc++) { 134 if (!(gates_still_open & BIT(tc))) 135 continue; 136 137 if (cur->gate_mask & BIT(tc)) 138 entry->gate_duration[tc] += cur->interval; 139 else 140 gates_still_open &= ~BIT(tc); 141 } 142 143 cur = list_next_entry_circular(cur, &sched->entries, list); 144 } while (cur != entry); 145 146 /* Keep track of the maximum gate duration for each traffic 147 * class, taking care to not confuse a traffic class which is 148 * temporarily closed with one that is always closed. 149 */ 150 for (tc = 0; tc < num_tc; tc++) 151 if (entry->gate_duration[tc] && 152 sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) 153 sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; 154 } 155 } 156 157 static bool taprio_entry_allows_tx(ktime_t skb_end_time, 158 struct sched_entry *entry, int tc) 159 { 160 return ktime_before(skb_end_time, entry->gate_close_time[tc]); 161 } 162 163 static ktime_t sched_base_time(const struct sched_gate_list *sched) 164 { 165 if (!sched) 166 return KTIME_MAX; 167 168 return ns_to_ktime(sched->base_time); 169 } 170 171 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 172 { 173 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 174 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 175 176 switch (tk_offset) { 177 case TK_OFFS_MAX: 178 return mono; 179 default: 180 return ktime_mono_to_any(mono, tk_offset); 181 } 182 } 183 184 static ktime_t taprio_get_time(const struct taprio_sched *q) 185 { 186 return taprio_mono_to_any(q, ktime_get()); 187 } 188 189 static void taprio_free_sched_cb(struct rcu_head *head) 190 { 191 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 192 struct sched_entry *entry, *n; 193 194 list_for_each_entry_safe(entry, n, &sched->entries, list) { 195 list_del(&entry->list); 196 kfree(entry); 197 } 198 199 kfree(sched); 200 } 201 202 static void switch_schedules(struct taprio_sched *q, 203 struct sched_gate_list **admin, 204 struct sched_gate_list **oper) 205 { 206 rcu_assign_pointer(q->oper_sched, *admin); 207 rcu_assign_pointer(q->admin_sched, NULL); 208 209 if (*oper) 210 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 211 212 *oper = *admin; 213 *admin = NULL; 214 } 215 216 /* Get how much time has been already elapsed in the current cycle. */ 217 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 218 { 219 ktime_t time_since_sched_start; 220 s32 time_elapsed; 221 222 time_since_sched_start = ktime_sub(time, sched->base_time); 223 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 224 225 return time_elapsed; 226 } 227 228 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 229 struct sched_gate_list *admin, 230 struct sched_entry *entry, 231 ktime_t intv_start) 232 { 233 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 234 ktime_t intv_end, cycle_ext_end, cycle_end; 235 236 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 237 intv_end = ktime_add_ns(intv_start, entry->interval); 238 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 239 240 if (ktime_before(intv_end, cycle_end)) 241 return intv_end; 242 else if (admin && admin != sched && 243 ktime_after(admin->base_time, cycle_end) && 244 ktime_before(admin->base_time, cycle_ext_end)) 245 return admin->base_time; 246 else 247 return cycle_end; 248 } 249 250 static int length_to_duration(struct taprio_sched *q, int len) 251 { 252 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); 253 } 254 255 static int duration_to_length(struct taprio_sched *q, u64 duration) 256 { 257 return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); 258 } 259 260 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the 261 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by 262 * the maximum open gate durations at the given link speed. 263 */ 264 static void taprio_update_queue_max_sdu(struct taprio_sched *q, 265 struct sched_gate_list *sched, 266 struct qdisc_size_table *stab) 267 { 268 struct net_device *dev = qdisc_dev(q->root); 269 int num_tc = netdev_get_num_tc(dev); 270 u32 max_sdu_from_user; 271 u32 max_sdu_dynamic; 272 u32 max_sdu; 273 int tc; 274 275 for (tc = 0; tc < num_tc; tc++) { 276 max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; 277 278 /* TC gate never closes => keep the queueMaxSDU 279 * selected by the user 280 */ 281 if (sched->max_open_gate_duration[tc] == sched->cycle_time) { 282 max_sdu_dynamic = U32_MAX; 283 } else { 284 u32 max_frm_len; 285 286 max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); 287 /* Compensate for L1 overhead from size table, 288 * but don't let the frame size go negative 289 */ 290 if (stab) { 291 max_frm_len -= stab->szopts.overhead; 292 max_frm_len = max_t(int, max_frm_len, 293 dev->hard_header_len + 1); 294 } 295 max_sdu_dynamic = max_frm_len - dev->hard_header_len; 296 if (max_sdu_dynamic > dev->max_mtu) 297 max_sdu_dynamic = U32_MAX; 298 } 299 300 max_sdu = min(max_sdu_dynamic, max_sdu_from_user); 301 302 if (max_sdu != U32_MAX) { 303 sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; 304 sched->max_sdu[tc] = max_sdu; 305 } else { 306 sched->max_frm_len[tc] = U32_MAX; /* never oversized */ 307 sched->max_sdu[tc] = 0; 308 } 309 } 310 } 311 312 /* Returns the entry corresponding to next available interval. If 313 * validate_interval is set, it only validates whether the timestamp occurs 314 * when the gate corresponding to the skb's traffic class is open. 315 */ 316 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 317 struct Qdisc *sch, 318 struct sched_gate_list *sched, 319 struct sched_gate_list *admin, 320 ktime_t time, 321 ktime_t *interval_start, 322 ktime_t *interval_end, 323 bool validate_interval) 324 { 325 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 326 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 327 struct sched_entry *entry = NULL, *entry_found = NULL; 328 struct taprio_sched *q = qdisc_priv(sch); 329 struct net_device *dev = qdisc_dev(sch); 330 bool entry_available = false; 331 s32 cycle_elapsed; 332 int tc, n; 333 334 tc = netdev_get_prio_tc_map(dev, skb->priority); 335 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 336 337 *interval_start = 0; 338 *interval_end = 0; 339 340 if (!sched) 341 return NULL; 342 343 cycle = sched->cycle_time; 344 cycle_elapsed = get_cycle_time_elapsed(sched, time); 345 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 346 cycle_end = ktime_add_ns(curr_intv_end, cycle); 347 348 list_for_each_entry(entry, &sched->entries, list) { 349 curr_intv_start = curr_intv_end; 350 curr_intv_end = get_interval_end_time(sched, admin, entry, 351 curr_intv_start); 352 353 if (ktime_after(curr_intv_start, cycle_end)) 354 break; 355 356 if (!(entry->gate_mask & BIT(tc)) || 357 packet_transmit_time > entry->interval) 358 continue; 359 360 txtime = entry->next_txtime; 361 362 if (ktime_before(txtime, time) || validate_interval) { 363 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 364 if ((ktime_before(curr_intv_start, time) && 365 ktime_before(transmit_end_time, curr_intv_end)) || 366 (ktime_after(curr_intv_start, time) && !validate_interval)) { 367 entry_found = entry; 368 *interval_start = curr_intv_start; 369 *interval_end = curr_intv_end; 370 break; 371 } else if (!entry_available && !validate_interval) { 372 /* Here, we are just trying to find out the 373 * first available interval in the next cycle. 374 */ 375 entry_available = true; 376 entry_found = entry; 377 *interval_start = ktime_add_ns(curr_intv_start, cycle); 378 *interval_end = ktime_add_ns(curr_intv_end, cycle); 379 } 380 } else if (ktime_before(txtime, earliest_txtime) && 381 !entry_available) { 382 earliest_txtime = txtime; 383 entry_found = entry; 384 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 385 *interval_start = ktime_add(curr_intv_start, n * cycle); 386 *interval_end = ktime_add(curr_intv_end, n * cycle); 387 } 388 } 389 390 return entry_found; 391 } 392 393 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 394 { 395 struct taprio_sched *q = qdisc_priv(sch); 396 struct sched_gate_list *sched, *admin; 397 ktime_t interval_start, interval_end; 398 struct sched_entry *entry; 399 400 rcu_read_lock(); 401 sched = rcu_dereference(q->oper_sched); 402 admin = rcu_dereference(q->admin_sched); 403 404 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 405 &interval_start, &interval_end, true); 406 rcu_read_unlock(); 407 408 return entry; 409 } 410 411 static bool taprio_flags_valid(u32 flags) 412 { 413 /* Make sure no other flag bits are set. */ 414 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 415 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 416 return false; 417 /* txtime-assist and full offload are mutually exclusive */ 418 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 419 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 420 return false; 421 return true; 422 } 423 424 /* This returns the tstamp value set by TCP in terms of the set clock. */ 425 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 426 { 427 unsigned int offset = skb_network_offset(skb); 428 const struct ipv6hdr *ipv6h; 429 const struct iphdr *iph; 430 struct ipv6hdr _ipv6h; 431 432 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 433 if (!ipv6h) 434 return 0; 435 436 if (ipv6h->version == 4) { 437 iph = (struct iphdr *)ipv6h; 438 offset += iph->ihl * 4; 439 440 /* special-case 6in4 tunnelling, as that is a common way to get 441 * v6 connectivity in the home 442 */ 443 if (iph->protocol == IPPROTO_IPV6) { 444 ipv6h = skb_header_pointer(skb, offset, 445 sizeof(_ipv6h), &_ipv6h); 446 447 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 448 return 0; 449 } else if (iph->protocol != IPPROTO_TCP) { 450 return 0; 451 } 452 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 453 return 0; 454 } 455 456 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 457 } 458 459 /* There are a few scenarios where we will have to modify the txtime from 460 * what is read from next_txtime in sched_entry. They are: 461 * 1. If txtime is in the past, 462 * a. The gate for the traffic class is currently open and packet can be 463 * transmitted before it closes, schedule the packet right away. 464 * b. If the gate corresponding to the traffic class is going to open later 465 * in the cycle, set the txtime of packet to the interval start. 466 * 2. If txtime is in the future, there are packets corresponding to the 467 * current traffic class waiting to be transmitted. So, the following 468 * possibilities exist: 469 * a. We can transmit the packet before the window containing the txtime 470 * closes. 471 * b. The window might close before the transmission can be completed 472 * successfully. So, schedule the packet in the next open window. 473 */ 474 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 475 { 476 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 477 struct taprio_sched *q = qdisc_priv(sch); 478 struct sched_gate_list *sched, *admin; 479 ktime_t minimum_time, now, txtime; 480 int len, packet_transmit_time; 481 struct sched_entry *entry; 482 bool sched_changed; 483 484 now = taprio_get_time(q); 485 minimum_time = ktime_add_ns(now, q->txtime_delay); 486 487 tcp_tstamp = get_tcp_tstamp(q, skb); 488 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 489 490 rcu_read_lock(); 491 admin = rcu_dereference(q->admin_sched); 492 sched = rcu_dereference(q->oper_sched); 493 if (admin && ktime_after(minimum_time, admin->base_time)) 494 switch_schedules(q, &admin, &sched); 495 496 /* Until the schedule starts, all the queues are open */ 497 if (!sched || ktime_before(minimum_time, sched->base_time)) { 498 txtime = minimum_time; 499 goto done; 500 } 501 502 len = qdisc_pkt_len(skb); 503 packet_transmit_time = length_to_duration(q, len); 504 505 do { 506 sched_changed = false; 507 508 entry = find_entry_to_transmit(skb, sch, sched, admin, 509 minimum_time, 510 &interval_start, &interval_end, 511 false); 512 if (!entry) { 513 txtime = 0; 514 goto done; 515 } 516 517 txtime = entry->next_txtime; 518 txtime = max_t(ktime_t, txtime, minimum_time); 519 txtime = max_t(ktime_t, txtime, interval_start); 520 521 if (admin && admin != sched && 522 ktime_after(txtime, admin->base_time)) { 523 sched = admin; 524 sched_changed = true; 525 continue; 526 } 527 528 transmit_end_time = ktime_add(txtime, packet_transmit_time); 529 minimum_time = transmit_end_time; 530 531 /* Update the txtime of current entry to the next time it's 532 * interval starts. 533 */ 534 if (ktime_after(transmit_end_time, interval_end)) 535 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 536 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 537 538 entry->next_txtime = transmit_end_time; 539 540 done: 541 rcu_read_unlock(); 542 return txtime; 543 } 544 545 /* Devices with full offload are expected to honor this in hardware */ 546 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, 547 struct sk_buff *skb) 548 { 549 struct taprio_sched *q = qdisc_priv(sch); 550 struct net_device *dev = qdisc_dev(sch); 551 struct sched_gate_list *sched; 552 int prio = skb->priority; 553 bool exceeds = false; 554 u8 tc; 555 556 tc = netdev_get_prio_tc_map(dev, prio); 557 558 rcu_read_lock(); 559 sched = rcu_dereference(q->oper_sched); 560 if (sched && skb->len > sched->max_frm_len[tc]) 561 exceeds = true; 562 rcu_read_unlock(); 563 564 return exceeds; 565 } 566 567 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 568 struct Qdisc *child, struct sk_buff **to_free) 569 { 570 struct taprio_sched *q = qdisc_priv(sch); 571 572 /* sk_flags are only safe to use on full sockets. */ 573 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { 574 if (!is_valid_interval(skb, sch)) 575 return qdisc_drop(skb, sch, to_free); 576 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 577 skb->tstamp = get_packet_txtime(skb, sch); 578 if (!skb->tstamp) 579 return qdisc_drop(skb, sch, to_free); 580 } 581 582 qdisc_qstats_backlog_inc(sch, skb); 583 sch->q.qlen++; 584 585 return qdisc_enqueue(skb, child, to_free); 586 } 587 588 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, 589 struct Qdisc *child, 590 struct sk_buff **to_free) 591 { 592 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 593 netdev_features_t features = netif_skb_features(skb); 594 struct sk_buff *segs, *nskb; 595 int ret; 596 597 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 598 if (IS_ERR_OR_NULL(segs)) 599 return qdisc_drop(skb, sch, to_free); 600 601 skb_list_walk_safe(segs, segs, nskb) { 602 skb_mark_not_on_list(segs); 603 qdisc_skb_cb(segs)->pkt_len = segs->len; 604 slen += segs->len; 605 606 /* FIXME: we should be segmenting to a smaller size 607 * rather than dropping these 608 */ 609 if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) 610 ret = qdisc_drop(segs, sch, to_free); 611 else 612 ret = taprio_enqueue_one(segs, sch, child, to_free); 613 614 if (ret != NET_XMIT_SUCCESS) { 615 if (net_xmit_drop_count(ret)) 616 qdisc_qstats_drop(sch); 617 } else { 618 numsegs++; 619 } 620 } 621 622 if (numsegs > 1) 623 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 624 consume_skb(skb); 625 626 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 627 } 628 629 /* Will not be called in the full offload case, since the TX queues are 630 * attached to the Qdisc created using qdisc_create_dflt() 631 */ 632 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 633 struct sk_buff **to_free) 634 { 635 struct taprio_sched *q = qdisc_priv(sch); 636 struct Qdisc *child; 637 int queue; 638 639 queue = skb_get_queue_mapping(skb); 640 641 child = q->qdiscs[queue]; 642 if (unlikely(!child)) 643 return qdisc_drop(skb, sch, to_free); 644 645 if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { 646 /* Large packets might not be transmitted when the transmission 647 * duration exceeds any configured interval. Therefore, segment 648 * the skb into smaller chunks. Drivers with full offload are 649 * expected to handle this in hardware. 650 */ 651 if (skb_is_gso(skb)) 652 return taprio_enqueue_segmented(skb, sch, child, 653 to_free); 654 655 return qdisc_drop(skb, sch, to_free); 656 } 657 658 return taprio_enqueue_one(skb, sch, child, to_free); 659 } 660 661 static struct sk_buff *taprio_peek(struct Qdisc *sch) 662 { 663 WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); 664 return NULL; 665 } 666 667 static void taprio_set_budgets(struct taprio_sched *q, 668 struct sched_gate_list *sched, 669 struct sched_entry *entry) 670 { 671 struct net_device *dev = qdisc_dev(q->root); 672 int num_tc = netdev_get_num_tc(dev); 673 int tc, budget; 674 675 for (tc = 0; tc < num_tc; tc++) { 676 /* Traffic classes which never close have infinite budget */ 677 if (entry->gate_duration[tc] == sched->cycle_time) 678 budget = INT_MAX; 679 else 680 budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, 681 atomic64_read(&q->picos_per_byte)); 682 683 atomic_set(&entry->budget[tc], budget); 684 } 685 } 686 687 /* When an skb is sent, it consumes from the budget of all traffic classes */ 688 static int taprio_update_budgets(struct sched_entry *entry, size_t len, 689 int tc_consumed, int num_tc) 690 { 691 int tc, budget, new_budget = 0; 692 693 for (tc = 0; tc < num_tc; tc++) { 694 budget = atomic_read(&entry->budget[tc]); 695 /* Don't consume from infinite budget */ 696 if (budget == INT_MAX) { 697 if (tc == tc_consumed) 698 new_budget = budget; 699 continue; 700 } 701 702 if (tc == tc_consumed) 703 new_budget = atomic_sub_return(len, &entry->budget[tc]); 704 else 705 atomic_sub(len, &entry->budget[tc]); 706 } 707 708 return new_budget; 709 } 710 711 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, 712 struct sched_entry *entry, 713 u32 gate_mask) 714 { 715 struct taprio_sched *q = qdisc_priv(sch); 716 struct net_device *dev = qdisc_dev(sch); 717 struct Qdisc *child = q->qdiscs[txq]; 718 int num_tc = netdev_get_num_tc(dev); 719 struct sk_buff *skb; 720 ktime_t guard; 721 int prio; 722 int len; 723 u8 tc; 724 725 if (unlikely(!child)) 726 return NULL; 727 728 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 729 goto skip_peek_checks; 730 731 skb = child->ops->peek(child); 732 if (!skb) 733 return NULL; 734 735 prio = skb->priority; 736 tc = netdev_get_prio_tc_map(dev, prio); 737 738 if (!(gate_mask & BIT(tc))) 739 return NULL; 740 741 len = qdisc_pkt_len(skb); 742 guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); 743 744 /* In the case that there's no gate entry, there's no 745 * guard band ... 746 */ 747 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 748 !taprio_entry_allows_tx(guard, entry, tc)) 749 return NULL; 750 751 /* ... and no budget. */ 752 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 753 taprio_update_budgets(entry, len, tc, num_tc) < 0) 754 return NULL; 755 756 skip_peek_checks: 757 skb = child->ops->dequeue(child); 758 if (unlikely(!skb)) 759 return NULL; 760 761 qdisc_bstats_update(sch, skb); 762 qdisc_qstats_backlog_dec(sch, skb); 763 sch->q.qlen--; 764 765 return skb; 766 } 767 768 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) 769 { 770 int offset = dev->tc_to_txq[tc].offset; 771 int count = dev->tc_to_txq[tc].count; 772 773 (*txq)++; 774 if (*txq == offset + count) 775 *txq = offset; 776 } 777 778 /* Prioritize higher traffic classes, and select among TXQs belonging to the 779 * same TC using round robin 780 */ 781 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, 782 struct sched_entry *entry, 783 u32 gate_mask) 784 { 785 struct taprio_sched *q = qdisc_priv(sch); 786 struct net_device *dev = qdisc_dev(sch); 787 int num_tc = netdev_get_num_tc(dev); 788 struct sk_buff *skb; 789 int tc; 790 791 for (tc = num_tc - 1; tc >= 0; tc--) { 792 int first_txq = q->cur_txq[tc]; 793 794 if (!(gate_mask & BIT(tc))) 795 continue; 796 797 do { 798 skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], 799 entry, gate_mask); 800 801 taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); 802 803 if (skb) 804 return skb; 805 } while (q->cur_txq[tc] != first_txq); 806 } 807 808 return NULL; 809 } 810 811 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic 812 * class other than to determine whether the gate is open or not 813 */ 814 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, 815 struct sched_entry *entry, 816 u32 gate_mask) 817 { 818 struct net_device *dev = qdisc_dev(sch); 819 struct sk_buff *skb; 820 int i; 821 822 for (i = 0; i < dev->num_tx_queues; i++) { 823 skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); 824 if (skb) 825 return skb; 826 } 827 828 return NULL; 829 } 830 831 /* Will not be called in the full offload case, since the TX queues are 832 * attached to the Qdisc created using qdisc_create_dflt() 833 */ 834 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 835 { 836 struct taprio_sched *q = qdisc_priv(sch); 837 struct sk_buff *skb = NULL; 838 struct sched_entry *entry; 839 u32 gate_mask; 840 841 rcu_read_lock(); 842 entry = rcu_dereference(q->current_entry); 843 /* if there's no entry, it means that the schedule didn't 844 * start yet, so force all gates to be open, this is in 845 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 846 * "AdminGateStates" 847 */ 848 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 849 if (!gate_mask) 850 goto done; 851 852 if (static_branch_unlikely(&taprio_have_broken_mqprio) && 853 !static_branch_likely(&taprio_have_working_mqprio)) { 854 /* Single NIC kind which is broken */ 855 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 856 } else if (static_branch_likely(&taprio_have_working_mqprio) && 857 !static_branch_unlikely(&taprio_have_broken_mqprio)) { 858 /* Single NIC kind which prioritizes properly */ 859 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 860 } else { 861 /* Mixed NIC kinds present in system, need dynamic testing */ 862 if (q->broken_mqprio) 863 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 864 else 865 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 866 } 867 868 done: 869 rcu_read_unlock(); 870 871 return skb; 872 } 873 874 static bool should_restart_cycle(const struct sched_gate_list *oper, 875 const struct sched_entry *entry) 876 { 877 if (list_is_last(&entry->list, &oper->entries)) 878 return true; 879 880 if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) 881 return true; 882 883 return false; 884 } 885 886 static bool should_change_schedules(const struct sched_gate_list *admin, 887 const struct sched_gate_list *oper, 888 ktime_t end_time) 889 { 890 ktime_t next_base_time, extension_time; 891 892 if (!admin) 893 return false; 894 895 next_base_time = sched_base_time(admin); 896 897 /* This is the simple case, the end_time would fall after 898 * the next schedule base_time. 899 */ 900 if (ktime_compare(next_base_time, end_time) <= 0) 901 return true; 902 903 /* This is the cycle_time_extension case, if the end_time 904 * plus the amount that can be extended would fall after the 905 * next schedule base_time, we can extend the current schedule 906 * for that amount. 907 */ 908 extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); 909 910 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 911 * how precisely the extension should be made. So after 912 * conformance testing, this logic may change. 913 */ 914 if (ktime_compare(next_base_time, extension_time) <= 0) 915 return true; 916 917 return false; 918 } 919 920 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 921 { 922 struct taprio_sched *q = container_of(timer, struct taprio_sched, 923 advance_timer); 924 struct net_device *dev = qdisc_dev(q->root); 925 struct sched_gate_list *oper, *admin; 926 int num_tc = netdev_get_num_tc(dev); 927 struct sched_entry *entry, *next; 928 struct Qdisc *sch = q->root; 929 ktime_t end_time; 930 int tc; 931 932 spin_lock(&q->current_entry_lock); 933 entry = rcu_dereference_protected(q->current_entry, 934 lockdep_is_held(&q->current_entry_lock)); 935 oper = rcu_dereference_protected(q->oper_sched, 936 lockdep_is_held(&q->current_entry_lock)); 937 admin = rcu_dereference_protected(q->admin_sched, 938 lockdep_is_held(&q->current_entry_lock)); 939 940 if (!oper) 941 switch_schedules(q, &admin, &oper); 942 943 /* This can happen in two cases: 1. this is the very first run 944 * of this function (i.e. we weren't running any schedule 945 * previously); 2. The previous schedule just ended. The first 946 * entry of all schedules are pre-calculated during the 947 * schedule initialization. 948 */ 949 if (unlikely(!entry || entry->end_time == oper->base_time)) { 950 next = list_first_entry(&oper->entries, struct sched_entry, 951 list); 952 end_time = next->end_time; 953 goto first_run; 954 } 955 956 if (should_restart_cycle(oper, entry)) { 957 next = list_first_entry(&oper->entries, struct sched_entry, 958 list); 959 oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, 960 oper->cycle_time); 961 } else { 962 next = list_next_entry(entry, list); 963 } 964 965 end_time = ktime_add_ns(entry->end_time, next->interval); 966 end_time = min_t(ktime_t, end_time, oper->cycle_end_time); 967 968 for (tc = 0; tc < num_tc; tc++) { 969 if (next->gate_duration[tc] == oper->cycle_time) 970 next->gate_close_time[tc] = KTIME_MAX; 971 else 972 next->gate_close_time[tc] = ktime_add_ns(entry->end_time, 973 next->gate_duration[tc]); 974 } 975 976 if (should_change_schedules(admin, oper, end_time)) { 977 /* Set things so the next time this runs, the new 978 * schedule runs. 979 */ 980 end_time = sched_base_time(admin); 981 switch_schedules(q, &admin, &oper); 982 } 983 984 next->end_time = end_time; 985 taprio_set_budgets(q, oper, next); 986 987 first_run: 988 rcu_assign_pointer(q->current_entry, next); 989 spin_unlock(&q->current_entry_lock); 990 991 hrtimer_set_expires(&q->advance_timer, end_time); 992 993 rcu_read_lock(); 994 __netif_schedule(sch); 995 rcu_read_unlock(); 996 997 return HRTIMER_RESTART; 998 } 999 1000 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 1001 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 1002 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 1003 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 1004 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 1005 }; 1006 1007 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { 1008 [TCA_TAPRIO_TC_ENTRY_INDEX] = { .type = NLA_U32 }, 1009 [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, 1010 [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, 1011 TC_FP_EXPRESS, 1012 TC_FP_PREEMPTIBLE), 1013 }; 1014 1015 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 1016 [TCA_TAPRIO_ATTR_PRIOMAP] = { 1017 .len = sizeof(struct tc_mqprio_qopt) 1018 }, 1019 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 1020 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 1021 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 1022 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 1023 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 1024 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 1025 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 1026 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 1027 [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, 1028 }; 1029 1030 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 1031 struct sched_entry *entry, 1032 struct netlink_ext_ack *extack) 1033 { 1034 int min_duration = length_to_duration(q, ETH_ZLEN); 1035 u32 interval = 0; 1036 1037 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 1038 entry->command = nla_get_u8( 1039 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 1040 1041 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 1042 entry->gate_mask = nla_get_u32( 1043 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 1044 1045 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 1046 interval = nla_get_u32( 1047 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 1048 1049 /* The interval should allow at least the minimum ethernet 1050 * frame to go out. 1051 */ 1052 if (interval < min_duration) { 1053 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 1054 return -EINVAL; 1055 } 1056 1057 entry->interval = interval; 1058 1059 return 0; 1060 } 1061 1062 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 1063 struct sched_entry *entry, int index, 1064 struct netlink_ext_ack *extack) 1065 { 1066 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 1067 int err; 1068 1069 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 1070 entry_policy, NULL); 1071 if (err < 0) { 1072 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 1073 return -EINVAL; 1074 } 1075 1076 entry->index = index; 1077 1078 return fill_sched_entry(q, tb, entry, extack); 1079 } 1080 1081 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 1082 struct sched_gate_list *sched, 1083 struct netlink_ext_ack *extack) 1084 { 1085 struct nlattr *n; 1086 int err, rem; 1087 int i = 0; 1088 1089 if (!list) 1090 return -EINVAL; 1091 1092 nla_for_each_nested(n, list, rem) { 1093 struct sched_entry *entry; 1094 1095 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 1096 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 1097 continue; 1098 } 1099 1100 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1101 if (!entry) { 1102 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 1103 return -ENOMEM; 1104 } 1105 1106 err = parse_sched_entry(q, n, entry, i, extack); 1107 if (err < 0) { 1108 kfree(entry); 1109 return err; 1110 } 1111 1112 list_add_tail(&entry->list, &sched->entries); 1113 i++; 1114 } 1115 1116 sched->num_entries = i; 1117 1118 return i; 1119 } 1120 1121 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 1122 struct sched_gate_list *new, 1123 struct netlink_ext_ack *extack) 1124 { 1125 int err = 0; 1126 1127 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 1128 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 1129 return -ENOTSUPP; 1130 } 1131 1132 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 1133 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 1134 1135 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 1136 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 1137 1138 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 1139 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 1140 1141 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 1142 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 1143 new, extack); 1144 if (err < 0) 1145 return err; 1146 1147 if (!new->cycle_time) { 1148 struct sched_entry *entry; 1149 ktime_t cycle = 0; 1150 1151 list_for_each_entry(entry, &new->entries, list) 1152 cycle = ktime_add_ns(cycle, entry->interval); 1153 1154 if (!cycle) { 1155 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 1156 return -EINVAL; 1157 } 1158 1159 new->cycle_time = cycle; 1160 } 1161 1162 taprio_calculate_gate_durations(q, new); 1163 1164 return 0; 1165 } 1166 1167 static int taprio_parse_mqprio_opt(struct net_device *dev, 1168 struct tc_mqprio_qopt *qopt, 1169 struct netlink_ext_ack *extack, 1170 u32 taprio_flags) 1171 { 1172 bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); 1173 1174 if (!qopt && !dev->num_tc) { 1175 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 1176 return -EINVAL; 1177 } 1178 1179 /* If num_tc is already set, it means that the user already 1180 * configured the mqprio part 1181 */ 1182 if (dev->num_tc) 1183 return 0; 1184 1185 /* taprio imposes that traffic classes map 1:n to tx queues */ 1186 if (qopt->num_tc > dev->num_tx_queues) { 1187 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 1188 return -EINVAL; 1189 } 1190 1191 /* For some reason, in txtime-assist mode, we allow TXQ ranges for 1192 * different TCs to overlap, and just validate the TXQ ranges. 1193 */ 1194 return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, 1195 extack); 1196 } 1197 1198 static int taprio_get_start_time(struct Qdisc *sch, 1199 struct sched_gate_list *sched, 1200 ktime_t *start) 1201 { 1202 struct taprio_sched *q = qdisc_priv(sch); 1203 ktime_t now, base, cycle; 1204 s64 n; 1205 1206 base = sched_base_time(sched); 1207 now = taprio_get_time(q); 1208 1209 if (ktime_after(base, now)) { 1210 *start = base; 1211 return 0; 1212 } 1213 1214 cycle = sched->cycle_time; 1215 1216 /* The qdisc is expected to have at least one sched_entry. Moreover, 1217 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1218 * something went really wrong. In that case, we should warn about this 1219 * inconsistent state and return error. 1220 */ 1221 if (WARN_ON(!cycle)) 1222 return -EFAULT; 1223 1224 /* Schedule the start time for the beginning of the next 1225 * cycle. 1226 */ 1227 n = div64_s64(ktime_sub_ns(now, base), cycle); 1228 *start = ktime_add_ns(base, (n + 1) * cycle); 1229 return 0; 1230 } 1231 1232 static void setup_first_end_time(struct taprio_sched *q, 1233 struct sched_gate_list *sched, ktime_t base) 1234 { 1235 struct net_device *dev = qdisc_dev(q->root); 1236 int num_tc = netdev_get_num_tc(dev); 1237 struct sched_entry *first; 1238 ktime_t cycle; 1239 int tc; 1240 1241 first = list_first_entry(&sched->entries, 1242 struct sched_entry, list); 1243 1244 cycle = sched->cycle_time; 1245 1246 /* FIXME: find a better place to do this */ 1247 sched->cycle_end_time = ktime_add_ns(base, cycle); 1248 1249 first->end_time = ktime_add_ns(base, first->interval); 1250 taprio_set_budgets(q, sched, first); 1251 1252 for (tc = 0; tc < num_tc; tc++) { 1253 if (first->gate_duration[tc] == sched->cycle_time) 1254 first->gate_close_time[tc] = KTIME_MAX; 1255 else 1256 first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); 1257 } 1258 1259 rcu_assign_pointer(q->current_entry, NULL); 1260 } 1261 1262 static void taprio_start_sched(struct Qdisc *sch, 1263 ktime_t start, struct sched_gate_list *new) 1264 { 1265 struct taprio_sched *q = qdisc_priv(sch); 1266 ktime_t expires; 1267 1268 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1269 return; 1270 1271 expires = hrtimer_get_expires(&q->advance_timer); 1272 if (expires == 0) 1273 expires = KTIME_MAX; 1274 1275 /* If the new schedule starts before the next expiration, we 1276 * reprogram it to the earliest one, so we change the admin 1277 * schedule to the operational one at the right time. 1278 */ 1279 start = min_t(ktime_t, start, expires); 1280 1281 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1282 } 1283 1284 static void taprio_set_picos_per_byte(struct net_device *dev, 1285 struct taprio_sched *q) 1286 { 1287 struct ethtool_link_ksettings ecmd; 1288 int speed = SPEED_10; 1289 int picos_per_byte; 1290 int err; 1291 1292 err = __ethtool_get_link_ksettings(dev, &ecmd); 1293 if (err < 0) 1294 goto skip; 1295 1296 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1297 speed = ecmd.base.speed; 1298 1299 skip: 1300 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1301 1302 atomic64_set(&q->picos_per_byte, picos_per_byte); 1303 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1304 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1305 ecmd.base.speed); 1306 } 1307 1308 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1309 void *ptr) 1310 { 1311 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1312 struct sched_gate_list *oper, *admin; 1313 struct qdisc_size_table *stab; 1314 struct taprio_sched *q; 1315 1316 ASSERT_RTNL(); 1317 1318 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1319 return NOTIFY_DONE; 1320 1321 list_for_each_entry(q, &taprio_list, taprio_list) { 1322 if (dev != qdisc_dev(q->root)) 1323 continue; 1324 1325 taprio_set_picos_per_byte(dev, q); 1326 1327 stab = rtnl_dereference(q->root->stab); 1328 1329 oper = rtnl_dereference(q->oper_sched); 1330 if (oper) 1331 taprio_update_queue_max_sdu(q, oper, stab); 1332 1333 admin = rtnl_dereference(q->admin_sched); 1334 if (admin) 1335 taprio_update_queue_max_sdu(q, admin, stab); 1336 1337 break; 1338 } 1339 1340 return NOTIFY_DONE; 1341 } 1342 1343 static void setup_txtime(struct taprio_sched *q, 1344 struct sched_gate_list *sched, ktime_t base) 1345 { 1346 struct sched_entry *entry; 1347 u32 interval = 0; 1348 1349 list_for_each_entry(entry, &sched->entries, list) { 1350 entry->next_txtime = ktime_add_ns(base, interval); 1351 interval += entry->interval; 1352 } 1353 } 1354 1355 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1356 { 1357 struct __tc_taprio_qopt_offload *__offload; 1358 1359 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1360 GFP_KERNEL); 1361 if (!__offload) 1362 return NULL; 1363 1364 refcount_set(&__offload->users, 1); 1365 1366 return &__offload->offload; 1367 } 1368 1369 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1370 *offload) 1371 { 1372 struct __tc_taprio_qopt_offload *__offload; 1373 1374 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1375 offload); 1376 1377 refcount_inc(&__offload->users); 1378 1379 return offload; 1380 } 1381 EXPORT_SYMBOL_GPL(taprio_offload_get); 1382 1383 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1384 { 1385 struct __tc_taprio_qopt_offload *__offload; 1386 1387 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1388 offload); 1389 1390 if (!refcount_dec_and_test(&__offload->users)) 1391 return; 1392 1393 kfree(__offload); 1394 } 1395 EXPORT_SYMBOL_GPL(taprio_offload_free); 1396 1397 /* The function will only serve to keep the pointers to the "oper" and "admin" 1398 * schedules valid in relation to their base times, so when calling dump() the 1399 * users looks at the right schedules. 1400 * When using full offload, the admin configuration is promoted to oper at the 1401 * base_time in the PHC time domain. But because the system time is not 1402 * necessarily in sync with that, we can't just trigger a hrtimer to call 1403 * switch_schedules at the right hardware time. 1404 * At the moment we call this by hand right away from taprio, but in the future 1405 * it will be useful to create a mechanism for drivers to notify taprio of the 1406 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1407 * This is left as TODO. 1408 */ 1409 static void taprio_offload_config_changed(struct taprio_sched *q) 1410 { 1411 struct sched_gate_list *oper, *admin; 1412 1413 oper = rtnl_dereference(q->oper_sched); 1414 admin = rtnl_dereference(q->admin_sched); 1415 1416 switch_schedules(q, &admin, &oper); 1417 } 1418 1419 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1420 { 1421 u32 i, queue_mask = 0; 1422 1423 for (i = 0; i < dev->num_tc; i++) { 1424 u32 offset, count; 1425 1426 if (!(tc_mask & BIT(i))) 1427 continue; 1428 1429 offset = dev->tc_to_txq[i].offset; 1430 count = dev->tc_to_txq[i].count; 1431 1432 queue_mask |= GENMASK(offset + count - 1, offset); 1433 } 1434 1435 return queue_mask; 1436 } 1437 1438 static void taprio_sched_to_offload(struct net_device *dev, 1439 struct sched_gate_list *sched, 1440 struct tc_taprio_qopt_offload *offload, 1441 const struct tc_taprio_caps *caps) 1442 { 1443 struct sched_entry *entry; 1444 int i = 0; 1445 1446 offload->base_time = sched->base_time; 1447 offload->cycle_time = sched->cycle_time; 1448 offload->cycle_time_extension = sched->cycle_time_extension; 1449 1450 list_for_each_entry(entry, &sched->entries, list) { 1451 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1452 1453 e->command = entry->command; 1454 e->interval = entry->interval; 1455 if (caps->gate_mask_per_txq) 1456 e->gate_mask = tc_map_to_queue_mask(dev, 1457 entry->gate_mask); 1458 else 1459 e->gate_mask = entry->gate_mask; 1460 1461 i++; 1462 } 1463 1464 offload->num_entries = i; 1465 } 1466 1467 static void taprio_detect_broken_mqprio(struct taprio_sched *q) 1468 { 1469 struct net_device *dev = qdisc_dev(q->root); 1470 struct tc_taprio_caps caps; 1471 1472 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1473 &caps, sizeof(caps)); 1474 1475 q->broken_mqprio = caps.broken_mqprio; 1476 if (q->broken_mqprio) 1477 static_branch_inc(&taprio_have_broken_mqprio); 1478 else 1479 static_branch_inc(&taprio_have_working_mqprio); 1480 1481 q->detected_mqprio = true; 1482 } 1483 1484 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) 1485 { 1486 if (!q->detected_mqprio) 1487 return; 1488 1489 if (q->broken_mqprio) 1490 static_branch_dec(&taprio_have_broken_mqprio); 1491 else 1492 static_branch_dec(&taprio_have_working_mqprio); 1493 } 1494 1495 static int taprio_enable_offload(struct net_device *dev, 1496 struct taprio_sched *q, 1497 struct sched_gate_list *sched, 1498 struct netlink_ext_ack *extack) 1499 { 1500 const struct net_device_ops *ops = dev->netdev_ops; 1501 struct tc_taprio_qopt_offload *offload; 1502 struct tc_taprio_caps caps; 1503 int tc, err = 0; 1504 1505 if (!ops->ndo_setup_tc) { 1506 NL_SET_ERR_MSG(extack, 1507 "Device does not support taprio offload"); 1508 return -EOPNOTSUPP; 1509 } 1510 1511 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1512 &caps, sizeof(caps)); 1513 1514 if (!caps.supports_queue_max_sdu) { 1515 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 1516 if (q->max_sdu[tc]) { 1517 NL_SET_ERR_MSG_MOD(extack, 1518 "Device does not handle queueMaxSDU"); 1519 return -EOPNOTSUPP; 1520 } 1521 } 1522 } 1523 1524 offload = taprio_offload_alloc(sched->num_entries); 1525 if (!offload) { 1526 NL_SET_ERR_MSG(extack, 1527 "Not enough memory for enabling offload mode"); 1528 return -ENOMEM; 1529 } 1530 offload->cmd = TAPRIO_CMD_REPLACE; 1531 offload->extack = extack; 1532 mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); 1533 offload->mqprio.extack = extack; 1534 taprio_sched_to_offload(dev, sched, offload, &caps); 1535 mqprio_fp_to_offload(q->fp, &offload->mqprio); 1536 1537 for (tc = 0; tc < TC_MAX_QUEUE; tc++) 1538 offload->max_sdu[tc] = q->max_sdu[tc]; 1539 1540 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1541 if (err < 0) { 1542 NL_SET_ERR_MSG_WEAK(extack, 1543 "Device failed to setup taprio offload"); 1544 goto done; 1545 } 1546 1547 q->offloaded = true; 1548 1549 done: 1550 /* The offload structure may linger around via a reference taken by the 1551 * device driver, so clear up the netlink extack pointer so that the 1552 * driver isn't tempted to dereference data which stopped being valid 1553 */ 1554 offload->extack = NULL; 1555 offload->mqprio.extack = NULL; 1556 taprio_offload_free(offload); 1557 1558 return err; 1559 } 1560 1561 static int taprio_disable_offload(struct net_device *dev, 1562 struct taprio_sched *q, 1563 struct netlink_ext_ack *extack) 1564 { 1565 const struct net_device_ops *ops = dev->netdev_ops; 1566 struct tc_taprio_qopt_offload *offload; 1567 int err; 1568 1569 if (!q->offloaded) 1570 return 0; 1571 1572 offload = taprio_offload_alloc(0); 1573 if (!offload) { 1574 NL_SET_ERR_MSG(extack, 1575 "Not enough memory to disable offload mode"); 1576 return -ENOMEM; 1577 } 1578 offload->cmd = TAPRIO_CMD_DESTROY; 1579 1580 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1581 if (err < 0) { 1582 NL_SET_ERR_MSG(extack, 1583 "Device failed to disable offload"); 1584 goto out; 1585 } 1586 1587 q->offloaded = false; 1588 1589 out: 1590 taprio_offload_free(offload); 1591 1592 return err; 1593 } 1594 1595 /* If full offload is enabled, the only possible clockid is the net device's 1596 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1597 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1598 * in sync with the specified clockid via a user space daemon such as phc2sys. 1599 * For both software taprio and txtime-assist, the clockid is used for the 1600 * hrtimer that advances the schedule and hence mandatory. 1601 */ 1602 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1603 struct netlink_ext_ack *extack) 1604 { 1605 struct taprio_sched *q = qdisc_priv(sch); 1606 struct net_device *dev = qdisc_dev(sch); 1607 int err = -EINVAL; 1608 1609 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1610 const struct ethtool_ops *ops = dev->ethtool_ops; 1611 struct ethtool_ts_info info = { 1612 .cmd = ETHTOOL_GET_TS_INFO, 1613 .phc_index = -1, 1614 }; 1615 1616 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1617 NL_SET_ERR_MSG(extack, 1618 "The 'clockid' cannot be specified for full offload"); 1619 goto out; 1620 } 1621 1622 if (ops && ops->get_ts_info) 1623 err = ops->get_ts_info(dev, &info); 1624 1625 if (err || info.phc_index < 0) { 1626 NL_SET_ERR_MSG(extack, 1627 "Device does not have a PTP clock"); 1628 err = -ENOTSUPP; 1629 goto out; 1630 } 1631 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1632 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1633 enum tk_offsets tk_offset; 1634 1635 /* We only support static clockids and we don't allow 1636 * for it to be modified after the first init. 1637 */ 1638 if (clockid < 0 || 1639 (q->clockid != -1 && q->clockid != clockid)) { 1640 NL_SET_ERR_MSG(extack, 1641 "Changing the 'clockid' of a running schedule is not supported"); 1642 err = -ENOTSUPP; 1643 goto out; 1644 } 1645 1646 switch (clockid) { 1647 case CLOCK_REALTIME: 1648 tk_offset = TK_OFFS_REAL; 1649 break; 1650 case CLOCK_MONOTONIC: 1651 tk_offset = TK_OFFS_MAX; 1652 break; 1653 case CLOCK_BOOTTIME: 1654 tk_offset = TK_OFFS_BOOT; 1655 break; 1656 case CLOCK_TAI: 1657 tk_offset = TK_OFFS_TAI; 1658 break; 1659 default: 1660 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1661 err = -EINVAL; 1662 goto out; 1663 } 1664 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1665 WRITE_ONCE(q->tk_offset, tk_offset); 1666 1667 q->clockid = clockid; 1668 } else { 1669 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1670 goto out; 1671 } 1672 1673 /* Everything went ok, return success. */ 1674 err = 0; 1675 1676 out: 1677 return err; 1678 } 1679 1680 static int taprio_parse_tc_entry(struct Qdisc *sch, 1681 struct nlattr *opt, 1682 u32 max_sdu[TC_QOPT_MAX_QUEUE], 1683 u32 fp[TC_QOPT_MAX_QUEUE], 1684 unsigned long *seen_tcs, 1685 struct netlink_ext_ack *extack) 1686 { 1687 struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; 1688 struct net_device *dev = qdisc_dev(sch); 1689 int err, tc; 1690 u32 val; 1691 1692 err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, 1693 taprio_tc_policy, extack); 1694 if (err < 0) 1695 return err; 1696 1697 if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { 1698 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); 1699 return -EINVAL; 1700 } 1701 1702 tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); 1703 if (tc >= TC_QOPT_MAX_QUEUE) { 1704 NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); 1705 return -ERANGE; 1706 } 1707 1708 if (*seen_tcs & BIT(tc)) { 1709 NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); 1710 return -EINVAL; 1711 } 1712 1713 *seen_tcs |= BIT(tc); 1714 1715 if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { 1716 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); 1717 if (val > dev->max_mtu) { 1718 NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); 1719 return -ERANGE; 1720 } 1721 1722 max_sdu[tc] = val; 1723 } 1724 1725 if (tb[TCA_TAPRIO_TC_ENTRY_FP]) 1726 fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); 1727 1728 return 0; 1729 } 1730 1731 static int taprio_parse_tc_entries(struct Qdisc *sch, 1732 struct nlattr *opt, 1733 struct netlink_ext_ack *extack) 1734 { 1735 struct taprio_sched *q = qdisc_priv(sch); 1736 struct net_device *dev = qdisc_dev(sch); 1737 u32 max_sdu[TC_QOPT_MAX_QUEUE]; 1738 bool have_preemption = false; 1739 unsigned long seen_tcs = 0; 1740 u32 fp[TC_QOPT_MAX_QUEUE]; 1741 struct nlattr *n; 1742 int tc, rem; 1743 int err = 0; 1744 1745 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1746 max_sdu[tc] = q->max_sdu[tc]; 1747 fp[tc] = q->fp[tc]; 1748 } 1749 1750 nla_for_each_nested(n, opt, rem) { 1751 if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY) 1752 continue; 1753 1754 err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, 1755 extack); 1756 if (err) 1757 return err; 1758 } 1759 1760 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1761 q->max_sdu[tc] = max_sdu[tc]; 1762 q->fp[tc] = fp[tc]; 1763 if (fp[tc] != TC_FP_EXPRESS) 1764 have_preemption = true; 1765 } 1766 1767 if (have_preemption) { 1768 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1769 NL_SET_ERR_MSG(extack, 1770 "Preemption only supported with full offload"); 1771 return -EOPNOTSUPP; 1772 } 1773 1774 if (!ethtool_dev_mm_supported(dev)) { 1775 NL_SET_ERR_MSG(extack, 1776 "Device does not support preemption"); 1777 return -EOPNOTSUPP; 1778 } 1779 } 1780 1781 return err; 1782 } 1783 1784 static int taprio_mqprio_cmp(const struct net_device *dev, 1785 const struct tc_mqprio_qopt *mqprio) 1786 { 1787 int i; 1788 1789 if (!mqprio || mqprio->num_tc != dev->num_tc) 1790 return -1; 1791 1792 for (i = 0; i < mqprio->num_tc; i++) 1793 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1794 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1795 return -1; 1796 1797 for (i = 0; i <= TC_BITMASK; i++) 1798 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1799 return -1; 1800 1801 return 0; 1802 } 1803 1804 /* The semantics of the 'flags' argument in relation to 'change()' 1805 * requests, are interpreted following two rules (which are applied in 1806 * this order): (1) an omitted 'flags' argument is interpreted as 1807 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1808 * changed. 1809 */ 1810 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1811 struct netlink_ext_ack *extack) 1812 { 1813 u32 new = 0; 1814 1815 if (attr) 1816 new = nla_get_u32(attr); 1817 1818 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1819 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1820 return -EOPNOTSUPP; 1821 } 1822 1823 if (!taprio_flags_valid(new)) { 1824 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1825 return -EINVAL; 1826 } 1827 1828 return new; 1829 } 1830 1831 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1832 struct netlink_ext_ack *extack) 1833 { 1834 struct qdisc_size_table *stab = rtnl_dereference(sch->stab); 1835 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1836 struct sched_gate_list *oper, *admin, *new_admin; 1837 struct taprio_sched *q = qdisc_priv(sch); 1838 struct net_device *dev = qdisc_dev(sch); 1839 struct tc_mqprio_qopt *mqprio = NULL; 1840 unsigned long flags; 1841 ktime_t start; 1842 int i, err; 1843 1844 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1845 taprio_policy, extack); 1846 if (err < 0) 1847 return err; 1848 1849 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1850 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1851 1852 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1853 q->flags, extack); 1854 if (err < 0) 1855 return err; 1856 1857 q->flags = err; 1858 1859 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1860 if (err < 0) 1861 return err; 1862 1863 err = taprio_parse_tc_entries(sch, opt, extack); 1864 if (err) 1865 return err; 1866 1867 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1868 if (!new_admin) { 1869 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1870 return -ENOMEM; 1871 } 1872 INIT_LIST_HEAD(&new_admin->entries); 1873 1874 oper = rtnl_dereference(q->oper_sched); 1875 admin = rtnl_dereference(q->admin_sched); 1876 1877 /* no changes - no new mqprio settings */ 1878 if (!taprio_mqprio_cmp(dev, mqprio)) 1879 mqprio = NULL; 1880 1881 if (mqprio && (oper || admin)) { 1882 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1883 err = -ENOTSUPP; 1884 goto free_sched; 1885 } 1886 1887 if (mqprio) { 1888 err = netdev_set_num_tc(dev, mqprio->num_tc); 1889 if (err) 1890 goto free_sched; 1891 for (i = 0; i < mqprio->num_tc; i++) { 1892 netdev_set_tc_queue(dev, i, 1893 mqprio->count[i], 1894 mqprio->offset[i]); 1895 q->cur_txq[i] = mqprio->offset[i]; 1896 } 1897 1898 /* Always use supplied priority mappings */ 1899 for (i = 0; i <= TC_BITMASK; i++) 1900 netdev_set_prio_tc_map(dev, i, 1901 mqprio->prio_tc_map[i]); 1902 } 1903 1904 err = parse_taprio_schedule(q, tb, new_admin, extack); 1905 if (err < 0) 1906 goto free_sched; 1907 1908 if (new_admin->num_entries == 0) { 1909 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1910 err = -EINVAL; 1911 goto free_sched; 1912 } 1913 1914 err = taprio_parse_clockid(sch, tb, extack); 1915 if (err < 0) 1916 goto free_sched; 1917 1918 taprio_set_picos_per_byte(dev, q); 1919 taprio_update_queue_max_sdu(q, new_admin, stab); 1920 1921 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1922 err = taprio_enable_offload(dev, q, new_admin, extack); 1923 else 1924 err = taprio_disable_offload(dev, q, extack); 1925 if (err) 1926 goto free_sched; 1927 1928 /* Protects against enqueue()/dequeue() */ 1929 spin_lock_bh(qdisc_lock(sch)); 1930 1931 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1932 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1933 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1934 err = -EINVAL; 1935 goto unlock; 1936 } 1937 1938 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1939 } 1940 1941 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1942 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1943 !hrtimer_active(&q->advance_timer)) { 1944 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1945 q->advance_timer.function = advance_sched; 1946 } 1947 1948 err = taprio_get_start_time(sch, new_admin, &start); 1949 if (err < 0) { 1950 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1951 goto unlock; 1952 } 1953 1954 setup_txtime(q, new_admin, start); 1955 1956 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1957 if (!oper) { 1958 rcu_assign_pointer(q->oper_sched, new_admin); 1959 err = 0; 1960 new_admin = NULL; 1961 goto unlock; 1962 } 1963 1964 rcu_assign_pointer(q->admin_sched, new_admin); 1965 if (admin) 1966 call_rcu(&admin->rcu, taprio_free_sched_cb); 1967 } else { 1968 setup_first_end_time(q, new_admin, start); 1969 1970 /* Protects against advance_sched() */ 1971 spin_lock_irqsave(&q->current_entry_lock, flags); 1972 1973 taprio_start_sched(sch, start, new_admin); 1974 1975 rcu_assign_pointer(q->admin_sched, new_admin); 1976 if (admin) 1977 call_rcu(&admin->rcu, taprio_free_sched_cb); 1978 1979 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1980 1981 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1982 taprio_offload_config_changed(q); 1983 } 1984 1985 new_admin = NULL; 1986 err = 0; 1987 1988 if (!stab) 1989 NL_SET_ERR_MSG_MOD(extack, 1990 "Size table not specified, frame length estimations may be inaccurate"); 1991 1992 unlock: 1993 spin_unlock_bh(qdisc_lock(sch)); 1994 1995 free_sched: 1996 if (new_admin) 1997 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1998 1999 return err; 2000 } 2001 2002 static void taprio_reset(struct Qdisc *sch) 2003 { 2004 struct taprio_sched *q = qdisc_priv(sch); 2005 struct net_device *dev = qdisc_dev(sch); 2006 int i; 2007 2008 hrtimer_cancel(&q->advance_timer); 2009 2010 if (q->qdiscs) { 2011 for (i = 0; i < dev->num_tx_queues; i++) 2012 if (q->qdiscs[i]) 2013 qdisc_reset(q->qdiscs[i]); 2014 } 2015 } 2016 2017 static void taprio_destroy(struct Qdisc *sch) 2018 { 2019 struct taprio_sched *q = qdisc_priv(sch); 2020 struct net_device *dev = qdisc_dev(sch); 2021 struct sched_gate_list *oper, *admin; 2022 unsigned int i; 2023 2024 list_del(&q->taprio_list); 2025 2026 /* Note that taprio_reset() might not be called if an error 2027 * happens in qdisc_create(), after taprio_init() has been called. 2028 */ 2029 hrtimer_cancel(&q->advance_timer); 2030 qdisc_synchronize(sch); 2031 2032 taprio_disable_offload(dev, q, NULL); 2033 2034 if (q->qdiscs) { 2035 for (i = 0; i < dev->num_tx_queues; i++) 2036 qdisc_put(q->qdiscs[i]); 2037 2038 kfree(q->qdiscs); 2039 } 2040 q->qdiscs = NULL; 2041 2042 netdev_reset_tc(dev); 2043 2044 oper = rtnl_dereference(q->oper_sched); 2045 admin = rtnl_dereference(q->admin_sched); 2046 2047 if (oper) 2048 call_rcu(&oper->rcu, taprio_free_sched_cb); 2049 2050 if (admin) 2051 call_rcu(&admin->rcu, taprio_free_sched_cb); 2052 2053 taprio_cleanup_broken_mqprio(q); 2054 } 2055 2056 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 2057 struct netlink_ext_ack *extack) 2058 { 2059 struct taprio_sched *q = qdisc_priv(sch); 2060 struct net_device *dev = qdisc_dev(sch); 2061 int i, tc; 2062 2063 spin_lock_init(&q->current_entry_lock); 2064 2065 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 2066 q->advance_timer.function = advance_sched; 2067 2068 q->root = sch; 2069 2070 /* We only support static clockids. Use an invalid value as default 2071 * and get the valid one on taprio_change(). 2072 */ 2073 q->clockid = -1; 2074 q->flags = TAPRIO_FLAGS_INVALID; 2075 2076 list_add(&q->taprio_list, &taprio_list); 2077 2078 if (sch->parent != TC_H_ROOT) { 2079 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); 2080 return -EOPNOTSUPP; 2081 } 2082 2083 if (!netif_is_multiqueue(dev)) { 2084 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); 2085 return -EOPNOTSUPP; 2086 } 2087 2088 /* pre-allocate qdisc, attachment can't fail */ 2089 q->qdiscs = kcalloc(dev->num_tx_queues, 2090 sizeof(q->qdiscs[0]), 2091 GFP_KERNEL); 2092 2093 if (!q->qdiscs) 2094 return -ENOMEM; 2095 2096 if (!opt) 2097 return -EINVAL; 2098 2099 for (i = 0; i < dev->num_tx_queues; i++) { 2100 struct netdev_queue *dev_queue; 2101 struct Qdisc *qdisc; 2102 2103 dev_queue = netdev_get_tx_queue(dev, i); 2104 qdisc = qdisc_create_dflt(dev_queue, 2105 &pfifo_qdisc_ops, 2106 TC_H_MAKE(TC_H_MAJ(sch->handle), 2107 TC_H_MIN(i + 1)), 2108 extack); 2109 if (!qdisc) 2110 return -ENOMEM; 2111 2112 if (i < dev->real_num_tx_queues) 2113 qdisc_hash_add(qdisc, false); 2114 2115 q->qdiscs[i] = qdisc; 2116 } 2117 2118 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) 2119 q->fp[tc] = TC_FP_EXPRESS; 2120 2121 taprio_detect_broken_mqprio(q); 2122 2123 return taprio_change(sch, opt, extack); 2124 } 2125 2126 static void taprio_attach(struct Qdisc *sch) 2127 { 2128 struct taprio_sched *q = qdisc_priv(sch); 2129 struct net_device *dev = qdisc_dev(sch); 2130 unsigned int ntx; 2131 2132 /* Attach underlying qdisc */ 2133 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 2134 struct Qdisc *qdisc = q->qdiscs[ntx]; 2135 struct Qdisc *old; 2136 2137 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2138 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2139 old = dev_graft_qdisc(qdisc->dev_queue, qdisc); 2140 } else { 2141 old = dev_graft_qdisc(qdisc->dev_queue, sch); 2142 qdisc_refcount_inc(sch); 2143 } 2144 if (old) 2145 qdisc_put(old); 2146 } 2147 2148 /* access to the child qdiscs is not needed in offload mode */ 2149 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2150 kfree(q->qdiscs); 2151 q->qdiscs = NULL; 2152 } 2153 } 2154 2155 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 2156 unsigned long cl) 2157 { 2158 struct net_device *dev = qdisc_dev(sch); 2159 unsigned long ntx = cl - 1; 2160 2161 if (ntx >= dev->num_tx_queues) 2162 return NULL; 2163 2164 return netdev_get_tx_queue(dev, ntx); 2165 } 2166 2167 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 2168 struct Qdisc *new, struct Qdisc **old, 2169 struct netlink_ext_ack *extack) 2170 { 2171 struct taprio_sched *q = qdisc_priv(sch); 2172 struct net_device *dev = qdisc_dev(sch); 2173 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2174 2175 if (!dev_queue) 2176 return -EINVAL; 2177 2178 if (dev->flags & IFF_UP) 2179 dev_deactivate(dev); 2180 2181 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2182 *old = dev_graft_qdisc(dev_queue, new); 2183 } else { 2184 *old = q->qdiscs[cl - 1]; 2185 q->qdiscs[cl - 1] = new; 2186 } 2187 2188 if (new) 2189 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2190 2191 if (dev->flags & IFF_UP) 2192 dev_activate(dev); 2193 2194 return 0; 2195 } 2196 2197 static int dump_entry(struct sk_buff *msg, 2198 const struct sched_entry *entry) 2199 { 2200 struct nlattr *item; 2201 2202 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 2203 if (!item) 2204 return -ENOSPC; 2205 2206 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 2207 goto nla_put_failure; 2208 2209 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 2210 goto nla_put_failure; 2211 2212 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 2213 entry->gate_mask)) 2214 goto nla_put_failure; 2215 2216 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 2217 entry->interval)) 2218 goto nla_put_failure; 2219 2220 return nla_nest_end(msg, item); 2221 2222 nla_put_failure: 2223 nla_nest_cancel(msg, item); 2224 return -1; 2225 } 2226 2227 static int dump_schedule(struct sk_buff *msg, 2228 const struct sched_gate_list *root) 2229 { 2230 struct nlattr *entry_list; 2231 struct sched_entry *entry; 2232 2233 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 2234 root->base_time, TCA_TAPRIO_PAD)) 2235 return -1; 2236 2237 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 2238 root->cycle_time, TCA_TAPRIO_PAD)) 2239 return -1; 2240 2241 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 2242 root->cycle_time_extension, TCA_TAPRIO_PAD)) 2243 return -1; 2244 2245 entry_list = nla_nest_start_noflag(msg, 2246 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 2247 if (!entry_list) 2248 goto error_nest; 2249 2250 list_for_each_entry(entry, &root->entries, list) { 2251 if (dump_entry(msg, entry) < 0) 2252 goto error_nest; 2253 } 2254 2255 nla_nest_end(msg, entry_list); 2256 return 0; 2257 2258 error_nest: 2259 nla_nest_cancel(msg, entry_list); 2260 return -1; 2261 } 2262 2263 static int taprio_dump_tc_entries(struct sk_buff *skb, 2264 struct taprio_sched *q, 2265 struct sched_gate_list *sched) 2266 { 2267 struct nlattr *n; 2268 int tc; 2269 2270 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 2271 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); 2272 if (!n) 2273 return -EMSGSIZE; 2274 2275 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) 2276 goto nla_put_failure; 2277 2278 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, 2279 sched->max_sdu[tc])) 2280 goto nla_put_failure; 2281 2282 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) 2283 goto nla_put_failure; 2284 2285 nla_nest_end(skb, n); 2286 } 2287 2288 return 0; 2289 2290 nla_put_failure: 2291 nla_nest_cancel(skb, n); 2292 return -EMSGSIZE; 2293 } 2294 2295 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) 2296 { 2297 if (val == TAPRIO_STAT_NOT_SET) 2298 return 0; 2299 if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD)) 2300 return -EMSGSIZE; 2301 return 0; 2302 } 2303 2304 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d, 2305 struct tc_taprio_qopt_offload *offload, 2306 struct tc_taprio_qopt_stats *stats) 2307 { 2308 struct net_device *dev = qdisc_dev(sch); 2309 const struct net_device_ops *ops; 2310 struct sk_buff *skb = d->skb; 2311 struct nlattr *xstats; 2312 int err; 2313 2314 ops = qdisc_dev(sch)->netdev_ops; 2315 2316 /* FIXME I could use qdisc_offload_dump_helper(), but that messes 2317 * with sch->flags depending on whether the device reports taprio 2318 * stats, and I'm not sure whether that's a good idea, considering 2319 * that stats are optional to the offload itself 2320 */ 2321 if (!ops->ndo_setup_tc) 2322 return 0; 2323 2324 memset(stats, 0xff, sizeof(*stats)); 2325 2326 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 2327 if (err == -EOPNOTSUPP) 2328 return 0; 2329 if (err) 2330 return err; 2331 2332 xstats = nla_nest_start(skb, TCA_STATS_APP); 2333 if (!xstats) 2334 goto err; 2335 2336 if (taprio_put_stat(skb, stats->window_drops, 2337 TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) || 2338 taprio_put_stat(skb, stats->tx_overruns, 2339 TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS)) 2340 goto err_cancel; 2341 2342 nla_nest_end(skb, xstats); 2343 2344 return 0; 2345 2346 err_cancel: 2347 nla_nest_cancel(skb, xstats); 2348 err: 2349 return -EMSGSIZE; 2350 } 2351 2352 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 2353 { 2354 struct tc_taprio_qopt_offload offload = { 2355 .cmd = TAPRIO_CMD_STATS, 2356 }; 2357 2358 return taprio_dump_xstats(sch, d, &offload, &offload.stats); 2359 } 2360 2361 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 2362 { 2363 struct taprio_sched *q = qdisc_priv(sch); 2364 struct net_device *dev = qdisc_dev(sch); 2365 struct sched_gate_list *oper, *admin; 2366 struct tc_mqprio_qopt opt = { 0 }; 2367 struct nlattr *nest, *sched_nest; 2368 2369 oper = rtnl_dereference(q->oper_sched); 2370 admin = rtnl_dereference(q->admin_sched); 2371 2372 mqprio_qopt_reconstruct(dev, &opt); 2373 2374 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 2375 if (!nest) 2376 goto start_error; 2377 2378 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 2379 goto options_error; 2380 2381 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 2382 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 2383 goto options_error; 2384 2385 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 2386 goto options_error; 2387 2388 if (q->txtime_delay && 2389 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 2390 goto options_error; 2391 2392 if (oper && taprio_dump_tc_entries(skb, q, oper)) 2393 goto options_error; 2394 2395 if (oper && dump_schedule(skb, oper)) 2396 goto options_error; 2397 2398 if (!admin) 2399 goto done; 2400 2401 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 2402 if (!sched_nest) 2403 goto options_error; 2404 2405 if (dump_schedule(skb, admin)) 2406 goto admin_error; 2407 2408 nla_nest_end(skb, sched_nest); 2409 2410 done: 2411 return nla_nest_end(skb, nest); 2412 2413 admin_error: 2414 nla_nest_cancel(skb, sched_nest); 2415 2416 options_error: 2417 nla_nest_cancel(skb, nest); 2418 2419 start_error: 2420 return -ENOSPC; 2421 } 2422 2423 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 2424 { 2425 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2426 2427 if (!dev_queue) 2428 return NULL; 2429 2430 return rtnl_dereference(dev_queue->qdisc_sleeping); 2431 } 2432 2433 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 2434 { 2435 unsigned int ntx = TC_H_MIN(classid); 2436 2437 if (!taprio_queue_get(sch, ntx)) 2438 return 0; 2439 return ntx; 2440 } 2441 2442 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 2443 struct sk_buff *skb, struct tcmsg *tcm) 2444 { 2445 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2446 2447 tcm->tcm_parent = TC_H_ROOT; 2448 tcm->tcm_handle |= TC_H_MIN(cl); 2449 tcm->tcm_info = rtnl_dereference(dev_queue->qdisc_sleeping)->handle; 2450 2451 return 0; 2452 } 2453 2454 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 2455 struct gnet_dump *d) 2456 __releases(d->lock) 2457 __acquires(d->lock) 2458 { 2459 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2460 struct tc_taprio_qopt_offload offload = { 2461 .cmd = TAPRIO_CMD_QUEUE_STATS, 2462 .queue_stats = { 2463 .queue = cl - 1, 2464 }, 2465 }; 2466 struct Qdisc *child; 2467 2468 child = rtnl_dereference(dev_queue->qdisc_sleeping); 2469 if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 || 2470 qdisc_qstats_copy(d, child) < 0) 2471 return -1; 2472 2473 return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats); 2474 } 2475 2476 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 2477 { 2478 struct net_device *dev = qdisc_dev(sch); 2479 unsigned long ntx; 2480 2481 if (arg->stop) 2482 return; 2483 2484 arg->count = arg->skip; 2485 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2486 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) 2487 break; 2488 } 2489 } 2490 2491 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2492 struct tcmsg *tcm) 2493 { 2494 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2495 } 2496 2497 static const struct Qdisc_class_ops taprio_class_ops = { 2498 .graft = taprio_graft, 2499 .leaf = taprio_leaf, 2500 .find = taprio_find, 2501 .walk = taprio_walk, 2502 .dump = taprio_dump_class, 2503 .dump_stats = taprio_dump_class_stats, 2504 .select_queue = taprio_select_queue, 2505 }; 2506 2507 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2508 .cl_ops = &taprio_class_ops, 2509 .id = "taprio", 2510 .priv_size = sizeof(struct taprio_sched), 2511 .init = taprio_init, 2512 .change = taprio_change, 2513 .destroy = taprio_destroy, 2514 .reset = taprio_reset, 2515 .attach = taprio_attach, 2516 .peek = taprio_peek, 2517 .dequeue = taprio_dequeue, 2518 .enqueue = taprio_enqueue, 2519 .dump = taprio_dump, 2520 .dump_stats = taprio_dump_stats, 2521 .owner = THIS_MODULE, 2522 }; 2523 2524 static struct notifier_block taprio_device_notifier = { 2525 .notifier_call = taprio_dev_notifier, 2526 }; 2527 2528 static int __init taprio_module_init(void) 2529 { 2530 int err = register_netdevice_notifier(&taprio_device_notifier); 2531 2532 if (err) 2533 return err; 2534 2535 return register_qdisc(&taprio_qdisc_ops); 2536 } 2537 2538 static void __exit taprio_module_exit(void) 2539 { 2540 unregister_qdisc(&taprio_qdisc_ops); 2541 unregister_netdevice_notifier(&taprio_device_notifier); 2542 } 2543 2544 module_init(taprio_module_init); 2545 module_exit(taprio_module_exit); 2546 MODULE_LICENSE("GPL"); 2547